JPH10152327A - Production of lithium-containing multiple oxide and kiln therefor - Google Patents

Production of lithium-containing multiple oxide and kiln therefor

Info

Publication number
JPH10152327A
JPH10152327A JP8308492A JP30849296A JPH10152327A JP H10152327 A JPH10152327 A JP H10152327A JP 8308492 A JP8308492 A JP 8308492A JP 30849296 A JP30849296 A JP 30849296A JP H10152327 A JPH10152327 A JP H10152327A
Authority
JP
Japan
Prior art keywords
lithium
silver
raw material
vessel
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8308492A
Other languages
Japanese (ja)
Inventor
Takashi Kimura
貴志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP8308492A priority Critical patent/JPH10152327A/en
Publication of JPH10152327A publication Critical patent/JPH10152327A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the renewing frequency of a vessel or lining material thereof and to improve the purity of the product by forming, using silver, the surface of a vessel in a kiln with which a cobalt stock compound and/or nickel stock compound and a lithium stock compound contact and by investigating a material of the vessel for a stationary furnace or a turnnel kiln and a lining material of the kiln for a rotary kiln, etc. SOLUTION: This method for producing a lithium-containing multiple oxide of the general formula LiCOXNi1- XO2 (0<=(x)<=1) used as an anodic active material of a nonaqueous electrolyte lithium battery comprises firing a stock mixture held in a vessel such as a case or a tray for a stationary furnace or a tunnel kiln. The vessel is made of silver, or of alumina refractory ceramic or heat- resisting stainless steel alloy with the inner surface coated with silver, or another vessel made of silver foil is laded inside the vessel. In the case of a rotary kiln, the surface of its lining material is coated with silver. The firing temperature is 600-900 deg.C and examples of stock compounds include lithium oxide, lithium carbonate, cobalt oxide, cobalt hydroxide, nickel oxide and nickel carbonate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム含有複合
酸化物、特にはリチウムとコバルト及び/又はニッケル
との複合酸化物の製造方法と、その製造に使用される焼
成炉に関する。
The present invention relates to a method for producing a lithium-containing composite oxide, in particular, a composite oxide of lithium and cobalt and / or nickel, and a firing furnace used for the production.

【0002】[0002]

【従来の技術】リチウムイオンをドープ、脱ドープ可能
な炭素質等の材料、リチウム金属、又はリチウム化合物
を負極とする非水電解液リチウム二次電池は、高電圧、
高エネルギー密度であることから数多くの研究が行われ
ている。非水電解液リチウム二次電池に使用される正極
活物質としてはLiCoO2 が既に実用化されている
が、次世代の正極活物質としてLiCox Ni1-x 2
(0<x≦1)(特開昭63−299056、特開平0
1−294364等)、LiAl0.25Ni0.75
2(J.Electrochem.Soc.,142
(1995),4033−9)等が提案されている。
2. Description of the Related Art A non-aqueous electrolyte lithium secondary battery using lithium ion-doped or undoped carbonaceous material, lithium metal or lithium compound as a negative electrode has a high voltage,
Numerous studies have been conducted because of the high energy density. As a positive electrode active material used for a nonaqueous electrolyte lithium secondary battery, LiCoO 2 has already been put to practical use, but as a next-generation positive electrode active material, LiCo x Ni 1-x O 2 is used.
(0 <x ≦ 1) (Japanese Unexamined Patent Publication No. 63-299056,
1-294364), LiAl 0.25 Ni 0.75 O
2 (J. Electrochem. Soc., 142
(1995), 4033-9) and the like.

【0003】これらの正極活物質は、原料を混合し、容
器に入れて固定炉又はトンネル炉で酸素雰囲気にて焼成
するか、又は原料混合物を容器に入れずに直接回転炉に
入れて酸素雰囲気にて焼成することにより製造されてい
る。
[0003] These positive electrode active materials are prepared by mixing raw materials and putting them in a container and firing them in an oxygen atmosphere in a fixed furnace or a tunnel furnace, or putting the raw material mixture directly in a rotary furnace without putting them in a container. It is manufactured by firing.

【0004】例えば、LiNiO2 を製造する場合、原
料として水酸化リチウム又は硝酸リチウムと、酸化ニッ
ケル、水酸化ニッケル又は炭酸ニッケルとの混合物を、
容器に入れて固定炉又はトンネル炉等で焼成するか、又
は直接回転炉に入れて焼成する。この焼成は、酸素雰囲
気にて600〜1000℃の温度で行われる。
For example, in the case of producing LiNiO 2 , a mixture of lithium hydroxide or lithium nitrate and nickel oxide, nickel hydroxide or nickel carbonate as raw materials is used.
It is put in a container and fired in a fixed furnace or a tunnel furnace, or directly put in a rotary furnace and fired. This firing is performed at a temperature of 600 to 1000 ° C. in an oxygen atmosphere.

【0005】前記の原料を入れる容器や前記回転炉の内
張り材等は原料と直接接触するが、その材質としては一
般的には通常工業用の耐火炉で使用されるアルミナ、ム
ライト、コーディエライト等の耐熱セラミックス材料、
又はSUS304、SUS310S等の耐熱合金材料を
使用することが考えられる。
The container for the raw material and the lining material of the rotary furnace are in direct contact with the raw material. The material is generally alumina, mullite, cordierite which is usually used in industrial refractory furnaces. Heat-resistant ceramic materials such as
Alternatively, a heat-resistant alloy material such as SUS304 or SUS310S may be used.

【0006】しかし、耐熱セラミックス材料を使用して
LiCox Ni1-x 2 (0<x≦1)を製造すると、
その焼成中リチウム化合物が融解し、原料と直接接触す
る前記容器等に浸入する。そのため、繰り返しの使用に
より容器等のリチウム化合物と接する部分にひび割れや
剥離が生じ、最終的にはその容器等は使用不能となり頻
繁に更新が必要であった。
However, when LiCo x Ni 1-x O 2 (0 <x ≦ 1) is manufactured using a heat-resistant ceramic material,
During the firing, the lithium compound is melted and penetrates into the above-mentioned container or the like which comes into direct contact with the raw material. As a result, repeated use causes cracks or peeling at the portion of the container or the like that comes into contact with the lithium compound, and eventually the container or the like becomes unusable and requires frequent renewal.

【0007】また、合金材料を前記の容器等として使用
すると、例えばLiNiO2 を700℃、12時間の焼
成条件で製造した場合、SUS304で80mg/dm
2 、SUS310Sで85mg/dm2 が腐食されるの
で、実際の生産では使用できない。また、製造物のLi
NiO2 自体においても、不純物質が混入したり組成が
変化する等の問題を生じ、例えば電池の正極活物質とし
て使用した場合電池の特性劣化の原因となる。このた
め、電池の正極活物質の用途としてLiNiO2を製造
する場合は、現状では純ニッケル製の容器等が使用され
ている。
When the alloy material is used as the above-mentioned container or the like, for example, when LiNiO 2 is manufactured under the sintering conditions of 700 ° C. for 12 hours, 80 mg / dm.
2. 85 mg / dm 2 is corroded by SUS310S and cannot be used in actual production. The product Li
NiO 2 itself also causes problems such as mixing of impurities and a change in composition. For example, when NiO 2 is used as a positive electrode active material of a battery, it causes deterioration of battery characteristics. For this reason, when LiNiO 2 is manufactured as a positive electrode active material of a battery, a container made of pure nickel or the like is currently used.

【0008】しかし、純ニッケル製の容器等でも長時間
酸素雰囲気下に曝されることにより表面が酸化され、繰
り返しの使用により表面から酸化ニッケルが剥離しはじ
める。したがって、頻繁に容器等の更新が必要となる。
特に原料を直接入れる回転炉においては炉の内張り材の
更新が必要となるので、この更新が正極活物質の製造コ
ストに占める割合も容認できない問題となっている。
However, even in a container made of pure nickel or the like, the surface is oxidized by prolonged exposure to an oxygen atmosphere, and nickel oxide starts to peel off from the surface by repeated use. Therefore, it is necessary to frequently update containers and the like.
In particular, in a rotary furnace in which raw materials are directly charged, it is necessary to renew the lining material of the furnace, and the ratio of the renewal to the production cost of the positive electrode active material is also unacceptable.

【0009】また、生産性の面でも、回転炉は大量に連
続生産可能であるが、内張り材を頻繁に更新すると生産
時間の多大な損失となるため、実際に生産システムとし
て採用することは困難である。したがって固定炉、トン
ネル炉においては原料を入れる匣鉢、トレイ等の容器に
ついて、回転炉においては炉の内張り材についての改良
が重大な課題となっている。
[0009] In addition, in terms of productivity, the rotary furnace can be continuously produced in large quantities, but frequent replacement of the lining material results in a large loss of production time, so that it is difficult to actually use it as a production system. It is. Therefore, it is important to improve containers such as saggers and trays for holding raw materials in fixed furnaces and tunnel furnaces and to improve furnace lining materials in rotary furnaces.

【0010】[0010]

【発明が解決しようとする課題】本発明は、リチウム含
有複合酸化物の製造において、固定炉やトンネル炉のよ
うに容器を使用して焼成炉で焼成する場合はその容器の
材質を、回転炉等のように容器を使用せず直接焼成炉内
に原料を入れる場合はその焼成炉の内張り材の材質を検
討することにより、それらの容器や内張り材の更新頻度
を減少させ、かつ高純度のリチウム含有複合酸化物の製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a lithium-containing composite oxide, in which when a container is fired in a firing furnace such as a fixed furnace or a tunnel furnace, the material of the container is changed to a rotary furnace. When raw materials are directly put into the firing furnace without using a container, as in the case of, etc., by examining the material of the lining material of the firing furnace, the frequency of renewal of those containers and lining materials can be reduced, and high purity An object of the present invention is to provide a method for producing a lithium-containing composite oxide.

【0011】[0011]

【課題を解決するための手段】本発明は、コバルト原料
化合物及び/又はニッケル原料化合物と、リチウム原料
化合物とを含む原料混合物を焼成炉中で酸素雰囲気にて
焼成するリチウム含有複合酸化物の製造方法において、
焼成時に前記原料混合物が接触する、焼成炉中の炉材又
は前記原料混合物を入れる焼成炉中の容器の少なくとも
表面が銀からなることを特徴とするリチウム含有複合酸
化物の製造方法、及びそれを実施するための焼成炉を提
供する。
SUMMARY OF THE INVENTION The present invention provides a method for producing a lithium-containing composite oxide, comprising firing a raw material mixture containing a cobalt raw material compound and / or a nickel raw material compound and a lithium raw material compound in a firing furnace in an oxygen atmosphere. In the method,
A method for producing a lithium-containing composite oxide, characterized in that at least the surface of a furnace material in a firing furnace or a container in a firing furnace containing the raw material mixture is made of silver, wherein the raw material mixture is contacted during firing, and A firing furnace for performing is provided.

【0012】本発明者らは、非水電解液リチウム電池の
正極活物質としての用途が広がっているリチウム含有複
合酸化物、特には一般式LiCox Ni1-x 2 (0≦
x≦1)で表される複合酸化物の製造において、焼成中
に原料が直接接触する、原料を入れる容器や回転炉等の
内張り材の材質として、焼成後のひび割れ、剥離等の少
ない材料を大いに探索した。その結果、原料と接する部
分の表面が少なくとも銀からなる材料を使用すると、そ
の腐食量が上記の合金材料に比して著しく少ないという
知見を得た。
The present inventors have proposed a lithium-containing composite oxide which has been widely used as a positive electrode active material of a non-aqueous electrolyte lithium battery, particularly a general formula LiCo x Ni 1 -x O 2 (0 ≦ 0).
In the production of the composite oxide represented by x ≦ 1), as a material of a lining material such as a container or a rotary furnace in which the raw material comes into direct contact with the raw material during firing, a material with little cracking or peeling after firing is used. I searched a lot. As a result, it has been found that when a material in which the surface of the portion in contact with the raw material is made of at least silver is used, the amount of corrosion is significantly smaller than that of the above alloy materials.

【0013】本発明において、固定炉又はトンネル炉を
使用する場合、原料混合物を匣鉢やトレイ等の容器に入
れて焼成する。本発明ではこの容器は銀製であるか又は
表面を銀で被覆されている。表面を銀で被覆する容器と
しては、アルミナ質耐火セラミックス製又は耐熱SUS
合金製の容器を使用する。本発明ではそれらの容器の内
面に銀を直接被覆するか、又はそれらの容器の内側に銀
の箔でできた容器を装填して二重の容器としてもよい。
In the present invention, when a fixed furnace or a tunnel furnace is used, the raw material mixture is placed in a container such as a sagger or a tray and fired. According to the invention, this container is made of silver or is coated on the surface with silver. The container whose surface is covered with silver is made of alumina refractory ceramics or heat-resistant SUS
Use an alloy container. In the present invention, the inner surfaces of these containers may be directly coated with silver, or a container made of silver foil may be loaded inside the containers to form a double container.

【0014】また、銀の融点は960℃(真空)である
ことを考慮して、その温度近辺まで昇温する場合に、内
側に銀を被覆した耐熱SUS合金製の容器をセラミック
ス容器の内側に装填し、容器を二重にすることもでき
る。容易に製造、更新ができる利点を考えると、容器を
二重にすることが好ましい。
Considering that the melting point of silver is 960 ° C. (vacuum), when the temperature is raised to a temperature close to the temperature, a container made of a heat-resistant SUS alloy coated with silver on the inside is placed inside the ceramic container. It can be loaded and the container can be doubled. Considering the advantage of easy manufacture and replacement, it is preferable to use a double container.

【0015】回転炉を使用する場合は、原料を直接炉の
中に入れるため炉の内張り材が原料と直接接触する。し
たがって本発明ではその内張り材の表面が銀で被覆され
ている。内張り材としては、具体的には例えば耐熱SU
S合金の表面を銀で被覆した材料を使用できる。
When a rotary furnace is used, the lining material of the furnace comes into direct contact with the raw material in order to put the raw material directly into the furnace. Therefore, in the present invention, the surface of the lining material is coated with silver. As the lining material, specifically, for example, heat-resistant SU
A material in which the surface of the S alloy is coated with silver can be used.

【0016】本発明で使用する銀は、不純物を含んでい
てもよいが、95%以上の純度であることが好ましい。
より好ましくは99.5%以上である。
The silver used in the present invention may contain impurities, but preferably has a purity of 95% or more.
More preferably, it is 99.5% or more.

【0017】本発明において、銀の融点を考慮すると、
リチウム含有複合酸化物の焼成温度は、900℃以下で
あることが好ましい。
In the present invention, considering the melting point of silver,
The firing temperature of the lithium-containing composite oxide is preferably 900 ° C. or lower.

【0018】一般に、リチウムコバルト複合酸化物の製
造においては800〜1000℃、リチウムコバルトニ
ッケル複合酸化物の製造においては600〜800℃、
リチウムニッケル複合酸化物の製造においては600〜
800℃の焼成温度を必要とするので、本発明の製造方
法は、比較的低温で焼成できるリチウムコバルトニッケ
ル複合酸化物、及びリチウムニッケル複合酸化物の製造
において特に好ましく、リチウムコバルト複合酸化物を
製造する場合は、焼成温度の最適化が必要となる。
Generally, 800 to 1000 ° C. is used for the production of a lithium cobalt composite oxide, and 600 to 800 ° C. is used for the production of a lithium cobalt nickel composite oxide.
In the production of lithium nickel composite oxide, 600 to
Since the calcination temperature of 800 ° C. is required, the production method of the present invention is particularly preferable for producing a lithium cobalt nickel composite oxide and a lithium nickel composite oxide which can be calcined at a relatively low temperature. If so, optimization of the firing temperature is required.

【0019】本発明における原料のリチウム化合物とし
ては酸化リチウム、水酸化リチウム、硝酸リチウム、炭
酸リチウム等、コバルト化合物としては酸化コバルト、
水酸化コバルト、炭酸コバルト等、ニッケル化合物とし
ては酸化ニッケル、水酸化ニッケル、炭酸ニッケル等を
使用することが好ましい。
In the present invention, the raw material lithium compound is lithium oxide, lithium hydroxide, lithium nitrate, lithium carbonate or the like, and the cobalt compound is cobalt oxide;
It is preferable to use nickel oxide, nickel hydroxide, nickel carbonate and the like as the nickel compound such as cobalt hydroxide and cobalt carbonate.

【0020】本発明の製造方法によって製造されるリチ
ウムとコバルト及び/又はニッケルとの複合酸化物は、
一般式LiCox Ni1-x 2 (0≦x≦1)で表すこ
とができるが、Ca、Mg、Fe、Cr、Mn、B、A
l等の成分を含むことも可能である。
The composite oxide of lithium and cobalt and / or nickel produced by the production method of the present invention comprises:
It can be represented by the general formula LiCo x Ni 1-x O 2 (0 ≦ x ≦ 1), but Ca, Mg, Fe, Cr, Mn, B, A
It is also possible to include components such as l.

【0021】[0021]

【実施例】以下、本発明を実施例(例1〜3)及び比較
例(例4)により、具体的に説明するが、本発明はこれ
らに限定されない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples (Examples 1 to 3) and Comparative Examples (Example 4), but the present invention is not limited to these.

【0022】[例1]底面が90mm×90mm、高さ
50mmの高純度アルミナ製匣鉢の底部中央に50mm
×50mm、厚さ1mm、重さ27.6104gの銀の
試験片を平らにいれ、その上に水酸化リチウムと水酸化
ニッケルとのモル比が1:1の混合物100gを平らに
広げてのせ、酸素雰囲気中電気炉で700℃で12時間
焼成した後室温まで放冷し、焼成物を取り出した。同様
の合成を10回繰り返した。X線回折で調べたところ、
この焼成物はLiNiO2 であった。次いで銀試験片を
取り出し、希塩酸、純水にて順次洗浄し、乾燥した後精
秤したところ、銀試験片の重量減少は5.4mgであっ
た。
[Example 1] A high-purity alumina sagger having a bottom surface of 90 mm x 90 mm and a height of 50 mm was placed 50 mm in the center of the bottom.
× 50 mm, thickness of 1 mm, weighs 27.6104 g of a silver test piece, and flatly spreads thereon 100 g of a mixture of lithium hydroxide and nickel hydroxide in a molar ratio of 1: 1. After firing at 700 ° C. for 12 hours in an electric furnace in an oxygen atmosphere, the product was allowed to cool to room temperature, and the fired product was taken out. The same synthesis was repeated 10 times. When examined by X-ray diffraction,
The fired product was LiNiO 2 . Next, the silver test piece was taken out, washed sequentially with diluted hydrochloric acid and pure water, dried and weighed precisely. As a result, the weight loss of the silver test piece was 5.4 mg.

【0023】[例2]水酸化ニッケルのかわりに水酸化
コバルトニッケル(Co/Ni=0.25)を使用し、
焼成温度を750℃とした以外は例1と同様にしてLi
Co0.2 Ni0.8 2 を焼成した。この焼成を10回繰
り返した後、銀試験片を取り出し、例1と同様に洗浄、
乾燥して精秤したところ、銀試験片の重量減少は6.5
mgであった。
Example 2 Cobalt nickel hydroxide (Co / Ni = 0.25) was used instead of nickel hydroxide,
Li was prepared in the same manner as in Example 1 except that the firing temperature was set to 750 ° C.
Co 0.2 Ni 0.8 O 2 was fired. After repeating this baking ten times, the silver test piece was taken out, washed as in Example 1,
When dried and weighed accurately, the weight loss of the silver test piece was 6.5.
mg.

【0024】[例3]水酸化ニッケルのかわりに水酸化
コバルトニッケル(Co/Ni=0.33)を使用し、
焼成温度を750℃とした以外は例1と同様にしてLi
Co0.25Ni0.752 を焼成した。この焼成を10回繰
り返した後、銀試験片を取り出し、例1と同様に洗浄、
乾燥して精秤したところ、銀試験片の重量減少は6.4
mgであった。
[Example 3] Instead of nickel hydroxide, cobalt nickel hydroxide (Co / Ni = 0.33) was used.
Li was prepared in the same manner as in Example 1 except that the firing temperature was set to 750 ° C.
Co 0.25 Ni 0.75 O 2 was fired. After repeating this baking ten times, the silver test piece was taken out, washed as in Example 1,
When dried and weighed precisely, the weight loss of the silver specimen was 6.4.
mg.

【0025】[例4]銀試験片のかわりに、30mm×
10mmの純ニッケルの試験片を使用した以外は例1と
同様にして焼成した。焼成物のX線回折のピークはLi
NiO2 であったが、ニッケル試験片を取り出したとこ
ろ表面が黒変していた。このニッケル試験片を超音波洗
浄器で洗浄し乾燥したが、表面の黒変は消えず、酸化物
が生成したことが示唆された。同様にして5回の焼成を
繰り返した後精秤したところ、試験片の重量は初めに比
べて414mg増加した。さらに表面の黒変物を削り落
とした後再び秤量すると、初めに比べ2.0541g減
少した。
[Example 4] Instead of a silver test piece, 30 mm x
Calcination was carried out in the same manner as in Example 1 except that a 10 mm pure nickel test piece was used. The peak of the X-ray diffraction of the fired product is Li
Although it was NiO 2 , when the nickel test piece was taken out, the surface was blackened. The nickel test piece was washed with an ultrasonic cleaner and dried, but the blackening of the surface did not disappear, suggesting that an oxide was formed. When the calcining was repeated 5 times in the same manner and then precisely weighed, the weight of the test piece increased by 414 mg as compared with the first time. When the surface black matter was further scraped off and weighed again, the weight was reduced by 2.0541 g from the initial level.

【0026】[0026]

【発明の効果】本発明により、リチウム含有複合酸化物
の製造において、原料を入れる容器や回転炉の内部炉材
等、焼成時に原料が直接接触する装置材料の腐食を抑制
でき、その更新頻度を大幅に削減できる。また、不純物
が少なく、リチウム二次電池の正極活物質として特性良
好で、安定した組成のリチウム含有複合酸化物、特には
リチウムとニッケル及び/又はコバルトとの複合酸化物
が製造される。
According to the present invention, in the production of a lithium-containing composite oxide, it is possible to suppress the corrosion of equipment materials that are in direct contact with the raw material during firing, such as a container for storing the raw material and an inner furnace material of a rotary furnace, and reduce the frequency of renewal. Can be significantly reduced. In addition, a lithium-containing composite oxide having a small amount of impurities and excellent characteristics as a positive electrode active material of a lithium secondary battery and having a stable composition, particularly a composite oxide of lithium and nickel and / or cobalt is produced.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】コバルト原料化合物及び/又はニッケル原
料化合物と、リチウム原料化合物とを含む原料混合物を
焼成炉中で酸素雰囲気にて焼成するリチウム含有複合酸
化物の製造方法において、焼成時に前記原料混合物が接
触する、焼成炉中の炉材又は前記原料混合物を入れる焼
成炉中の容器の少なくとも表面が銀からなることを特徴
とするリチウム含有複合酸化物の製造方法。
1. A method for producing a lithium-containing composite oxide, comprising firing a raw material mixture containing a cobalt raw material compound and / or a nickel raw material compound and a lithium raw material compound in an oxygen atmosphere in a firing furnace. A method for producing a lithium-containing composite oxide, wherein at least the surface of a furnace material in a firing furnace or a container in a firing furnace for containing the raw material mixture, which is brought into contact with, is made of silver.
【請求項2】リチウム含有複合酸化物が、一般式LiC
x Ni1-x 2 (0≦x≦1)で表される請求項1記
載のリチウム含有複合酸化物の製造方法。
2. A lithium-containing composite oxide having the general formula LiC
method for producing o x Ni 1-x O 2 (0 ≦ x ≦ 1) lithium-containing complex oxide according to claim 1, which is represented by.
【請求項3】焼成温度が600〜900℃である請求項
1又は2記載のリチウム含有複合酸化物の製造方法。
3. The method for producing a lithium-containing composite oxide according to claim 1, wherein the firing temperature is 600 to 900 ° C.
【請求項4】コバルト原料化合物及び/又はニッケル原
料化合物と、リチウム原料化合物とを含む原料混合物を
焼成してリチウム含有複合酸化物を製造するための、表
面を銀で被覆された内張り材を有する焼成炉。
4. A lining material coated with silver for producing a lithium-containing composite oxide by firing a raw material mixture containing a cobalt raw material compound and / or a nickel raw material compound and a lithium raw material compound. Firing furnace.
【請求項5】コバルト原料化合物及び/又はニッケル原
料化合物と、リチウム原料化合物とを含む原料混合物を
焼成してリチウム含有複合酸化物を製造するための、前
記原料混合物を入れる少なくとも表面が銀からなる容器
を有する焼成炉。
5. A raw material mixture containing a cobalt raw material compound and / or a nickel raw material compound and a lithium raw material compound to be fired to produce a lithium-containing composite oxide, at least the surface into which the raw material mixture is put is made of silver. A firing furnace having a container.
JP8308492A 1996-11-19 1996-11-19 Production of lithium-containing multiple oxide and kiln therefor Pending JPH10152327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8308492A JPH10152327A (en) 1996-11-19 1996-11-19 Production of lithium-containing multiple oxide and kiln therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8308492A JPH10152327A (en) 1996-11-19 1996-11-19 Production of lithium-containing multiple oxide and kiln therefor

Publications (1)

Publication Number Publication Date
JPH10152327A true JPH10152327A (en) 1998-06-09

Family

ID=17981670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8308492A Pending JPH10152327A (en) 1996-11-19 1996-11-19 Production of lithium-containing multiple oxide and kiln therefor

Country Status (1)

Country Link
JP (1) JPH10152327A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875416B1 (en) 1998-02-09 2005-04-05 H. C. Starck Gmbh & Co Method for producing lithium-transition metal mixtures
US6932922B2 (en) * 1999-12-10 2005-08-23 Fmc Corporation Lithium cobalt oxides and methods of making same
JP2009292704A (en) * 2008-06-09 2009-12-17 Noritake Co Ltd Sagger for producing positive electrode active material of lithium ion battery
US7939202B2 (en) * 2008-02-04 2011-05-10 Panasonic Corporation Method for producing lithium-containing transition metal oxide
JP2011093753A (en) * 2009-10-30 2011-05-12 Murata Mfg Co Ltd Method for manufacturing lithium transition metal complex oxide
WO2012008352A1 (en) * 2010-07-13 2012-01-19 三井金属鉱業株式会社 Heat insulating refractory and method for producing same
WO2013073633A1 (en) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
JP2014217836A (en) * 2013-04-10 2014-11-20 株式会社フルヤ金属 Inner vessel for reaction vessel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875416B1 (en) 1998-02-09 2005-04-05 H. C. Starck Gmbh & Co Method for producing lithium-transition metal mixtures
US6932922B2 (en) * 1999-12-10 2005-08-23 Fmc Corporation Lithium cobalt oxides and methods of making same
US7939202B2 (en) * 2008-02-04 2011-05-10 Panasonic Corporation Method for producing lithium-containing transition metal oxide
JP2009292704A (en) * 2008-06-09 2009-12-17 Noritake Co Ltd Sagger for producing positive electrode active material of lithium ion battery
JP2011093753A (en) * 2009-10-30 2011-05-12 Murata Mfg Co Ltd Method for manufacturing lithium transition metal complex oxide
WO2012008352A1 (en) * 2010-07-13 2012-01-19 三井金属鉱業株式会社 Heat insulating refractory and method for producing same
JP2012020895A (en) * 2010-07-13 2012-02-02 Mitsui Mining & Smelting Co Ltd Insulating refractory and method of manufacturing the same
CN102811973A (en) * 2010-07-13 2012-12-05 三井金属矿业株式会社 Heat insulating refractory and method for producing same
WO2013073633A1 (en) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
JP2014217836A (en) * 2013-04-10 2014-11-20 株式会社フルヤ金属 Inner vessel for reaction vessel

Similar Documents

Publication Publication Date Title
JP7229456B2 (en) Sagger for firing lithium-ion battery electrode material and material for protective layer of the sagger
JP5376252B2 (en) Ceramic materials and their use
KR100326460B1 (en) Positive active material for lithium secondary battery and method of preparing same
US8980475B2 (en) Process for preparing lithium mixed metal oxides and their use as cathode material
JP2011073962A (en) Ceramic material and preparation method therefor
KR20110132311A (en) Preparation of lithium sulfide
JP2015191847A (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries
JP2019133881A (en) Positive electrode active material for lithium ion battery, lithium ion battery, and manufacturing method of positive electrode active material for lithium ion battery
JP3973204B2 (en) Refractories for firing positive electrode materials and their use
JPH10152327A (en) Production of lithium-containing multiple oxide and kiln therefor
JP2015162322A (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP5341124B2 (en) Heat treatment container for positive electrode active material for lithium ion battery
JP2008103100A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and its baking tool
JPWO2019194150A1 (en) Positive electrode active material for lithium ion secondary batteries and its manufacturing method
JPH11511290A (en) Preparation method of anode material for lithium secondary battery using microwave energy
CN113353985A (en) Lithium ion battery positive electrode material and preparation method thereof, lithium ion battery positive electrode and lithium ion battery
CN103620829B (en) The synthetic method of layered oxide cathodes compositionss
NO842531L (en) CERMET-ELECTRODE MATERIAL
JP5534657B2 (en) Method for producing lithium nickel composite oxide
JP2010248044A (en) LiNbO3 GLASS, METHOD FOR PRODUCING THE SAME AND NONAQUEOUS ELECTROLYTE CELL USING LiNbO3 GLASS
JP2006206338A (en) Highly corrosion-resistant refractory
JP2000203947A (en) Firing apparatus for lithium-metal multicomponent oxide and firing method of the same
US20220109183A1 (en) Sulfide solid electrolyte
JPH05198301A (en) Synthesis of electrode material
US11575150B2 (en) Lithium ion conductive material, all-solid-state secondary battery, and method of manufacturing solid electrolyte