JP5039640B2 - Pot for producing positive electrode active material for lithium ion battery and method for producing the same - Google Patents

Pot for producing positive electrode active material for lithium ion battery and method for producing the same Download PDF

Info

Publication number
JP5039640B2
JP5039640B2 JP2008150664A JP2008150664A JP5039640B2 JP 5039640 B2 JP5039640 B2 JP 5039640B2 JP 2008150664 A JP2008150664 A JP 2008150664A JP 2008150664 A JP2008150664 A JP 2008150664A JP 5039640 B2 JP5039640 B2 JP 5039640B2
Authority
JP
Japan
Prior art keywords
mass
mortar
positive electrode
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008150664A
Other languages
Japanese (ja)
Other versions
JP2009292704A (en
Inventor
真示 加藤
啓介 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2008150664A priority Critical patent/JP5039640B2/en
Priority to KR1020090046243A priority patent/KR20090127805A/en
Priority to CNA2009101466629A priority patent/CN101604751A/en
Publication of JP2009292704A publication Critical patent/JP2009292704A/en
Application granted granted Critical
Publication of JP5039640B2 publication Critical patent/JP5039640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0006Composite supporting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン電池の正極活物質を製造するための匣鉢及びその製造方法に関する。   The present invention relates to a mortar for producing a positive electrode active material of a lithium ion battery and a method for producing the same.

リチウムイオン二次電池は、携帯電話機やノート型パーソナルコンピュータ等のポータブル型電子機器の電源として多く使用されている。リチウムイオン二次電池の正極活物質には、リチウム含有複合酸化物(例えば、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムマンガンコバルト複合酸化物、リチウムニッケルコバルト複合酸化物等)が使用されており、この正極活物質は、原料粉末を耐火物(匣鉢)に入れて焼成することによって製造されている。正極活物質を製造するための匣鉢は、例えば特許文献1及び特許文献2に開示されている。   Lithium ion secondary batteries are often used as power sources for portable electronic devices such as mobile phones and notebook personal computers. The positive electrode active material of the lithium ion secondary battery includes a lithium-containing composite oxide (for example, lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, lithium manganese cobalt composite oxide, lithium nickel cobalt composite oxide). This positive electrode active material is manufactured by putting raw material powder in a refractory (boiled bowl) and baking it. For example, Patent Literature 1 and Patent Literature 2 disclose a mortar for producing a positive electrode active material.

特許文献1においては、安全性が高くかつ長寿命な電池を実現するために、Al、Si、Ca、Y及びZrよりなる群から選択される少なくとも1種類の成分とMgOとを含有し、MgO含有量が99%以上である材料、あるいは、Si、Ca、Y、Zr及びHfよりなる群から選択される少なくとも1種類の成分とMgAlスピネルとを含有し、MgAlスピネルの含有量が95%以上である材料から形成されている正極活物質用リチウム含有複合酸化物の合成用鞘が提案されている。 In Patent Document 1, in order to realize a battery with high safety and a long life, it contains at least one component selected from the group consisting of Al, Si, Ca, Y and Zr and MgO, and MgO matter content of at least 99%, or, Si, Ca, Y, containing at least one component and MgAl 2 O 4 spinel is selected from the group consisting of Zr and Hf, the MgAl 2 O 4 spinel A sheath for synthesizing a lithium-containing composite oxide for a positive electrode active material formed from a material having a content of 95% or more has been proposed.

特許文献2においては、リチウムに対する耐蝕性を改善するために、(A)マグネシア、ジルコニアおよびチタニアからなる群から選択される一種または二種以上を3〜15wt%、(B)溶融シリカを3〜30wt%、又は(A)及び(B)を含有し、残部が実質的にマグネシア−アルミナ質スピネルからなる材料の焼成体により構成された匣鉢が提案されている。   In Patent Document 2, in order to improve the corrosion resistance against lithium, (A) one or more selected from the group consisting of magnesia, zirconia and titania is 3 to 15 wt%, and (B) fused silica is 3 to There has been proposed a mortar composed of a sintered body of a material containing 30 wt% or (A) and (B), the balance being substantially made of magnesia-alumina spinel.

特許第3552210号公報Japanese Patent No. 3552210 特開2003−165767号公報JP 2003-165767 A

以下の分析は、本発明の観点から与えられる。   The following analysis is given from the perspective of the present invention.

リチウムイオン電池の正極を製造するための匣鉢は、正極活物質の原料(以下「正極原料」とする)を焼成する際に正極原料に含まれるリチウムやコバルトが匣鉢に拡散しないものを選択する必要がある。リチウムやコバルトが匣鉢に拡散し、匣鉢の構成成分と反応すると、匣鉢の耐久性が劣化し、その寿命が短縮される。   Select a material that does not allow lithium or cobalt contained in the positive electrode material to diffuse into the material when the positive electrode active material (hereinafter referred to as “positive electrode material”) is fired. There is a need to. When lithium or cobalt diffuses into the mortar and reacts with the components of the mortar, the durability of the mortar deteriorates and its life is shortened.

そこで、特許文献1及び特許文献2に記載された匣鉢のように、匣鉢中のマグネシア(MgO)及びスピネル(MgAl)の含有率を高くすると、リチウムの拡散に対する匣鉢の耐蝕性は改善される。 Therefore, when the contents of magnesia (MgO) and spinel (MgAl 2 O 4 ) in the mortar are increased as in the mortar described in Patent Document 1 and Patent Document 2, the corrosion resistance of the mortar against lithium diffusion is increased. Sex is improved.

しかしながら、匣鉢中のマグネシア及び/又はスピネルの含有率を高くすると、匣鉢の熱膨張率が高くなってしまう。例えば、マグネシアを90wt%以上含む匣鉢の熱膨張率は、約1.4%(室温〜1000℃)であり、スピネルを90wt%以上含む匣鉢の熱膨張率は、約0.7%(室温〜1000℃)である。通常、正極活物質の製造時の焼成後の降温工程においては、製造効率を高めるために、炉内へのエアの送入により炉内温度を下げるなどして匣鉢及び焼成物を強制的に冷却している。そのため、匣鉢の熱膨張率が高いと、降温工程時に匣鉢にクラックが発生してしまうことになる。   However, if the content of magnesia and / or spinel in the sagger is increased, the thermal expansion coefficient of the sagger will increase. For example, the thermal expansion coefficient of the mortar containing 90 wt% or more of magnesia is about 1.4% (room temperature to 1000 ° C.), and the thermal expansion coefficient of the mortar containing 90 wt% or more of spinel is about 0.7% ( Room temperature to 1000 ° C.). Usually, in the temperature lowering step after firing at the time of manufacturing the positive electrode active material, in order to increase the manufacturing efficiency, the temperature in the furnace is lowered by, for example, reducing the furnace temperature by feeding air into the furnace. It is cooling. Therefore, if the thermal expansion coefficient of the mortar is high, cracks will occur in the mortar during the temperature lowering process.

また、匣鉢は、焼成後において、焼成して得られた正極活物質との剥離性がよいもの(焼成により正極活物質と溶着しないもの)を選択する必要がある。剥離性が悪く、正極活物質と匣鉢とが溶着すると、焼成後正極活物質を匣鉢から取り出しにくくなって製品歩留まりが低下するのみならず、匣鉢の表面の一部(リチウムやコバルトと匣鉢の構成成分との反応物質)が、製造された正極活物質に付着してしまい、その正極活物質を製品として使用することができなくなる。   In addition, it is necessary to select a bowl that has good releasability from the positive electrode active material obtained by firing (not welded to the positive electrode active material by firing) after firing. If the positive electrode active material and the mortar are welded, the peelability is poor and it is difficult to remove the positive electrode active material from the mortar after firing, resulting in a decrease in product yield, as well as a part of the surface of the mortar (with lithium and cobalt). The reaction material with the components of the mortar is attached to the manufactured positive electrode active material, and the positive electrode active material cannot be used as a product.

本発明の目的は、焼成時の正極原料の拡散に対して高い耐蝕性を有すると共に、焼成物の剥離性が良く、かつ熱膨張率が低い、リチウムイオン電池の正極活物質製造用匣鉢を提供することである。   An object of the present invention is to provide a mortar for producing a positive electrode active material for a lithium ion battery, which has high corrosion resistance against diffusion of the positive electrode material during firing, has good peelability of the fired product, and has a low coefficient of thermal expansion. Is to provide.

本発明の第1視点によれば、リチウムイオン電池の正極活物質を製造するための匣鉢であって、スピネルを30質量%〜70質量%、コージライトを15質量%〜70質量%、及びムライトを0質量%〜35質量%(0質量%含む)含有する匣鉢を提供する。 According to a first aspect of the present invention, a mortar for producing a positive electrode active material of a lithium ion battery, wherein spinel is 30% by mass to 70% by mass, cordierite is 15% by mass to 70% by mass, and A mortar containing 0% by mass to 35% by mass (including 0% by mass) of mullite is provided.

上記第1視点の好ましい形態によれば、匣鉢は、スピネルを45質量%〜65質量%、コージライトを20質量%〜40質量%、及びムライトを5質量%〜25質量%含有する。   According to a preferred form of the first aspect, the mortar contains 45% to 65% by weight of spinel, 20% to 40% by weight of cordierite, and 5% to 25% by weight of mullite.

上記第1視点の好ましい形態によれば、リチウムイオン電池の正極活物質を未製造の匣鉢において、Al成分を46質量%〜68質量%、MgO成分を14質量%〜22質量%、及びSiO成分を12質量%〜36質量%含有する。 According to a preferred embodiment of the first aspect, in a mortar in which a positive electrode active material of a lithium ion battery is not manufactured, the Al 2 O 3 component is 46 mass% to 68 mass%, and the MgO component is 14 mass% to 22 mass%. And 12 mass% to 36 mass% of SiO 2 component.

上記第視点の好ましい形態によれば、匣鉢は、Al成分を56質量%〜67質量%、MgO成分を14質量%〜22質量%、及びSiO成分を15質量%〜24質量%含有する。 According to a preferred form of the first aspect, the mortar is composed of 56% to 67% by mass of the Al 2 O 3 component, 14% to 22% by mass of the MgO component, and 15% to 24% of the SiO 2 component. Contains by mass%.

上記第1視点の好ましい形態によれば、匣鉢は、25℃〜1000℃における熱膨張率が0.5%以下である。さらに好ましい形態によれば、25℃〜1000℃における熱膨張率が0.35%以下である。 According to a preferred mode of the first view point, saggers, the thermal expansion coefficient at 25 ° C. to 1000 ° C. it is not more than 0.5%. According to a more preferred embodiment, the coefficient of thermal expansion at 25 ° C. to 1000 ° C. is 0.35% or less.

上記第1視点の好ましい形態によれば、匣鉢は、Fe成分が0.5質量%以下である。 According to a preferred mode of the first view point, saggers is, Fe 2 O 3 component is more than 0.5 mass%.

上記第1視点の好ましい形態によれば、リチウムイオン電池の正極活物質の原料を未焼成の匣鉢に収容して焼成した後において、焼成後における前記原料と接触する表層は、前記原料を未焼成のときよりもMgO成分を多く含有する。 According to a preferred mode of the first view point, after calcination housed in a positive electrode active sagger material the unfired material of the lithium ion battery, a surface layer in contact with the material after firing, the raw material It contains more MgO components than when unfired.

本発明の第視点によれば、リチウムイオン電池の正極活物質を製造するための匣鉢の製造方法であって、スピネル、コージライト及びムライトの合計質量に対して、30質量%〜70質量%のスピネル、15質量%〜70質量%のコージライト、及び0質量%〜35質量%(0質量%含む)のムライトを含有する混合物を焼成する匣鉢の製造方法を提供する。 According to a second aspect of the present invention, there is provided a method for producing a mortar for producing a positive electrode active material of a lithium ion battery, wherein the mass is 30% by mass to 70% by mass with respect to the total mass of spinel, cordierite and mullite. % Spinel, 15% to 70% by weight cordierite, and 0% to 35% by weight (including 0% by weight) of mullite.

上記第視点の好ましい形態によれば、リチウムイオン電池の正極活物質を未製造の匣鉢において、スピネル、コージライト及びムライトの合計成分に対して、Al成分が46質量%〜68質量%、MgO成分が14質量%〜22質量%、及びSiO成分が12質量%〜36質量%含有するようにスピネル及びコージライト、又はスピネル、コージライト及びムライトを含有する混合物を焼成する。 According to the preferred form of the second aspect, the Al 2 O 3 component is 46% by mass to 68% with respect to the total component of spinel, cordierite, and mullite in an unmanufactured positive electrode active material of a lithium ion battery. The spinel and cordierite, or the mixture containing spinel, cordierite and mullite is fired so that the mass percent, the MgO component is 14 mass percent to 22 mass percent, and the SiO 2 component is 12 mass percent to 36 mass percent.

上記第視点の好ましい形態によれば、混合物は、スピネル、コージライト及びムライトの合計質量に対してマグネシア単体を5質量%以上含有しない。 According to the preferable form of the second aspect, the mixture does not contain 5 mass% or more of magnesia alone with respect to the total mass of spinel, cordierite and mullite.

上記第視点の好ましい形態によれば、混合物は、スピネル、コージライト及びムライトの合計成分に対してFe成分が0.5質量%以下である。

According to a preferred form of the second aspect, the mixture contains 0.5% by mass or less of Fe 2 O 3 component with respect to the total component of spinel, cordierite and mullite.

本発明は、以下の効果のうち少なくとも1つを有する。   The present invention has at least one of the following effects.

本発明の匣鉢は、マグネシア又はスピネルを90%以上含有する匣鉢よりも、熱膨張率が高くならないような組成にしているので、正極活物質製造時の降温工程におけるクラックの発生を抑制することができる。   The mortar of the present invention has a composition such that the coefficient of thermal expansion does not become higher than the mortar containing 90% or more of magnesia or spinel, and thus suppresses the generation of cracks in the temperature lowering process during the production of the positive electrode active material. be able to.

本発明の匣鉢においては、正極活物質の原料をいったん焼成することにより、該原料と接する表層には、MgO成分が形成される。すなわち、正極活物質の原料を一度焼成すると、焼成後の匣鉢の表層は、該原料を未焼成の匣鉢の表層よりもMgO成分を多く含有することになる。該原料の焼成によって形成されたMgO多含有表層は、該原料の焼成時における該原料(例えばリチウム)の拡散を抑制すると共に、匣鉢の材料との反応を抑制することができる。これにより、匣鉢の劣化を抑制することができる。また、該原料と接していた焼成後の匣鉢の表層のみが他の領域よりもMgO成分を多く含有することになるので、匣鉢全体として熱膨張率が高くなることもない。   In the mortar of the present invention, the raw material of the positive electrode active material is once fired, whereby an MgO component is formed on the surface layer in contact with the raw material. That is, once the raw material of the positive electrode active material is fired, the surface layer of the fired mortar contains more MgO components than the surface layer of the unfired mortar. The MgO-rich surface layer formed by firing the raw material can suppress the diffusion of the raw material (for example, lithium) at the time of firing the raw material and also suppress the reaction with the material of the mortar. Thereby, deterioration of a mortar can be suppressed. Moreover, since only the surface layer of the fired mortar that has been in contact with the raw material contains more MgO component than the other regions, the thermal expansion coefficient of the mortar as a whole does not increase.

本発明の匣鉢は、焼成により正極活物質と匣鉢とが溶着することがないので、正極活物質を効率よく取り出すことができ、正極活物質の生産性を高めることができる。また、正極活物質に匣鉢の一部の付着を抑制することができるので、正極活物質の品質を高めることができると共に、歩留まりを向上させることができる。   In the mortar of the present invention, since the positive electrode active material and the mortar are not welded by firing, the positive electrode active material can be taken out efficiently, and the productivity of the positive electrode active material can be increased. In addition, since a part of the sagger can be prevented from adhering to the positive electrode active material, the quality of the positive electrode active material can be improved and the yield can be improved.

本発明のリチウムイオン電池の正極活物質製造用匣鉢について説明する。本発明の匣鉢は、スピネルを30質量%〜70質量%、コージライトを15質量%〜70質量%、及びムライトを0質量%〜35質量%含有する焼成物である。好ましくは、本発明の匣鉢は、スピネルを40質量%〜70質量%、コージライトを15質量%〜55質量%、及びムライトを0質量%〜30質量%含有する焼成物である。より好ましくは、本発明の匣鉢は、スピネルを45質量%〜65質量%、コージライトを20質量%〜40質量%、及びムライトを5質量%〜25質量%含有する焼成物である。上記好ましい含有率は、下記実施例を基に、正極活物質製造後の匣鉢の状態、正極活物質の製造の容易性、製造した正極活物質の性状等により設定した。   The mortar for producing the positive electrode active material of the lithium ion battery of the present invention will be described. The mortar of the present invention is a fired product containing spinel in an amount of 30 mass% to 70 mass%, cordierite in an amount of 15 mass% to 70 mass%, and mullite in an amount of 0 mass% to 35 mass%. Preferably, the mortar of the present invention is a fired product containing spinel in an amount of 40% to 70% by mass, cordierite in an amount of 15% to 55% by mass, and mullite in an amount of 0% to 30% by mass. More preferably, the mortar of the present invention is a fired product containing 45% to 65% by weight of spinel, 20% to 40% by weight of cordierite, and 5% to 25% by weight of mullite. The preferable content was set based on the following examples, depending on the state of the mortar after the production of the positive electrode active material, the ease of production of the positive electrode active material, the properties of the produced positive electrode active material, and the like.

本発明の匣鉢において、スピネルは、焼成時における正極活物質の原料の拡散に対する耐蝕性に寄与しているものと考察される。したがって、スピネルの含有率が30質量%未満であると、正極活物質の原料の拡散に対する耐蝕性が低下してしまうと考えられる。一方、スピネルの含有率が70質量%を超えると、匣鉢の熱膨張率が高くなって、クラックが発生しやすくなると考えられる。   In the mortar of the present invention, the spinel is considered to contribute to the corrosion resistance against diffusion of the raw material of the positive electrode active material during firing. Therefore, if the spinel content is less than 30% by mass, it is considered that the corrosion resistance against diffusion of the raw material of the positive electrode active material is lowered. On the other hand, if the spinel content exceeds 70% by mass, the thermal expansion coefficient of the mortar increases and cracks are likely to occur.

本発明の匣鉢において、コージライトは、熱膨張率の低下に寄与しているものと考察される。したがって、コージライトの含有率が15質量%未満であると、匣鉢の熱膨張率が
高くなってしまうと考えられる。一方、コージライトの含有率が70質量%を超えると、正極活物質の原料の拡散に対する耐蝕性が低下してしまうと考えられる。
In the mortar of the present invention, cordierite is considered to contribute to a decrease in the coefficient of thermal expansion. Therefore, if the cordierite content is less than 15% by mass, the thermal expansion coefficient of the mortar is considered to be high. On the other hand, when the cordierite content exceeds 70% by mass, it is considered that the corrosion resistance against diffusion of the raw material of the positive electrode active material is lowered.

本発明の匣鉢において、ムライトは、含有されていなくてもかまわないが、焼結助剤として添加することもできる。ムライトを添加した場合には、ムライトは、正極活物質の原料を入れて焼成する際に匣鉢の底がダレないようにする高温強度と耐クリープ性に寄与しているものと考察される。ムライトの含有率が35質量%を超えると、正極活物質の原料の拡散に対する耐蝕性が低下してしまうと考えられる。   In the mortar of the present invention, mullite may not be contained, but can also be added as a sintering aid. When mullite is added, it is considered that mullite contributes to high temperature strength and creep resistance so that the bottom of the mortar does not sag when the raw material of the positive electrode active material is added and fired. If the mullite content exceeds 35% by mass, it is considered that the corrosion resistance against the diffusion of the raw material of the positive electrode active material is lowered.

なお、本発明の匣鉢は、上記組成を維持できるのであれば、スピネル、コージライト及びムライト以外の材料を含有することもでき、スピネル、コージライト及びムライト以外の材料の含有率は、好ましくは5質量%以下にすると好ましい。例えば、匣鉢の熱膨張率が高くなるのを抑制するため、マグネシア単体の含有率は、スピネル、コージライト及びムライトの合計質量に対して5質量%を越えないようにすると好ましい。   In addition, the mortar of the present invention can contain materials other than spinel, cordierite and mullite as long as the composition can be maintained, and the content of materials other than spinel, cordierite and mullite is preferably It is preferable to make it 5% by mass or less. For example, in order to suppress an increase in the coefficient of thermal expansion of the mortar, it is preferable that the content of magnesia alone does not exceed 5% by mass with respect to the total mass of spinel, cordierite, and mullite.

また、本発明の匣鉢は、化学組成の視点からは、Al成分を46質量%〜68質量%、MgO成分を13質量%〜22質量%、及びSiO成分を12質量%〜36質量%含有する焼成物であってもよい。好ましくは、本発明の匣鉢は、Al成分を52質量%〜67質量%、MgO成分を14質量%〜22質量%、及びSiO成分を15質量%〜29質量%含有する。より好ましくは、本発明の匣鉢は、Al成分を56質量%〜67質量%、MgO成分を14質量%〜22質量%、及びSiO成分を15質量%〜24質量%含有する。これらの成分以外の成分の含有率は、好ましくは5質量%以下にすると好ましい。 Moreover, from the viewpoint of chemical composition, the mortar of the present invention is 46 mass% to 68 mass% Al 2 O 3 component, 13 mass% to 22 mass% MgO component, and 12 mass% to SiO 2 component. A fired product containing 36% by mass may be used. Preferably, the mortar of the present invention contains 52% by mass to 67% by mass of the Al 2 O 3 component, 14% by mass to 22% by mass of the MgO component, and 15% by mass to 29% by mass of the SiO 2 component. More preferably, the mortar of the present invention contains 56% by mass to 67% by mass of the Al 2 O 3 component, 14% by mass to 22% by mass of the MgO component, and 15% by mass to 24% by mass of the SiO 2 component. . The content of components other than these components is preferably 5% by mass or less.

本発明の匣鉢において、Fe成分は0.5質量%以下であると好ましく、0.3質量%以下であるとより好ましく、実用上可及的に少ないことが好ましい。これにより、リチウムに対する耐蝕性の低下を防止することができると考えられる。 In the mortar of the present invention, the Fe 2 O 3 component is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and preferably as small as practically possible. Thereby, it is thought that the corrosion-resistant fall with respect to lithium can be prevented.

本発明の匣鉢の25℃〜1000℃における熱膨張率は0.5%以下であると好ましく、より好ましくは0.4%以下であり、さらに好ましくは0.35%以下であり、さらに好ましくは0.2%以下であり、さらに好ましくは0.15%以下である。これにより、正極活物質焼成後の冷却工程における匣鉢の破損を防止することができると考えられる。匣鉢の熱膨張率は、JISR2207−3に準拠して測定すると好ましい。特に、25℃〜1000℃の温度範囲において測定すると好ましい。   The thermal expansion coefficient at 25 ° C. to 1000 ° C. of the mortar of the present invention is preferably 0.5% or less, more preferably 0.4% or less, still more preferably 0.35% or less, and still more preferably. Is 0.2% or less, more preferably 0.15% or less. Thereby, it is considered that breakage of the mortar in the cooling step after firing the positive electrode active material can be prevented. The thermal expansion coefficient of the mortar is preferably measured according to JIS R2207-3. In particular, it is preferable to measure in a temperature range of 25 ° C to 1000 ° C.

本発明の匣鉢は、正極活物質の原料を焼成する前は、各組成はほぼ均一に分布しており、MgO成分を他より多く含有する領域は有していない。しかし、本発明の匣鉢に正極活物質の原料を収容し、正極活物質を製造するために焼成すると、正極活物質の原料と接する匣鉢の表層には、他の領域よりMgO成分を多く含有する層(MgO多含有層)が形成される(下記実施例参照)。このMgO多含有層は、焼成時における正極活物質の原料の匣鉢への拡散を防止し、匣鉢の寿命を向上させると考えられる。   In the mortar of the present invention, before firing the raw material of the positive electrode active material, each composition is distributed almost uniformly and does not have a region containing more MgO component than the others. However, when the positive electrode active material is accommodated in the mortar of the present invention and baked to produce the positive electrode active material, the surface layer of the mortar in contact with the positive electrode active material has more MgO components than other regions. A containing layer (MgO-rich layer) is formed (see Examples below). This MgO-rich layer is considered to prevent diffusion of the raw material of the positive electrode active material into the mortar during firing and improve the life of the mortar.

したがって、焼成工程における匣鉢の劣化を防止し、かつ冷却工程における匣鉢の破損を防止するためには、25℃〜1000℃における熱膨張率が0.5%以下であって、正極活物質の原料を焼成することによりその表面にMgO多含有層が形成される匣鉢であると好ましい。   Therefore, in order to prevent the deterioration of the mortar in the firing step and to prevent the mortar from being damaged in the cooling step, the coefficient of thermal expansion at 25 ° C. to 1000 ° C. is 0.5% or less, and the positive electrode active material It is preferable that it is a mortar in which a MgO rich content layer is formed in the surface by baking the raw material of this.

また、本発明の匣鉢を用いて正極活物質を製造しても、焼成によって匣鉢と正極活物質が溶着しておらず、正極活物質を匣鉢から容易に取り出すことができる。例えば、匣鉢を引っくり返す(開口を下向きにする)だけで、焼成物を匣鉢から容易に取り出すことができる。この理由としては、匣鉢の表面の一部と正極活物質の原料とが反応して生成したLiAlOやLiAlSiOがMgO多含有層の表面に点在し(下記実施例参照)、これらの物質が匣鉢と焼成物との剥離性を高めていると考えられる。したがって、本発明の匣鉢によれば、正極活物質の生産性を高めることができる。また、製品である正極活物質には、溶着を剥がすことによる匣鉢の一部の付着がないので、正極活物質の純度を高めることができると共に、その歩留まりを向上させることができる。さらに、匣鉢の剥がれが抑制されるので、匣鉢の寿命を向上させることができる。 Moreover, even if a positive electrode active material is produced using the mortar of the present invention, the mortar and the positive electrode active material are not welded by firing, and the positive electrode active material can be easily taken out from the mortar. For example, the fired product can be easily removed from the mortar simply by turning over the mortar (with the opening facing downward). The reason for this is that LiAlO 2 and LiAlSiO 4 produced by the reaction of a part of the surface of the mortar and the raw material of the positive electrode active material are scattered on the surface of the MgO-rich layer (see the following examples). It is considered that the substance enhances the peelability between the mortar and the fired product. Therefore, according to the mortar of the present invention, the productivity of the positive electrode active material can be increased. In addition, since the positive electrode active material which is a product does not partially adhere to the mortar by peeling off the welding, the purity of the positive electrode active material can be increased and the yield can be improved. Furthermore, since the peeling of the mortar is suppressed, the life of the mortar can be improved.

本発明の匣鉢の形状及び寸法は、特に限定されるものではなく、正極活物質の原料を収容し、焼成できるものであれば、適宜好適な形態を選択することができる。   The shape and dimensions of the mortar of the present invention are not particularly limited, and any suitable form can be selected as long as the raw material for the positive electrode active material can be accommodated and fired.

次に、本発明の匣鉢の製造方法について説明する。本発明の匣鉢は、上記組成の匣鉢が得られるように配合した混合物を焼成する。例えば、本発明の匣鉢は、スピネル、コージライト及びムライトの合計質量に対して、30質量%〜70質量%のスピネル、15質量%〜70質量%のコージライト、及び0質量%〜35質量%のムライトを含有する混合物を焼成する。化学成分の組成でいえば、スピネル、コージライト及びムライトの合計成分に対して、Al成分が46質量%〜68質量%、MgO成分が13質量%〜22質量%、及びSiO成分が12質量%〜36質量%含有するようにスピネル及びコージライト、又はスピネル、コージライト及びムライトを含有する混合物を焼成する。該混合物にマグネシア単体を添加する場合、その含有率は5質量%以下にすると好ましいが、該混合物にマグネシア単体は添加しないほうがより好ましい。マグネシア単体を含有することによる熱膨張率の上昇を防止するためである。 Next, the manufacturing method of the mortar of this invention is demonstrated. The mortar of the present invention is obtained by firing a blended mixture so as to obtain an mortar having the above composition. For example, the mortar of the present invention is 30% by mass to 70% by mass of spinel, 15% by mass to 70% by mass of cordierite, and 0% by mass to 35% by mass with respect to the total mass of spinel, cordierite and mullite. The mixture containing% mullite is fired. Speaking of the composition of chemical components, the Al 2 O 3 component is 46 mass% to 68 mass%, the MgO component is 13 mass% to 22 mass%, and the SiO 2 component with respect to the total components of spinel, cordierite and mullite. Is fired to contain spinel and cordierite, or a mixture containing spinel, cordierite and mullite. When adding magnesia alone to the mixture, the content is preferably 5% by mass or less, but it is more preferable not to add magnesia alone to the mixture. This is to prevent an increase in the coefficient of thermal expansion due to containing magnesia alone.

このセラミック混合物には、成形助剤(バインダ)を添加することができる。例えば、水溶性樹脂の添加剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ポリビニルアルコール、ポリカルボン酸塩、多糖類等を使用することができる。ここで「多糖類」とは、単糖類(単糖およびその誘導体)がポリグリコシル化した高分子化合物(通常は重合度10以上)を指す。このような多糖類のうちホモ多糖、ヘテロ多糖のいずれも使用可能である。具体的には、寒天、デキストリン、アガロース、カラギーナン、キサンタンガム、カードランおよびコンニャク粉等を用いることができる。これらは、懸濁液または溶液を加熱した際に容易にゲル化するもの(ゲル化剤)が好ましく、寒天粉末およびデキストリンが特に好ましい。これらの材料から選択される1種以上を成形助剤として用いることができる。成形助剤の添加量は、その添加量は、特に限定されるものではなく、適宜調整することができる。   A molding aid (binder) can be added to the ceramic mixture. For example, as an additive for the water-soluble resin, carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, polyvinyl alcohol, polycarboxylate, polysaccharide and the like can be used. Here, “polysaccharide” refers to a polymer compound (usually having a polymerization degree of 10 or more) in which monosaccharides (monosaccharides and derivatives thereof) are polyglycosylated. Of such polysaccharides, either homopolysaccharides or heteropolysaccharides can be used. Specifically, agar, dextrin, agarose, carrageenan, xanthan gum, curdlan, konjac powder and the like can be used. These are preferably those that gel easily when the suspension or solution is heated (gelling agent), and agar powder and dextrin are particularly preferred. One or more selected from these materials can be used as a molding aid. The addition amount of the molding aid is not particularly limited, and can be adjusted as appropriate.

次に、匣鉢原料の混合物を、成形(例えば、フリクションプレス等による加圧成形)、及び乾燥(例えば、自然乾燥)させた後、焼成する。焼成温度及び時間は、適宜好適な温度及び時間を設定することができ、例えば1300℃〜1420℃、好ましくは1330℃〜1380℃で数時間、好ましくは2時間〜5時間焼成することができる。コージライトの分解を防止するため、焼成温度は1420℃以下にする。   Next, the mixture of the mortar raw materials is molded (for example, pressure molding using a friction press or the like) and dried (for example, naturally dried), and then fired. The firing temperature and time can be set appropriately as appropriate. For example, firing can be performed at 1300 ° C. to 1420 ° C., preferably 1330 ° C. to 1380 ° C. for several hours, preferably 2 hours to 5 hours. In order to prevent the decomposition of cordierite, the firing temperature is set to 1420 ° C. or lower.

次に、本発明の匣鉢を用いてリチウムイオン電池の正極活物質を製造する際の本発明の作用について説明する。本発明の匣鉢に正極活物質の原料(例えば、リチウム含有化合物)を収容して焼成すると、匣鉢中におけるスピネル及びコージライトとリチウム含有化合物とが反応し、匣鉢と正極活物質原料との接触面(表層)において、MgOが形成されると考察される(下記実施例参照)。例えば、正極活物質としてコバルト酸リチウム(LiCoO)を製造する場合、その原料としては、例えば炭酸リチウム(LiCO)及び酸化コバルト(Co)の混合物を使用することができる。匣鉢表層に形成されたMgO多含有層は、障壁のように機能して匣鉢内部へのリチウムの拡散を防止し、匣鉢の耐蝕性の維持に寄与するものと考えられる。 Next, the effect | action of this invention at the time of manufacturing the positive electrode active material of a lithium ion battery using the mortar of this invention is demonstrated. When the raw material of the positive electrode active material (for example, lithium-containing compound) is accommodated in the mortar of the present invention and fired, the spinel and cordierite in the mortar react with the lithium-containing compound, and the mortar, the positive electrode active material raw material, It is considered that MgO is formed on the contact surface (surface layer) (see Examples below). For example, when lithium cobaltate (LiCoO 2 ) is produced as the positive electrode active material, a mixture of lithium carbonate (Li 2 CO 3 ) and cobalt oxide (Co 3 O 4 ) can be used as the raw material, for example. It is considered that the MgO-rich layer formed on the surface of the mortar functions as a barrier, prevents the diffusion of lithium into the mortar, and contributes to maintaining the corrosion resistance of the mortar.

また、本発明の匣鉢においては、マグネシア又はスピネルを90質量%以上含有する匣鉢に比べて熱膨張率が低いので、正極活物質原料を焼成後の冷却工程におけるクラックの発生が抑制されている。   In addition, in the mortar of the present invention, since the coefficient of thermal expansion is lower than that of the mortar containing 90% by mass or more of magnesia or spinel, generation of cracks in the cooling step after firing the positive electrode active material raw material is suppressed. Yes.

さらに、本発明の匣鉢を用いて正極原料を焼成すると、匣鉢の表面に存在するAl成分及びSi成分が正極活物質原料と反応して、LiAlO及びLiAlSiOが形成されると考えられる。LiAlO及びLiAlSiOは、匣鉢内部には浸透せずに、匣鉢表面に固着した状態で形成される。これにより、焼成物である正極活物質と匣鉢とが溶着することなく、LiAlO及びLiAlSiOの固着物と焼成物との間で剥離し、正極活物質を匣鉢から容易に取り外すことができると考えられる。 Furthermore, when the positive electrode raw material is baked using the mortar of the present invention, it is considered that the Al component and Si component present on the surface of the mortar react with the positive electrode active material raw material to form LiAlO 2 and LiAlSiO 4. . LiAlO 2 and LiAlSiO 4 are formed in a state where they do not penetrate into the inside of the bowl and are fixed to the surface of the bowl. Accordingly, the positive electrode active material which is a fired product and the mortar are not welded, and the LiAlO 2 and LiAlSiO 4 adherence are separated from the fired product, and the positive electrode active material can be easily removed from the mortar. It is considered possible.

(試験1)
正極活物質の原料(正極原料)とマグネシア、コージライト及びムライトとそれぞれの反応性を確認する試験を実施した。正極活物質の原料としては、酸化コバルト(Co)と炭酸リチウム(LiCO)とを2:1で配合したもの(以下、「正極原料」という)を使用した。この正極原料7.5gに対してマグネシア粉末(MgO)(粒径45μm以下品)を7.5g添加し、乳鉢で混合後、アルミナ坩堝に全量入れて焼成した。焼成条件は、室温から1050℃まで2時間で昇温、1050℃で8時間保持、500℃まで6時間で降温、その後室温まで4時間で降温した。得られた焼成物について、粉末X線回折測定を実施し、基準試料の粉末X線回折パターンのデータベースを基に、測定ピークとマッチする物質を検索し、焼成物に含有する物質を同定した。図1にその同定結果を示す。同様にして、スピネル粉末(MgAl)(粒径10μm以下品)、コージライト粉末(MgAlSi18)(粒径200μm以下品)、及びムライト粉末(AlSi13)(粒径20μm以下品)についても、マグネシア粉末と同様の条件(原料粉末7.5gに対し7.5g添加)で焼成して、それぞれについてマグネシア粉末の試験と同様にして焼成物に含有する物質を同定した。図2〜図4にそれぞれの同定結果を示す。
(Test 1)
A test was conducted to confirm the reactivity of the positive electrode active material (positive electrode raw material) with magnesia, cordierite and mullite. As a raw material of the positive electrode active material, a material in which cobalt oxide (Co 3 O 4 ) and lithium carbonate (Li 2 CO 3 ) were mixed at a ratio of 2: 1 (hereinafter referred to as “positive electrode raw material”) was used. 7.5 g of magnesia powder (MgO) (product having a particle size of 45 μm or less) was added to 7.5 g of this positive electrode raw material, mixed in a mortar, and then put in an alumina crucible and baked. As firing conditions, the temperature was raised from room temperature to 1050 ° C. in 2 hours, held at 1050 ° C. for 8 hours, lowered to 500 ° C. in 6 hours, and then lowered to room temperature in 4 hours. The obtained fired product was subjected to powder X-ray diffraction measurement. Based on the powder X-ray diffraction pattern database of the reference sample, a substance that matched the measurement peak was searched to identify the substance contained in the fired product. FIG. 1 shows the identification result. Similarly, spinel powder (MgAl 2 O 4 ) (particle size of 10 μm or less), cordierite powder (Mg 2 Al 4 Si 5 O 18 ) (particle size of 200 μm or less), and mullite powder (Al 6 Si 2 O). 13 ) (Products with a particle size of 20 μm or less) were fired under the same conditions as magnesia powder (7.5 g added to 7.5 g of raw material powder), and each was contained in the fired product in the same manner as the magnesia powder test. The substance to be identified was identified. Each identification result is shown in FIGS.

(試験1の結果:正極原料とマグネシアとの反応性)
正極原料とマグネシア(MgO)との混合物を焼成した結果、図1に示すように、マグネシアは正極原料と反応しないことが判明した。
(Result of Test 1: Reactivity between positive electrode material and magnesia)
As a result of firing a mixture of the positive electrode raw material and magnesia (MgO), it was found that magnesia did not react with the positive electrode raw material, as shown in FIG.

(試験1の結果:正極原料とスピネルとの反応性)
正極原料とスピネル(MgAl)との混合物を焼成した結果、図2に示すように、スピネルの一部は正極原料と反応し、MgOに変化することが確認された。
(Result of Test 1: Reactivity of positive electrode material and spinel)
As a result of firing the mixture of the positive electrode material and spinel (MgAl 2 O 4 ), it was confirmed that a part of the spinel reacted with the positive electrode material and changed to MgO as shown in FIG.

(試験1の結果:正極原料とコージライトとの反応性)
正極原料とコージライト(MgAlSi18)との混合物を焼成した結果、図3に示すように、コージライトは正極原料と反応し、スピネルを生成することが確認された。このスピネルは、正極原料とスピネルとの上記反応試験結果から、正極原料とさらに反応すればMgOを生成すると考えられる。
(Result of Test 1: Reactivity of cathode material and cordierite)
As a result of firing a mixture of the positive electrode raw material and cordierite (Mg 2 Al 4 Si 5 O 18 ), it was confirmed that cordierite reacted with the positive electrode raw material to generate spinel, as shown in FIG. From this reaction test result of the positive electrode material and spinel, this spinel is considered to generate MgO if it further reacts with the positive electrode material.

(試験1の結果:正極原料とムライトとの反応性)
正極原料とムライト(AlSi13)との混合物を焼成した結果、図4に示すように、ムライトは正極原料と反応し、ムライトは完全に分解されてしまうことが確認された。
(Result of Test 1: Reactivity between positive electrode material and mullite)
As a result of firing a mixture of the positive electrode raw material and mullite (Al 6 Si 2 O 13 ), it was confirmed that mullite reacted with the positive electrode raw material and mullite was completely decomposed as shown in FIG.

(試験1の考察)
ここで、上述の試験から本発明に至った考察について説明する。マグネシアは、正極原料及びコバルト酸リチウムとの反応性が極めて低い。しかしながら、上述のようにマグネシアを主として形成された匣鉢は熱膨張率が高く、焼成後にクラックが発生しやすい。この他にも、マグネシアは調合時に水和反応を生じて焼成時の体積収縮が大きく、キレが発生しやすい。したがって、マグネシアは、反応性の観点からは、正極原料を焼成するための匣鉢の原料として適してはいるが、耐熱衝撃性の観点からは、匣鉢の原料としては不適当である。
(Consideration of Test 1)
Here, considerations that have led to the present invention from the above-described tests will be described. Magnesia has extremely low reactivity with the positive electrode material and lithium cobalt oxide. However, as described above, the mortar made mainly of magnesia has a high coefficient of thermal expansion, and cracks are likely to occur after firing. In addition to this, magnesia causes a hydration reaction at the time of blending, has a large volume shrinkage at the time of firing, and tends to generate sharpness. Therefore, magnesia is suitable as a raw material for the mortar for firing the positive electrode raw material from the viewpoint of reactivity, but is not suitable as a raw material for the mortar from the viewpoint of thermal shock resistance.

一方で、スピネル及びコージライトと正極原料との反応からはMgOが生成されることが判明した。したがって、マグネシアで匣鉢を形成しなくとも、スピネル及びコージライトを主成分として形成した匣鉢であれば、正極原料を焼成すると、匣鉢の表層に存在するスピネル及びコージライトと正極原料とが反応し、匣鉢表層に耐食性の優れたMgOを多く含有する層(あるいは、MgOを主成分とする層)が形成されると考えられた。そして、このMgOを多く含有する層は、匣鉢と正極原料との反応を抑制し、リチウム及びコバルトの拡散による匣鉢の短命化を防止すると考察された。   On the other hand, it was found that MgO was generated from the reaction of spinel and cordierite with the positive electrode material. Therefore, even if the mortar is not formed with magnesia but is formed with spinel and cordierite as the main components, when the positive electrode material is fired, the spinel and cordierite present in the surface layer of the mortar and the positive electrode material are It was considered that a layer containing a large amount of MgO having excellent corrosion resistance (or a layer containing MgO as a main component) was formed on the surface of the mortar. And it was considered that this layer containing a lot of MgO suppresses the reaction between the mortar and the positive electrode material and prevents the mortar from being shortened due to diffusion of lithium and cobalt.

さらに、マグネシアを用いないことに加えて、コージライトを匣鉢に含有させれば、匣鉢の熱膨張率を低下させることができ、匣鉢の耐熱衝撃性も向上させることができると考えられた。   Furthermore, in addition to not using magnesia, if cordierite is included in the mortar, the thermal expansion coefficient of the mortar can be reduced, and the thermal shock resistance of the mortar can be improved. It was.

(試験2)
上記試験1の結果を踏まえ、マグネシアを添加せずに、スピネル、コージライト及びムライトの配合率を変化させた種々の匣鉢を作製し、各匣鉢について正極活物質製造における耐久性試験を実施した。
(Test 2)
Based on the results of Test 1 above, various mortars with different blending ratios of spinel, cordierite and mullite were prepared without adding magnesia, and durability tests in the production of positive electrode active materials were conducted for each mortar. did.

(試験2:匣鉢の製造)
市販の焼結スピネル、コージライト、ムライトを表1〜5に示す所定の配合率で合計30kg乾式混合した後、カルボキシルメチルセルロース600gを添加してさらに混合した。次に、2質量%寒天4.2kgを加えて30分間混錬した。混錬後の坏土は、匣鉢用金型に充填し、フリクションプレスを用いて成形圧44.1MPaで加圧成形して、焼成後の寸法及び外形が300mm×300mm×100mm(高さ)、側面肉厚10mm、底面肉厚15mmの上面開放の箱状となるように成形した。次に、自然乾燥工程、端面仕上工程を経て、成形物をトンネル窯で最高温度1350℃、3時間の条件で焼成した。
(Test 2: Production of mortar)
Commercially available sintered spinel, cordierite, and mullite were dry-mixed at a predetermined blending ratio shown in Tables 1 to 5 in total 30 kg, and then 600 g of carboxymethylcellulose was added and further mixed. Next, 4.2 kg of 2% by mass agar was added and kneaded for 30 minutes. The kneaded clay is filled in a mold for mortar and press-molded at a molding pressure of 44.1 MPa using a friction press, and the dimensions and outer shape after firing are 300 mm × 300 mm × 100 mm (height). The product was molded so as to have a box shape with an open top with a side wall thickness of 10 mm and a bottom wall thickness of 15 mm. Next, through a natural drying process and an end face finishing process, the molded product was fired in a tunnel kiln at a maximum temperature of 1350 ° C. for 3 hours.

製造した匣鉢について、化学組成、結晶系、曲げ強度、熱膨張率、及び気孔率を測定した。化学組成は、JISR2216に準拠し、蛍光X線分析によって測定した。結晶系は、粉末X線回折によって測定した。曲げ強度は、JISR2213に準拠して測定した。熱膨張率は、JISR2207−3に準拠して室温〜1000℃において測定した。気孔率は、JISR2205に準拠して測定した。   About the manufactured mortar, the chemical composition, crystal system, bending strength, thermal expansion coefficient, and porosity were measured. The chemical composition was measured by fluorescent X-ray analysis in accordance with JIS R2216. The crystal system was measured by powder X-ray diffraction. The bending strength was measured according to JIS R2213. The coefficient of thermal expansion was measured from room temperature to 1000 ° C. according to JIS R2207-3. The porosity was measured according to JIS R2205.

(試験2:正極活物質の製造による匣鉢の耐久性試験)
上記方法で製造した匣鉢に、正極活物質の原料として炭酸リチウムと酸化コバルトを質量比2:1で混合した混合物10kgを入れ、ローラーハースキルンにて500℃/Hで1050℃まで昇温して、1050℃で8時間加熱後、エアの導入により炉内を降温し、匣鉢及び焼成物を強制冷却した。その後、匣鉢から焼成物を取り出し、匣鉢におけるクラックの発生及び焼成物を取り出す際の剥がれの発生の有無を確認した。この正極活物質の製造工程を匣鉢にクラックが生じるまで実施し、何回目の焼成でクラックが発生するかを確認した。表1〜5に、クラックが発生した焼成回数を示す。なお、表1〜5に示す回数は、3つの試料の平均値である。
(Test 2: Durability test of mortar by production of positive electrode active material)
10 kg of a mixture of lithium carbonate and cobalt oxide mixed at a mass ratio of 2: 1 as a raw material of the positive electrode active material is put into the mortar produced by the above method, and the temperature is raised to 1050 ° C. at 500 ° C./H with a roller hearth kiln. After heating at 1050 ° C. for 8 hours, the temperature in the furnace was lowered by introducing air, and the mortar and the fired product were forcibly cooled. Thereafter, the fired product was taken out from the mortar, and the occurrence of cracks in the mortar and the occurrence of peeling when the fired product was taken out were confirmed. The manufacturing process of this positive electrode active material was carried out until cracks occurred in the mortar, and it was confirmed how many times the firing caused cracks. Tables 1 to 5 show the number of firings in which cracks occurred. In addition, the frequency | count shown to Tables 1-5 is an average value of three samples.

(試験2:耐久性試験結果)
実施例1〜23においては繰り返し使用回数が50回を超えたが、比較例1〜7では50回未満であった。これより、匣鉢の原料を、スピネル、コージライト及びムライトのそれぞれの含有率が、スピネル30質量%〜70質量%、コージライト15質量%〜70質量%、及びムライト0質量%〜35質量%となるように配合すれば、匣鉢の耐久性が向上することが分かった。
(Test 2: Durability test results)
In Examples 1 to 23, the number of repeated uses exceeded 50 times, but in Comparative Examples 1 to 7, it was less than 50 times. From this, as for the raw material of a mortar, each content rate of spinel, cordierite, and mullite is spinel 30 mass%-70 mass%, cordierite 15 mass%-70 mass%, and mullite 0 mass%-35 mass%. It was found that the durability of the mortar is improved by blending so as to be.

また、化学組成でいえば、Al成分が46質量%〜68質量%、MgO成分が13質量%〜22質量%、及びSiO成分が12質量%〜36質量%となるように配合すれば、匣鉢の耐久性が向上することが分かった。 In terms of chemical composition, Al 2 O 3 component is 46% by mass to 68% by mass, MgO component is 13% by mass to 22% by mass, and SiO 2 component is 12% by mass to 36% by mass. It was found that the durability of the mortar improves.

(試験2:焼成後の匣鉢及び焼成物の分析)
次に、正極活物質製造後の匣鉢の表面について分析した。正極原料焼成前の実施例6の組成に係る匣鉢の粉末X線回折パターン、正極原料焼成後の、焼成物(正極活物質)が接していた匣鉢の表面の粉末X線回折パターン、及び匣鉢が接していた焼成物表面の粉末X線回折パターンを測定し、基準試料の粉末X線回折パターンのデータベースを基に、測定結果となるピークデータとマッチする物質を検索し、測定試料に含有する物質をそれぞれ同定した。図5〜図8にその結果を示す。また、正極原料を1回焼成した実施例4の組成を有する匣鉢について、焼成物と接している底面中央の破断面を、走査型電子顕微鏡及びエネルギ分散型X線分光器を用いて観察した。図8に、その結果を示す。
(Test 2: Analysis of mortar and fired product after firing)
Next, the surface of the mortar after the production of the positive electrode active material was analyzed. Powder X-ray diffraction pattern of the mortar according to the composition of Example 6 before firing the positive electrode raw material, powder X-ray diffraction pattern of the surface of the mortar where the fired product (positive electrode active material) was in contact after firing the positive electrode raw material, and The powder X-ray diffraction pattern on the surface of the fired product that was in contact with the mortar was measured, and based on the powder X-ray diffraction pattern database of the reference sample, a substance that matched the peak data as the measurement result was searched, and the measurement sample was Each contained substance was identified. The results are shown in FIGS. Moreover, about the mortar which has the composition of Example 4 which baked the positive electrode raw material once, the fracture | rupture surface of the center of the bottom face which has contacted baked material was observed using the scanning electron microscope and the energy dispersive X-ray spectrometer. . FIG. 8 shows the result.

図5より、正極原料焼成前の匣鉢には、スピネル、コージライト及びムライトが含有されていることが分かった。一方、図6より、正極原料焼成後の匣鉢表面には、MgAl(スピネル)、LiAlO(アルミン酸リチウム)、MgO(酸化マグネシウム)及びLiAlSiOが含有されていることが分かった。また、図9より、匣鉢の表面から深さ約10μmの領域には、Mgを多く含むが、Al及びSiが少ない層が形成されていることが分かった。これより、本発明の匣鉢を用いて正極原料を焼成すると、その表面にはMgOが生成され、MgOを多く含む層が形成されていることが分かった。この結果は、スピネル及びコージライトと正極原料とを焼成すると、MgOが生成されるという上記に示した試験1の結果とも一致する。したがって、正極原料の焼成によって形成されたMgOを多く含む層が、正極原料の匣鉢への浸透を防止し、匣鉢の劣化を抑制していると解される。さらに、このMgO層がコージライト等と正極原料との反応を抑制することにより、本発明の匣鉢の熱膨張率が高くなることを抑制し、降温工程における匣鉢のクラックの発生を防止できていると解される。 From FIG. 5, it was found that spinel, cordierite, and mullite were contained in the mortar before firing the positive electrode material. On the other hand, from FIG. 6, it was found that the surface of the mortar after firing the positive electrode material contained MgAl 2 O 4 (spinel), LiAlO 2 (lithium aluminate), MgO (magnesium oxide), and LiAlSiO 4 . . In addition, FIG. 9 shows that a layer containing a large amount of Mg but a small amount of Al and Si is formed in a region having a depth of about 10 μm from the surface of the mortar. From this, it was found that when the positive electrode material was fired using the mortar of the present invention, MgO was generated on the surface, and a layer containing a large amount of MgO was formed. This result agrees with the result of Test 1 shown above that MgO is produced when the spinel and cordierite and the positive electrode material are fired. Therefore, it is understood that the layer containing a large amount of MgO formed by firing the positive electrode raw material prevents the positive electrode raw material from penetrating into the mortar and suppresses the deterioration of the mortar. Furthermore, this MgO layer suppresses the reaction between cordierite or the like and the positive electrode material, thereby suppressing an increase in the coefficient of thermal expansion of the mortar of the present invention and preventing the occurrence of cracks in the mortar in the temperature lowering process. It is understood that.

また、本発明の匣鉢によれば、匣鉢を引っくり返す(開口を下に向ける)だけで容易に焼成された焼成物(正極活物質)を取り出すことができた。すなわち、匣鉢と焼成物とは溶着していなかった。このことは、匣鉢表面に形成されたLiAlO及びLiAlSiOが、焼成物と匣鉢の固着を防止しているものと推測される。図9に、実施例4に係る匣鉢について、正極原料焼成前の匣鉢表面の走査型電子顕微鏡写真及び正極原料焼成後の匣鉢表面の走査型電子顕微鏡写真を示す。 In addition, according to the mortar of the present invention, it was possible to take out the baked product (positive electrode active material) that was easily baked simply by turning over the mortar (turning the opening downward). That is, the mortar and the fired product were not welded. This is presumed that LiAlO 2 and LiAlSiO 4 formed on the surface of the mortar prevent the fired product and the mortar from sticking. FIG. 9 shows a scanning electron micrograph of the surface of the mortar before firing the positive electrode material and a scanning electron micrograph of the surface of the mortar after firing the positive electrode material for the mortar according to Example 4.

図7より、本発明の匣鉢を用いて得られた焼成物の、匣鉢と直接的に接していた表面には、正極活物質であるLiCoOと、未反応のCoとが検出されたが、正極原料と匣鉢との反応物の焼成物表面への付着は確認されなかった。これより、本発明の匣鉢を用いれば、不純物の付着の無い正極活物質が得られることが分かった。 From FIG. 7, the surface of the fired product obtained using the mortar of the present invention, which was in direct contact with the mortar, was LiCoO 2 as the positive electrode active material and unreacted Co 3 O 4. Although detected, adhesion of the reaction product of the positive electrode raw material and the mortar to the surface of the fired product was not confirmed. Thus, it was found that a positive electrode active material having no adhesion of impurities can be obtained by using the mortar of the present invention.

(試験3)
マグネシアを主成分とする匣鉢について、正極活物質製造による耐久性試験を実施した。試験に用いた匣鉢は市販品であり、その形状及び寸法は試験2において用いた匣鉢の形状及び寸法と同じである。試験方法は、使用する匣鉢以外は試験2と同様である。表6にその化学組成及び試験結果を比較例8として示す。表6に示す繰り返し使用回数は、試験2と同様に3つの試料の平均値である。
(Test 3)
Durability tests were carried out on the koji bowl containing magnesia as the main component by producing a positive electrode active material. The mortar used in the test is a commercial product, and the shape and dimensions thereof are the same as the shape and dimensions of the mortar used in Test 2. The test method is the same as Test 2 except for the mortar used. Table 6 shows the chemical composition and test results as Comparative Example 8. The number of repeated uses shown in Table 6 is the average value of three samples as in Test 2.

表6に示すようにマグネシア製の匣鉢の使用可能回数は15回であり、表1〜表5に示す実施例1〜23及び比較例1〜7に係る匣鉢の使用可能回数よりも少なく、特に、実施例1〜23に係る本発明の匣鉢の使用回数の3分の1未満であった。これは、マグネシア製の匣鉢は熱膨張率が高いために、降温工程においてクラックが発生しやすいためと考えられる。   As shown in Table 6, the useable number of magnesia mortars is 15 times, which is less than the number of useable mortars according to Examples 1 to 23 and Comparative Examples 1 to 7 shown in Tables 1 to 5. In particular, it was less than 1/3 of the number of times of use of the mortar of the present invention according to Examples 1 to 23. This is presumably because the magnesia mortar has a high coefficient of thermal expansion, so that cracks are likely to occur in the temperature lowering process.

本発明のリチウムイオン電池の正極活物質製造用匣鉢及びその製造方法は、上記実施形態に基づいて説明されているが、上記実施形態に限定されることなく、本発明の範囲内において、かつ本発明の基本的技術思想に基づいて、上記実施形態に対し種々の変形、変更及び改良を含むことができることはいうまでもない。また、本発明の請求の範囲の枠内において、種々の開示要素の多様な組み合わせ・置換ないし選択が可能である。   The sagger for producing a positive electrode active material of a lithium ion battery and a method for producing the same according to the present invention have been described based on the above embodiment, but are not limited to the above embodiment, and are within the scope of the present invention, and It goes without saying that various modifications, changes and improvements can be included in the above embodiment based on the basic technical idea of the present invention. Further, various combinations, substitutions, or selections of various disclosed elements are possible within the scope of the claims of the present invention.

本発明のさらなる課題、目的及び展開形態は、請求の範囲を含む本発明の全開示事項からも明らかにされる。   Further problems, objects, and developments of the present invention will become apparent from the entire disclosure of the present invention including the claims.

試験1におけるマグネシアと正極原料との混合物の焼成物の粉末X線回折パターン、及び該粉末X線回折パターンのピークとマッチした物質のピーク図。The powder X-ray-diffraction pattern of the baking thing of the mixture of the magnesia and positive electrode raw material in Test 1, and the peak figure of the substance matched with the peak of this powder X-ray-diffraction pattern. 試験1におけるスピネルと正極原料との混合物の焼成物の粉末X線回折パターン、及び該粉末X線回折パターンのピークとマッチした物質のピーク図。The powder X-ray-diffraction pattern of the baked material of the mixture of the spinel and positive electrode raw material in Test 1, and the peak figure of the substance matched with the peak of this powder X-ray-diffraction pattern. 試験1におけるコージライトと正極原料との混合物の焼成物の粉末X線回折パターン、及び該粉末X線回折パターンのピークとマッチした物質のピーク図。The powder X-ray-diffraction pattern of the baked material of the mixture of the cordierite and positive electrode raw material in Test 1, and the peak figure of the substance matched with the peak of this powder X-ray-diffraction pattern. 試験1におけるムライトと正極原料との混合物の焼成物の粉末X線回折パターン、及び該粉末X線回折パターンのピークとマッチした物質のピーク図。The powder X-ray-diffraction pattern of the baked material of the mixture of the mullite and positive electrode raw material in Test 1, and the peak figure of the substance matched with the peak of this powder X-ray-diffraction pattern. 正極原料焼成前の実施例6の組成に係る匣鉢の粉末X線回折パターン、及び該粉末X線回折パターンのピークとマッチした物質のピーク図。The powder X-ray-diffraction pattern of the mortar which concerns on the composition of Example 6 before positive electrode raw material baking, and the peak figure of the substance matched with the peak of this powder X-ray-diffraction pattern. 正極原料焼成後の、焼成物(正極活物質)が接していた匣鉢の表面の粉末X線回折パターン、及び該粉末X線回折パターンのピークとマッチした物質のピーク図。The powder X-ray-diffraction pattern of the surface of the mortar with which the baked material (positive electrode active material) was in contact after baking of a positive electrode raw material, and the peak figure of the substance matched with the peak of this powder X-ray-diffraction pattern. 匣鉢が接していた焼成物表面の粉末X線回折パターン、及び該粉末X線回折パターンのピークとマッチした物質のピーク図。The powder X-ray-diffraction pattern on the surface of the baked product which the mortar contacted, and the peak figure of the substance matched with the peak of this powder X-ray-diffraction pattern. 正極原料を1回焼成した実施例4の組成を有する匣鉢について、焼成物と接している底面中央破断面の走査型電子顕微鏡写真、及びエネルギ分散型X線分光器による測定図。About the mortar which has the composition of Example 4 which baked the positive electrode raw material once, the scanning electron micrograph of the bottom center fracture surface which is in contact with the baked product, and the measurement figure by an energy dispersive X-ray spectrometer. 実施例4に係る匣鉢について、正極原料焼成前の匣鉢表面の走査型電子顕微鏡写真及び正極原料焼成後の匣鉢表面の走査型電子顕微鏡写真。About the mortar concerning Example 4, the scanning electron micrograph of the mortar surface before baking a positive electrode raw material, and the scanning electron micrograph of the mortar surface after positive electrode raw material baking.

Claims (12)

リチウムイオン電池の正極活物質を製造するための匣鉢であって、
スピネルを30質量%〜70質量%、コージライトを15質量%〜70質量%、及びムライトを0質量%〜35質量%(0質量%含む)含有することを特徴とする匣鉢。
A mortar for producing a positive electrode active material of a lithium ion battery,
A mortar containing 30% to 70% by weight of spinel, 15% to 70% by weight of cordierite, and 0% to 35% (including 0% by weight) of mullite.
スピネルを45質量%〜65質量%、コージライトを20質量%〜40質量%、及びムライトを5質量%〜25質量%含有すること特徴とする請求項1に記載の匣鉢。   The mortar according to claim 1, comprising 45% by mass to 65% by mass of spinel, 20% by mass to 40% by mass of cordierite, and 5% by mass to 25% by mass of mullite. リチウムイオン電池の正極活物質を未製造の匣鉢において、
Al成分を46質量%〜68質量%、MgO成分を14質量%〜22質量%、及びSiO成分を12質量%〜36質量%含有することを特徴とする請求項1又は2に記載の匣鉢。
In a non-manufactured mortar, the positive electrode active material of a lithium ion battery
The Al 2 O 3 component is contained in 46% by mass to 68% by mass, the MgO component is contained in 14 % by mass to 22% by mass, and the SiO 2 component is contained in 12% by mass to 36% by mass. The mortar described.
Al成分を56質量%〜67質量%、MgO成分を14質量%〜22質量%、及びSiO成分を15質量%〜24質量%含有することを特徴とする請求項3に記載の匣鉢。 The Al 2 O 3 component is contained in 56% by mass to 67% by mass, the MgO component is contained in 14% by mass to 22% by mass, and the SiO 2 component is contained in 15% by mass to 24% by mass. A bowl. 25℃〜1000℃における熱膨張率が0.5%以下であることを特徴とする請求項1〜4のいずれか一項に記載の匣鉢。   The thermal expansion coefficient in 25 to 1000 degreeC is 0.5% or less, The mortar as described in any one of Claims 1-4 characterized by the above-mentioned. 25℃〜1000℃における熱膨張率が0.35%以下であることを特徴とする請求項5に記載の匣鉢。   The mortar according to claim 5, wherein the thermal expansion coefficient at 25 ° C to 1000 ° C is 0.35% or less. Fe成分が0.5質量%以下であることを特徴とする請求項1〜6のいずれか一項に記載の匣鉢。 Fe 2 O 3 component is 0.5 mass% or less, The mortar according to any one of claims 1 to 6 characterized by things. リチウムイオン電池の正極活物質の原料を未焼成の匣鉢に収容して焼成した後において、焼成後における前記原料と接触する表層は、前記原料を未焼成のときよりもMgO成分を多く含有することを特徴とする請求項1〜7のいずれか一項に記載の匣鉢。   After the raw material of the positive electrode active material of the lithium ion battery is placed in an unfired mortar and fired, the surface layer that comes into contact with the raw material after firing contains more MgO component than when the raw material is unfired. The mortar according to any one of claims 1 to 7, characterized in that. リチウムイオン電池の正極活物質を製造するための匣鉢の製造方法であって、
スピネル、コージライト及びムライトの合計質量に対して、30質量%〜70質量%のスピネル、15質量%〜70質量%のコージライト、及び0質量%〜35質量%(0質量%含む)のムライトを含有する混合物を焼成することを特徴とする匣鉢の製造方法。
A method for producing a mortar for producing a positive electrode active material of a lithium ion battery,
30% to 70% by weight of spinel, 15% to 70% by weight of cordierite, and 0% to 35% (including 0% by weight) of mullite based on the total weight of spinel, cordierite and mullite. A method for producing a mortar characterized by firing a mixture containing slag.
リチウムイオン電池の正極活物質を未製造の匣鉢において、
スピネル、コージライト及びムライトの合計成分に対して、Al成分が46質量%〜68質量%、MgO成分が14質量%〜22質量%、及びSiO成分が12質量%〜36質量%含有するようにスピネル及びコージライト、又はスピネル、コージライト及びムライトを含有する混合物を焼成することを特徴とする請求項に記載の匣鉢の製造方法。
In a non-manufactured mortar with a positive electrode active material of a lithium ion battery,
46 mass% to 68 mass% of Al 2 O 3 component, 14 mass% to 22 mass% of MgO component, and 12 mass% to 36 mass% of SiO 2 component with respect to the total components of spinel, cordierite and mullite. The method for producing a mortar according to claim 9 , wherein the mixture containing spinel and cordierite or a mixture containing spinel, cordierite and mullite is fired.
前記混合物は、スピネル、コージライト及びムライトの合計質量に対してマグネシア単体を5質量%以上含有しないことを特徴とする請求項又は10に記載の匣鉢の製造方法。 The said mixture does not contain 5 mass% or more of magnesia single-piece | unit with respect to the total mass of a spinel, a cordierite, and a mullite, The manufacturing method of the mortar according to claim 9 or 10 characterized by the above-mentioned. 前記混合物は、スピネル、コージライト及びムライトの合計成分に対してFe成分が0.5質量%以下であることを特徴とする請求項10又は11に記載の匣鉢の製造方法。 The method for producing a mortar according to claim 10 or 11 , wherein the mixture contains 0.5% by mass or less of Fe 2 O 3 component based on a total component of spinel, cordierite and mullite.
JP2008150664A 2008-06-09 2008-06-09 Pot for producing positive electrode active material for lithium ion battery and method for producing the same Active JP5039640B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008150664A JP5039640B2 (en) 2008-06-09 2008-06-09 Pot for producing positive electrode active material for lithium ion battery and method for producing the same
KR1020090046243A KR20090127805A (en) 2008-06-09 2009-05-27 Sagger for manufacturing positive electrode active material of lithium ion battery, and manufacturing method thereof
CNA2009101466629A CN101604751A (en) 2008-06-09 2009-06-09 Be used to make the saggar and the manufacture method thereof of the positive active material of lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008150664A JP5039640B2 (en) 2008-06-09 2008-06-09 Pot for producing positive electrode active material for lithium ion battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009292704A JP2009292704A (en) 2009-12-17
JP5039640B2 true JP5039640B2 (en) 2012-10-03

Family

ID=41470370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008150664A Active JP5039640B2 (en) 2008-06-09 2008-06-09 Pot for producing positive electrode active material for lithium ion battery and method for producing the same

Country Status (3)

Country Link
JP (1) JP5039640B2 (en)
KR (1) KR20090127805A (en)
CN (1) CN101604751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117663A (en) * 2009-12-03 2011-06-16 Noritake Co Ltd Sagger for producing positive electrode active material of lithium ion battery and method of manufacturing the same

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488827B (en) * 2010-03-01 2015-06-21 Ngk Insulators Ltd Cover
JP5550440B2 (en) 2010-05-10 2014-07-16 日本碍子株式会社 Operation method of powder firing plant
JP5391143B2 (en) * 2010-05-10 2014-01-15 日本碍子株式会社 Crack detection method
JP5486394B2 (en) 2010-05-10 2014-05-07 日本碍子株式会社 Cooling device for powder baked in a mortar
KR101223032B1 (en) * 2011-03-08 2013-01-17 주식회사 우진 Sagger and composition of sagger containing silicon carbide for manufacturing positive, negative electrode active material of secondary battery
JP5005100B1 (en) 2011-03-30 2012-08-22 東京窯業株式会社 Heat treatment container for positive electrode active material for lithium ion battery and method for producing the same
JP5341124B2 (en) 2011-03-30 2013-11-13 東京窯業株式会社 Heat treatment container for positive electrode active material for lithium ion battery
KR101906627B1 (en) 2011-04-22 2018-10-10 도호 머티리얼 가부시키가이샤 Method for producing complex metal oxide, metal oxide sintered body, and rotary kiln
KR101323096B1 (en) 2012-04-13 2013-10-30 한국세라믹기술원 Sagger for synthesizing positive electrode active material of secondary battery and manufacturing method of the same
JP5474126B2 (en) * 2012-05-02 2014-04-16 東京窯業株式会社 Heat treatment container for positive electrode active material for lithium ion battery
KR101446264B1 (en) * 2012-08-03 2014-10-01 코닝정밀소재 주식회사 SAGGER AND METHOD FOR PRODUCING In2O3 POWDER USING THE SAME
JP2014118339A (en) * 2012-12-19 2014-06-30 Kyodo Fine Ceramics Co Ltd Ceramic coated sagger for producing lithium ion positive electrode active material
CN103311498B (en) * 2013-05-23 2015-08-19 李艳晖 Circulating anode material of lithium battery baking sagger and preparation method thereof
JP2014227326A (en) * 2013-05-24 2014-12-08 東京窯業株式会社 Heat treatment vessel
CN104692812A (en) * 2013-12-05 2015-06-10 深圳市美晶石陶瓷有限公司 A preparing method of a ternary-material lithium battery saggar
CN104030700A (en) * 2014-05-26 2014-09-10 浙江立鑫高温耐火材料有限公司 Zircon mullite saggar
CN104987094B (en) * 2015-07-08 2017-11-17 武汉理工大学 A kind of alkali resistance ceramic coating material and preparation method thereof
CN105084921A (en) * 2015-09-22 2015-11-25 苏州瑞邦陶瓷新材料有限公司 Preparation process for anticorrosion saggar for calcination of lithium battery cathode material
CN105777090A (en) * 2016-03-21 2016-07-20 武汉理工大学 Sagger with coatings capable of resisting high-temperature lithium battery corrosion and method for preparing sagger
US10865150B2 (en) * 2016-05-18 2020-12-15 Basf Se Open vessels and their use
CN107382298A (en) * 2017-07-19 2017-11-24 宜兴市锦泰耐火材料有限公司 Battery material roasting saggar and preparation method thereof
KR101988736B1 (en) * 2017-09-28 2019-06-12 주식회사 포스코 Sagger for calcination of secondary battery active material and method for preparing the secondary battery active material using the same
KR102328254B1 (en) 2017-11-08 2021-11-18 주식회사 엘지에너지솔루션 Cathode for lithium-sulfur battery comprising maghemite, and lithium-sulfur battery comprising thereof
CN108046792B (en) * 2017-12-12 2020-10-16 浙江大学 Cordierite-spinel sagger, preparation method and application thereof
CN108101558B (en) * 2017-12-25 2021-03-23 浙江大学 Composite sagger, preparation method and application thereof
CN107963900B (en) * 2017-12-25 2021-03-23 浙江大学 Composite sagger, preparation method and application thereof
CN108302942A (en) * 2018-01-08 2018-07-20 朱性宇 Electrode material of lithium battery prepares the preparation method with saggar, the protective layer of the saggar and saggar
CN108129137A (en) * 2018-01-12 2018-06-08 安徽海螺暹罗耐火材料有限公司 Large-scale cement rotary kiln composite magnesium aluminate spinel brick and its production method
CN109467422B (en) * 2018-04-20 2021-07-02 湖南德景源科技有限公司 Special high-cycle special ceramic crucible for lithium battery and preparation method thereof
CN108610024B (en) * 2018-05-07 2020-11-03 武汉科技大学 Sagger for roasting lithium ion battery anode material and preparation method thereof
KR102308465B1 (en) 2018-07-16 2021-10-01 주식회사 엘지화학 Cathode for lithium secondary battery comprising iron oxide, and lithium secondary battery comprising thereof
CN109020592B (en) * 2018-08-30 2021-05-14 成都上普睿思科技有限公司 Composite fiber sagger for synthesizing lithium ion battery anode material and preparation method thereof
CN108975935B (en) * 2018-08-30 2021-05-14 成都上普睿思科技有限公司 Composite fiber sagger for synthesizing lithium ion battery anode material and preparation method thereof
CN109231975B (en) * 2018-09-28 2021-05-04 广东山摩新材料科技有限公司 Cordierite sagger with anti-corrosion bottom lining and preparation method thereof
CN109320208B (en) * 2018-12-12 2021-10-26 怀化学院 Method for recycling damaged ceramic crucible and ceramic crucible prepared by same
CN109704742B (en) * 2019-01-28 2021-11-05 佛山石湾鹰牌陶瓷有限公司 Corrosion-resistant anti-cracking special ceramic material, preparation method and application thereof
CN109761593A (en) * 2019-03-13 2019-05-17 武汉科技大学 It is a kind of using Aluminum sol as anode material of lithium battery sintering saggar of bonding agent and preparation method thereof
CN109956760A (en) * 2019-03-13 2019-07-02 乳源东阳光磁性材料有限公司 A kind of nickelic ternary material sintering saggar and preparation method thereof
CN110467436A (en) * 2019-08-01 2019-11-19 辽宁科技大学 A kind of method that discarded magnesia-alumina-carbon brick prepares square magnesium stone-spinel matter saggar
JP7466300B2 (en) 2019-12-17 2024-04-12 イソライト工業株式会社 Lightweight kiln tools
CN111056834B (en) * 2019-12-17 2022-02-18 洛阳索莱特材料科技有限公司 Preparation method of spinel-mullite ceramic sagger
JP7183214B2 (en) * 2020-03-27 2022-12-05 東京窯業株式会社 Composition for heat treatment jig and method for manufacturing heat treatment jig
CN111646818A (en) * 2020-07-07 2020-09-11 中钢南京环境工程技术研究院有限公司 Anticorrosive paint for aluminum-magnesium siliceous sagger
CN112028650A (en) * 2020-09-03 2020-12-04 深圳市飞粤新材料科技有限公司 Sagger for lithium ion battery anode material
CN112279662A (en) * 2020-11-06 2021-01-29 湘潭海泡石科技有限公司 Sagger for magnesium aluminate spinel-cordierite calcined lithium battery positive electrode material and preparation method thereof
CN112430106B (en) * 2020-11-30 2022-09-20 娄底市安地亚斯电子陶瓷有限公司 Supporting body for ceramic sintering and preparation method thereof
CN112456990B (en) * 2020-12-16 2021-09-21 唐山慧日科技有限公司 Sagger special for synthesizing lithium battery positive electrode material and preparation method thereof
CN113319258B (en) * 2021-06-02 2022-11-29 中钢集团洛阳耐火材料研究院有限公司 Method for preparing fluoride-free continuous casting covering slag by using used lithium battery sagger
CN113480300B (en) * 2021-07-13 2023-07-21 武汉科技大学 Mullite composite sagger and preparation method thereof
CN113773067B (en) * 2021-11-11 2022-01-18 长沙中瓷新材料科技有限公司 Sagger based on cordierite and production process thereof
KR20230084909A (en) 2021-12-06 2023-06-13 주식회사 씨아이에스케미칼 Sintering container for positive electrode active material of secondary battery and preperation method thereof
CN114604907B (en) * 2022-03-04 2023-08-11 万华化学(四川)有限公司 Ternary material preparation method for prolonging service life of sagger
CN114907110B (en) * 2022-05-26 2023-11-14 胡勇波 Synthetic composite spinel Dan Xiabo and manufacturing method thereof
CN115043650B (en) * 2022-08-15 2022-11-15 天津巴莫科技有限责任公司 Casket-like bowl and preparation method thereof
CN115366237A (en) * 2022-08-18 2022-11-22 广东邦普循环科技有限公司 Sagger repairing device and method for sucking specific slurry
CN115340392B (en) * 2022-08-31 2023-01-06 泰安蔚蓝金属陶瓷材料有限公司 Sagger for long-life lithium battery positive electrode material and preparation method thereof
EP4385965A1 (en) * 2022-12-12 2024-06-19 ImerTech SAS Saggars
CN116655394A (en) * 2023-05-17 2023-08-29 厦门中科金源新能源科技有限公司 Double-layer structure sagger for lithium battery anode material and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582443B2 (en) * 1989-09-22 1997-02-19 日本碍子株式会社 Cordierite refractories
JP3361573B2 (en) * 1993-08-04 2003-01-07 日本山村硝子株式会社 Low temperature fired substrate composition and low temperature fired substrate obtained therefrom
JPH09259881A (en) * 1996-03-25 1997-10-03 Murata Mfg Co Ltd Manufacture of linio2 for lithium secondary battery
JPH10152327A (en) * 1996-11-19 1998-06-09 Seimi Chem Co Ltd Production of lithium-containing multiple oxide and kiln therefor
JPH10270043A (en) * 1997-03-26 1998-10-09 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacture
JP3798923B2 (en) * 1999-07-23 2006-07-19 セイミケミカル株式会社 Method for producing positive electrode active material for lithium secondary battery
JP3552210B2 (en) * 2001-01-23 2004-08-11 株式会社東芝 Lithium ion secondary battery, cathode active material and sheath for synthesis of lithium-containing composite oxide for cathode active material
JP2002274957A (en) * 2001-03-23 2002-09-25 Mitsui Eng & Shipbuild Co Ltd Vessel for firing
JP2003104729A (en) * 2001-09-27 2003-04-09 Kee:Kk Method for producing lithium cobaltate
JP2003165767A (en) * 2001-11-28 2003-06-10 Noritake Co Ltd Spinel refractory and use of the same
JP3973204B2 (en) * 2002-07-29 2007-09-12 株式会社ノリタケカンパニーリミテド Refractories for firing positive electrode materials and their use
JP2004203724A (en) * 2002-10-30 2004-07-22 Kyocera Corp Cordierite porous sintered compact, and ceramic filter obtained by using the same
JP2004281163A (en) * 2003-03-14 2004-10-07 Seimi Chem Co Ltd Baked container for positive active material powder, positive active material powder, and lithium ion secondary battery
JP2006206338A (en) * 2005-01-25 2006-08-10 Noritake Co Ltd Highly corrosion-resistant refractory
JP2007112670A (en) * 2005-10-21 2007-05-10 Toshiba Ceramics Co Ltd Firing vessel
JP2008103100A (en) * 2006-10-17 2008-05-01 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and its baking tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117663A (en) * 2009-12-03 2011-06-16 Noritake Co Ltd Sagger for producing positive electrode active material of lithium ion battery and method of manufacturing the same

Also Published As

Publication number Publication date
JP2009292704A (en) 2009-12-17
CN101604751A (en) 2009-12-16
KR20090127805A (en) 2009-12-14

Similar Documents

Publication Publication Date Title
JP5039640B2 (en) Pot for producing positive electrode active material for lithium ion battery and method for producing the same
JP2011117663A (en) Sagger for producing positive electrode active material of lithium ion battery and method of manufacturing the same
TWI488827B (en) Cover
JP2019121601A (en) Lithium ion battery electrode material firing pot and protective layer of the same
US9733019B2 (en) Container for heat treatment of positive-electrode active material for lithium-ion battery and method for producing the same
JP2014118339A (en) Ceramic coated sagger for producing lithium ion positive electrode active material
KR20200058383A (en) Fireproof pack for firing lithium secondary battery positive electrode active material and manufacturing method thereof
CN115340392B (en) Sagger for long-life lithium battery positive electrode material and preparation method thereof
JP2012224487A (en) Kiln tool for manufacturing positive electrode active material of lithium secondary battery, and method for manufacturing the same
JP2003165767A (en) Spinel refractory and use of the same
CN109400137A (en) Anode material of lithium battery firing fire-clay crucible and preparation method thereof
WO2012131790A1 (en) Heat treatment container for lithium-containing compound
JP2006206338A (en) Highly corrosion-resistant refractory
CN115340409B (en) Sagger coating for lithium battery positive electrode material and preparation method of sagger coating
KR20130051290A (en) Kiln furniture and its composition for sintering cathode material of secondary battery
CN115353372B (en) Sagger for sintering lithium battery anode material and preparation method thereof
JP4488444B2 (en) Method for producing porous ceramics and porous ceramics
KR101719823B1 (en) Furnace material and manufacturing method of furnace material
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
CN102010203B (en) Method for preparing aluminum alloy castable ceramic catheter
JP5474126B2 (en) Heat treatment container for positive electrode active material for lithium ion battery
CN102010208B (en) Preparation method of silicon ingot linear cutting waste ceramic guide pipe
KR20230155233A (en) Lithium-ion battery cathode material sintering saggar
TW202402713A (en) Boron nitride sintered body and method for producing same, setter, and container
JPWO2004067147A1 (en) Manufacturing method of silicon nitride honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5039640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250