JP7229456B2 - Sagger for firing lithium-ion battery electrode material and material for protective layer of the sagger - Google Patents

Sagger for firing lithium-ion battery electrode material and material for protective layer of the sagger Download PDF

Info

Publication number
JP7229456B2
JP7229456B2 JP2018236807A JP2018236807A JP7229456B2 JP 7229456 B2 JP7229456 B2 JP 7229456B2 JP 2018236807 A JP2018236807 A JP 2018236807A JP 2018236807 A JP2018236807 A JP 2018236807A JP 7229456 B2 JP7229456 B2 JP 7229456B2
Authority
JP
Japan
Prior art keywords
sagger
protective layer
thermal expansion
electrode material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018236807A
Other languages
Japanese (ja)
Other versions
JP2019121601A (en
Inventor
性宇 朱
軍秀 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2019121601A publication Critical patent/JP2019121601A/en
Application granted granted Critical
Publication of JP7229456B2 publication Critical patent/JP7229456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0006Composite supporting structures
    • F27D5/0012Modules of the sagger or setter type; Supports built up from them
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

本発明はリチウムイオン電池電極材料焼成用匣鉢、及び匣鉢の保護層に関するものである。 TECHNICAL FIELD The present invention relates to a sagger for firing a lithium ion battery electrode material and a protective layer for the sagger.

近年、技術の発展と伴い、リチウムイオン二次電池性能が向上でき、携帯電話、ノートパソコン、電気自動車、エネルギー蓄積などの分野において、幅広く応用されている。リチウムイオン二次電池は主に正極材料、負極材料、電解液及びセパレータから構成される。その中で、正極材料としては、リン酸鉄リチウム、コバルト酸リチウム、ニッケルコバルトマンガン酸リチウム(三元系)、ニッケル系のような市販品がある。負極材料としては、黒鉛やチタン酸リチウム等の材料が採用されている。正極と負極材料の性能は電池の容量、エネルギー密度やサイクル特性などを決める。正極材料の生産工程を簡単に説明すると:正極材料の前駆体、即ち酸化コバルト、或いは水酸化物(例えば、水酸化コバルト、水酸化ニッケルコバルトマンガン、水酸化ニッケルコバルト、水酸化ニッケルコバルトアルミニウム、水酸化ニッケルマンガンなど)、リチウム源(例えば、炭酸リチウム、水酸化リチウムなど)を一定な比例で混合した後、一定な量でセラミック匣鉢に入れ、次に高温800~1100℃で長時間の焼結を行う。コバルト酸リチウム、リン酸鉄リチウム、及び三元系正極材(ニッケルコバルトマンガンのモル比は1:1:1、5:2:3、6:2:2)を焼成する際に、通常過剰の炭酸リチウムをリチウム源として使用するが、炭酸リチウムは高温で溶融状態となり、匣鉢の表層に浸透しやすく、匣鉢の主成分である酸化アルミニウム、酸化ケイ素などと化学反応し、その生成物が匣鉢の表面に付着してしまうことが確認された;また、ハイニッケル型の新型高容量三元系正極材であるニッケルコバルトマンガン酸リチウム(例えば、ニッケルコバルトマンガンの比が8:1:1)、若しくはニッケルコバルトアルミニウム酸リチウムを焼成する際に、過剰の水酸化リチウムが通常リチウム源として使用される。水酸化リチウムは主に二水和物であり、無水水酸化リチウムを用いても高温で水分が失われ、強アルカリによる腐蝕性が非常に高く、匣鉢に対する不可逆的な劣化を起こし、匣鉢の寿命が大幅に短縮されてしまう。 In recent years, with the development of technology, the performance of lithium ion secondary batteries can be improved, and they are widely applied in fields such as mobile phones, notebook computers, electric vehicles, and energy storage. A lithium ion secondary battery is mainly composed of a positive electrode material, a negative electrode material, an electrolyte and a separator. Among them, positive electrode materials include commercially available products such as lithium iron phosphate, lithium cobalt oxide, nickel cobalt lithium manganese oxide (ternary system), and nickel system. Materials such as graphite and lithium titanate are used as negative electrode materials. The performance of the cathode and anode materials determines the capacity, energy density and cycle characteristics of the battery. A brief description of the production process of the cathode material: the precursor of the cathode material, namely cobalt oxide or hydroxide (e.g. cobalt hydroxide, nickel cobalt manganese hydroxide, nickel cobalt hydroxide, nickel cobalt hydroxide aluminum, water Nickel manganese oxide, etc.), lithium source (such as lithium carbonate, lithium hydroxide, etc.) are mixed in a certain proportion, then put into a ceramic sagger in a certain amount, and then baked at a high temperature of 800-1100 ℃ for a long time. knot. When firing lithium cobalt oxide, lithium iron phosphate, and ternary cathode materials (nickel-cobalt-manganese molar ratios of 1:1:1, 5:2:3, 6:2:2), an excess of Lithium carbonate is used as the lithium source. Lithium carbonate becomes molten at high temperatures and easily permeates the surface of the sagger. It was confirmed that it adhered to the surface of the sag; ), or lithium nickel cobalt aluminum oxide, an excess of lithium hydroxide is usually used as the lithium source. Lithium hydroxide is mainly a dihydrate. lifespan is greatly shortened.

特許文献1には、同じ目的でコーティング材料としてジルコニア、アルミナ、マグネシアなどの1種以上の使用が提案されている。上述の材料は耐食性が高いが、ジルコニアはコストが高く、アルミナはリチウムと反応する可能性があり、マグネシアなどのマグネシウム含有の化合物はより高い熱膨張係数を有し、且つ上述の物質のいずれも熱膨張性材料なので、繰り返し使う際に、塗膜に亀裂が生じやすく、付着力が低下する。また、特許文献1に記載された寿命評価方法は、使用できない場合が基準とされた。「使用できない」の意味は亀裂が入っているか、剥がれてしまうか、又は割れているかが明確ではないので、それを判断基準とすることは曖昧である。 Patent Document 1 proposes the use of one or more of zirconia, alumina, magnesia, etc. as a coating material for the same purpose. Although the above materials are highly corrosion resistant, zirconia is expensive, alumina can react with lithium, magnesium-containing compounds such as magnesia have higher coefficients of thermal expansion, and none of the above materials Since it is a thermally expansive material, the coating tends to crack during repeated use, resulting in a decrease in adhesion. In addition, the life evaluation method described in Patent Document 1 is based on the case where it cannot be used. Since it is not clear whether the meaning of "unusable" is cracked, peeled off, or cracked, it is ambiguous to use it as a criterion.

また、耐腐蝕性塗層を形成する為の材料として、多くの文献には、アルミナを言及した。アルミナは高温でリチウム源の炭酸リチウムや水酸化リチウムと反応し、LiAlOを生成する。LiAlOの形成により、アルミナと正極材料の原料とのさらなる反応を抑えることで、リチウム由来の腐蝕性が抑制され、耐腐蝕の目的を達成できる。しかし、LiAlOの熱膨張係数が匣鉢基材の熱膨張係数よりかなり高いため、アルミナのみが使用される被膜は、繰り返し焼成の昇温と冷却の中に匣鉢基材から剥がれやすく、耐腐蝕効果が低下してしまう。 Alumina was also mentioned in many documents as a material for forming corrosion resistant coatings. Alumina reacts with the lithium source lithium carbonate and lithium hydroxide at high temperature to form LiAlO 2 . The formation of LiAlO 2 suppresses further reaction between alumina and the raw material of the positive electrode material, thereby suppressing the corrosiveness derived from lithium and achieving the purpose of anti-corrosion. However, since the thermal expansion coefficient of LiAlO2 is much higher than that of the sagger substrate, the coating using only alumina is prone to peel off from the sagger substrate during repeated heating and cooling of firing, and is resistant to heat. Corrosive effect is reduced.

また、特許文献2は、二次プレス法を用い、コージライト、ムライトなどで作製された匣鉢基材の表面に耐食性塗布層をプレス加工され、該塗布層は、ジルコニア及びスポジュメンを主原料とする。これらの材料は、正極材料を焼成する原料としての炭酸リチウムと反応せず、ある程度で耐食性を向上させ、使用寿命を延長することができたが、ジルコニアとスポジュメン両方とも正の熱膨張係数を有する材料であり、配合割合が調整しても、塗膜と基材間の熱膨張定数の差が大きいため、匣鉢に正極材料を載せ、繰り返して焼結を行う際に、匣鉢本体内表面の保護層は容易に剥がれてしまう。更に、特許文献2に使用される二次プレス加工の工程が複雑で、プレスされた被膜が不均一で、匣鉢の底面や側面の円弧面での強度低下により、クラックが発生する虞がある。 In Patent Document 2, a secondary press method is used to press a corrosion-resistant coating layer on the surface of a sagger base material made of cordierite, mullite, etc., and the coating layer is mainly composed of zirconia and spodumene. do. These materials did not react with lithium carbonate as a raw material for sintering the positive electrode material, and could improve corrosion resistance to some extent and extend service life, but both zirconia and spodumene have positive coefficients of thermal expansion. material, and even if the blending ratio is adjusted, the difference in thermal expansion constant between the coating film and the base material is large. The protective layer is easily peeled off. Furthermore, the secondary pressing process used in Patent Document 2 is complicated, the pressed coating is uneven, and there is a risk of cracks due to a decrease in strength on the arc surfaces of the bottom and side surfaces of the sagger. .

CN103884190号公開公報CN103884190 publication

CN103311498号公開公報CN103311498 publication

従来技術の上記問題点に鑑み、本発明は、耐腐蝕性が高く、且つ密着性が高く、剥がれにくい保護層 (塗膜)を有するリチウムイオン電池電極材料焼成用匣鉢及び剥がれにくい保護層を提供することを目的とする。 In view of the above problems of the prior art, the present invention provides a sagger for firing a lithium ion battery electrode material having a protective layer (coating film) that has high corrosion resistance, high adhesion, and is difficult to peel off, and a protective layer that is difficult to peel off. intended to provide

第1の発明は、匣鉢本体(基材)と、少なくとも前記匣鉢本体内側表面の底部を被覆する保護層と、を備えるリチウムイオン電池電極材料焼成用匣鉢において、前記の保護層は、熱膨張係数が負のLiAlSiOと、熱膨張係数が正金属酸化物及び金属酸塩である、MgO、SnO 、Al 、ZrO 、ZrSiO 、MgAl 、LiAlO 、Li ZrO 、LiAlSi の中から選ぶ一つ又は二つ以上の物質とを含み、熱膨張率が調製された塗布層であって、当該保護層の熱膨張係数と前記匣鉢本体の熱膨張係数の比が1:1~2:1であることを特徴とする
の発明は、匣鉢本体がコージライト、ムライト又はそれらの混合物により形成されることを特徴とする。匣鉢本体は上記のコージライト、ムライト又はそれらの混合物を主成分とする材質を採用できるが、ほかの材質から構成してもよい。
A first invention provides a sagger for firing a lithium ion battery electrode material, comprising a sagger body (base material) and a protective layer covering at least the bottom of the inner surface of the sagger body, wherein the protective layer comprises: LiAlSiO 4 having a negative coefficient of thermal expansion, and MgO, SnO 2 , Al 2 O 3 , ZrO 2 , ZrSiO 4 , MgAl 2 O 4 , LiAlO 2 , which are metal oxides and metallates having a positive coefficient of thermal expansion, A coating layer containing one or more substances selected from Li 2 ZrO 2 and LiAlSi 2 O 6 and having a controlled thermal expansion coefficient, wherein the thermal expansion coefficient of the protective layer and the sagger body is characterized by a ratio of thermal expansion coefficients of 1:1 to 2:1 .
A second invention is characterized in that the sagger body is made of cordierite, mullite or a mixture thereof. The sagger body can be made of a material containing cordierite, mullite, or a mixture thereof as a main component, but may be made of other materials.

更に、本発明の匣鉢保護層が有効するために、少なくとも本体内側表面の底部を被覆することがよい、本体への腐蝕をより良好に防止するため、本体内側表面の全体を被覆することが好ましい。また、本発明の匣鉢本体の内側表面とは、電極材料の焼成に用いる原料を載せる表面を言う。 Furthermore, in order for the sagger protective layer of the present invention to be effective, it should cover at least the bottom of the inner surface of the main body. preferable. Further, the inner surface of the sagger body of the present invention refers to the surface on which the raw material used for firing the electrode material is placed.

本発明のリチウムイオン電池電極材料焼成用匣鉢は、リチウムイオン二次電池における電極材料の焼成に用いる。当該電極材料は下記の物質にあるが、それらに限定されるものではない:層状構造を有する金属酸化物リチウム塩、例えば、コバルト酸リチウム、ニケルコバルトマンガン三元材料、リチウムリッチマンガン系材料等;オリビン構造を有するもの、例えば、リン酸鉄リチウム、リン酸コバルトリチウム、リン酸マンガンリチウム、リン酸マンガン鉄リチウムなど;スピネル構造を有するマンガン酸リチウム、ニッケルマンガン二元材料など;負極材料としてのチタン酸リチウム。 The sagger for firing a lithium ion battery electrode material of the present invention is used for firing an electrode material in a lithium ion secondary battery. The electrode materials include, but are not limited to: metal oxide lithium salts with a layered structure, such as lithium cobaltate, nickel-cobalt-manganese ternary materials, lithium-rich manganese-based materials, etc.; Those with an olivine structure, such as lithium iron phosphate, lithium cobalt phosphate, lithium manganese phosphate, lithium manganese iron phosphate, etc.; lithium manganate, nickel manganese binary materials, etc. with a spinel structure; titanium as a negative electrode material. Lithium oxide.

の発明は、匣鉢本体に保護層を形成するための保護層用材料であって、熱膨張率が負であるLiAlSiOと、熱膨張係数が正金属酸化物と金属酸塩である、MgO、SnO 、Al 、ZrO 、ZrSiO 、MgAl 、LiAlO 、Li ZrO 、LiAlSi の中から選ぶ一つ又は二つ以上の物質との混合物からなり、前記混合物の熱膨張係数が、当該混合物の熱膨張係数と匣鉢本体の熱膨張係数との比が1:1~2:1となるように調整されたことを特徴とする。 A third invention is a protective layer material for forming a protective layer on a sagger body, which is composed of LiAlSiO 4 having a negative coefficient of thermal expansion and a metal oxide and a metalate having a positive coefficient of thermal expansion. a mixture with one or more substances selected from MgO , SnO2 , Al2O3 , ZrO2 , ZrSiO4 , MgAl2O4 , LiAlO2 , Li2ZrO2 , LiAlSi2O6 The thermal expansion coefficient of the mixture is adjusted so that the ratio of the thermal expansion coefficient of the mixture and the thermal expansion coefficient of the sagger body is 1:1 to 2:1.

本発明の匣鉢は上述成分の保護層を採用しているため、リチウム電池の電極材料の原料を匣鉢に載せ、繰り返して高温焼結を行う際に、保護層の熱膨張係数が匣鉢本体の熱膨張定数に近いので、保護層が匣鉢の表面への密着性が良好で、剥がれにくくなる。一般的に、塗膜と基材の熱膨張定数が適切ではないと、繰り返して高温焼成する際に、薄膜が基材との接着性が不安定となり、剥がれやすくなる。本発明の保護層成分として使用される金属酸化物と金属酸塩のいずれか一方若しくは両方は、正の熱膨張係数を有するので、その熱膨張係数が負の熱膨張係数を有するLiAlSiOと一定の割合で混合し、保護層の熱膨張係数は依然として正であるが、匣鉢本体の正の熱膨張係数に近づくことで、保護層が匣鉢本体から剥がれにくくなることが実現できている。 Since the sagger of the present invention employs the protective layer of the above components, when the raw material for the electrode material of the lithium battery is placed on the sagger and repeatedly subjected to high temperature sintering, the thermal expansion coefficient of the protective layer is Since the coefficient of thermal expansion is close to that of the main body, the protective layer has good adhesion to the surface of the sagger and is difficult to peel off. In general, if the thermal expansion coefficients of the coating film and the base material are not appropriate, the thin film will have unstable adhesiveness to the base material during repeated high-temperature firing, and will easily peel off. Either one or both of the metal oxide and the metal acid salt used as the protective layer component of the present invention have a positive thermal expansion coefficient, so that the thermal expansion coefficient is the same as LiAlSiO 4 having a negative thermal expansion coefficient. Although the thermal expansion coefficient of the protective layer is still positive, it is possible to realize that the protective layer is difficult to peel off from the sagger body by approaching the positive thermal expansion coefficient of the sagger body.

また、本発明の匣鉢は、焼成の際に、匣鉢に載せる材料により容易に腐蝕されることはない為、使用寿命が長くなり、電極材料の製造コストを低減できる。即ち、本発明の保護層中のLiAlSiOは、匣鉢本体と化学反応をしないし、電極材料(正極材料又は負極材料)又は電極材料の原料とも化学反応しないことで、匣鉢本体と載せる材料との反応を抑え、載せる材料から匣鉢への腐蝕が抑えることができた。 In addition, since the sagger of the present invention is not easily corroded by the material placed on the sagger during firing, the service life is extended and the manufacturing cost of the electrode material can be reduced. That is, LiAlSiO 4 in the protective layer of the present invention does not chemically react with the sagger body, nor does it chemically react with the electrode material (positive electrode material or negative electrode material) or the raw material of the electrode material, so that the material placed on the sagger body It was possible to suppress the reaction with and suppress the corrosion of the material to be placed on the sagger.

図1は、本発明匣鉢の一例を示す断面図である。FIG. 1 is a sectional view showing an example of the sagger of the present invention. 図2は、図1の匣鉢底部の断面を示す部分拡大図である。2 is a partially enlarged view showing a cross section of the bottom of the sagger in FIG. 1. FIG. は、実施例1に関する匣鉢保護層のXRDグラフである。2 is an XRD graph of the sagger protective layer for Example 1. FIG.

以下、本発明について詳細に説明する。
図1に示す匣鉢1は、本体2と、本体2の内側表面21に被覆される保護層3とを備えている。匣鉢を作製する際に、本体2の内側表面21には、電極材料の原料を載せる。また、本実施形態では、保護層3は、本体2の内側表面21の底部211と壁面212からなる内側表面21の全面に覆っている。図2のような底部211の部分拡大図から、保護層3は内側表面21の底部211と密着している。
The present invention will be described in detail below.
The sagger 1 shown in FIG. 1 comprises a main body 2 and a protective layer 3 covering an inner surface 21 of the main body 2 . The raw material for the electrode material is placed on the inner surface 21 of the main body 2 when the sagger is produced. Moreover, in this embodiment, the protective layer 3 covers the entire inner surface 21 of the main body 2 including the bottom portion 211 and the wall surface 212 . From the partially enlarged view of the bottom portion 211 as in FIG. 2, the protective layer 3 is in intimate contact with the bottom portion 211 of the inner surface 21 .

リチウム電池電極材料の製造工程において、匣鉢1が徐々に腐蝕される原因は、正極材料、負極材料の焼成原料である炭酸リチウム、水酸化リチウムが、匣鉢1の本体材料であるアルミナと酸化珪素と、高温条件下で化学反応を起こし、新たな物質が生成される。この生成物は、匣鉢1の組成と異なり、熱膨張係数も大きな差が生じる。匣鉢1が繰り返して使用されると、この生成物が徐々に匣鉢1の本体2から剥がれるので、匣鉢1の寿命が大きく低下するとともに、当該生成物は異物として焼結された電池材料の中で混入してしまうおそれがある。 In the manufacturing process of the lithium battery electrode material, the reason why the sagger 1 is gradually corroded is that lithium carbonate and lithium hydroxide, which are the firing raw materials of the positive electrode material and the negative electrode material, are oxidized with alumina, which is the main body material of the sagger 1. A chemical reaction with silicon occurs under high temperature conditions, and a new substance is generated. This product is different from the composition of the sagger 1 and has a large difference in thermal expansion coefficient. When the sagger 1 is used repeatedly, the product is gradually peeled off from the main body 2 of the sagger 1, so that the life of the sagger 1 is greatly reduced, and the product is a sintered battery material as a foreign matter. may get mixed in.

そこで、本発明者らは、匣鉢1の表面に特定な組成からなる保護層3を設けることにより、正極材料料またはチタン酸リチウム等のような負極材料の焼成に用いた炭酸リチウム、水酸化リチウム等が匣鉢1材料との接触を遮断することで、炭酸リチウム、水酸化リチウム等が匣鉢1への腐蝕を有効に抑制し、匣鉢1の使用寿命を延長することができる。 Therefore, the present inventors have found that by providing a protective layer 3 having a specific composition on the surface of the sagger 1, lithium carbonate and hydroxide used for firing a positive electrode material or a negative electrode material such as lithium titanate By blocking the contact of lithium or the like with the material of the sagger 1, the corrosion of the sagger 1 by lithium carbonate, lithium hydroxide, or the like can be effectively suppressed, and the service life of the sagger 1 can be extended.

具体的には、本発明のリチウムイオン電池電極材料焼成用匣鉢1の保護層3には、使用されるLiAlSiOは、匣鉢1本体2と化学的に反応しない、且つ電極材料又は電極材料の原料とも化学反応しない物質なので、匣鉢1が焼結時に載せられる材料に容易に腐蝕されない効果がある。 さらに、LiAlSiOは1200℃~1300℃で溶融状態を呈しており、匣鉢1表層の気孔を通って匣鉢1の表層に十分に浸透する。また、本発明のリチウムイオン電池用電極材料焼成用匣鉢1の保護層3は、LiAlSiOの中で耐腐蝕性を有する充填材をさらに添加することで、匣鉢1の使用寿命をさらに延長することができる。 Specifically, the LiAlSiO 4 used in the protective layer 3 of the sagger 1 for firing a lithium ion battery electrode material of the present invention does not chemically react with the main body 2 of the sagger 1 and is an electrode material or an electrode material. Since it is a substance that does not chemically react with the raw material of , there is an effect that the sagger 1 is not easily corroded by the material placed on it during sintering. Furthermore, LiAlSiO 4 is in a molten state at 1200° C. to 1300° C., and sufficiently permeates the surface layer of the sagger 1 through the pores of the surface layer of the sagger 1 . In addition, the protective layer 3 of the lithium ion battery electrode material firing sagger 1 of the present invention further extends the service life of the sagger 1 by further adding a filler having corrosion resistance in LiAlSiO 4 . can do.

なお、本発明者らは、匣鉢1の保護層3に含まれる成分については、正極材料料と負極材料料に対する反応性を考慮する必要があるだけでなく、その熱膨張係数を考慮する必要もあり、両者の熱膨張係数が大きく異なり、匣鉢1の表面から該コーティング層が匣鉢1の表面から剥がれやすく、匣鉢1を保護する作用が得られないだけでなく、脱落した物質が正極材料料に混入しまい、正極材料料がコンタミされてしまう。 The inventors of the present invention have found that the components contained in the protective layer 3 of the sagger 1 need to consider not only their reactivity with respect to the positive electrode material and the negative electrode material, but also their thermal expansion coefficient. There is also a large difference in the coefficient of thermal expansion between the two, and the coating layer is easily peeled off from the surface of the sagger 1, and the effect of protecting the sagger 1 cannot be obtained. It will be mixed in the positive electrode material, and the positive electrode material will be contaminated.

そこで、本発明の匣鉢1保護層3は、母材成分として熱膨張係数が負(熱収縮率)のLiAlSiOを用い、充填材としての熱膨張係数が正(熱膨張率)の材料、例えばMgO、SnO、Al、ZrO、ZrSiO、MgAl、LiAlO、LiZrO、LiAlSiの中からいずれか一つ、又は二つ以上のものを選び、保護層3の熱膨張係数を調整することで、保護層3の熱膨張係数と匣鉢1本体2の熱膨張係数との比が1:1-2:1となるように、保護層3が匣鉢1への密着力を向上させ、匣鉢1から剥がれにくくなる。 Therefore, the protective layer 3 of the sagger 1 of the present invention uses LiAlSiO 4 with a negative coefficient of thermal expansion (coefficient of thermal expansion) as a base material component, and a material with a positive coefficient of thermal expansion (coefficient of thermal expansion) as a filler, For example, one or more of MgO, SnO 2 , Al 2 O 3 , ZrO 2 , ZrSiO 4 , MgAl 2 O 4 , LiAlO 2 , Li 2 ZrO 2 and LiAlSi 2 O 6 are selected. , the thermal expansion coefficient of the protective layer 3 is adjusted so that the ratio of the thermal expansion coefficient of the protective layer 3 and the thermal expansion coefficient of the main body 2 of the sagger 1 is 1:1-2:1. improves adhesion to the sagger 1 and becomes difficult to peel off from the sagger 1.

本発明の保護層3の熱膨張係数は、以下のように算出される:母材成分はその熱膨張係数がAであり、保護層3における質量%がx%であり、その密度がρである;充填材はその熱膨張係数がBであり、保護層3における質量%がy%であり、その密度がρである。 The coefficient of thermal expansion of the protective layer 3 of the present invention is calculated as follows: the coefficient of thermal expansion of the base material component is A, the mass % in the protective layer 3 is x%, and the density is ρ A the filler has a coefficient of thermal expansion of B, a mass percentage of y% in the protective layer 3, and a density of ρB .

充填材が一種のみ場合、本発明の保護層3の熱膨張係数は、下記式(1)に基づいて算出される。 When only one type of filler is used, the coefficient of thermal expansion of the protective layer 3 of the present invention is calculated based on the following formula (1).

Figure 0007229456000001
Figure 0007229456000001

充填料が2種以上である場合(n≧2)、本発明の保護層の熱膨張係数は下記の式(2)に基づき、算出される。 When two or more fillers are used (n≧2), the thermal expansion coefficient of the protective layer of the invention is calculated based on the following formula (2).

Figure 0007229456000002
Figure 0007229456000002

本発明に用いられる材料の熱膨張係数、密度等の物性を表1に示す。

Figure 0007229456000003
Table 1 shows physical properties such as thermal expansion coefficients and densities of the materials used in the present invention.
Figure 0007229456000003

本発明のリチウムイオン電池電極材料焼成用匣鉢1は、本体2と保護層3とを備え、当該匣鉢1の本体2はコージライト、ムライト、またはそれらの混合物が主成分として構成され、且つ該保護層3は該匣鉢1本体2の電極材料と接触する表面に塗布されている。匣鉢1の本体2は、市販のものを使用することができ、例えば、ムライトまたはムライトとコージライトに適量のバインダーと水分を加えて混合し、得られた湿粉を型に加え、プレス成形された後、脱水乾燥させ、高温で焼き上がる。 A sagger 1 for firing a lithium ion battery electrode material of the present invention comprises a body 2 and a protective layer 3, the body 2 of the sagger 1 is mainly composed of cordierite, mullite, or a mixture thereof, and The protective layer 3 is applied to the surface of the body 2 of the sagger 1 that contacts the electrode material. For the body 2 of the sagger 1, a commercially available one can be used. For example, mullite or mullite and cordierite are mixed by adding an appropriate amount of binder and water, and the resulting wet powder is added to a mold and press-molded. After being dehydrated, it is dried and baked at a high temperature.

本発明のリチウムイオン電池電極材料焼成用匣鉢1は、以下の方法で作製されることができ、この方法は(1)コージライト、ムライトまたはそれらの混合物から匣鉢1本体2を焼成する工程、および(2)匣鉢1本体2の電極材料と接触する表面を塗布するにより、上記保護層3を形成する工程を含まれる。
工程(1)は、公知の種々の匣鉢1本体2製造方法に基づき行うことができる。
工程(2)としては、現在知られた公知の塗布方法を用いることができ、母材成分(LiAlSiO)と充填材(例えば、MgO、SnO、Al、ZrO、ZrSiO、MgAl、LiAlO、LiZrO、LiAlSiから選択される少なくとも一種)を含有する塗布液を匣鉢1本体2の電極材料と接触する内側表面21に塗布し、乾燥後に塗布層3が形成される。
The sagger 1 for sintering a lithium ion battery electrode material of the present invention can be produced by the following method, which comprises (1) the step of sintering the sagger 1 body 2 from cordierite, mullite, or a mixture thereof. and (2) forming the protective layer 3 by coating the surface of the sagger 1 body 2 in contact with the electrode material.
Step (1) can be performed based on various known methods for manufacturing the sagger 1 main body 2 .
As the step (2), currently known coating methods can be used. At least one selected from MgAl 2 O 4 , LiAlO 2 , Li 2 ZrO 2 , LiAlSi 2 O 6 ) is applied to the inner surface 21 in contact with the electrode material of the sagger 1 main body 2, and after drying A coating layer 3 is formed.

塗布方法としては、ディップコート法、スプレーコート法、ブラシコート法等の各種公知の方法を用いることができる。 As the coating method, various known methods such as dip coating, spray coating, and brush coating can be used.

以下、本発明の実施例について説明するが、これらの実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更可能である。 Examples of the present invention will be described below, but the present invention is not limited to these examples and can be modified as appropriate without departing from the gist of the present invention.

<実施例1>
85gのLiAlO(和光純薬工業株式会社製)と15gのLiAlSiO(MARUSU GLAZE Co.,Ltd社製)を秤量し、1Lのセラミックポットに入れ、ジルコニウムビーズ300ml体積分、水300mlを加えて、ポットを閉じ、常温で100rpmの回転速度で5時間粉砕した後、ジルコニウムビーズを除去し、適量の水を加えて固形分が30%の均一な懸濁液が得られる。
<Example 1>
85 g of LiAlO 2 (manufactured by Wako Pure Chemical Industries, Ltd.) and 15 g of LiAlSiO 4 (manufactured by MARUSU GLAZE Co., Ltd.) were weighed, placed in a 1 L ceramic pot, and 300 ml of zirconium beads and 300 ml of water were added. , The pot is closed, and after grinding for 5 hours at normal temperature with a rotation speed of 100 rpm, the zirconium beads are removed, and an appropriate amount of water is added to obtain a uniform suspension with a solid content of 30%.

上述のように得られた懸濁液をブラシでリチウム電池用正極材料料用匣鉢1と同じ材質のセラミック試験片(熱膨張係数3.8×10-6/K、面積80cm、ムライトとコージェライトの混合物からなる)に約100μmの厚さの保護層3を形成し、100℃のオーブンで乾燥した後、焼成炉に入れ、1300℃で20時間焼成した。室温まで冷却した後、保護層3の一部を削り取り、XRD試験を行った。その結果を図1に示す。図1から、LiAlOおよびLiAlSiOが保護層3中に分布し、構造の顕著な変化がない。また、保護層3の密着性を以下の基準に基づき、目視検査にて評価した。結果を表2に示す。 The suspension obtained as described above was brushed onto a ceramic test piece of the same material as the lithium battery positive electrode material sagger 1 (thermal expansion coefficient 3.8×10 −6 /K, area 80 cm 2 , mullite). A protective layer 3 having a thickness of about 100 μm was formed on a cordierite mixture), dried in an oven at 100° C., placed in a firing furnace, and fired at 1300° C. for 20 hours. After cooling to room temperature, a portion of the protective layer 3 was scraped off and subjected to an XRD test. The results are shown in FIG. From FIG. 1 it can be seen that LiAlO 2 and LiAlSiO 4 are distributed in the protective layer 3 with no significant change in structure. Also, the adhesion of the protective layer 3 was evaluated by visual inspection based on the following criteria. Table 2 shows the results.

保護層3の密着効果:
○:密着性良好で、保護層3の表面には亀裂がない
×:保護層3の表面には亀裂が発生した。
Adhesion effect of protective layer 3:
◯: Good adhesion and no cracks on the surface of the protective layer 3 ×: Cracks occurred on the surface of the protective layer 3 .

実施例2-5
表2に示す条件を実施例1と同様にして行い、保護層3の密着性を評価した結果を表2に示す。
Example 2-5
The conditions shown in Table 2 were performed in the same manner as in Example 1, and the adhesion of the protective layer 3 was evaluated. Table 2 shows the results.

比較例1-5
表2に示す条件で、実施例1と同様に操作し、保護層3の密着性を評価した結果を表2に示す。
Comparative Example 1-5
The same operation as in Example 1 was performed under the conditions shown in Table 2, and the results of evaluating the adhesion of the protective layer 3 are shown in Table 2.

Figure 0007229456000004
Figure 0007229456000004

更に、コバルト酸リチウムの原料である酸化コバルト(和光純薬株式会社社製)および炭酸リチウム(SQM Co.,Ltd社製)を混合させ、実施例1~5で作製した保護層3付セラミック試験片の上に置き、1030℃で10時間焼成して正極材料料を作製した。その後、焼成したコバルト酸リチウム粉末を除去し、焼成後の保護層3の変化を観察し、セラミック試験片には顕著な変化がないことが確認されたことから、上述の形成された正極材料料は保護層3と反応しなかったことがわかった。一方、保護層3のないセラミック試験片についても同様に焼成した後、赤褐色で且つ除去しにくい付着層がセラミック試験片上に形成され、上述の正極材料料がセラミック試験片と反応したことが表明された。 Furthermore, cobalt oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and lithium carbonate (manufactured by SQM Co., Ltd.), which are raw materials of lithium cobalt oxide, were mixed, and the ceramic test with protective layer 3 prepared in Examples 1 to 5 was performed. It was placed on a piece and baked at 1030° C. for 10 hours to make the cathode material. After that, the fired lithium cobaltate powder was removed, and changes in the protective layer 3 after firing were observed. did not react with protective layer 3. On the other hand, after firing the ceramic test piece without the protective layer 3 in the same manner, a reddish brown and difficult-to-remove adhesion layer was formed on the ceramic test piece, indicating that the above-mentioned positive electrode material reacted with the ceramic test piece. rice field.

実施例6
炭酸リチウム粉末と酸化コバルト粉末とを、Li/Coモル比が1.03の比例で高速混合した。得られた混合粉末約5kgをムライトとコージェライトとの混合物から構成される匣鉢1に入れ、該匣鉢1の内側表面21には実施例1に示した保護層3が塗布された。下記の条件で材料を焼結する:1030℃まで6時間をかけて昇温し、10時間保持し、反応後、常温まで4時間冷却した。匣鉢1を取り出し、そしてコバルト酸リチウム生成物を取り出し、匣鉢1底部211の変色及び付着を観察した。 その後、同様な方法で焼結を繰り返し、匣鉢1の変化を観察した。結果を表3に示し、以下のような評価する。
〇:コバルト酸リチウム生成物を簡単に取り出すことができ、匣鉢1の表面に残渣がない
△:匣鉢1の表面に残留物がある
-:使用を停止する
×:匣鉢1には破損がある
Example 6
Lithium carbonate powder and cobalt oxide powder were mixed at high speed at a Li/Co molar ratio of 1.03. About 5 kg of the resulting mixed powder was placed in a sagger 1 consisting of a mixture of mullite and cordierite, the inner surface 21 of which was coated with the protective layer 3 shown in Example 1. The material was sintered under the following conditions: heated to 1030° C. over 6 hours, held for 10 hours, and cooled to normal temperature for 4 hours after reaction. The sagger 1 was removed and the lithium cobaltate product was removed to observe discoloration and adhesion of the sagger 1 bottom 211 . Thereafter, sintering was repeated in the same manner, and changes in the sagger 1 were observed. The results are shown in Table 3 and evaluated as follows.
○: The lithium cobaltate product can be easily taken out, and there is no residue on the surface of the sagger 1 △: There is a residue on the surface of the sagger 1 -: Stop using ×: Damage to the sagger 1 there is

比較例6
実施例1のような保護層3を設けなかったこと以外には、実施例6と同様な方法で実験を行い、匣鉢1の変化を観察した。実施例6と同様な評価を行い、結果を表3に示す。
Comparative example 6
An experiment was conducted in the same manner as in Example 6 except that the protective layer 3 as in Example 1 was not provided, and changes in the sagger 1 were observed. The same evaluation as in Example 6 was performed, and the results are shown in Table 3.

Figure 0007229456000005
Figure 0007229456000005

比較例6では、6回目の焼結時に匣鉢1の内表面底部に残留した固形分が付着し、内側表面21の底部211の一部が剥がれている。また、コバルトの青色が残留した以外、顕著な赤褐色の変色が見られた為、反応の原料と匣鉢1底面材と化学反応が起こった為、一部のコバルト酸リチウムが匣鉢1底部211に付着して除去されにくい。強制的に除去すれば、匣鉢1の底面材とリチウムとが反応することにより生成された生成物の一部がコバルト酸リチウム製品に混入してしまい、不純物が増えてしまう。これに対し、実施例6では、10回焼成しても、青色のコバルト残留物のほかに、匣鉢1の表面が顕著な剥離、割れが発生することなく、簡単にコバルト酸リチウム製品を取り出することができた。上記の結果から、本発明の保護層3を用いることで、正極材料が焼結の過程中に匣鉢1と反応することを有効に抑制することができ、寿命を延長することができる為、正極材料料の製造コストを低減する目的を達成できることが表明された。 In Comparative Example 6, the solid content remaining on the bottom of the inner surface of the sagger 1 adhered during the sixth sintering, and the bottom 211 of the inner surface 21 was partly peeled off. In addition, except for the blue color of cobalt remaining, a remarkable reddish brown discoloration was observed. adheres to the surface and is difficult to remove. If it is forcibly removed, part of the product produced by the reaction between the bottom material of the sagger 1 and lithium will be mixed into the lithium cobaltate product, increasing impurities. On the other hand, in Example 6, even after 10 firings, the lithium cobalt oxide product was easily taken out without not only blue cobalt residue but also remarkable peeling and cracking on the surface of the sagger 1. I was able to From the above results, by using the protective layer 3 of the present invention, the reaction of the positive electrode material with the sagger 1 during the sintering process can be effectively suppressed, and the life can be extended. It was expressed that the objective of reducing the manufacturing cost of the positive electrode material can be achieved.

上述のように、本実施形態では、本体2内側表面の底部と壁面からなる内側表面の全面に覆っているが、本体内側表面の底部、若しくは底面と一部の壁面を被覆する実施形態でも、本発明の権利範囲内のものである。 As described above, in this embodiment, the entire inner surface consisting of the bottom and wall surfaces of the inner surface of the main body 2 is covered. It is within the scope of rights of the present invention.

1 匣鉢
2 本体
21 内側表面
211 底部
212 壁面
3 保護層
1 sagger 2 body 21 inner surface 211 bottom 212 wall surface 3 protective layer

Claims (3)

匣鉢本体と、
少なくとも前記匣鉢本体内側表面の底部を被覆する保護層と、
を備えるリチウムイオン電池電極材料焼成用匣鉢において、
前記の保護層は、
熱膨張係数が負のLiAlSiOと、熱膨張係数が正金属酸化物又は金属酸塩である、MgO、SnO 、Al 、ZrO 、ZrSiO 、MgAl 、LiAlO 、Li ZrO 、LiAlSi の中から選ぶ一つ又は二つ以上の物質とを含み、熱膨張率が調製された塗布層であって、当該保護層の熱膨張係数と前記匣鉢本体の熱膨張係数の比が1:1~2:1であることを特徴とするリチウムイオン電池電極材料焼成用匣鉢。
a sagger body,
a protective layer covering at least the bottom of the inner surface of the sagger body;
In a sagger for firing a lithium ion battery electrode material comprising
The protective layer is
LiAlSiO 4 with a negative coefficient of thermal expansion, and MgO, SnO 2 , Al 2 O 3 , ZrO 2 , ZrSiO 4 , MgAl 2 O 4 , LiAlO 2 , which are metal oxides or metallates with a positive coefficient of thermal expansion, A coating layer containing one or more substances selected from Li 2 ZrO 2 and LiAlSi 2 O 6 and having a controlled thermal expansion coefficient, wherein the thermal expansion coefficient of the protective layer and the sagger body A sagger for firing a lithium ion battery electrode material, characterized in that the ratio of thermal expansion coefficients of 1:1 to 2:1.
前記本体はコージライト、ムライト又はそれらの混合物により形成されることを特徴とする請求項1に記載のリチウムイオン電池電極材料焼成用匣鉢。 2. The saggar for firing lithium ion battery electrode material according to claim 1 , wherein said body is made of cordierite, mullite or a mixture thereof . 匣鉢本体に保護層を形成するための保護層用材料であって、
熱膨張係数が負であるLiAlSiO と、
熱膨張係数が正の金属酸化物又は金属酸塩である、MgO、SnO 、Al 、ZrO 、ZrSiO 、MgAl 、LiAlO 、Li ZrO 、LiAlSi の中から選ぶ一つ又は二つ以上の物質との混合物からなり、
前記混合物の熱膨張係数が、当該混合物の熱膨張係数と匣鉢本体の熱膨張係数との比が1:1~2:1となるように調整されたことを特徴とするリチウムイオン電池電極材料焼成用匣鉢の保護層用材料
A protective layer material for forming a protective layer on the sagger body,
LiAlSiO 4 with a negative coefficient of thermal expansion ;
MgO, SnO2 , Al2O3 , ZrO2 , ZrSiO4 , MgAl2O4 , LiAlO2 , Li2ZrO2 , LiAlSi2O6 , which are metal oxides or metallates with positive thermal expansion coefficients consisting of a mixture with one or more substances selected from
A lithium ion battery electrode material, wherein the thermal expansion coefficient of the mixture is adjusted so that the ratio of the thermal expansion coefficient of the mixture and the thermal expansion coefficient of the sagger body is 1:1 to 2:1. Material for the protective layer of firing saggers.
JP2018236807A 2018-01-08 2018-12-18 Sagger for firing lithium-ion battery electrode material and material for protective layer of the sagger Active JP7229456B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810014769.7 2018-01-08
CN201810014769.7A CN108302942A (en) 2018-01-08 2018-01-08 Electrode material of lithium battery prepares the preparation method with saggar, the protective layer of the saggar and saggar

Publications (2)

Publication Number Publication Date
JP2019121601A JP2019121601A (en) 2019-07-22
JP7229456B2 true JP7229456B2 (en) 2023-02-28

Family

ID=62868380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018236807A Active JP7229456B2 (en) 2018-01-08 2018-12-18 Sagger for firing lithium-ion battery electrode material and material for protective layer of the sagger

Country Status (2)

Country Link
JP (1) JP7229456B2 (en)
CN (1) CN108302942A (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956760A (en) * 2019-03-13 2019-07-02 乳源东阳光磁性材料有限公司 A kind of nickelic ternary material sintering saggar and preparation method thereof
CN110282964A (en) * 2019-06-20 2019-09-27 武汉科技大学 Mullite-cordierite matter anode material of lithium battery sintering saggar and preparation method thereof
JPWO2021090778A1 (en) * 2019-11-08 2021-05-14
DE102020000510A1 (en) 2020-01-28 2021-07-29 Saint-Gobain Industriekeramik Rödental GmbH Transport tray for transporting and heating chemical substances
CN111718207A (en) * 2020-07-07 2020-09-29 中钢南京环境工程技术研究院有限公司 Preparation method of modified cordierite-mullite refractory material
CN111646818A (en) * 2020-07-07 2020-09-11 中钢南京环境工程技术研究院有限公司 Anticorrosive paint for aluminum-magnesium siliceous sagger
CN112028650A (en) * 2020-09-03 2020-12-04 深圳市飞粤新材料科技有限公司 Sagger for lithium ion battery anode material
CN112537967A (en) * 2020-12-07 2021-03-23 合肥融捷能源材料有限公司 Sagger repairing material for lithium ion battery anode material production and repairing method thereof
CN112680037A (en) * 2020-12-24 2021-04-20 湖北华联耐火材料有限公司 Anticorrosive paint and sagger coated with same
CN113823764B (en) * 2021-09-29 2023-06-09 北京当升材料科技股份有限公司 Roller kiln for sintering anode material, multi-element anode material and preparation method thereof
JP7090784B1 (en) 2021-11-18 2022-06-24 日本碍子株式会社 Heat treatment system, saggar and heat treatment method provided by it
CN114230371B (en) * 2021-11-26 2023-04-18 汉川市石金科技有限公司 Composite coating for improving corrosion resistance of sagger surface and prolonging service life
CN114195533A (en) * 2021-12-14 2022-03-18 广州粤瓷新材料有限公司 Sagger for lithium ion battery anode material and preparation method thereof
FR3131297A1 (en) * 2021-12-23 2023-06-30 Saint-Gobain Centre De Recherches Et D'etudes Europeen Container made of a coated ceramic matrix composite
FR3131295A1 (en) * 2021-12-23 2023-06-30 Saint-Gobain Centre De Recherches Et D'etudes Europeen alkaline powder firing medium with controlled porosity coating
CN114349484B (en) * 2021-12-28 2023-08-08 江苏省陶瓷研究所有限公司 Ceramic material for calcining electrode material of lithium battery and preparation method thereof
CN114394841B (en) * 2022-01-11 2022-09-27 江苏蓝固新能源科技有限公司 Sagger for sintering lithium battery material and preparation method thereof
CN114604907B (en) * 2022-03-04 2023-08-11 万华化学(四川)有限公司 Ternary material preparation method for prolonging service life of sagger
CN115286430B (en) * 2022-08-16 2023-06-13 广东邦普循环科技有限公司 Sagger repair slurry and preparation method thereof, sagger and sagger repair method
CN115366237A (en) * 2022-08-18 2022-11-22 广东邦普循环科技有限公司 Sagger repairing device and method for sucking specific slurry
CN115340392B (en) * 2022-08-31 2023-01-06 泰安蔚蓝金属陶瓷材料有限公司 Sagger for long-life lithium battery positive electrode material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292704A (en) 2008-06-09 2009-12-17 Noritake Co Ltd Sagger for producing positive electrode active material of lithium ion battery
JP2011117663A (en) 2009-12-03 2011-06-16 Noritake Co Ltd Sagger for producing positive electrode active material of lithium ion battery and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19751542A1 (en) * 1997-11-20 1999-07-29 Siemens Ag Plastics material with spherical silicon dioxide filler of specific particle size and having negative coefficient of thermal expansion
JP3805119B2 (en) * 1999-01-29 2006-08-02 京セラ株式会社 Method for producing low thermal expansion ceramics
CN1253125A (en) * 1999-11-08 2000-05-17 苏君道 Non-expansion lithium ceramics and process for preparing its crucible
KR101323096B1 (en) * 2012-04-13 2013-10-30 한국세라믹기술원 Sagger for synthesizing positive electrode active material of secondary battery and manufacturing method of the same
CN104987094B (en) * 2015-07-08 2017-11-17 武汉理工大学 A kind of alkali resistance ceramic coating material and preparation method thereof
CN105859272B (en) * 2016-05-11 2019-03-12 河南工程学院 Low-temperature sintering prepares nanometer negative expansion ceramics LiAlSiO4Method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292704A (en) 2008-06-09 2009-12-17 Noritake Co Ltd Sagger for producing positive electrode active material of lithium ion battery
JP2011117663A (en) 2009-12-03 2011-06-16 Noritake Co Ltd Sagger for producing positive electrode active material of lithium ion battery and method of manufacturing the same

Also Published As

Publication number Publication date
JP2019121601A (en) 2019-07-22
CN108302942A (en) 2018-07-20

Similar Documents

Publication Publication Date Title
JP7229456B2 (en) Sagger for firing lithium-ion battery electrode material and material for protective layer of the sagger
JP5039640B2 (en) Pot for producing positive electrode active material for lithium ion battery and method for producing the same
TW201425262A (en) Ceramic coated sagger for manufacturing lithium ion anode active material and manufacturing method thereof
TWI488827B (en) Cover
CN112010661B (en) Sagger for lithium battery positive electrode material and preparation method thereof
JP2012206916A (en) Heat treatment container for positive electrode active material for lithium ion cell and method for producing the same
JP2010108802A (en) Separator for battery and method for manufacturing the same
JP5341124B2 (en) Heat treatment container for positive electrode active material for lithium ion battery
EP3475247B1 (en) Open vessels and their use
CN112028650A (en) Sagger for lithium ion battery anode material
JP2004063261A (en) Refractory for positive electrode material calcination and its usage
CN207716877U (en) Electrode material of lithium battery preparation saggar
CN114195533A (en) Sagger for lithium ion battery anode material and preparation method thereof
KR101159102B1 (en) Furnace for Manufacture of Lithium-Metal Oxide and Process for Preparing the Same
TWI816975B (en) Firing jig
JP2006206338A (en) Highly corrosion-resistant refractory
CN113292349A (en) Sagger containing calcium hexaluminate composite layer and preparation method thereof
CN115340409B (en) Sagger coating for lithium battery positive electrode material and preparation method of sagger coating
CN111377755A (en) Corrosion-resistant protective layer of crucible
JP5474126B2 (en) Heat treatment container for positive electrode active material for lithium ion battery
JPH10152327A (en) Production of lithium-containing multiple oxide and kiln therefor
EP3458428A1 (en) Open vessels and their use
KR101907208B1 (en) Monolithic refractory for heat treating furnace and lining structure of heat treating furnace
WO2021090778A1 (en) Sagger and method for producing same
CN114394841B (en) Sagger for sintering lithium battery material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7229456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350