JP5033438B2 - Metal mask manufacturing method and metal mask manufactured thereby - Google Patents

Metal mask manufacturing method and metal mask manufactured thereby Download PDF

Info

Publication number
JP5033438B2
JP5033438B2 JP2007033739A JP2007033739A JP5033438B2 JP 5033438 B2 JP5033438 B2 JP 5033438B2 JP 2007033739 A JP2007033739 A JP 2007033739A JP 2007033739 A JP2007033739 A JP 2007033739A JP 5033438 B2 JP5033438 B2 JP 5033438B2
Authority
JP
Japan
Prior art keywords
resist
metal mask
opening
pattern
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007033739A
Other languages
Japanese (ja)
Other versions
JP2008197479A (en
Inventor
浩 由井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bon Mark Co Ltd
Original Assignee
Bon Mark Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bon Mark Co Ltd filed Critical Bon Mark Co Ltd
Priority to JP2007033739A priority Critical patent/JP5033438B2/en
Publication of JP2008197479A publication Critical patent/JP2008197479A/en
Application granted granted Critical
Publication of JP5033438B2 publication Critical patent/JP5033438B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Description

本発明は、例えば、印刷パターンの開口壁面にテーパーを有するメタルマスクの製造方法及びそれにより製造されたメタルマスクに関する。 The present invention relates to a method for manufacturing a metal mask having a taper on an opening wall surface of a printed pattern, for example, and a metal mask manufactured thereby .

従来、基材上にレジストを印刷パターン形状に形成し、レジストが形成された部分を除いて基材上に金属層をめっきにより形成し、金属層からレジストと基材とを除去してマスクを製造する技術がある。ここで、基材上にレジストを印刷パターン形状に形成する場合には、基材上全体に塗布されたレジストを印刷パターン形状に露光し、現像する。レジストを印刷パターン形状に露光するためには、パターンフィルムを用いて印刷パターン形状にレジストを露光する方法や、レーザーにより直接印刷パターン形状にレジストを露光する方法がとられている。また、レーザーにより直接印刷パターン形状にレジストを露光する方法において、露光量を減らすことにより、レジストにテーパーを付けて露光する技術がある。さらに、現像時間を増減させることにより、レジストにテーパーを付けて露光する技術がある。
特開2006−93269号公報
Conventionally, a resist is formed in a printed pattern shape on a base material, a metal layer is formed on the base material except for a portion where the resist is formed, and the mask is formed by removing the resist and the base material from the metal layer. There is technology to manufacture. Here, when a resist is formed on a substrate in a printed pattern shape, the resist applied on the entire substrate is exposed to a printed pattern shape and developed. In order to expose the resist to the printed pattern shape, a method of exposing the resist to the printed pattern shape using a pattern film or a method of directly exposing the resist to the printed pattern shape by a laser is used. In addition, in a method of directly exposing a resist in a printed pattern shape with a laser, there is a technique in which the resist is tapered and exposed by reducing the exposure amount. Furthermore, there is a technique in which the resist is tapered and exposed by increasing or decreasing the development time.
JP 2006-93269 A

従来のマスクの製造方法では、マスクの印刷パターンの開口壁面に付けるテーパーの角度を制御することができない。
従来の露光量を減らすことによりレジストにテーパーを付けて露光する技術においては、マスクの印刷パターンの開口壁面にテーパーが形成されるものの、形成される形状にばらつきがあり不安定である。また、露光量を少なくするとテーパーは一般に大きくなることが多いが、基材との密着面にめっきもぐりが発生する。つまり、レジストの表面に比べ基材側は露光が弱く、基材側のレジストがしっかりと硬化しない。そのため、めっきがレジストと基材との間に入り込んでしまう。特に、剥離性や解像度の高いレジストにおいてこのような現象が発生する。したがって、この技術を使用して、開口壁面にテーパーを有する高精細な印刷パターンを持ったマスクを製造することはできない。
また、従来の現像時間を増減させることにより開口壁面にテーパーを付ける技術においては、レジストの剥離等が発生して安定してマスクの製造ができない。また、開口壁面に縦筋が多く出てしまい、開口壁面が粗くなってしまう。
本発明は、例えば、めっきもぐりなどを発生させることなく、マスクの印刷パターンの開口壁面にテーパーを形成することを目的とする。また、形成するテーパーの角度をコントロールすることを目的とする。さらに、開口壁面にテーパーを付けた場合において、開口壁面の粗さを小さくすることを目的とする。
In the conventional mask manufacturing method, the angle of the taper applied to the opening wall surface of the mask printing pattern cannot be controlled.
In the conventional technique of exposing a resist by tapering by reducing the exposure amount, a taper is formed on the opening wall surface of the mask printing pattern, but the formed shape varies and is unstable. Further, when the exposure amount is reduced, the taper generally increases in many cases, but the plating is also peeled off on the contact surface with the substrate. That is, the substrate side is less exposed than the resist surface, and the resist on the substrate side is not hardened. As a result, the plating enters between the resist and the substrate. In particular, such a phenomenon occurs in a resist having high peelability and high resolution. Therefore, this technique cannot be used to manufacture a mask having a high-definition print pattern having a tapered opening wall surface.
Further, in the conventional technique of tapering the opening wall surface by increasing or decreasing the development time, resist peeling or the like occurs and the mask cannot be manufactured stably. Moreover, many vertical stripes appear on the opening wall surface, and the opening wall surface becomes rough.
An object of the present invention is to form a taper on an opening wall surface of a printed pattern of a mask without causing, for example, plating boring or the like. Another object is to control the angle of the taper to be formed. Furthermore, when the opening wall surface is tapered, the object is to reduce the roughness of the opening wall surface.

本発明に係るメタルマスクの製造方法は、基材に厚さ10〜300μmのレジストをラミネートし、
超高圧水銀灯の光を集光した直描式描画機を用い、集光された光の焦点を上記レジストの表面からずらして、上記レジストに上記集光された光を直接照射することにより、レジストにテーパーを付けて露光し、現像して印刷パターンの開口部分に対応する厚さ10〜300μmのレジストパターンを形成し、
上記レジストパターンが形成された部分を除いて、上記基材に板厚10〜300μmの金属層をめっきにより形成し、
上記レジストパターンを除去し、
上記金属層から基材を剥離することにより、板厚10〜300μmのメタルマスクを得る
ことを特徴とする。
The method for producing a metal mask according to the present invention includes laminating a resist having a thickness of 10 to 300 μm on a base material,
By using a direct drawing type drawing machine that condenses the light of an ultra-high pressure mercury lamp, the focus of the condensed light is shifted from the surface of the resist, and the resist is irradiated directly with the condensed light. with a tapered exposed to form a resist pattern having a thickness of 10~300μm corresponding to the opening portion of the developed and printed patterns,
Except for the portion where the resist pattern is formed, a metal layer having a plate thickness of 10 to 300 μm is formed on the substrate by plating,
Removing the resist pattern,
A metal mask having a plate thickness of 10 to 300 [mu] m is obtained by peeling the substrate from the metal layer.

また、上記メタルマスクの製造方法は、例えば、集光された光の焦点の位置を、上記レジストの表面から上記基材側に20〜100μm又は上記レジスト上面側に20〜80μmずらして、上記レジストに上記集光された光を直接照射する
ことを特徴とする。
The method for producing the metal mask includes, for example, shifting the focus position of the condensed light from the resist surface by 20 to 100 μm to the base material side or by 20 to 80 μm to the resist upper surface side, It is characterized by directly irradiating the condensed light to the above.

さらに、上記メタルマスクの製造方法は、例えば、集光された光の焦点を大きくずらし、開口壁面に大きい角度のテーパーを付ける場合は、レジスト上面側ではなく基材側へ焦点をずらす
ことを特徴とする。
Further, the metal mask manufacturing method shifts the focal point of the collected light , for example, to the base material side instead of the resist upper surface side when a large angle taper is applied to the opening wall surface. <Br / > It is characterized by that.

また、本発明に係るメタルマスクは、例えば、上記メタルマスクの製造方法により製造され、上記メタルマスクは、印刷パターンに対応する開口がスキージ面から印刷面へ向かって広がるテーパーを形成するとともに、印刷パターンに対応する開口の壁面の粗さRaを0.01〜0.1μmとした
ことを特徴とする。
Further, the metal mask according to the present invention is manufactured by, for example, the above-described method for manufacturing a metal mask, and the metal mask forms a taper in which an opening corresponding to a print pattern extends from a squeegee surface to a print surface, and printing. The roughness Ra of the wall surface of the opening corresponding to the pattern is 0.01 to 0.1 [mu] m .

本発明に係るメタルマスクの製造方法によれば、基材に厚さ10〜300μmのレジストを塗布し、超高圧水銀灯の光を集光した直描式描画機を用い、集光された光の焦点を上記レジストの表面からずらして、上記レジストに上記集光された光を直接照射することにより、レジストにテーパーを付けて露光し、現像して印刷パターンの開口部分に対応する厚さ10〜300μmのレジストパターンを形成し、上記レジストパターンが形成された部分を除いて、上記基材に板厚10〜300μmの金属層をめっきにより形成し、上記レジストパターンを除去し、上記金属層から基材を剥離することにより、板厚10〜300μmのメタルマスクを得ることにより、メタルマスクの印刷パターンの開口壁面に高精度のテーパーを形成することができる。また、めっきもぐりなどを発生させることなく、形成するテーパーの角度をコントロールすることができる。
また、本発明に係るメタルマスクによれば、印刷パターンに対応する開口の壁面の粗さが小さく、開口がスキージ面から印刷面へ向かって広がるテーパーを有するため、インク等の抜け性がよい。さらに、板厚が薄いため、薄い印刷が可能である。
According to the method for manufacturing a metal mask according to the present invention, a resist of 10 to 300 μm in thickness is applied to a base material, and a direct drawing type drawing machine that collects light of an ultrahigh pressure mercury lamp is used. the focus was shifted from the surface of the resist by irradiating the condensing light into the resist directly resist with a tapered exposed, thickness corresponding to the opening portion of the developed and printed pattern of 10 A resist pattern having a thickness of ˜300 μm is formed, a metal layer having a thickness of 10 to 300 μm is formed on the base material by plating except for a portion where the resist pattern is formed, and the resist pattern is removed from the metal layer. by peeling off the substrate, by obtaining a metal mask having a thickness of 10 to 300 [mu] m, it is possible to form a high precision taper of the opening wall surface of the printed pattern of the metal mask . Further, the taper angle to be formed can be controlled without generating plating or the like.
In addition, according to the metal mask of the present invention, the roughness of the wall surface of the opening corresponding to the printing pattern is small, and the opening has a taper that spreads from the squeegee surface toward the printing surface, so that ink or the like can be easily removed. Further, since the plate thickness is thin, thin printing is possible.

実施の形態1.
まず、図1、図2に基づき、実施の形態1に係るメタルマスク1の形状について説明する。図1は、メタルマスク1のスキージ面から見た図である。スキージ面とは、印刷時にスキージが摺動する面である。一方、スキージ面の裏側の面を印刷面と呼ぶ。つまり、印刷面とは、印刷時にワーク側になる面である。図2は、図1のA−A’断面図である。
図1において、スキージ面側の開口2,3と印刷面側の開口4,5とはそれぞれ対応しており、連続した開口である。図1に示すように、スキージ面側の開口2,3それぞれよりも、印刷面側の開口4,5は大きい。また、図2に示すように、各印刷パターンに対応する開口の壁面は、スキージ面から印刷面へ向かって広がるテーパーを形成する。
Embodiment 1 FIG.
First, based on FIG. 1, FIG. 2, the shape of the metal mask 1 which concerns on Embodiment 1 is demonstrated. FIG. 1 is a view of the metal mask 1 as viewed from the squeegee surface. The squeegee surface is a surface on which the squeegee slides during printing. On the other hand, the surface behind the squeegee surface is called a printing surface. That is, the printing surface is a surface that becomes the workpiece side during printing. 2 is a cross-sectional view taken along line AA ′ of FIG.
In FIG. 1, the openings 2 and 3 on the squeegee surface side correspond to the openings 4 and 5 on the printing surface side, and are continuous openings. As shown in FIG. 1, the openings 4 and 5 on the printing surface side are larger than the openings 2 and 3 on the squeegee surface side. As shown in FIG. 2, the wall surface of the opening corresponding to each printing pattern forms a taper that widens from the squeegee surface toward the printing surface.

次に、図3に基づき、実施の形態1に係るメタルマスク1の製造方法におけるポイントとなる工程について説明する。図3は、基材10上に形成されたレジスト11を印刷パターン形状に露光する処理を示す図である。
従来はレジスト11の表面12に焦点を合わせてレーザーを照射する。レーザーを照射された部分のレジスト11が露光される。ここで、レジスト11は、基材10に対して垂直方向にレーザーにより露光されるので、露光されたレジスト11にはテーパーは付かない。ここで、製造されるメタルマスク1の開口の形状は、露光されたレジスト11の形状となる。したがって、レジスト11にテーパーを付けて露光しなければ、製造されるメタルマスク1にはテーパーは付かない。
実施の形態1に係るメタルマスク1の製造方法では、集光された光の焦点の位置をレジスト11の表面12からずらして照射する。集光された光の焦点の位置をずらすことにより、レジスト11にテーパーを付けて露光することが可能である。また、集光された光の焦点の位置のずらし方により、レジスト11に付けるテーパーの角度を制御することができる。つまり、製造されるメタルマスク1の開口に付けるテーパーの角度を制御することが可能である。図4に示すように、断面にテーパーの全くない開口21を作ることも、断面にテーパーを小さい角度(θ)で付けた開口22を作ることも、断面にテーパーを大きい角度(θ’)で付けた開口23を作ることも可能である。レジスト11に付けるテーパーの角度の制御方法については後述する。
また、ここで使用する集光された光は、例えば、超高圧水銀灯の光を集光したものである。また、大きな開口の形状にレジストを露光する場合には、集光された光を移動させて露光する。この場合、集光された光は常に所定の角度のテーパーを付けてレジストを露光するため、大きな開口の壁面には所定の角度のテーパーが付く。
Next, based on FIGS. 3A and 3B, a process that is a point in the method of manufacturing the metal mask 1 according to the first embodiment will be described. FIG. 3 is a diagram illustrating a process of exposing the resist 11 formed on the base material 10 to a printed pattern shape.
Conventionally, the laser beam is irradiated while focusing on the surface 12 of the resist 11. The portion of the resist 11 irradiated with the laser is exposed. Here, since the resist 11 is exposed with a laser in a direction perpendicular to the substrate 10, the exposed resist 11 is not tapered. Here, the shape of the opening of the manufactured metal mask 1 is the shape of the exposed resist 11. Therefore, if the resist 11 is not exposed with a taper, the manufactured metal mask 1 does not have a taper.
In the method of manufacturing the metal mask 1 according to the first embodiment, irradiation is performed by shifting the focus position of the collected light from the surface 12 of the resist 11. By shifting the focus position of the condensed light, it is possible to expose the resist 11 with a taper. Further, the taper angle applied to the resist 11 can be controlled by shifting the focus position of the condensed light. That is, it is possible to control the angle of the taper applied to the opening of the manufactured metal mask 1. As shown in FIG. 4, an opening 21 having no taper in the cross section, an opening 22 having a taper in the cross section at a small angle (θ), or a taper in the cross section at a large angle (θ ′). It is also possible to make an attached opening 23. A method for controlling the taper angle applied to the resist 11 will be described later.
Further, the condensed light used here is, for example, the light collected from an ultrahigh pressure mercury lamp. Further, when exposing the resist in the shape of a large opening, the focused light is moved for exposure. In this case, since the collected light always exposes the resist with a taper of a predetermined angle, the wall surface of the large opening has a taper of a predetermined angle.

次に、図5から図8までに基づき、実施の形態1に係るメタルマスク1の製造方法の全工程について説明する。
まず、図5に示すように、基材10上にレジスト11を塗布(ラミネート)する。次に、上述したように、集光された光の焦点をレジスト11の表面からずらして、レジスト11に集光された光を直接走査して照射して露光する。ここで、集光された光の焦点のレジスト11の表面からのずらし方は、製造するメタルマスクの開口側壁のテーパーの角度により決定する。そして、図6に示すように、現像して印刷パターンの開口部分に対応するレジストパターン13を形成する。
次に、図7に示すように、レジストパターン13が形成された部分を除いて、基材10に金属層14をめっきにより形成する。そして、図8に示すように、レジストパターン13を除去し、金属層14から基材10を剥離する。
そして、結果として残った金属層14がメタルマスク1となる。
Next, all steps of the method for manufacturing the metal mask 1 according to the first embodiment will be described with reference to FIGS.
First, as shown in FIG. 5, a resist 11 is applied (laminated) on the substrate 10. Next, as described above, the focus of the condensed light is shifted from the surface of the resist 11, and the light condensed on the resist 11 is directly scanned and irradiated for exposure. Here, how to shift the focal point of the condensed light from the surface of the resist 11 is determined by the taper angle of the opening side wall of the metal mask to be manufactured. And as shown in FIG. 6, it develops and forms the resist pattern 13 corresponding to the opening part of a printing pattern.
Next, as shown in FIG. 7, a metal layer 14 is formed on the base material 10 by plating except for the portion where the resist pattern 13 is formed. Then, as shown in FIG. 8, the resist pattern 13 is removed, and the base material 10 is peeled from the metal layer 14.
As a result, the remaining metal layer 14 becomes the metal mask 1.

次に、図9から図18に基づき、集光された光の焦点の位置をレジスト11の表面12からずらして照射した場合に、レジスト11に付くテーパーの角度の変化について説明する。図9、図11、図13、図15は、集光された光の焦点の深度Z(位置)(μm)を変化させた場合に生成されたメタルマスク1の印刷面の開口寸法L(μm)とスキージ面の開口寸法M(μm)とを示す図である。特に、図9は集光された光の光量を200mjとして、直径200μmの開口を開けた場合の値を示す。図11は集光された光の光量を150mjとして、直径200μmの開口を開けた場合の値を示す。図13は集光された光の光量を200mjとして、直径100μmの開口を開けた場合の値を示す。図15は集光された光の光量を150mjとして、直径100μmの開口を開けた場合の値を示す。図10は、図9に示す集光された光の焦点の深度Z(位置)に対する印刷面の開口寸法L(μm)とスキージ面の開口寸法M(μm)とをグラフにしたものである。図10と同様に、図12は図11のグラフであり、図14は図13のグラフであり、図16は図15のグラフである。また、図17は図9、図11、図13、図15に示す集光された光の焦点の深度Z(位置)に対する印刷面の開口寸法L(μm)とスキージ面の開口寸法M(μm)とをグラフにしたものである。図18は、図9、図11、図13、図15に示す各値の位置を示す図である。ここで、図3に示すように、集光された光の焦点の深度Zは、レジスト11の表面12を0とした場合に、基材10方向(基材側)に+(プラス)の値をとり、基材10とは反対の方向(レジスト上面側)に−(マイナス)の値をとる。また、図9、図11、図13、図15に示す印刷面の開口寸法L(μm)とスキージ面の開口寸法M(μm)とは、開口の寸法よりもどれだけ大きいかを示している。つまり、例えば図9において、焦点深度Zが100μmの場合のスキージ面の開口寸法Mは、開口直径200μmに8μmを足した208μmである。
図9から図17までに示す値をとるにあたり、集光された光を照射する直描式描画機として大日本スクリーン製造株式会社製LI−8500 HM−3056を用いた。また、図18に示すようにレジスト11は、29μmのものを2枚用いた。つまり、レジスト11の厚さWは58μmである。また、ここでは、集光された光を移動させ、所定の開口の大きさに露光を行った。
図9から図17までに示すように、集光された光の焦点の位置をレジスト11の表面12よりも+(プラス)方向又は−(マイナス)方向へずらすほど、スキージ面の開口寸法(開口面積)よりも印刷面の開口寸法(開口面積)の方が大きくなる。つまり、集光された光の焦点の位置をレジスト11の表面12よりも+(プラス)方向又は−(マイナス)方向へずらすほど、印刷面の開口面積とスキージ面の開口面積との比(印刷面の開口面積/スキージ面の開口面積)が大きくなる。すなわち、集光された光の焦点の位置をレジスト11の表面12よりも+(プラス)方向又は−(マイナス)方向へずらすほど、開口壁面に大きい角度のテーパーを付けることが可能である。
図9、図11、図13、図15に示す、レベル1〜3では、差N(L−M)が焦点深度0μmの場合よりも大きいため、焦点深度0μmの場合よりも開口壁面にテーパーが付き、インク等の抜け性がよくなるという効果がある。さらに、レベル2〜3では、差N(L−M)が5μm以上であり、よりインク等の抜け性がよくなるという効果がある。特に、レベル3では、差N(L−M)が10μm以上であり、さらにインク等の抜け性がよくなるという効果がある。また、焦点深度Zをレベル3以上にすることで、開口壁面により大きい角度のテーパーを付けることができる。
ここで、図9、図11、図13、図15において、レベル及び印刷面の開口寸法L(μm)・スキージ面の開口寸法M(μm)とを斜字体で記載しているものについては、製造したメタルマスクの形状がよくないものである。これは、集光された光の焦点を−(マイナス)方向(レジスト上面側)へ大きくずらした場合に発生している。集光された光の焦点をレジスト上面側へ大きくずらした場合、レジストへ届く光が弱くなってしまい、しっかりと露光できないことが原因である。つまり、集光された光の焦点を大きくずらし、開口壁面により大きい角度のテーバーを付ける場合には、レジスト上面側ではなく基材側へ焦点をずらす方が望ましい。
Next, a change in the angle of the taper attached to the resist 11 when the focus position of the condensed light is irradiated with being shifted from the surface 12 of the resist 11 will be described with reference to FIGS. 9, FIG. 11, FIG. 13 and FIG. 15 show the opening dimension L (μm) of the printed surface of the metal mask 1 generated when the focal depth Z (position) (μm) of the collected light is changed. ) And the opening dimension M (μm) of the squeegee surface. In particular, FIG. 9 shows values when an aperture having a diameter of 200 μm is opened with the amount of collected light being 200 mj. FIG. 11 shows values when an aperture having a diameter of 200 μm is opened with the amount of collected light being 150 mj. FIG. 13 shows values when an aperture having a diameter of 100 μm is opened with the amount of collected light being 200 mj. FIG. 15 shows a value when an aperture having a diameter of 100 μm is opened with the amount of collected light being 150 mj. FIG. 10 is a graph showing the opening size L (μm) of the printing surface and the opening size M (μm) of the squeegee surface with respect to the focal depth Z (position) of the condensed light shown in FIG. 12 is the graph of FIG. 11, FIG. 14 is the graph of FIG. 13, and FIG. 16 is the graph of FIG. FIG. 17 shows an opening dimension L (μm) of the printing surface and an opening dimension M (μm) of the squeegee surface with respect to the depth Z (position) of the focal point of the condensed light shown in FIGS. 9, 11, 13 and 15. ) And a graph. 18 is a diagram showing the position of each value shown in FIG. 9, FIG. 11, FIG. 13, and FIG. Here, as shown in FIG. 3, the focal depth Z of the collected light is a value of + (plus) in the direction of the base material 10 (base material side) when the surface 12 of the resist 11 is 0. And takes a value of minus (minus) in the direction opposite to the substrate 10 (resist upper surface side). Further, the opening dimension L (μm) of the printing surface and the opening dimension M (μm) of the squeegee surface shown in FIGS. 9, 11, 13, and 15 indicate how much larger than the dimension of the opening. That is, for example, in FIG. 9, when the depth of focus Z is 100 μm, the aperture size M of the squeegee surface is 208 μm, which is an aperture diameter of 200 μm plus 8 μm.
In taking the values shown in FIG. 9 to FIG. 17, LI-8500 HM-3056 manufactured by Dainippon Screen Mfg. Co., Ltd. was used as a direct drawing type drawing machine that irradiates the condensed light. As shown in FIG. 18 , two resists 11 having a thickness of 29 μm were used. That is, the thickness W of the resist 11 is 58 μm. Here, the condensed light is moved to perform exposure to a predetermined opening size.
As shown in FIGS. 9 to 17, the squeegee surface opening dimension (opening) increases as the focal point of the collected light is shifted from the surface 12 of the resist 11 in the + (plus) direction or the − (minus) direction. The opening size (opening area) of the printing surface is larger than the area). That is, the ratio of the opening area of the printing surface to the opening area of the squeegee surface (printing is increased as the focal position of the condensed light is shifted in the + (plus) direction or the − (minus) direction from the surface 12 of the resist 11. The opening area of the surface / the opening area of the squeegee surface) increases. That is, as the focal position of the condensed light is shifted in the + (plus) direction or the − (minus) direction from the surface 12 of the resist 11, the opening wall surface can be tapered at a larger angle.
In FIGS. 9, 11, 13, and 15, at levels 1 to 3, the difference N (LM) is larger than that when the depth of focus is 0 μm, and therefore the opening wall surface is more tapered than when the depth of focus is 0 μm. In addition, there is an effect that the ink can be easily removed. Furthermore, at levels 2 to 3, the difference N (LM) is 5 μm or more, and there is an effect that the ink can be more easily removed. In particular, at level 3, the difference N (LM) is 10 μm or more, and there is an effect that the ink can be easily removed. Further, by setting the depth of focus Z to level 3 or more, it is possible to taper the opening wall surface with a larger angle.
Here, in FIG. 9, FIG. 11, FIG. 13 and FIG. 15, the level and the opening dimension L (μm) of the printing surface and the opening dimension M (μm) of the squeegee surface are written in italics. The shape of the manufactured metal mask is not good. This occurs when the focus of the collected light is greatly shifted in the-(minus) direction (resist upper surface side). This is because when the focal point of the condensed light is largely shifted to the resist upper surface side, the light reaching the resist becomes weak and exposure cannot be performed firmly. That is, when the focal point of the collected light is greatly shifted and a taber having a larger angle is attached to the opening wall surface, it is desirable to shift the focal point to the base material side instead of the resist upper surface side.

実施の形態1に係るメタルマスク1の製造方法によれば、各印刷パターンに対応する開口壁面に、スキージ面から印刷面へ向かって広がる任意の角度のテーパーを形成することが可能である。原則としてどのレジストを用いた場合でもテーパーの角度を制御できる。特に、剥離性や解像度の高いレジストであっても、テーパーの角度を制御できる。
また、超高圧水銀灯の光を集光した光により印刷パターンをレジスト11に直接描画するため、開口壁面粗さが小さくなる。具体的には、印刷パターンに対応する開口の壁面の粗さRaを0.01〜0.1μmとすることができる。特に印刷パターンに対応する開口の壁面の粗さRaを0.01〜0.03μmとすることができる。中でも特に印刷パターンに対応する開口の壁面の粗さRaを約0.01とすることができる。さらに、この壁面粗さを、開口壁面にテーパーを付けるとともに実現可能である。
また、超高圧水銀灯の光を集光した光により印刷パターンをレジスト11に直接描画するため、板厚を10〜300μmのメタルマスクに印刷パターンに対応する開口を高精度に作ることができる。特に板厚を10〜100μm以下のマスクに印刷パターンに対応する開口を高精度に作ることができる。中でも特に板厚を約10μmのメタルマスクに印刷パターンに対応する開口を高精度に作ることができる。さらに、この厚さの板厚に、開口壁面にテーパーを付けた印刷パターンに対応する開口を作ることができる。
According to the method of manufacturing the metal mask 1 according to the first embodiment, it is possible to form a taper of an arbitrary angle that spreads from the squeegee surface toward the printing surface on the opening wall surface corresponding to each printing pattern. In principle, the taper angle can be controlled with any resist. In particular, the taper angle can be controlled even with a resist having high peelability and high resolution.
Further, since the print pattern is directly drawn on the resist 11 by the light condensed from the light of the ultrahigh pressure mercury lamp, the opening wall surface roughness is reduced. Specifically, the roughness Ra of the wall surface of the opening corresponding to the print pattern can be set to 0.01 to 0.1 μm. In particular, the roughness Ra of the wall surface of the opening corresponding to the printing pattern can be set to 0.01 to 0.03 μm. In particular, the roughness Ra of the wall surface of the opening corresponding to the printing pattern can be about 0.01. Further, this wall roughness can be realized while the opening wall surface is tapered.
Further, since the print pattern is directly drawn on the resist 11 by the light condensed from the light of the ultra-high pressure mercury lamp, an opening corresponding to the print pattern can be made with high accuracy in a metal mask having a plate thickness of 10 to 300 μm. In particular, an opening corresponding to the print pattern can be made with high accuracy in a mask having a plate thickness of 10 to 100 μm or less. In particular, an opening corresponding to a print pattern can be made with high accuracy in a metal mask having a plate thickness of about 10 μm. Further, an opening corresponding to a printing pattern in which the opening wall surface is tapered can be formed in the thickness of the plate.

実施の形態1に係るメタルマスクによれば、開口部にテーパーを有することにより、インク、ハンダ等の抜け性が向上する。特に、板厚、形状寸法等に合ったテーパーを付けることによりハンダの抜け性が向上する。さらに、開口壁面の面粗さが小さいため、ハンダの抜け性が向上する。
また、薄い板厚に印刷パターンを作ることが可能であるため、印刷の厚さを薄くできる。
According to the metal mask according to the first embodiment, since the opening portion has a taper, the ability to remove ink, solder, and the like is improved. In particular, by attaching a taper suitable for the plate thickness, shape dimension, etc., the solder removability is improved. Furthermore, since the surface roughness of the opening wall surface is small, the solder removability is improved.
Moreover, since it is possible to make a printing pattern with a thin plate thickness, the printing thickness can be reduced.

メタルマスク1のスキージ面から見た図。 The figure seen from the squeegee surface of the metal mask 1. FIG. 図1のA−A’断面図。FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1. 基材10上に形成されたレジスト11を印刷パターン形状に露光する処理を示す図。The figure which shows the process which exposes the resist 11 formed on the base material 10 to a printing pattern shape. 実施の形態1に係る製造方法により製造されたメタルマスクのテーパーを示す図。FIG. 4 is a diagram showing a taper of a metal mask manufactured by the manufacturing method according to the first embodiment. 基材10上にレジスト11をラミネートした状態を示す図。The figure which shows the state which laminated the resist 11 on the base material 10. FIG. 印刷パターンの開口部分に対応するレジストパターン13を形成した状態を示す図。The figure which shows the state in which the resist pattern 13 corresponding to the opening part of a printing pattern was formed. レジストパターン13が形成された部分を除いて、基材10に金属層14をめっきにより形成した状態を示す図。The figure which shows the state which formed the metal layer 14 on the base material 10 by plating except the part in which the resist pattern 13 was formed. 製造されたメタルマスク1を示す図。The figure which shows the manufactured metal mask 1. FIG. 集光された光の光量を200mjとして、直径200μmの開口を開けた場合の集光された光の焦点の深度(μm)を変化させた場合に生成されたメタルマスク1の印刷面の開口寸法(μm)とスキージ面の開口寸法(μm)とを示す図。The aperture size of the printed surface of the metal mask 1 generated when the depth of focus (μm) of the focused light when the aperture with a diameter of 200 μm is opened is changed with the light amount of the collected light being 200 mj. The figure which shows (micrometer) and the opening dimension (micrometer) of a squeegee surface. 図9に示す集光された光の焦点の深度(位置)に対する印刷面の開口寸法(μm)とスキージ面の開口寸法(μm)とを示したグラフ。The graph which showed the opening dimension (micrometer) of the printing surface with respect to the depth (position) of the focus of the condensed light shown in FIG. 9, and the opening dimension (micrometer) of the squeegee surface. 集光された光の光量を150mjとして、直径200μmの開口を開けた場合の集光された光の焦点の深度(μm)を変化させた場合に生成されたメタルマスク1の印刷面の開口寸法(μm)とスキージ面の開口寸法(μm)とを示す図。The aperture size of the printed surface of the metal mask 1 generated when the depth of focus (μm) of the focused light when the aperture having a diameter of 200 μm is opened and the amount of the collected light is 150 mj is changed. The figure which shows (micrometer) and the opening dimension (micrometer) of a squeegee surface. 図11に示す集光された光の焦点の深度(位置)に対する印刷面の開口寸法(μm)とスキージ面の開口寸法(μm)とを示したグラフ。The graph which showed the opening dimension (micrometer) of the printing surface with respect to the depth (position) of the focus of the condensed light shown in FIG. 11, and the opening dimension (micrometer) of the squeegee surface. 集光された光の光量を200mjとして、直径100μmの開口を開けた場合の集光された光の焦点の深度(μm)を変化させた場合に生成されたメタルマスク1の印刷面の開口寸法(μm)とスキージ面の開口寸法(μm)とを示す図。The aperture size of the printed surface of the metal mask 1 generated when the depth of focus (μm) of the focused light when the aperture with a diameter of 100 μm is opened and the amount of the collected light is 200 mj is changed. The figure which shows (micrometer) and the opening dimension (micrometer) of a squeegee surface. 図13に示す集光された光の焦点の深度(位置)に対する印刷面の開口寸法(μm)とスキージ面の開口寸法(μm)とを示したグラフ。The graph which showed the opening dimension (micrometer) of the printing surface with respect to the depth (position) of the focus of the condensed light shown in FIG. 13, and the opening dimension (micrometer) of the squeegee surface. 集光された光の光量を150mjとして、直径100μmの開口を開けた場合の集光された光の焦点の深度(μm)を変化させた場合に生成されたメタルマスク1の印刷面の開口寸法(μm)とスキージ面の開口寸法(μm)とを示す図。The aperture size of the printed surface of the metal mask 1 generated when the depth of focus (μm) of the focused light when the aperture with a diameter of 100 μm is opened and the amount of the collected light is 150 mj is changed. The figure which shows (micrometer) and the opening dimension (micrometer) of a squeegee surface. 図15に示す集光された光の焦点の深度(位置)に対する印刷面の開口寸法(μm)とスキージ面の開口寸法(μm)とを示したグラフ。The graph which showed the opening dimension (micrometer) of the printing surface with respect to the depth (position) of the focus of the condensed light shown in FIG. 15, and the opening dimension (micrometer) of the squeegee surface. 図9、図11、図13、図15に示す集光された光の焦点の深度(位置)に対する印刷面の開口寸法(μm)とスキージ面の開口寸法(μm)とを示したグラフ。The graph which showed the opening dimension (micrometer) of the printing surface with respect to the depth (position) of the focus of the condensed light shown in FIG.9, FIG.11, FIG.13, FIG.15 and the opening dimension (micrometer) of the squeegee surface. 図9、図11、図13、図15に示す各値の位置を示す図である。It is a figure which shows the position of each value shown in FIG.9, FIG.11, FIG.13 and FIG.

メタルマスク、2,3 スキージ面側の開口、4,5 印刷面側の開口、10 基材、11 レジスト、12 レジスト11の表面、13 レジストパターン、14 金属層、21,22,23 開口。 1 metal mask, 2, 3 opening on the squeegee surface side, 4, 5 opening on the printing surface side, 10 base material, 11 resist, 12 surface of the resist 11, 13 resist pattern, 14 metal layer, 21, 22, 23 opening.

Claims (4)

基材に厚さ10〜300μmのレジストをラミネートし、
超高圧水銀灯の光を集光した直描式描画機を用い、集光された光の焦点を上記レジストの表面からずらして、上記レジストに上記集光された光を直接照射することにより、レジストにテーパーを付けて露光し、現像して印刷パターンの開口部分に対応する厚さ10〜300μmのレジストパターンを形成し、
上記レジストパターンが形成された部分を除いて、上記基材に板厚10〜300μmの金属層をめっきにより形成し、
上記レジストパターンを除去し、
上記金属層から基材を剥離することにより、板厚10〜300μmのメタルマスクを得る
ことを特徴とするメタルマスクの製造方法。
Laminate a 10-300 μm thick resist on the substrate,
By using a direct drawing type drawing machine that condenses the light of an ultra-high pressure mercury lamp, the focus of the condensed light is shifted from the surface of the resist, and the resist is irradiated directly with the condensed light. with a tapered exposed to form a resist pattern having a thickness of 10~300μm corresponding to the opening portion of the developed and printed patterns,
Except for the portion where the resist pattern is formed, a metal layer having a plate thickness of 10 to 300 μm is formed on the substrate by plating,
Removing the resist pattern,
A metal mask manufacturing method , wherein a metal mask having a thickness of 10 to 300 m is obtained by peeling a base material from the metal layer.
集光された光の焦点の位置を、上記レジストの表面から上記基材側に20〜100μm又は上記レジスト上面側に20〜80μmずらして、上記レジストに上記集光された光を直接照射する
ことを特徴とする請求項1記載のメタルマスクの製造方法。
Directly irradiate the condensed light to the resist by shifting the focal position of the condensed light from the surface of the resist by 20 to 100 μm toward the base material or from 20 to 80 μm toward the resist upper surface. The method of manufacturing a metal mask according to claim 1.
集光された光の焦点を大きくずらし、開口壁面に大きい角度のテーパーを付ける場合は、レジスト上面側ではなく基材側へ焦点をずらすことを特徴とする請求項1又は請求項2記載のメタルマスクの製造方法。3. The metal according to claim 1, wherein when the focal point of the condensed light is greatly shifted and the opening wall surface is tapered at a large angle, the focal point is shifted not on the resist upper surface side but on the substrate side. Mask manufacturing method. 請求項1から3までのいずれか記載のマスクの製造方法により製造されたメタルマスクであって、上記メタルマスクは、印刷パターンに対応する開口がスキージ面から印刷面へ向かって広がるテーパーを形成するとともに、印刷パターンに対応する開口の壁面の粗さRaを0.01〜0.1μmとした
ことを特徴とするメタルマスク。
4. The metal mask manufactured by the mask manufacturing method according to claim 1, wherein the metal mask forms a taper in which an opening corresponding to a printing pattern extends from the squeegee surface toward the printing surface. In addition, the roughness Ra of the wall surface of the opening corresponding to the print pattern was set to 0.01 to 0.1 μm.
A metal mask characterized by this.
JP2007033739A 2007-02-14 2007-02-14 Metal mask manufacturing method and metal mask manufactured thereby Expired - Fee Related JP5033438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033739A JP5033438B2 (en) 2007-02-14 2007-02-14 Metal mask manufacturing method and metal mask manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033739A JP5033438B2 (en) 2007-02-14 2007-02-14 Metal mask manufacturing method and metal mask manufactured thereby

Publications (2)

Publication Number Publication Date
JP2008197479A JP2008197479A (en) 2008-08-28
JP5033438B2 true JP5033438B2 (en) 2012-09-26

Family

ID=39756466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033739A Expired - Fee Related JP5033438B2 (en) 2007-02-14 2007-02-14 Metal mask manufacturing method and metal mask manufactured thereby

Country Status (1)

Country Link
JP (1) JP5033438B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2966940B1 (en) * 2010-10-27 2013-08-16 Commissariat Energie Atomique DIRECT LASER WRITING BENCH OF MESA STRUCTURES HAVING NEGATIVE SLOPED FLANGES
EP3083219B1 (en) * 2013-12-16 2020-05-06 Pirelli Tyre S.p.A. Method and apparatus to control manufacturing and feeding of semi-finished products in a tyre building process
WO2016052494A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Method for manufacturing flexographic printing plate
KR102081191B1 (en) * 2016-06-24 2020-02-26 에이피시스템 주식회사 A Method for Manufacturing a Fine Metal Mask Using Electroplating
JP2019084697A (en) * 2017-11-02 2019-06-06 ミタニマイクロニクス株式会社 Screen mask, method for producing screen mask, screen printer, method for producing printed matter, and exposure device
KR20190073747A (en) * 2017-12-19 2019-06-27 주식회사 포스코 Deposition metal mask and method for preparing the metal mask

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209128A (en) * 1987-02-25 1988-08-30 Sumitomo Electric Ind Ltd Formation of resist pattern
JP3574270B2 (en) * 1996-04-17 2004-10-06 三菱電機株式会社 Al taper dry etching method
JP2002105621A (en) * 2000-09-27 2002-04-10 Tokyo Process Service Kk Metal plate, its manufacturing method and aligner
JP2003043698A (en) * 2001-08-03 2003-02-13 Seiko Epson Corp Method of manufacturing fine structure, laser lithography system, method of manufacturing electro- optic device and apparatus for manufacturing electro- optic device
JP4065817B2 (en) * 2003-08-12 2008-03-26 株式会社日立ハイテクノロジーズ Exposure process monitoring method

Also Published As

Publication number Publication date
JP2008197479A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5033438B2 (en) Metal mask manufacturing method and metal mask manufactured thereby
KR102155259B1 (en) Production method for film formation mask and film formation mask
JP2007307599A (en) Body formed with through-hole and laser beam machining method
WO2002030636A1 (en) Circuit board production method and circuit board production data
JP2008311617A (en) Nano structure, and manufacturing method of nano structure
JP5118395B2 (en) Mask manufacturing method and mask
JP2007073642A (en) Method of manufacturing printed wiring board
JP5885663B2 (en) Gravure printing plate and method for producing gravure printing plate
RU2323096C2 (en) Method for manufacturing a printing form
JP6107078B2 (en) Imprint mold manufacturing method, pattern forming method, and semiconductor device manufacturing method
JP2007111942A (en) Metal mask and its manufacturing method
CN108747010B (en) SMT ladder template and manufacturing method thereof
JP2010191403A (en) Photomask
JPH07156569A (en) Mask for solder paste and manufacture thereof
JPH11309951A (en) Gravure printing plate, and manufacture of gravure printing plate
JP2005144456A (en) Laser machining method and laser machining apparatus
KR100727371B1 (en) Method for manufacturing a metal mask using multilayer photoresist film and a metal mask using the same
JP2003260884A (en) Printing plate and method for manufacturing it
US20220061157A1 (en) Wiring board and method of forming hole thereof
JP7061895B2 (en) Manufacturing method of imprint mold substrate, mask blank and imprint mold
JP5993270B2 (en) Laser processing method
JP4601941B2 (en) Method for manufacturing transfer mask for charged particle beam and transfer mask for charged particle beam
JP2004253605A (en) Printed wiring board and method for manufacturing it
US20070015064A1 (en) Cr-capped chromeless phase lithography
CN114885504A (en) Micro blind hole laser alignment method and system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

R150 Certificate of patent or registration of utility model

Ref document number: 5033438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees