JP4488444B2 - Method for producing porous ceramics and porous ceramics - Google Patents

Method for producing porous ceramics and porous ceramics Download PDF

Info

Publication number
JP4488444B2
JP4488444B2 JP2008174760A JP2008174760A JP4488444B2 JP 4488444 B2 JP4488444 B2 JP 4488444B2 JP 2008174760 A JP2008174760 A JP 2008174760A JP 2008174760 A JP2008174760 A JP 2008174760A JP 4488444 B2 JP4488444 B2 JP 4488444B2
Authority
JP
Japan
Prior art keywords
porous ceramic
spinel
clay
porous
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008174760A
Other languages
Japanese (ja)
Other versions
JP2010013316A (en
Inventor
靖雄 芝崎
誠司 江尻
高福 加藤
Original Assignee
靖雄 芝崎
株式会社丸栄産業合作社
丸石窯業原料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 靖雄 芝崎, 株式会社丸栄産業合作社, 丸石窯業原料株式会社 filed Critical 靖雄 芝崎
Priority to JP2008174760A priority Critical patent/JP4488444B2/en
Publication of JP2010013316A publication Critical patent/JP2010013316A/en
Application granted granted Critical
Publication of JP4488444B2 publication Critical patent/JP4488444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、多孔質セラミックス、特にリチウムイオン二次電池正極材の製造に反応容器として好適に使用できる多孔質セラミックスと、その製造方法とに関する。   The present invention relates to a porous ceramic, particularly a porous ceramic that can be suitably used as a reaction vessel for the production of a positive electrode material for a lithium ion secondary battery, and a method for producing the same.

リチウムイオン二次電池正極材(例えばLiMnO、LiCoO、LiNiO)の製造における1000℃前後の熱処理においては、セラミック反応容器が使用されているが、熱衝撃が過酷なため、鉄鋼用耐火物として主に用いられる耐熱衝撃性に優れたムライト−コーディエライト系の多孔質反応容器が広く用いられている。 In 1000 ° C. before and after the heat treatment in the production of the lithium ion secondary battery positive electrode material (eg LiMnO 2, LiCoO 2, LiNiO 2 ), although the ceramic reaction vessel is used, since the thermal shock is severe, steel refractories A mullite-cordierite-based porous reaction vessel having a high thermal shock resistance, which is mainly used as, is widely used.

このようなムライト−コーディエライト系の多孔質反応容器はアルカリに弱い。具体的には、リチウム化合物と遷移金属(Mn、Co、Ni)化合物の生成反応において分解発生するガス体(HO、CO、ハロゲン、チッソ及び硫黄系酸化物など)及び加熱に伴う高蒸気圧のLiOガスに反応容器が曝されることになるため、アルカリ性の強いLiOガスと反応し、LiSiO等が生成して繰返しの使用の度に反応容器が劣化する。
特に当該反応容器は、原材料として粗粒のムライトやコーディエライトと微粒のアルミナ等、多様な粒度の原材料を粘土(主に石英とカオリナイト)と混合して製造するので、成形焼成後の製品も多様な粒度の原材料と粘土分解物とがまばらな状態で充填し均質ではない。残存石英(SiO)はアルカリガスと反応してLiSiO等の含Li結晶を生成し、生成したLiSiOは400〜700℃の温度範囲でCOガスを25重量%吸収し、700℃で放出する特異性があり、その結果、反応容器内の部分体積膨張に伴う内部応力の増大と歪みが発生する。この歪みが反応容器の割れにつながるため、繰り返しの反応(焼成)では10回程度しか使用できない。セラミック反応容器の歪みや割れにより容器及び容器反応物が生成物(リチウムイオン二次電池正極材)中に崩落混入し、電池性能を劣化させたりするおそれもあるからである。
そのため、従来型のムライト−コーディエライト系材質のセラミック反応容器の使用回数は10サイクル程度で割れ、使用後は産業廃棄物として大量に捨てられている。
Such a mullite-cordierite porous reaction vessel is vulnerable to alkali. Specifically, gas bodies (H 2 O, CO 2 , halogen, nitrogen, sulfur oxides, etc.) that are decomposed and generated in the formation reaction of a lithium compound and a transition metal (Mn, Co, Ni) compound and a high temperature accompanying heating Since the reaction vessel is exposed to vapor pressure Li 2 O gas, it reacts with highly alkaline Li 2 O gas, Li 4 SiO 4 and the like are produced, and the reaction vessel deteriorates with repeated use. .
In particular, the reaction vessel is manufactured by mixing raw materials of various particle sizes such as coarse mullite and cordierite and fine alumina as raw materials with clay (mainly quartz and kaolinite). However, raw materials of various particle sizes and clay decomposition products are packed in a sparse state and are not homogeneous. Residual quartz (SiO 2 ) reacts with alkali gas to produce Li-containing crystals such as Li 4 SiO 4 , and the produced Li 4 SiO 4 absorbs 25 wt% of CO 2 gas in the temperature range of 400 to 700 ° C. , There is a peculiarity of release at 700 ° C., and as a result, an increase in internal stress and strain accompanying partial volume expansion in the reaction vessel occur. Since this distortion leads to cracking of the reaction vessel, it can be used only about 10 times in repeated reaction (firing). This is because the container and container reaction product may collapse into the product (lithium ion secondary battery positive electrode material) due to distortion or cracking of the ceramic reaction container, which may deteriorate the battery performance.
Therefore, the number of times of use of the conventional mullite-cordierite-based ceramic reaction vessel is broken in about 10 cycles, and a large amount is discarded as industrial waste after use.

また、反応容器の見掛比重は2.0前後と重いので、ハンドリング作業時には作業者に負担が掛かり、また焼成の際は燃料を多く消費する欠点もある。   Further, since the apparent specific gravity of the reaction vessel is as heavy as around 2.0, there is a disadvantage that a burden is imposed on the operator during handling work, and a large amount of fuel is consumed during firing.

大阪窯業耐火煉瓦株式会社 技術研究所 小田中真一朗・原亀吉・楠瀬洋・徳永和志「セメント製造用耐火物の変遷と現状」第1回セメント用耐火物研究会報告集105〜117(1960)Osaka Ceramics Refractory Brick Co., Ltd. Technical Research Institute Shinichiro Odanaka, Kameyoshi Hara, Hiroshi Hirose, Kazutoshi Tokunaga "Transition and Present Status of Cement Refractories" Proceedings of the 1st Cement Refractory Research Group 105-117 (1960) 大阪窯業耐火煉瓦株式会社 技術研究所 原亀吉・楠瀬洋・劒持勲・徳永和志「スピネル質煉瓦の高性能化への一考察」第2回セメント用耐火物研究会報告集32〜42(1961)Osaka Ceramics Refractory Brick Co., Ltd. Technical Research Institute Kameyoshi Hara, Hiroshi Hirose, Isao Mochimochi and Kazushi Tokunaga “Consideration of high performance spinel bricks” The 2nd refractory research meeting for cement 32-32 (1961) 耐火物技術協会編 耐火物手帳’99 IV工業炉と耐火物 3窯業用炉と耐火物 3・2セメント・石灰用キルン 391〜397(1999)Refractory Technology Association Edition Refractory Notebook '99 IV Industrial Furnace and Refractory 3 Furnace and Refractory for Ceramic Industry 3.2 Cement and Lime Kiln 391-397 (1999) セラミック工学ハンドブック 社団法人日本セラミックス協会 832 874 2006 2011 2012(1989)Ceramic Engineering Handbook Japan Ceramic Society 832 874 2006 2011 2012 (1989)

そこで本発明は、上記従来の問題点を解決し、耐アルカリ性と耐熱衝撃性とを兼備し、反応容器として好適に使用できる多孔質セラミックスと、その製造方法とを提供することを目的とする。   Accordingly, an object of the present invention is to solve the above-mentioned conventional problems, and to provide a porous ceramic that has both alkali resistance and thermal shock resistance and can be suitably used as a reaction vessel, and a method for producing the same.

まず発明者は、リチウムイオン二次電池正極材製造用原材料と反応容器の化学反応を根本的に抑えるには、下記の工業的事実に着目した。
(1)アルカリの侵食が厳しいとされるセメント製造用ロータリーキルンの仮焼帯に、内張り耐火煉瓦としてシリカ−アルミナ質煉瓦が使用されているが、シリカ−アルミナ質煉瓦は、アルカリの侵食により剥離損耗が起きており、シリカ−アルミナ質煉瓦に含まれるクリストバライト(SiO)がアルカリと反応してアルカリ鉱物やガラス相を生成し、これらの性質や生成量が煉瓦損傷に影響を与えると考えられる点。
(2)リチウムイオン二次電池正極材(例えばLiMnO、LiCoO、LiNiO)の製造における1000℃前後の熱処理においても、反応容器の材質は加熱に伴う高蒸気圧のアルカリガス(LiO)に曝され、木節粘土、蛙目粘土、未利用粘土等に含まれるカオリナイトの分解物のクリストバライトや粘土分中に含まれる石英(SiO)が、アルカリの強いLiOガスの侵食により、前記した如く反応容器セラミック材質中の遊離SiOと反応してCOを吸放出しやすいLiSiO等を生成して反応容器の劣化速度を早めていると考えられる点。
First, the inventor paid attention to the following industrial facts in order to fundamentally suppress the chemical reaction between the raw material for producing a positive electrode material for a lithium ion secondary battery and the reaction vessel.
(1) Silica-alumina brick is used as the lining fireproof brick in the calcined zone of the rotary kiln for cement production, which is considered to be severely eroded by alkali. Silica-alumina brick is worn away by alkali erosion. has occurred, silica - cristobalite contained in alumina bricks (SiO 2) reacts with an alkali to produce an alkali minerals and glass phases, that these properties and production amount is considered to affect the brick damage .
(2) Even in heat treatment at around 1000 ° C. in the production of a lithium ion secondary battery positive electrode material (for example, LiMnO 2 , LiCoO 2 , LiNiO 2 ), the material of the reaction vessel is alkali gas (Li 2 O with high vapor pressure accompanying heating). ), Cristobalite, which is a decomposition product of kaolinite contained in Kibushi clay, Sasame clay, unused clay, etc., and quartz (SiO 2 ) contained in the clay is eroded by Li 2 O gas with strong alkali Therefore, as described above, it is considered that Li 4 SiO 4 that easily absorbs and releases CO 2 reacts with free SiO 2 in the ceramic material of the reaction vessel to accelerate the deterioration rate of the reaction vessel.

そこで、製造中のリチウムイオン二次電池正極材製造用原材料とセラミック反応容器の化学反応を抑えるために、LiOガス及びLi溶融体に強いアルカリ土類系酸化物、少なくともスピネルで均質とするのがベストの材質設計と考えた。これはアルカリ土類系酸化物、特にスピネル系セラミック材質は耐アルカリ侵食性に優れている、との知見に基づくものであり、実際にセメント製造用ロータリーキルンに使用される内張り煉瓦は、化学的に過酷な条件部分であるロータリーキルンの焼成帯部分でスピネル質煉瓦が使用されており、良好な実績を示している。 Therefore, in order to suppress the chemical reaction between the raw material for producing the positive electrode material of the lithium ion secondary battery and the ceramic reaction vessel during production, the alkaline earth oxide strong against Li 2 O gas and Li melt, at least spinel, is homogenized. Was considered the best material design. This is based on the knowledge that alkaline earth oxides, especially spinel ceramic materials, are excellent in alkali erosion resistance. The lining bricks actually used in rotary kilns for cement production are chemically Spinel brick is used in the firing zone part of the rotary kiln, which is a severe condition part, and shows a good track record.

さらに、耐熱衝撃性を向上させるために、反応容器作成時に生成した微細スピネル結晶の周囲にスピネルの高膨張率に基づく伸び分を逃がす微空間を配置して、急激な熱収縮、熱膨張を吸収させる必要がある。これには粘土、水酸化アルミナ、菱苦土石を使用して、焼成する際に菱苦土石(MgCO)のCO分、水酸化アルミナ(Al(OH))及び粘土の水分が分解して抜けて細孔となることを利用して行うことができる。 In addition, in order to improve thermal shock resistance, a fine space that escapes the elongation based on the high expansion coefficient of the spinel is placed around the fine spinel crystal generated when creating the reaction vessel to absorb rapid thermal contraction and thermal expansion. It is necessary to let For this, clay, alumina hydroxide, and rhododendron are used. During firing, the CO 2 content of rhodolite (MgCO 3 ), the alumina hydroxide (Al (OH) 3 ), and the moisture of the clay decompose. It can be carried out by utilizing the fact that it comes off and becomes a pore.

そこで、上記目的を達成するために、請求項1に記載の発明は、多孔質セラミックスの製造方法であって、石英を除去若しくは微粉砕した可塑性粘土と、アルミナ成分と、苦土成分とを夫々20重量%以上混合すると共に、当該3成分の混合の際、Na、K、Ca、Fe元素を含む原料鉱物成分中の酸化物の合計が全体の5重量%以下(但し0重量%を除く)となるように調整して所定形状に成形し、1200℃〜1350℃の温度で焼成することを特徴とするものである。
請求項2に記載の発明は、請求項1の構成において、焼成体の収縮を好適に抑えるために、セラミックス粒子からなる骨材を10重量%〜60重量%の範囲内で混合して成形することを特徴とするものである。
一方、上記目的を達成するために、請求項3に記載の発明は、請求項1又は2に記載の多孔質セラミックスの製造方法で得られる多孔質セラミックスであって、晶出型スピネル及びコーディエライトを含み、見掛気孔率が40%以上、熱膨張係数が1000℃において6.66×10−6/℃以下であることを特徴とするものである。
請求項4に記載の発明は、請求項1に記載の多孔質セラミックスの製造方法で得られる多孔質セラミックスであって、晶出型スピネル及びコーディエライトを含み、見掛気孔率が40%以上、熱膨張係数が1000℃において6.66×10 −6 /℃以下、BET法で比表面積が0.3m/g以上であることを特徴とするものである。
請求項5に記載の発明は、請求項3又は4の構成において、石英成分を含まないことを特徴とするものである。
請求項6に記載の発明は、請求項3又は5の構成において、焼成体内にセラミックス粒子からなる骨材を有し、焼成収縮率が10%未満であることを特徴とするものである。
Accordingly, in order to achieve the above object, the invention described in claim 1 is a method for producing porous ceramics, comprising a plastic clay from which quartz is removed or finely ground, an alumina component, and a bitter earth component, respectively. In addition to mixing 20% by weight or more, when mixing the three components, the total of oxides in the raw mineral components containing Na, K, Ca and Fe elements is 5% by weight or less (excluding 0% by weight) It adjusts so that it may become, It shape | molds in a predetermined shape, It bakes at the temperature of 1200 to 1350 degreeC, It is characterized by the above-mentioned.
According to a second aspect of the present invention, in the configuration of the first aspect, in order to suitably suppress shrinkage of the fired body, an aggregate made of ceramic particles is mixed and molded within a range of 10 wt% to 60 wt%. It is characterized by this.
On the other hand, in order to achieve the above object, the invention described in claim 3 is a porous ceramic obtained by the method for producing a porous ceramic according to claim 1, wherein the crystallized spinel and cordier are obtained. Including light, the apparent porosity is 40% or more, and the thermal expansion coefficient is 6.66 × 10 −6 / ° C. or less at 1000 ° C.
Invention of Claim 4 is a porous ceramic obtained by the manufacturing method of the porous ceramic of Claim 1, Comprising: Crystallized spinel and cordierite are included, and an apparent porosity is 40% or more The thermal expansion coefficient is 6.66 × 10 −6 / ° C. or less at 1000 ° C., and the specific surface area is 0.3 m 2 / g or more by the BET method.
The invention described in claim 5 is characterized in that the structure of claim 3 or 4 does not contain a quartz component.
The invention described in claim 6 is characterized in that, in the structure of claim 3 or 5 , the sintered body has an aggregate made of ceramic particles, and the firing shrinkage rate is less than 10%.

本発明によれば、耐アルカリ性、耐熱衝撃性に優れたアルカリ土類系酸化物、特に晶出型スピネル及びコーディエライトを含んで細孔が均質に分布したセラミックスを、MgO -AlO -SiOの平衡状態図の1370〜1453℃よりも低温で製造することができる。
また、耐アルカリ性に優れているため、リチウムイオン二次電池正極材(例えばLiMnO、LiCoO、LiNiO)製造において、セラミック反応容器として1000℃前後の高温下で使用できる。この際、LiOガスによるアルカリアタックに曝された場合でも、それとセラミック反応容器組成分との反応生成物であるガラス量は抑えられ、侵食は少ない。特に、セラミック反応容器には単成分の石英(SiO)を含まないために、アルカリの強いLiOガスとこれらの単成分の反応生成物は無い。
具体的には、石英とLiOガスが反応して、LiSiO等の含リチウム結晶を生成してCOガスの吸収放出に伴う体積膨張を起こすこともないので、セラミック反応容器の膨張破壊が生じ、生成物のリチウムイオン二次電池正極材に破片等の異物が混入することも防ぐことができる。更にセラミック反応容器の長寿命化を図ることができる。
一方、熱衝撃性も高まって割れ難くくなるため、使用後に捨てられる産業廃棄物の量を大幅に減らすことができる。また、見掛比重が小さいので、持ち運びなどの作業が楽であり、焼成の際は、燃料が少量で済む。さらに、ガス雰囲気焼成において、酸化、還元及び加湿反応において、多孔質セラミック反応容器内に均一にガスを供給できる。
そして、骨材を使用すれば焼成体の収縮を効果的に抑制可能となる。
According to the present invention, an alkaline earth oxide excellent in alkali resistance and thermal shock resistance, particularly a ceramic containing crystallized spinel and cordierite and in which pores are homogeneously distributed, is made of MgO 2 -Al 2 O 3. It can be produced at a temperature lower than 1370 to 1453 ° C. in the equilibrium diagram of —SiO 2 .
Moreover, since it is excellent in alkali resistance, it can be used as a ceramic reaction vessel at a high temperature of about 1000 ° C. in the production of a lithium ion secondary battery positive electrode material (for example, LiMnO 2 , LiCoO 2 , LiNiO 2 ). At this time, even when exposed to an alkaline attack by Li 2 O gas, the amount of glass that is a reaction product of the ceramic reaction vessel component and the ceramic reaction vessel component is suppressed, and erosion is small. In particular, since the ceramic reaction vessel does not contain single-component quartz (SiO 2 ), there is no strong alkaline Li 2 O gas and reaction products of these single components.
Specifically, by quartz and Li 2 O gas reaction, so that there is no cause volumetric expansion caused to generate a lithium-containing crystal such as Li 4 SiO 4 to absorption and release of CO 2 gas, the ceramic reaction vessel It is also possible to prevent expansion and destruction and contamination of foreign substances such as debris into the product lithium ion secondary battery positive electrode material. Further, the life of the ceramic reaction vessel can be extended.
On the other hand, since the thermal shock resistance is also increased and it becomes difficult to break, the amount of industrial waste discarded after use can be greatly reduced. In addition, since the apparent specific gravity is small, it is easy to carry around, and a small amount of fuel is sufficient for firing. Further, in the gas atmosphere firing, the gas can be uniformly supplied into the porous ceramic reaction vessel in the oxidation, reduction and humidification reactions.
And if aggregate is used, shrinkage | contraction of a baking body can be suppressed effectively.

本発明で使用する可塑性粘土は、木節粘土、蛙目粘土、カオリナイト質粘土、ボーキサイト質粘土、陶石質粘土、雲母質粘土及び各種人工粘土から1種以上が選択される。選択された粘土は水簸又は工業的遠心分離機を用いて、石英を出来る限り除去する。重要なことは、セラミックスの製造時における焼成が完了した時点で、石英が無くなりアルカリ土類化合物になっていることなので、焼成後に石英が無くなる程度であれば、完全に除去できていなくても問題はないし、石英を微粉砕することで焼成反応を促し焼成後に残存しないようにしても良い。   The plastic clay used in the present invention is selected from at least one of Kibushi clay, Sasame clay, Kaolinite clay, Bauxite clay, Porcelain clay, Mica clay and various artificial clays. The selected clay is removed as much of the quartz as possible using a water tank or an industrial centrifuge. The important thing is that when the firing in the production of ceramics is completed, the quartz disappears and it becomes an alkaline earth compound, so if the quartz disappears after firing, there is no problem even if it is not completely removed. Alternatively, it is possible to promote the firing reaction by finely pulverizing quartz so that it does not remain after firing.

次に本発明ではアルミナ成分を使用する。アルミナ成分は、多孔質AlO、水酸化物、炭酸基・アンモニウム基・水酸基からなる塩及び複塩類から選ばれる1種以上であればよい。
但し、耐火度向上策としてNaイオン等のアルカリ成分の少ない原料を使用するのが望ましい。例えば、アルミナ成分としてはサッシ工場からの産業廃棄物Al(OH)スラッジ等が活用できるが、このAl(OH)にはNaイオン類等のアルカリ成分が多く含まれるため、pHが8になるくらいまで水洗いを行ったものを使用する。
Next, an alumina component is used in the present invention. The alumina component may be one or more selected from porous Al 2 O 3 , hydroxides, carbonates / ammonium groups / hydroxyl salts and double salts.
However, it is desirable to use raw materials with few alkali components such as Na ions as a measure for improving the fire resistance. For example, industrial waste Al (OH) 3 sludge from a sash factory can be used as an alumina component, but since this Al (OH) 3 contains a large amount of alkali components such as Na ions, the pH is set to 8. Use water that has been thoroughly washed.

こうして得られた可塑性粘土と、アルミナ成分と、苦土成分(これらの水酸化物、炭酸塩、複塩類であってもよい)を夫々少なくとも20重量%ずつ調合して、アルカリ土類化合物、特にスピネルを含む結晶体になるようにする。この時、組成物中に石英が単独で残らないように調合することが大切である。   The plastic clay thus obtained, an alumina component, and a bitter earth component (these hydroxides, carbonates, and double salts) may be prepared at least 20% by weight, respectively, and an alkaline earth compound, particularly A crystal containing spinel is made. At this time, it is important to prepare such that quartz is not left alone in the composition.

またこの際、製造されたセラミックスを均質とするために、粒度の粗い原料を使用しないようにする。粒度の粗い原料を使用すると分解反応した生成物が残り、サブミクロン以下で均質とならなくなるからである。もし粒度配合上の都合で粒度の粗いものが必要な場合は、セラミックスと同じ材質で調合、焼成したものを粉砕して使用することが有効である。   At this time, in order to make the produced ceramics homogeneous, raw materials with coarse particles are not used. This is because when a raw material having a coarse particle size is used, a product subjected to a decomposition reaction remains, and it is not uniform below submicron. If a coarse grain is required for the convenience of blending the grain size, it is effective to grind and use the one prepared and fired from the same material as the ceramic.

そして、調合したセラミックス用素地を任意の形状に各種の方法で成形し、乾燥させた後、1100℃〜1350℃の範囲で焼成温度を選択して焼成する。焼成温度に関しては、焼成温度を高くするほど焼成収縮率も高くなる。また焼成温度を高くするほど反応が促進されるので、スピネルの結晶も確実に成長する。   The prepared ceramic substrate is molded into various shapes by various methods, dried, and then fired by selecting a firing temperature in the range of 1100 ° C to 1350 ° C. Regarding the firing temperature, the firing shrinkage ratio increases as the firing temperature increases. In addition, since the reaction is promoted as the firing temperature is increased, spinel crystals also grow reliably.

まず、耐熱性、耐アルカリ性、耐熱衝撃性を満足させるには、単一材質では不可能である(表1参照、耐火物手帳’99、京セラ(株)特性表、セラミック工学ハンドブック、セラミックス技術集成、アルミナ系耐火物を参照した。熱膨張係数は1000℃での値を示す。)。耐アルカリ性に関しては、耐Liガス及びその溶融体に対応するデータは耐火物関連のデータ集にはほとんどないが、Naガスのデータから類推すると、表1のようになると考えられる。   First, it is impossible to satisfy heat resistance, alkali resistance, and thermal shock resistance with a single material (see Table 1, Refractory Handbook '99, Kyocera Corporation Characteristics Table, Ceramic Engineering Handbook, Ceramic Technology Assembly) Reference was made to alumina-based refractories, and the coefficient of thermal expansion is a value at 1000 ° C.). Regarding alkali resistance, there is almost no data corresponding to Li-resistant gas and its melt in the refractory-related data collection, but it can be considered as shown in Table 1 by analogy with Na gas data.

Figure 0004488444
Figure 0004488444

ジルコニア、石英はLiOガスと反応し、LiZrO、LiSiO等が生成して繰り返し使用によりCOの吸放出に伴う体積膨張をするので、反応容器を劣化させる。特に既述した様に、LiSiOは400〜700℃の温度範囲でCOガスを25重量%吸収し、700℃で放出する特異性があり、その結果、反応容器内の部分体積膨張に伴う内部応力の増大と歪みが発生する。 Zirconia and quartz react with Li 2 O gas, and Li 4 ZrO 4 , Li 4 SiO 4 and the like are produced and undergo volume expansion accompanying the absorption and release of CO 2 due to repeated use, thereby degrading the reaction vessel. In particular, as described above, Li 4 SiO 4 has the specificity of absorbing 25% by weight of CO 2 gas in the temperature range of 400 to 700 ° C. and releasing it at 700 ° C. As a result, partial volume expansion in the reaction vessel Increase in internal stress and distortion occur.

発明者らは工業的な使用状況から判断して、平均の熱膨張係数を5〜6×10−6/℃以下にすべきであると考えた。すると、必然的に選択材質はスピネル、若しくはスピネル−コーディエライトの共晶に帰着する。例えば両者を1:1と仮定すれば、熱膨張係数は4.3〜4.5×10−6/℃になり、5.0×10−6/℃以下になる。しかし両結晶が共存できる温度は1370〜1453℃である(鉱物工学 吉木文平 626 (1959))。これらをより低温焼成下でも晶出する方法を探索した結果、アルカリ系焼結助剤となるNa、K、Ca、Feを主成分に有する雲母系鉱物群(絹雲母、海緑石等)の風化物からなる粘土を活用すれば有効であることを見い出した。
しかし、1100℃以上の高温焼成では晶出型スピネルは成長し、絶対の熱膨張分は大きいので、これを避けるためにスピネルの近辺に逃げの細孔を配置する必要がある。そこで、スピネルの特性を生かし、熱衝撃に耐えるためには、空孔の導入法しかないと判断した。
The inventors considered that the average thermal expansion coefficient should be 5 to 6 × 10 −6 / ° C. or less, judging from industrial use conditions. Then, the selected material is necessarily reduced to spinel or spinel-cordierite eutectic. For example, if both are assumed to be 1: 1, the thermal expansion coefficient is 4.3 to 4.5 × 10 −6 / ° C., and is 5.0 × 10 −6 / ° C. or less. However, the temperature at which both crystals can coexist is 1370-1453 ° C (Mineral Engineering Bunpei Yoshiki 626 (1959)). As a result of searching for a method for crystallizing these even under lower temperature firing, as a result of the mica group mineral group (sericite, sea chlorite, etc.) having Na, K, Ca, Fe as a main component as an alkaline sintering aid. It was found that it would be effective if clay made of weathered material was used.
However, crystallization-type spinel grows at a high temperature firing of 1100 ° C. or higher, and the absolute thermal expansion is large. In order to avoid this, it is necessary to arrange escape pores in the vicinity of the spinel. In order to take advantage of the characteristics of spinel and withstand thermal shock, it was judged that there was only a method for introducing holes.

まず、均一反応により、スピネルと細孔が同時にできる反応を考えた。更にセラミックスの成形にも都合のよい方法を考慮し、アルミニウムサッシ産業廃棄物のAl(OH)スラッジ、蛙目粘土、菱苦土石の原料分析値を示し(表2−1)、三成分を素地調合した(表2−2)。 First, a reaction in which spinel and pores can be formed simultaneously by a uniform reaction was considered. In addition, considering the convenient method for forming ceramics, the raw material analysis values of aluminum sash industrial waste Al (OH) 3 sludge, Sasame clay, and rhododendron are shown (Table 2-1). The substrate was prepared (Table 2-2).

Figure 0004488444
Figure 0004488444

Figure 0004488444
Figure 0004488444

表3に下記調合名006の粘土分を、焼成助剤、兼成形性向上のために30重量%の内10重量%を、水簸した雲母系粘土に代えた素地調合を示す。ここでは、焼成助剤となるNaO、KO、CaO、FeOの合計が、全体の5重量%以下となるように調整している。この調整により、低温焼結により好適な調合が可能となる。
表4には600℃〜1300℃までは100℃ごと、1300℃〜1400℃までは50℃ごとに電気炉中で表示温度1時間焼成し、各温度の焼結体のX線回折結果を表した。また表5には各焼成温度での焼成収縮率、抗折強度、熱膨張係数、耐熱衝撃性を表した。
Table 3 shows a base composition in which the clay component of the following compounding name 006 is replaced with a mica-based clay in which 10% by weight of 30% by weight is used as a baking aid and for improving moldability. Here, the total of Na 2 O, K 2 O, CaO, and Fe 2 O 3 serving as firing aids is adjusted to be 5% by weight or less. This adjustment makes it possible to prepare a compound suitable for low-temperature sintering.
Table 4 shows the X-ray diffraction results of the sintered bodies at each temperature, which were fired in an electric furnace for 1 hour every 100 ° C from 600 ° C to 1300 ° C and every 50 ° C from 1300 ° C to 1400 ° C. did. Table 5 shows the firing shrinkage, bending strength, thermal expansion coefficient, and thermal shock resistance at each firing temperature.

Figure 0004488444
Figure 0004488444

Figure 0004488444
Figure 0004488444

表4より、焼成中の反応を推定すれば、500℃で残っていた菱苦土石(MgCO)が、600℃では脱炭酸後の非結晶のMgOから結晶性のMgO(ペリクレース)に変わり始める。ペリクレースは結晶成長し続けるが、1100℃あたりからスピネルが晶出し始めると共に減少していく。1200℃からコーディエライトが出始め、1200℃〜1300℃ではムライト、コランダム、フォレストライト、ペリクレース等と共存している。1300℃あたりでペリクレースは無くなり、1350℃以上でスピネルとコーディエライトだけになる。図1に、1350℃の焼成体の粉末X線回析図を示す。また、図2において600℃〜1400℃での比表面積の変化を、図3において見掛気孔率の変化を夫々示す。なお、比表面積の測定は、Nガス吸着を用いたBET法で行っている。
これによれば、1350℃までは見掛気孔率が40%を上回り、且つ比表面積が0.3m/gを上回っていることがわかる。
三成分系MgO−AlO−SiOの平衡状態図によると、スピネルとコーディエライトは1370℃〜1453℃で共存するが、本実施例によれば、これよりも低温である1200℃〜1350℃で共存した。但し、上述のようにスピネルは1100℃から晶出しているため、焼成温度として1100℃〜1350℃の範囲を選択すれば、晶出型スピネルを含む多孔質セラミックスが得られる。
From Table 4, if the reaction during the calcination is estimated, the rhodolite (MgCO 3 ) remaining at 500 ° C. starts to change from amorphous MgO after decarboxylation to crystalline MgO (periclase) at 600 ° C. . Periclase continues to grow, but spinel begins to crystallize around 1100 ° C. and decreases. Cordierite begins to appear at 1200 ° C., and coexists with mullite, corundum, forest light, periclase, etc. at 1200 ° C. to 1300 ° C. There is no periclase around 1300 ° C, and only spinel and cordierite at 1350 ° C and above. FIG. 1 shows a powder X-ray diffraction pattern of the fired body at 1350 ° C. 2 shows changes in specific surface area at 600 ° C. to 1400 ° C., and FIG. 3 shows changes in apparent porosity. The specific surface area is measured by the BET method using N 2 gas adsorption.
This shows that up to 1350 ° C., the apparent porosity exceeds 40% and the specific surface area exceeds 0.3 m 2 / g.
According to the equilibrium diagram of the ternary system MgO—Al 2 O 3 —SiO 2 , spinel and cordierite coexist at 1370 ° C. to 1453 ° C., but according to this example, 1200 ° C., which is a lower temperature than this. Coexisted at ˜1350 ° C. However, since spinel is crystallized from 1100 ° C. as described above, porous ceramics containing crystallized spinel can be obtained by selecting a range of 1100 ° C. to 1350 ° C. as the firing temperature.

Figure 0004488444
Figure 0004488444

表5より、焼成収縮率は焼成温度の上昇に従って高くなった。特に1350〜1400℃にかけては大幅な収縮がみられた。熱膨張係数は、1100℃以上では何れも8.66×10−6/℃を下回っている。
また、抗折強度は600℃〜1200℃にかけて、焼成温度の上昇に従って高くなった。しかし、1300℃で抗折強度は低下し、また焼成温度の上昇に従って高くなった。耐熱衝撃性は、熱膨張係数値よりも、微細なスピネル、コーディエライトと細孔からなる微細組織の焼成体が、耐熱性、耐アルカリ性、耐熱衝撃性の対応には効果的であることが判明した。
From Table 5, the firing shrinkage ratio increased as the firing temperature increased. In particular, significant shrinkage was observed at 1350-1400 ° C. Thermal expansion coefficient is lower than 8.66 × 10 -6 / ℃ both at 1100 ° C. or higher.
Moreover, the bending strength increased as the firing temperature increased from 600 ° C to 1200 ° C. However, the bending strength decreased at 1300 ° C. and increased as the firing temperature increased. The thermal shock resistance is more effective than the thermal expansion coefficient value in terms of heat resistance, alkali resistance, and thermal shock resistance. found.

調合範囲を確認するための三成分のAl(OH)、蛙目粘土(実施例1と同様に遠心分離機で精製したもの)、菱苦土石を、表6に示す001〜006の6パターンの割合で素地を調合し、泥漿鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、1400℃の温度で焼成した各焼成体のX線回折同定結晶と、1350℃の温度で焼成した各焼成体の熱膨張係数、見掛気孔率の測定結果を表6に示す。 Al ternary for confirming the formulation ranges (OH) 3, gairome clay (which was purified by centrifuge as in Example 1), the diamond bitter debris, 6 patterns 001-006 illustrated in Table 6 The base was prepared at a ratio of 1 to 5 and formed into a rod-like test body similar to that in Example 1 by a mud casting method. This is air-dried and then placed in an electric furnace and X-ray diffraction identification crystals of each fired body fired at a temperature of 1400 ° C., and the thermal expansion coefficient and apparent pores of each fired body fired at a temperature of 1350 ° C. Table 6 shows the measurement results of the rate.

Figure 0004488444
Figure 0004488444

表6より、X線回折の同定結果を見ると、調合名006が晶出型スピネルを主成分として他にコーディエライトを含む材質となり、熱膨張係数が最も低かった。
表7に、001〜006の調合各焼成体における500℃、1100℃、1350℃の焼成収縮率及び見掛気孔率と、1100℃、1400℃の各温度で焼成した焼成体の耐熱衝撃試験ΔT=1000℃の結果を示す。
From Table 6, the identification result of X-ray diffraction shows that the compounded name 006 is a material containing crystallization type spinel as a main component and cordierite, and has the lowest thermal expansion coefficient.
Table 7 shows the firing shrinkage and apparent porosity of 500 ° C., 1100 ° C., and 1350 ° C. and the thermal shock test ΔT of the fired product fired at each temperature of 1100 ° C. and 1400 ° C. = 1000 ° C results are shown.

Figure 0004488444
Figure 0004488444

表7より、001〜006の各焼成体における焼成収縮率は、何れも500℃、1100℃、1350℃と焼成温度が上がるにつれて焼成収縮率も高くなった。見掛気孔率は何れも500℃より1100℃の方が高くなり、1100℃より1350℃の方が低くなった。耐熱衝撃試験ΔT=1000℃では003の1100℃焼成品と001、002、006の1400℃焼成品の結果が良かった。
以上の結果より、調合名002、006の結果が良好であった。
From Table 7, the firing shrinkage ratios of the respective fired bodies of 001 to 006 were all increased as the firing temperature increased to 500 ° C., 1100 ° C., and 1350 ° C. The apparent porosity was higher at 1100 ° C than at 500 ° C, and lower at 1350 ° C than at 1100 ° C. In the thermal shock test ΔT = 1000 ° C., the results of the 1100 ° C. fired product of 003 and the 1400 ° C. fired products of 001, 002, and 006 were good.
From the above results, the results of the formulation names 002 and 006 were good.

[反応容器としての耐用試験]
Al(OH)、蛙目粘土、菱苦土石を、表6に示す001〜006の6パターンの割合で素地を調合し、泥漿鋳込み成形法で反応容器φ85×45H、肉厚8mmに成形し、これを風乾燥後、電気炉内に設置して、1350℃の温度で焼成した。その後、各焼成体の容器内にて下記式1の反応(酸素雰囲気800℃〜1000℃)を行い、リチウムガスによる劣化状況を耐用回数で比較した。反応焼成条件は昇温150℃/h、キープ時間は1000℃で1hとした。耐用回数は反応容器の劣化状況を目視で判断し、割れが発生した時点をもって耐用回数とした。表8に成形の難易度、焼成後の状況、耐用回数、耐リチウム性を示す。
[式1]
(O
3/2LiCO+CoO → 3LiCoO+3/2CO
[Durability test as a reaction vessel]
Al (OH) 3 , Sasame clay, and Rhizome stone are mixed at a ratio of 6 patterns 001 to 006 shown in Table 6 and formed into a reaction vessel φ85 × 45H and a wall thickness of 8 mm by the mud casting method. This was air-dried and then placed in an electric furnace and fired at a temperature of 1350 ° C. Then, the reaction of the following formula 1 (oxygen atmosphere 800 ° C. to 1000 ° C.) was performed in the container of each fired body, and the deterioration status due to lithium gas was compared with the number of service life. The reaction firing conditions were a temperature increase of 150 ° C./h and a keep time of 1000 ° C. for 1 h. The service life was determined by visually judging the deterioration state of the reaction vessel, and the time when cracking occurred was defined as the service life. Table 8 shows the difficulty of molding, the situation after firing, the number of times of use, and lithium resistance.
[Formula 1]
(O 2)
3 / 2Li 2 CO 3 + Co 3 O 4 → 3LiCoO 2 + 3 / 2CO 2

Figure 0004488444
Figure 0004488444

本試験結果によれば、従来品より調合名002、004、005、006の焼成体材質の方が良好であった。実施例2の結果も踏まえると、可塑性粘土と、アルミナ成分と、苦土成分とは夫々少なくとも20重量%調合すれば、耐アルカリ性と耐熱衝撃性を備え、特に反応容器に好適な多孔質セラミックスを工業的に作ることができることが明らかとなった。   According to the result of this test, the fired body material of the compound names 002, 004, 005, 006 was better than the conventional product. Based on the results of Example 2, if a plastic clay, an alumina component, and a bitter earth component are each blended at least 20% by weight, a porous ceramic having alkali resistance and thermal shock resistance and particularly suitable for a reaction vessel can be obtained. It became clear that it can be made industrially.

表3に示した調合素地において、成形性が良く歪みの少ない焼成体を得るために、耐アルカリ性のあるスピネル骨材(平均粒子径3mm、1mm、18μmの3種類)を、10重量%〜80重量%の範囲で割合を変えて混合した。これらの素地を金型(150×150×50H)でプレス成形を行い、乾燥後、電気炉で2時間、1350℃で焼成した。各粒子径ごとの焼成収縮率を表9〜11に示す。なお、スピネル及び調合の数字は何れも重量%である。また、「成形」は成形性(良が○、不良が×)、「焼成」は割れの有無(割れ無しが○、割れ有りが×)を夫々示す。   In the preparation base shown in Table 3, in order to obtain a fired body having good moldability and less distortion, alkali-resistant spinel aggregates (average particle diameters of 3 mm, 1 mm, and 18 μm) of 10% by weight to 80% The mixture was mixed at different ratios in the range of% by weight. These substrates were press-molded with a mold (150 × 150 × 50H), dried, and then baked at 1350 ° C. for 2 hours in an electric furnace. Tables 9 to 11 show the firing shrinkage rate for each particle size. In addition, both the numbers of spinel and preparation are weight%. In addition, “molding” indicates moldability (good is ◯, defective is ×), and “fired” indicates the presence or absence of cracks (◯ when there is no crack, × when there is a crack).

Figure 0004488444
Figure 0004488444

Figure 0004488444
Figure 0004488444

Figure 0004488444
Figure 0004488444

この実施例によれば、3種類の粒子径の何れの場合も、骨材を10重量%〜60重量%の範囲で混合すれば、表3の素地の焼成収縮率の11.2%に対して、骨材の何れの添加割合の素地の焼成収縮率は10%を下回り、好適な収縮抑制効果が確認できた。特に粒子径が1mm及び18μmの場合は、65重量%まで混合可能である。また、同じ骨材割合では粒子径が大きくなる程焼成収縮率が小さくなる傾向となっている。当然のことながら、焼成中に骨材同士が接触した段階でその収縮は止まり、骨材粒子径に相当する大きな空間が形成されるため、焼成体の見掛け強度は低下する。大きな空間(孔)を避けるには骨材の粒子径を微細化するのがよい。好ましくは、骨材粒子同士が焼成体中にて接触していない状態が望ましい。   According to this example, in any case of three kinds of particle diameters, if the aggregate is mixed in the range of 10 wt% to 60 wt%, the firing shrinkage ratio of the base material in Table 3 is 11.2%. Thus, the firing shrinkage ratio of the base material with any addition ratio of the aggregate was less than 10%, and a suitable shrinkage suppressing effect was confirmed. Especially when the particle diameter is 1 mm and 18 μm, mixing is possible up to 65% by weight. Further, at the same aggregate ratio, the firing shrinkage tends to decrease as the particle diameter increases. Naturally, the contraction stops when the aggregates come into contact with each other during firing, and a large space corresponding to the aggregate particle diameter is formed, so that the apparent strength of the fired body decreases. In order to avoid a large space (hole), it is preferable to reduce the particle diameter of the aggregate. Preferably, the aggregate particles are not in contact with each other in the fired body.

なお、用途に応じて、素地へ添加する骨材の粒子径や混合割合は上記実施例に限る必要はない。また、骨材の材質もスピネルに限らず、むしろ素地と同材の焼成品の粉体を用いるのが好ましく、耐アルカリ性の材質の骨材も使用可能である。
Depending on the application, the particle size and mixing ratio of the aggregate to be added to the substrate need not be limited to the above examples. Further, the material of the aggregate is not limited to the spinel, but it is preferable to use a powder of a fired product made of the same material as the base material, and an aggregate of an alkali-resistant material can also be used.

調合006素地の焼成体(1350℃)の粉末X線回折図である。It is a powder X-ray diffraction pattern of the sintered body (1350 degreeC) of the mixing | blending 006 base. 調合006の粘土分30%の内10%を雲母系粘土に置き換えた素地の焼成体(600〜1400℃)の比表面積変化を示す表及びグラフである。It is a table | surface and a graph which show the specific surface area change of the sintered body (600-1400 degreeC) of the base material which replaced 10% of the clay content of 30% of the mixing 006 with the mica system clay. 調合006の粘土分30%の内10%を雲母系粘土に置き換えた素地の焼成体(600〜1400℃)の見掛気孔率の変化を示す表及びグラフである。It is a table | surface and a graph which show the change of the apparent porosity of the baking body (600-1400 degreeC) of the base | substrate which replaced 10% of the clay content of 30% of the mixing 006 with the mica-type clay.

Claims (6)

石英を除去若しくは微粉砕した可塑性粘土と、アルミナ成分と、苦土成分とを夫々20重量%以上混合すると共に、当該3成分の混合の際、Na、K、Ca、Fe元素を含む原料鉱物成分中の酸化物の合計が全体の5重量%以下(但し0重量%を除く)となるように調整して所定形状に成形し、1200℃〜1350℃の温度で焼成することを特徴とする多孔質セラミックスの製造方法。 The raw material mineral component containing Na, K, Ca, and Fe elements when mixing the plastic component from which quartz has been removed or finely ground, the alumina component, and the clay component, respectively, in an amount of 20% by weight or more. A porous material characterized in that the total amount of oxides therein is adjusted to be 5% by weight or less (excluding 0% by weight) of the whole and formed into a predetermined shape and fired at a temperature of 1200 ° C to 1350 ° C. Of manufacturing ceramics. セラミックス粒子からなる骨材を10重量%〜60重量%の範囲内で混合して成形することを特徴とする請求項1に記載の多孔質セラミックスの製造方法。   The method for producing a porous ceramic according to claim 1, wherein the aggregate made of ceramic particles is mixed and molded within a range of 10 wt% to 60 wt%. 請求項1又は2に記載の多孔質セラミックスの製造方法で得られる多孔質セラミックスであって、晶出型スピネル及びコーディエライトを含み、見掛気孔率が40%以上、熱膨張係数が1000℃において6.66×10−6/℃以下であることを特徴とする多孔質セラミックス。 A porous ceramic obtained by the method for producing a porous ceramic according to claim 1 or 2, comprising crystallized spinel and cordierite, an apparent porosity of 40% or more, and a thermal expansion coefficient of 1000 ° C. And 6.66 × 10 −6 / ° C. or less. 請求項1に記載の多孔質セラミックスの製造方法で得られる多孔質セラミックスであって、晶出型スピネル及びコーディエライトを含み、見掛気孔率が40%以上、熱膨張係数が1000℃において6.66×10 −6 /℃以下、BET法で比表面積が0.3m/g以上であることを特徴とする多孔質セラミックス。 A porous ceramic obtained by the method for producing a porous ceramic according to claim 1, comprising crystallized spinel and cordierite, an apparent porosity of 40% or more, and a thermal expansion coefficient of 6 at 1000 ° C. Porous ceramics characterized by having a specific surface area of 0.3 m 2 / g or more by the BET method of .66 × 10 −6 / ° C. or less . 石英成分を含まないことを特徴とする請求項3又は4に記載の多孔質セラミックス。   The porous ceramic according to claim 3 or 4, which does not contain a quartz component. 焼成体内にセラミックス粒子からなる骨材を有し、焼成収縮率が10%未満であることを特徴とする請求項3又は5に記載の多孔質セラミックス。 The porous ceramic according to claim 3 or 5 , wherein the fired body has an aggregate made of ceramic particles and has a firing shrinkage rate of less than 10%.
JP2008174760A 2008-07-03 2008-07-03 Method for producing porous ceramics and porous ceramics Active JP4488444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174760A JP4488444B2 (en) 2008-07-03 2008-07-03 Method for producing porous ceramics and porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174760A JP4488444B2 (en) 2008-07-03 2008-07-03 Method for producing porous ceramics and porous ceramics

Publications (2)

Publication Number Publication Date
JP2010013316A JP2010013316A (en) 2010-01-21
JP4488444B2 true JP4488444B2 (en) 2010-06-23

Family

ID=41699795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174760A Active JP4488444B2 (en) 2008-07-03 2008-07-03 Method for producing porous ceramics and porous ceramics

Country Status (1)

Country Link
JP (1) JP4488444B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207684A (en) * 2010-03-30 2011-10-20 Covalent Materials Corp Furnace core tube and furnace core tube composite member using the same
JP2014227326A (en) * 2013-05-24 2014-12-08 東京窯業株式会社 Heat treatment vessel
CN113565595B (en) * 2021-07-16 2024-01-30 珠海城市职业技术学院 Ship waste heat recovery device and recovery method
CN116102343B (en) * 2023-02-09 2023-11-17 宜兴市金其节能科技有限公司 Acid-resistant and salt-resistant modified corundum brick for rotary kiln of hazardous waste incineration system and preparation method

Also Published As

Publication number Publication date
JP2010013316A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5411851B2 (en) High porosity ceramic honeycomb article containing rare earth oxide and method for producing the same
JP5241868B2 (en) sheath
JP5384025B2 (en) Bonding agent for amorphous refractory and amorphous refractory
JP2011504869A (en) Microporous low microcracked ceramic honeycomb and method
JPWO2005105704A1 (en) Aluminum magnesium titanate crystal structure and manufacturing method thereof
CA2921636A1 (en) Hydraulic binder system based on aluminum oxide
JP2016532623A (en) Products with high alumina content
JP2012224487A (en) Kiln tool for manufacturing positive electrode active material of lithium secondary battery, and method for manufacturing the same
JP4488444B2 (en) Method for producing porous ceramics and porous ceramics
ES2357085T3 (en) TEMPERED REFRACTORY CONCRETE BLOCK WITH CONTROLLED DEFORMATION.
CN108129137A (en) Large-scale cement rotary kiln composite magnesium aluminate spinel brick and its production method
CN113999027A (en) Corundum-mullite castable for zinc oxide rotary kiln and preparation method thereof
JP2006206338A (en) Highly corrosion-resistant refractory
CN109020504A (en) A kind of magnesium silicon carbide brick and its production method
CN115353372B (en) Sagger for sintering lithium battery anode material and preparation method thereof
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP6330877B2 (en) Method for producing cordierite castable refractories
CN115340409A (en) Sagger coating for lithium battery positive electrode material and preparation method thereof
KR101719823B1 (en) Furnace material and manufacturing method of furnace material
JP2004203702A (en) Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same
KR101694975B1 (en) Method for preparing low-temperature sinterable alumina and low-soda alumina
JP2002241173A (en) Shaped refractory
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
KR101262077B1 (en) Low Cement Corrosion-Resistive Unshaped Refractories
CN111559906A (en) Anti-skinning castable for carbide slag cement kiln smoke chamber and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4488444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160409

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250