JP2005144456A - Laser machining method and laser machining apparatus - Google Patents

Laser machining method and laser machining apparatus Download PDF

Info

Publication number
JP2005144456A
JP2005144456A JP2003380773A JP2003380773A JP2005144456A JP 2005144456 A JP2005144456 A JP 2005144456A JP 2003380773 A JP2003380773 A JP 2003380773A JP 2003380773 A JP2003380773 A JP 2003380773A JP 2005144456 A JP2005144456 A JP 2005144456A
Authority
JP
Japan
Prior art keywords
laser
diameter
mask
aperture
laser processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003380773A
Other languages
Japanese (ja)
Inventor
Yutaka Ishihara
裕 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003380773A priority Critical patent/JP2005144456A/en
Publication of JP2005144456A publication Critical patent/JP2005144456A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser machining method and a laser machining apparatus in which laser machining of high accuracy can be realized even when positional deviation attributable to a lift or the like of a surface of a work occurs. <P>SOLUTION: The laser machining apparatus comprises a laser beam oscillator 10, a mask 12 to shape laser beams emitted from the oscillator 10 to a predetermined beam diameter, a mirror 14 to deflect laser beams shaped by the mask 12, an aperture 16 to narrow down the diameter of the laser beams deflected by the mirror 14 to a predetermined value, and a processing lens 18 consisting of a convex lens to focus the laser beams passing through the aperture 16 on the surface of a work 20. The aperture 16 to narrow down the beam diameter of the laser beams shaped by the mask12 to the desired value is disposed before the processing lens 18. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、レーザ加工方法及び装置に係り、特に被加工物の表面位置が光学系に対して変動する場合でも高品質な加工を実現することができるレーザ加工方法及び装置に関する。   The present invention relates to a laser processing method and apparatus, and more particularly to a laser processing method and apparatus capable of realizing high-quality processing even when the surface position of a workpiece varies with respect to an optical system.

一般に、電子機器等の配線に使用されているプリント配線基板等の被加工物(以下、ワークともいう)に、レーザ光を照射して穴あけ等を行なうレーザ加工が行なわれている(例えば、特許文献1参照)。   Generally, laser processing is performed in which a workpiece (hereinafter also referred to as a workpiece) such as a printed wiring board used for wiring of an electronic device or the like is irradiated with a laser beam to make a hole (for example, a patent) Reference 1).

例えば、ポリイミド樹脂等からなる基板に、その表裏両面に被着形成されている配線を接続するための、いわゆるビア(Via)ホールをレーザ加工する場合等において、所望の形状に高精度に加工するためには、ワーク表面でレーザビームがトップフラットに結像するようにすることが有効である。   For example, when a so-called via hole for connecting wirings deposited on both sides of a substrate made of polyimide resin or the like is laser processed, it is processed into a desired shape with high accuracy. For this purpose, it is effective to make the laser beam form a top flat image on the workpiece surface.

特開平9−253877号公報JP-A-9-253877

しかしながら、ワーク表面でトップフラットに結像したレーザビームは、結像点から通常0.2mm程度ずれただけで、トップフラットの結像状態が崩れてしまうため、ワークの浮き上がり等によりその表面位置がずれている場合には、加工品質に悪影響を及ぼす場合があるという問題があった。   However, the laser beam focused on the workpiece surface in a flat top is usually displaced by about 0.2 mm from the imaging point, and the imaging state of the top flat is lost. In the case of deviation, there is a problem that the processing quality may be adversely affected.

本発明は、前記従来の問題点を解決するべくなされたもので、被加工物の表面に浮き上がり等に起因する位置ずれがある場合でも、高精度に穴あけ等の加工を行なうことができるレーザ加工方法及び装置を提供することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and laser processing capable of performing processing such as drilling with high accuracy even when there is a positional shift caused by lifting or the like on the surface of the workpiece. It is an object to provide a method and an apparatus.

本発明は、レーザ光を結像光学系を介して被加工物の表面に集光して加工するレーザ加工方法において、レーザ光を、前記結像光学系の途中で絞り、前記被加工物の表面における結像深度を拡大することにより、前記課題を解決したものである。   The present invention relates to a laser processing method for condensing and processing a laser beam on the surface of a workpiece through an imaging optical system, and squeezing the laser beam in the middle of the imaging optical system, The problem is solved by enlarging the imaging depth on the surface.

本発明は、又、レーザ光を、前記結像光学系に含まれる加工レンズの手前で絞るようにしたものである。   In the present invention, the laser beam is focused before a processing lens included in the imaging optical system.

本発明は、又、必要な結像深度をΔF〔μm〕とする場合、前記レーザ光の絞り径:D〔mm〕を、次式
D=2f(R/ΔF)
(ここで、fは加工レンズの焦点距離〔mm〕、Rは許容可能な結像のずれ〔μm〕)により設定するようにしたものである。
In the present invention, when the necessary imaging depth is ΔF [μm], the aperture diameter of the laser beam: D [mm] is expressed by the following formula: D = 2f (R / ΔF)
(Where f is the focal length [mm] of the processing lens, and R is an allowable imaging shift [μm]).

本発明は、又、レーザ光を、前記結像光学系の手前でマスクにより整形し、前記被加工物の表面に結像させる場合、整形後のレーザ光を、該マスクからの少なくとも1次回折光を通過する径に絞るようにしたものである。   In the present invention, when the laser beam is shaped with a mask before the imaging optical system and formed on the surface of the workpiece, the shaped laser beam is at least first-order diffracted light from the mask. It is made to narrow down to the diameter which passes through.

又、その際、前記レーザ光の絞り径:D〔mm〕を、次式
d+2.23λL/d≦D
(ここで、dはマスク径〔mm〕、λは使用するレーザの波長〔mm〕、Lはマスクからアパーチャまでの距離〔mm〕)の関係を満足するように設定するようにしたものである。
At that time, the aperture diameter of the laser beam: D [mm] is expressed by the following formula: d + 2.23λL / d ≦ D
(Where d is the mask diameter [mm], λ is the wavelength of the laser to be used [mm], and L is the distance from the mask to the aperture [mm]). .

本発明は、又、レーザ光を結像光学系を介して被加工物の表面に集光して加工するレーザ加工装置において、レーザ光を、前記結像光学系の途中で絞る絞り手段を設置し、前記被加工物の表面における結像深度を拡大したことにより、同様に前記課題を解決したものである。   The present invention also provides a diaphragm means for condensing laser light in the middle of the imaging optical system in a laser processing apparatus for condensing and processing the laser light on the surface of the workpiece via the imaging optical system. And the said subject is solved similarly by enlarging the imaging depth in the surface of the said to-be-processed object.

本発明は、又、前記絞り手段を、前記結像光学系に含まれる加工レンズの手前に設置するようにしたものである。   In the present invention, the diaphragm means is installed in front of a processing lens included in the imaging optical system.

本発明は、又、必要な結像深度をΔF〔μm〕とする場合、前記レーザ光を絞る絞り手段の径:D〔mm〕を、次式
D=2f(R/ΔF)
(ここで、fは加工レンズの焦点距離〔mm〕、Rは許容可能な結像のずれ〔μm〕)により設定するようにしたものである。
In the present invention, when the necessary imaging depth is ΔF [μm], the diameter of the diaphragm means for constricting the laser beam: D [mm] is expressed by the following equation: D = 2f (R / ΔF)
(Where f is the focal length [mm] of the processing lens, and R is an allowable imaging shift [μm]).

本発明は、又、レーザ光を、前記結像光学系の手前でマスクにより整形し、前記被加工物の表面に結像させる場合、整形後のレーザ光を、前記絞り手段により該マスクからの少なくとも1次回折光が通過する径に絞るようにしたものである。   In the present invention, when the laser beam is shaped with a mask before the imaging optical system and is imaged on the surface of the workpiece, the shaped laser beam is separated from the mask by the aperture means. The diameter is limited to at least the diameter through which the first-order diffracted light passes.

又、その際、前記レーザ光を絞る絞り手段の径:D〔mm〕を、次式
d+2.23λL/d≦D
(ここで、dはマスク径〔mm〕、λは使用するレーザの波長〔mm〕、Lはマスクからアパーチャまでの距離〔mm〕)の関係を満足するように設定するようにしたものである。
In this case, the diameter of the diaphragm means D (mm) for narrowing the laser beam is expressed by the following equation: d + 2.23λL / d ≦ D
(Where d is the mask diameter [mm], λ is the wavelength of the laser to be used [mm], and L is the distance from the mask to the aperture [mm]). .

本発明によれば、被加工物の表面にレーザ光を集光して加工する際、結像光学系においてビーム径を絞るようにしたので、結像深度を拡大する(高める)ことが可能となる。このように、カメラの絞りの原理を加工光学系に適用することにより、結像深度を飛躍的に改善できることから、レーザビームをトップフラットの状態で到達できる範囲を拡大することが可能となり、被加工物に対して高精度加工を実現できるようになった。   According to the present invention, when the laser beam is focused on the surface of the workpiece and processed, the beam diameter is reduced in the imaging optical system, so that the imaging depth can be expanded (increased). Become. Thus, by applying the camera aperture principle to the processing optical system, the imaging depth can be drastically improved, so that the range in which the laser beam can reach the top flat state can be expanded, High precision machining can be realized for workpieces.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1には、本発明に係る一実施形態のレーザ加工装置の概要を示す。   In FIG. 1, the outline | summary of the laser processing apparatus of one Embodiment which concerns on this invention is shown.

本実施形態のレーザ加工装置は、レーザ発振器10と、該発振器10から発振されるレーザ光を、所定のビーム径に整形するマスク12と、該マスク12により整形されたレーザ光を偏向するミラー14と、該ミラー14により偏向されたレーザ光を所定の径に絞り込むアパーチャ(絞り手段)16と、該アパーチャ16を通過したレーザ光をワーク(被加工物)20の表面に結像させる凸レンズからなる加工レンズ18とを備え、結像光学系は、ミラー14と加工レンズ18とを含んで構成されている。   The laser processing apparatus of this embodiment includes a laser oscillator 10, a mask 12 that shapes laser light oscillated from the oscillator 10 into a predetermined beam diameter, and a mirror 14 that deflects the laser light shaped by the mask 12. And an aperture (aperture means) 16 that narrows the laser light deflected by the mirror 14 to a predetermined diameter, and a convex lens that forms an image of the laser light that has passed through the aperture 16 on the surface of the workpiece (workpiece) 20. The image forming optical system includes the mirror 14 and the processing lens 18.

本実施形態では、加工レンズ18の手前(結像光学系の途中)にアパーチャ16を配設したので、マスク12により整形されたレーザ光のビーム径を所望の大きさに絞ることが可能となる。このようにアパーチャ16を配設したことにより、ワーク20の表面(加工面)における光エネルギは若干下がってしまうが、結像深度を拡大することが可能となる。   In the present embodiment, since the aperture 16 is disposed in front of the processing lens 18 (in the middle of the imaging optical system), the beam diameter of the laser light shaped by the mask 12 can be reduced to a desired size. . By arranging the aperture 16 in this way, the light energy on the surface (worked surface) of the workpiece 20 is slightly lowered, but the imaging depth can be increased.

即ち、図2に一般的な結像レンズ(凸レンズ)による結像の原理を示すように、同図(A)の光学系に比べ、同図(B)のように集光させる凸レンズ(結像レンズ)の手前にアパーチャ(絞り)を挿入した場合には、図中像側焦点面の矢印範囲で示す結像深度が大きくなる。   That is, as shown in FIG. 2, a convex lens (image forming) that is focused as shown in FIG. 2 (B) as compared to the optical system shown in FIG. When an aperture (aperture) is inserted in front of the lens), the imaging depth indicated by the arrow range on the image-side focal plane in the figure increases.

従って、本実施形態によれば、飛躍的に結像深度を改善できることから、ワーク20の表面にレーザビームをトップフラットのモードで結像させる場合には、図3にフォーカス位置に対して両方向矢印でトップフラットの範囲を示すように、アパーチャ16を配設しない従来法に比べて、ダメージが発生しない範囲を大幅に拡大することができる。   Therefore, according to the present embodiment, since the imaging depth can be dramatically improved, when a laser beam is imaged on the surface of the workpiece 20 in the top flat mode, a double-pointed arrow with respect to the focus position is shown in FIG. As shown by the top flat range, compared with the conventional method in which the aperture 16 is not disposed, the range in which no damage occurs can be greatly expanded.

その結果、フレキシブル配線基板等の薄いワークを加工する場合等において、ワークの反りや浮き上がり、厚みのバラツキ等によりフォーカス位置がずれてしまったとしても、そのずれの影響を最小限に抑えることができるため、加工品質の低下を防止できる。   As a result, when processing thin workpieces such as flexible wiring boards, even if the focus position shifts due to workpiece warpage, lifting, thickness variation, etc., the effect of the shift can be minimized. Therefore, it is possible to prevent the processing quality from being lowered.

従って、図4に、樹脂フィルム20Aの表裏両面に銅箔からなる所定形状の配線20B、20Cが形成されているフレキシブル配線基板からなるワーク20の一部断面を拡大して模式的に示すように、ビームモードが鋭い場合に薄い底面配線20Cに発生し易い断線等のダメージ20Dの発生を有効に防止できると共に、ビアホールを高精度に加工することができる。   Therefore, as shown schematically in FIG. 4, an enlarged partial cross-section of the work 20 made of a flexible wiring board in which predetermined shapes of wiring 20B and 20C made of copper foil are formed on both front and back surfaces of the resin film 20A is shown. In addition, it is possible to effectively prevent the occurrence of damage 20D such as disconnection that is likely to occur in the thin bottom surface wiring 20C when the beam mode is sharp, and the via hole can be processed with high accuracy.

又、本実施形態においては、前記加工レンズ18の前に挿入したアパーチャ16の径を、マスク12との関係で以下のように設定する。   In the present embodiment, the diameter of the aperture 16 inserted in front of the processing lens 18 is set as follows in relation to the mask 12.

いま、図5に模式的に示すように、加工レンズ18の焦点距離をf〔mm〕、アパーチャ16の径をD〔mm〕、許容可能な結像のずれをR〔μm〕としたとき、必要な決像深度をΔF〔μm〕とすれば、以下の式で必要なアパーチャ径が求められる。ここで、Rは、光学系の解像度により決定される値で、一般的には、加工レンズの最小スポット径となる。   Now, as schematically shown in FIG. 5, when the focal length of the processing lens 18 is f [mm], the diameter of the aperture 16 is D [mm], and the allowable imaging deviation is R [μm], If the required resolution depth is ΔF [μm], the required aperture diameter can be obtained by the following equation. Here, R is a value determined by the resolution of the optical system, and is generally the minimum spot diameter of the processing lens.

D=2f(R/ΔF) …(1)     D = 2f (R / ΔF) (1)

つまり、加工レンズ18を変えないで結像深度を2倍にした場合、アパーチャ径を2分の1とすれば良い。   That is, when the imaging depth is doubled without changing the processing lens 18, the aperture diameter may be halved.

換言すれば、アパーチャ径Dを小さくする程、結像深度ΔFを大きくすることができ、
マスク12からの像を転写させて加工面に結像させる場合には、それだけマスク12からの高次回折光を遮断することができる。
In other words, the smaller the aperture diameter D, the larger the imaging depth ΔF,
When the image from the mask 12 is transferred and formed on the processing surface, higher-order diffracted light from the mask 12 can be blocked accordingly.

ただし、この場合には、極力光エネルギを確保できるように、少なくとも1次の回折光を取り込む必要があり、そのためには、以下の式を同時に満足するように設定する必要がある。   However, in this case, it is necessary to capture at least the first-order diffracted light so that light energy can be ensured as much as possible. For that purpose, it is necessary to set so as to satisfy the following expressions simultaneously.

d+2.23λL/d≦D …(2)     d + 2.23λL / d ≦ D (2)

ここで、Lはマスク12からアパーチャ16までの距離〔mm〕、dはマスク径〔mm〕、λは使用するレーザの波長〔mm〕である。   Here, L is the distance [mm] from the mask 12 to the aperture 16, d is the mask diameter [mm], and λ is the wavelength of the laser used [mm].

なお、本発明は、前述した配線基板の穴あけ加工に限定されるものでなく、結像光学系を使用する任意のレーザ加工技術に適用可能であることは言うまでもない。   Needless to say, the present invention is not limited to the above-described drilling of a wiring board, and can be applied to any laser processing technique using an imaging optical system.

以上説明したとおり、本発明によれば、被加工物の表面に浮き上がり等に起因する位置ずれが発生している場合でも、該被加工物に対して穴あけ等のレーザ加工を高精度で行なうことができる。   As described above, according to the present invention, laser processing such as drilling can be performed on the workpiece with high accuracy even when a positional deviation caused by lifting or the like occurs on the surface of the workpiece. Can do.

本発明に係る一実施形態のレーザ加工装置の概要を示すブロック図The block diagram which shows the outline | summary of the laser processing apparatus of one Embodiment which concerns on this invention レーザ加工装置の結像光学系にアパーチャを適用する原理を示す模式図Schematic diagram showing the principle of applying an aperture to the imaging optical system of a laser processing device 本発明の作用を従来例と比較して示す模式図Schematic diagram illustrating the operation of the present invention compared to the conventional example 本発明の効果を示すワークの拡大部分断面図Enlarged partial sectional view of a work showing the effect of the present invention アパーチャ径とマスク径の関係を示す模式図Schematic diagram showing the relationship between aperture diameter and mask diameter

符号の説明Explanation of symbols

10…レーザ発振器
12…マスク
14…ミラー
16…アパーチャ(絞り手段)
18…加工レンズ
20…ワーク(被加工物)
DESCRIPTION OF SYMBOLS 10 ... Laser oscillator 12 ... Mask 14 ... Mirror 16 ... Aperture (stop means)
18 ... Processing lens 20 ... Workpiece (workpiece)

Claims (10)

レーザ光を結像光学系を介して被加工物の表面に集光して加工するレーザ加工方法において、
レーザ光を、前記結像光学系の途中で絞り、前記被加工物の表面における結像深度を拡大することを特徴とするレーザ加工方法。
In a laser processing method for condensing and processing laser light on the surface of a workpiece via an imaging optical system,
A laser processing method, characterized in that laser light is throttled in the middle of the imaging optical system to increase the imaging depth on the surface of the workpiece.
レーザ光を、前記結像光学系に含まれる加工レンズの手前で絞ることを特徴とする請求項1に記載のレーザ加工方法。   The laser processing method according to claim 1, wherein the laser beam is focused before a processing lens included in the imaging optical system. 必要な結像深度をΔF〔μm〕とする場合、前記レーザ光の絞り径:D〔mm〕を、次式
D=2f(R/ΔF)
(ここで、fは加工レンズの焦点距離〔mm〕、Rは許容可能な結像のずれ〔μm〕)
により設定することを特徴とする請求項1又は2に記載のレーザ加工方法。
When the required imaging depth is ΔF [μm], the aperture diameter of the laser beam: D [mm] is expressed by the following formula: D = 2f (R / ΔF)
(Where f is the focal length of the processing lens [mm], and R is an allowable imaging deviation [μm])
The laser processing method according to claim 1, wherein the laser processing method is set by:
レーザ光を、前記結像光学系の手前でマスクにより整形し、前記被加工物の表面に結像させる場合、整形後のレーザ光を、該マスクからの少なくとも1次回折光が通過する径に絞ることを特徴とする請求項1、2又は3に記載のレーザ加工方法。   When laser light is shaped by a mask before the imaging optical system and imaged on the surface of the workpiece, the shaped laser light is narrowed to a diameter through which at least the first-order diffracted light from the mask passes. The laser processing method according to claim 1, 2, or 3. 前記レーザ光の絞り径:D〔mm〕を、次式
d+2.23λL/d≦D
(ここで、dはマスク径〔mm〕、λは使用するレーザの波長〔mm〕、Lはマスクからアパーチャまでの距離〔mm〕)
の関係を満足するように設定することを特徴とする請求項4に記載のレーザ加工方法。
The aperture diameter of the laser beam: D [mm] is expressed by the following formula: d + 2.23λL / d ≦ D
(Where d is the mask diameter [mm], λ is the wavelength of the laser used [mm], and L is the distance from the mask to the aperture [mm])
The laser processing method according to claim 4, wherein the laser processing method is set so as to satisfy the relationship.
レーザ光を結像光学系を介して被加工物の表面に集光して加工するレーザ加工装置において、
レーザ光を、前記結像光学系の途中で絞る絞り手段を設置し、前記被加工物の表面における結像深度を拡大したことを特徴とするレーザ加工装置。
In a laser processing apparatus that focuses and processes laser light on the surface of a workpiece via an imaging optical system,
A laser processing apparatus characterized in that a diaphragm means for condensing laser light in the middle of the imaging optical system is installed to expand the imaging depth on the surface of the workpiece.
前記絞り手段を、前記結像光学系に含まれる加工レンズの手前に設置したことを特徴とする請求項6に記載のレーザ加工装置。   The laser processing apparatus according to claim 6, wherein the aperture means is installed in front of a processing lens included in the imaging optical system. 必要な結像深度をΔF〔μm〕とする場合、前記レーザ光を絞る絞り手段の径:D〔mm〕を、次式
D=2f(R/ΔF)
(ここで、fは加工レンズの焦点距離〔mm〕、Rは許容可能な結像のずれ〔μm〕)
により設定することを特徴とする請求項6又は7に記載のレーザ加工装置。
When the required imaging depth is ΔF [μm], the diameter of the diaphragm means D for narrowing the laser beam: D [mm] is expressed by the following formula: D = 2f (R / ΔF)
(Where f is the focal length of the processing lens [mm], and R is an allowable imaging deviation [μm])
The laser processing apparatus according to claim 6, wherein the laser processing apparatus is set by:
レーザ光を、前記結像光学系の手前でマスクにより整形し、前記被加工物の表面に結像させる場合、整形後のレーザ光を、前記絞り手段により該マスクからの少なくとも1次回折光が通過する径に絞ることを特徴とする請求項6、7又は8に記載のレーザ加工装置。   When laser light is shaped by a mask before the imaging optical system and imaged on the surface of the workpiece, at least first-order diffracted light from the mask passes through the shaped laser light by the aperture means. The laser processing apparatus according to claim 6, wherein the laser processing apparatus is narrowed down to a diameter to be processed. 前記レーザ光を絞る絞り手段の径:D〔mm〕を、次式
d+2.23λL/d≦D
(ここで、dはマスク径〔mm〕、λは使用するレーザの波長〔mm〕、Lはマスクからアパーチャまでの距離〔mm〕)
の関係を満足するように設定することを特徴とする請求項9に記載のレーザ加工装置。
The diameter of the diaphragm means for narrowing the laser beam: D [mm] is expressed by the following formula: d + 2.23λL / d ≦ D
(Where d is the mask diameter [mm], λ is the wavelength of the laser used [mm], and L is the distance from the mask to the aperture [mm])
The laser processing apparatus according to claim 9, wherein the laser processing apparatus is set so as to satisfy the relationship.
JP2003380773A 2003-11-11 2003-11-11 Laser machining method and laser machining apparatus Withdrawn JP2005144456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380773A JP2005144456A (en) 2003-11-11 2003-11-11 Laser machining method and laser machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380773A JP2005144456A (en) 2003-11-11 2003-11-11 Laser machining method and laser machining apparatus

Publications (1)

Publication Number Publication Date
JP2005144456A true JP2005144456A (en) 2005-06-09

Family

ID=34690345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380773A Withdrawn JP2005144456A (en) 2003-11-11 2003-11-11 Laser machining method and laser machining apparatus

Country Status (1)

Country Link
JP (1) JP2005144456A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107011A (en) * 2007-11-01 2009-05-21 Sumitomo Heavy Ind Ltd Laser beam machining device, and laser beam machining method
JP2012521893A (en) * 2009-03-30 2012-09-20 ボエグリ − グラビュル ソシエテ アノニム Method and apparatus for structuring solid surfaces coated with hard materials by laser
US9993895B2 (en) 2009-03-30 2018-06-12 Boegli-Gravures Sa Method and device for structuring the surface of a hard material coated solid body by means of a laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107011A (en) * 2007-11-01 2009-05-21 Sumitomo Heavy Ind Ltd Laser beam machining device, and laser beam machining method
JP2012521893A (en) * 2009-03-30 2012-09-20 ボエグリ − グラビュル ソシエテ アノニム Method and apparatus for structuring solid surfaces coated with hard materials by laser
US9156107B2 (en) 2009-03-30 2015-10-13 Boegli-Gravures S.A. Method and device for structuring the surface of a hard material coated solid body by means of a laser
US9993895B2 (en) 2009-03-30 2018-06-12 Boegli-Gravures Sa Method and device for structuring the surface of a hard material coated solid body by means of a laser

Similar Documents

Publication Publication Date Title
JP3473268B2 (en) Laser processing equipment
US9843155B2 (en) Method and apparatus for forming fine scale structures in dielectric substrate
JP2008221299A (en) Laser beam machining apparatus
JP5242036B2 (en) Laser processing equipment
JP2005279659A (en) Laser marking method, laser marking apparatus, and mark reading method
JP4711774B2 (en) Processing method for flat work
JP5033438B2 (en) Metal mask manufacturing method and metal mask manufactured thereby
JP2005144456A (en) Laser machining method and laser machining apparatus
JP2007029990A (en) Laser beam machining apparatus, and laser beam machining method
JP2002120080A (en) Laser beam machining device
JP4698200B2 (en) Laser processing method and laser processing apparatus
JP2003290959A (en) Laser beam machining method
JP2005347552A (en) Method of determining position of reference point
JP2014183152A (en) Via hole formation method and desmear device
JP2006259127A (en) Optical device
JP3385504B2 (en) Laser processing apparatus and irradiation method using laser processing apparatus
JP4177730B2 (en) Laser processing method and apparatus
JP3795816B2 (en) Laser processing equipment
JP2005103630A (en) Laser beam machining device and method
JP3180806B2 (en) Laser processing method
JP2008117989A (en) Metal mask for solder printing, and its printing method
JP2002120081A (en) Method and device for laser beam machining
JP3299345B2 (en) Printed circuit board manufacturing method
JP2003236690A (en) Laser beam machining method
JP2004098121A (en) Method and apparatus for laser beam machining

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061205