JP5029344B2 - Thermoplastic resin molded product - Google Patents

Thermoplastic resin molded product Download PDF

Info

Publication number
JP5029344B2
JP5029344B2 JP2007331318A JP2007331318A JP5029344B2 JP 5029344 B2 JP5029344 B2 JP 5029344B2 JP 2007331318 A JP2007331318 A JP 2007331318A JP 2007331318 A JP2007331318 A JP 2007331318A JP 5029344 B2 JP5029344 B2 JP 5029344B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
molded product
resin molded
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007331318A
Other languages
Japanese (ja)
Other versions
JP2009155359A (en
Inventor
正博 鈴木
由高 竹澤
淳 金井
祐哲 上甫木
浩之 山仲
保仁 岩月
房郎 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2007331318A priority Critical patent/JP5029344B2/en
Publication of JP2009155359A publication Critical patent/JP2009155359A/en
Application granted granted Critical
Publication of JP5029344B2 publication Critical patent/JP5029344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、樹脂熱伝導率と機械特性を両立した熱可塑性樹脂成形品に関するものである。   The present invention relates to a thermoplastic resin molded article having both resin thermal conductivity and mechanical properties.

各種電気・電子機器の高性能化・小型軽量化に伴い、実装部品あるいは周囲部品の発熱により機器が高温状態にさらされる。熱による各種部材の劣化,実装部品の機能低下を抑制するため、樹脂成形品の耐熱性を高める検討がなされている。これまでに、耐熱性の優れた熱可塑性樹脂に高熱伝導無機物を高充填化させ、耐熱性の高い樹脂成形品を提供することが知られている。しかし、このような樹脂成形品は、脆く、機械特性が低下したり、流動性が極度に低下して成形が不可能になる問題があった。   As various electric and electronic devices become higher performance, smaller, and lighter, the devices are exposed to high temperatures due to the heat generated by the mounted components and surrounding components. In order to suppress deterioration of various members due to heat and deterioration of functions of mounted components, studies have been made to increase the heat resistance of resin molded products. Hitherto, it has been known that a highly heat-conductive inorganic material is highly filled in a thermoplastic resin having excellent heat resistance to provide a resin molded product having high heat resistance. However, such a resin molded product is brittle and has a problem that the mechanical properties are lowered or the fluidity is extremely lowered to make the molding impossible.

特開平8−170024号公報(特許文献1)では、熱可塑性樹脂(A)と液晶性樹脂(B)を、液晶性樹脂(B)が熱可塑性樹脂(A)のマトリックス相に特定状態で分散させた組成物を用いることで、機械的特性の優れた射出成形品が得られることが開示されている。   In JP-A-8-170024 (Patent Document 1), a thermoplastic resin (A) and a liquid crystalline resin (B) are dispersed in a specific state in a matrix phase of the thermoplastic resin (A). It is disclosed that an injection molded product having excellent mechanical properties can be obtained by using the prepared composition.

特開平8−170024号公報JP-A-8-170024

しかしながら、樹脂成形品の放熱性を高めるため無機物を高充填すると、熱伝導性が向上するものの、溶融粘度が大きくなり成形性が悪くなったり、機械特性が低下するという問題がある。本願発明の目的は、上記相反する課題である高熱伝導率の達成と、高い機械特性とを両立した熱可塑性樹脂の成形品を提供することにある。   However, when the inorganic material is highly filled to enhance the heat dissipation of the resin molded product, the thermal conductivity is improved, but there is a problem that the melt viscosity is increased and the moldability is deteriorated or the mechanical properties are lowered. An object of the present invention is to provide a molded article of a thermoplastic resin that achieves both the achievement of high thermal conductivity, which is the above-mentioned conflicting problem, and high mechanical properties.

上記課題を解決する本発明は、基質相(マトリックス相)を構成する熱可塑性樹脂、島状の分散相(ドメイン)を構成する熱可塑性樹脂を用いた熱可塑性樹脂の成形品である。本願発明者らは、ドメインの大きさ,比率を調整することにより、熱伝導率と機械特性を両立しうる成形品が得られることを見出した。本発明の特徴点は、分散相の熱可塑性樹脂が、50μm〜300μmの島状ドメイン、20μm以下の島状ドメインの二種類の大きさのドメインを有し、50μm〜300μmの島状ドメインが30体積%〜70体積%、20μm以下の島状ドメインが70体積%〜30体積%存在する熱可塑性樹脂成形品にある。特に、マトリクス相と分散相との比率は、マトリックス相の熱可塑性樹脂が40vol%〜70vol%、分散相の熱可塑性樹脂が60vol%〜30vol%であることがよい。 The present invention for solving the above problems is a molded article of a thermoplastic resin using a thermoplastic resin constituting a matrix phase (matrix phase) and a thermoplastic resin constituting an island-like dispersed phase (domain). The inventors of the present application have found that by adjusting the size and ratio of the domain, a molded product having both thermal conductivity and mechanical properties can be obtained. The feature of the present invention is that the thermoplastic resin in the dispersed phase has two types of domains, that is, an island-shaped domain of 50 μm to 300 μm and an island-shaped domain of 20 μm or less, and 30 of the island-shaped domains of 50 μm to 300 μm are 30 It is in a thermoplastic resin molded article in which 70 % to 30 % by volume of island domains having a volume% to 70 % by volume and 20 μm or less exist. In particular, the ratio of Matrigel Tsu box phase and a dispersed phase, 40 vol% thermoplastic resin matrix phase ~70Vol%, the thermoplastic resin of the dispersed phase may be a 60vol% ~30vol%.

分散相を形成する熱可塑性樹脂は、液晶性樹脂(LCP)である。マトリックス相の熱可塑性樹脂は、ポリフェニレンサルファイドである。分散相を形成する熱可塑性樹脂として、さらに、溶融温度の異なる別の熱可塑性樹脂を含み、当該別の熱可塑性樹脂が、液晶性樹脂(LCP),ポリアミド樹脂(PA),ポリブチレンテレフタレート(PBT)のいずれかであると、さらに耐熱性が向上し好ましい。 The thermoplastic resin forming the dispersed phase is a liquid crystalline resin (LCP). The matrix phase thermoplastic resin is polyphenylene sulfide . The thermoplastic resin forming the dispersed phase further includes another thermoplastic resin having a different melting temperature, and the other thermoplastic resin is a liquid crystalline resin (LCP), a polyamide resin (PA), a polybutylene terephthalate (PBT). ) Is preferable because the heat resistance is further improved.

また、上記課題を解決する他の本発明は、マトリックス相を構成する熱可塑性樹脂に、分散相を構成する熱可塑性樹脂を混合し、ポリマーアロイ化する工程を有する、熱可塑性樹脂成形品の製造方法にある。熱可塑性樹脂には、無機充填材を混合してもよく、ガラスファイバ,窒化ホウ素,炭酸カルシウム,酸化マグネシウム等は、混練,成形時の加工性がよいので好ましい。   In another aspect of the present invention for solving the above problems, a thermoplastic resin molded article having a step of mixing a thermoplastic resin constituting a matrix phase with a thermoplastic resin constituting a dispersed phase and polymerizing the thermoplastic resin. Is in the way. An inorganic filler may be mixed with the thermoplastic resin, and glass fiber, boron nitride, calcium carbonate, magnesium oxide and the like are preferable because of good workability during kneading and molding.

本発明によれば、高い熱伝導率と機械特性のよさとを両立した熱可塑性樹脂成形品を提供することができ、放熱性が必要な電気・電子関連機器に好適に用いることが可能である。   According to the present invention, it is possible to provide a thermoplastic resin molded product that achieves both high thermal conductivity and good mechanical properties, and it can be suitably used for electrical and electronic equipment that requires heat dissipation. .

本願発明者らは、大きいドメインと、小さいドメインとが共存する状態にすることにより、曲げ強度を維持したまま熱伝導率を向上させることができると考えた。そのためには、ドメインの分散を広くすることが簡便である。ドメインの大きさは、マトリクスとなる樹脂とドメインとなる樹脂の相性や、粘度の差によって異なる。そのため、分子量分布の大きい樹脂を混合したり、ドメインとなる樹脂として複数種類の樹脂を混合することにより、ドメインの大きさの分散を広くすることが可能となる。 The inventors of the present application considered that the thermal conductivity can be improved while maintaining the bending strength by making the large domain and the small domain coexist. For this purpose, it is easy to widen the domain distribution. The size of the domain, compatibility or resin as a resin and the domain of the Matrigel Tsu box differs by the difference in viscosity. Therefore, it is possible to widen the dispersion of the domain size by mixing a resin having a large molecular weight distribution or mixing a plurality of types of resins as the resin to be a domain.

本発明は、少なくともマトリックス相を構成する熱可塑性樹脂(A)と分散相を構成する熱可塑性樹脂(B)の二種類の樹脂を含む熱可塑性樹脂成形品であり、分散相のうち、50μm〜300μmの島状ドメインが30体積%〜70体積%、20μm以下の島状ドメインが70体積%〜30体積%存在する。熱可塑性樹脂AとBとの比率は、A:B=40〜70vol%:60〜30vol%である。熱可塑性樹脂Aは、溶融温度(融点)280℃以上の高耐熱性を有する樹脂がよく、ポリフェニレンサルファイドが好適である。熱可塑性樹脂Bは、液晶性樹脂や、ポリアミド樹脂,ポリブチレンテレフタレート,ポリカーボネートがよい。なお、液晶性樹脂とは、溶融状態で樹脂化合物の少なくとも一部が規則的に配列する性質を有する樹脂の総称である。熱可塑性樹脂Bとして、溶融温度の異なる樹脂化合物を二種類以上用いると、大きさの異なるドメインを得ることが容易である。その場合、溶融温度は、20℃以上異なることが好ましい。   The present invention is a thermoplastic resin molded article containing at least two types of resins, that is, a thermoplastic resin (A) constituting a matrix phase and a thermoplastic resin (B) constituting a dispersed phase. There are 30 to 70% by volume of 300 μm island-like domains, and 70 to 30% by volume of island-like domains of 20 μm or less. The ratio of the thermoplastic resins A and B is A: B = 40-70 vol%: 60-30 vol%. The thermoplastic resin A is preferably a resin having high heat resistance with a melting temperature (melting point) of 280 ° C. or higher, and polyphenylene sulfide is preferable. The thermoplastic resin B is preferably a liquid crystalline resin, a polyamide resin, polybutylene terephthalate, or polycarbonate. The liquid crystalline resin is a general term for resins having a property that at least a part of a resin compound is regularly arranged in a molten state. When two or more types of resin compounds having different melting temperatures are used as the thermoplastic resin B, it is easy to obtain domains having different sizes. In that case, the melting temperature is preferably different by 20 ° C. or more.

上記のような樹脂を用いると、成形後の耐熱性に比して、成形時に樹脂組成物が低融点であるので、形状の自由度が高く、また欠陥が少ない。従ってこのような樹脂成形品は高い熱伝導率と曲げ強度の両立ができ、高い放熱性と機械特性が両立できる。また、優れた成形性を有する。   When the resin as described above is used, since the resin composition has a low melting point at the time of molding as compared with the heat resistance after molding, the degree of freedom in shape is high and there are few defects. Therefore, such a resin molded product can achieve both high thermal conductivity and bending strength, and can achieve both high heat dissipation and mechanical properties. Moreover, it has excellent moldability.

また、本発明の熱可塑性樹脂成形品には、樹脂中に無機充填材(C)を混合してもよい。無機充填材Cとしては、ガラスファイバ,窒化ホウ素,炭酸カルシウム,酸化マグネシウムが例示される。これらは目的に応じ複数種類を混合して用いることができる。本発明の樹脂組成物は、無機充填材Cの混練時に粘度が低いので、無機充填材が均一に分散され、熱伝導性,機械強度が全体的に均一な成形品が得られる。   Moreover, you may mix an inorganic filler (C) in resin in the thermoplastic resin molded product of this invention. Examples of the inorganic filler C include glass fiber, boron nitride, calcium carbonate, and magnesium oxide. These may be used in combination of a plurality of types according to the purpose. Since the resin composition of the present invention has a low viscosity when the inorganic filler C is kneaded, the inorganic filler is uniformly dispersed, and a molded product having uniform overall thermal conductivity and mechanical strength is obtained.

このような樹脂成形品は、放熱性と強靭性が必要な電気・電子関連機器,自動車部品等の筐体をはじめ、多くの分野に適する。特に金属製,セラミックス製等のものと比較して形状選択性があるので好ましい。また、成形性の目安である300℃(成形温度)での溶融粘度が低い。従って射出成形が可能であるため生産性に優れ、さらに用途を拡大できる。   Such resin molded products are suitable for many fields including housings for electrical and electronic equipment, automobile parts and the like that require heat dissipation and toughness. In particular, it is preferable because it has shape selectivity as compared with those made of metal or ceramics. In addition, the melt viscosity at 300 ° C. (molding temperature), which is a measure of moldability, is low. Therefore, since injection molding is possible, it is excellent in productivity and can further expand applications.

以下、本発明の実施形態をさらに詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

マトリックス相の熱可塑性樹脂(A),分散相の熱可塑性樹脂(B)としては、熱可塑性樹脂として特に制限されず公知のもの何れも使用が出来、例えば、ポリフェニレンサルファイド,ポリフェニレンサルファイドスルフォン,ポリフェニレンサルファイドケトン,ポリアリレーンサルファイド,ポリケトン系樹脂,ポリエーテルニトリル,ポリベンゾイミダゾール,ポリエーテルサルフォン,ポリサルフォン,熱可塑性ポリイミド,ポリエーテルイミド,ポリアリレート,ポリフェニレンエーテル,ポリアミドイミド,ポリアロマテック樹脂,液晶性樹脂等を挙げられる。これらの中でも、特にポリフェニレンサルファイドが好ましい。これらを二種類以上混ぜ合わせ使用することも可能である。   The thermoplastic resin (A) in the matrix phase and the thermoplastic resin (B) in the dispersed phase are not particularly limited as the thermoplastic resin, and any known one can be used. For example, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfide Ketone, polyarylene sulfide, polyketone resin, polyethernitrile, polybenzimidazole, polyethersulfone, polysulfone, thermoplastic polyimide, polyetherimide, polyarylate, polyphenylene ether, polyamideimide, polyaromatic resin, liquid crystal Resin etc. are mentioned. Among these, polyphenylene sulfide is particularly preferable. It is also possible to use a mixture of two or more of these.

無機充填材(C)としては、公知のものを適宜使用でき、例えば、ガラスビーズ,ガラス粉,ガラスファイバ,窒化ホウ素,珪酸カルシウム,カオリン,タルク,炭酸カルシウム,酸化マグネシウム等を挙げられる。これらを二種類以上混ぜ合わせ使用することも可能である。   As the inorganic filler (C), known materials can be used as appropriate, and examples thereof include glass beads, glass powder, glass fiber, boron nitride, calcium silicate, kaolin, talc, calcium carbonate, magnesium oxide and the like. It is also possible to use a mixture of two or more of these.

これらの無機充填材の使用にあたっては必要ならば表面処理剤を使用することが可能である。表面処理剤としては、例えば、エポキシ系化合物,イソシアネート系化合物,シラン系化合物,チタネート系化合物等の官能性化合物である。これらの化合物は予め表面処理を施して用いるのが好ましい。   When using these inorganic fillers, a surface treatment agent can be used if necessary. Examples of the surface treatment agent include functional compounds such as epoxy compounds, isocyanate compounds, silane compounds, and titanate compounds. These compounds are preferably used after surface treatment.

熱可塑性樹脂成形品には、本発明の効果を損なわない範囲で他の成分、例えば酸化防止剤,熱安定剤,耐候剤,離型剤,滑剤,結晶核剤,流動化剤,染料等を使用することが出来る。また、機械特性,熱伝導率等を向上させるため、無機充填材以外に有機繊維を加えることも可能である。例えば、ポリベンザゾール繊維,ポリイミド繊維等が考えられる。   In the thermoplastic resin molded product, other components such as an antioxidant, a heat stabilizer, a weathering agent, a mold release agent, a lubricant, a crystal nucleating agent, a fluidizing agent, and a dye are added within a range not impairing the effects of the present invention. Can be used. Moreover, in order to improve mechanical characteristics, thermal conductivity, etc., organic fibers can be added in addition to the inorganic filler. For example, polybenzazole fiber, polyimide fiber, etc. can be considered.

また、分散相(B)において50μm〜300μmのドメインが30体積%〜70体積%,20μmの島状ドメインが70体積%〜30体積%含有すことにより優れた特性を有する熱可塑性成形品が得られる。更に、マトリックス相の熱可塑性樹脂(A)40vol%〜70vol%に対して分散相の熱可塑性樹脂(B)70vol%〜30vol%の範囲が可能であるが、好ましくはマトリックス相の熱可塑性樹脂(A)50vol%〜70vol%に対して分散相の熱可塑性樹脂(B)50vol%〜30vol%の範囲である。   In addition, a thermoplastic molded article having excellent characteristics can be obtained by containing 30 to 70% by volume of 50 μm to 300 μm domains and 70 to 30% by volume of 20 μm island domains in the dispersed phase (B). It is done. Furthermore, the thermoplastic resin (A) in the matrix phase (A) can range from 70 vol% to 30 vol% in the dispersed phase thermoplastic resin (B) with respect to 40 vol% to 70 vol%, preferably the matrix phase thermoplastic resin ( A) It is the range of 50 vol%-30 vol% of thermoplastic resin (B) of a dispersed phase with respect to 50 vol%-70 vol%.

小さいドメインが多いと、曲げ強度が向上するものの、熱伝導率が高くなりにくい。一方、大きいドメインが多いと、熱伝導率が高いものの、曲げ強度が低下する問題がある。樹脂の組成と成分比率、成形条件を調整することにより、小さいドメイン,大きいドメインを並存させて樹脂中に分散させることができる。たとえば、マトリクスを形成する樹脂の粘度と、ドメインを形成する樹脂の粘度が近いと、細かいドメインが形成される。大きく異なる粘度を有する場合には、ドメインの大きさは大きくなる。従って、同じ構造を有する樹脂をドメインとする場合は、分子量の大きいものと小さいものが混合された樹脂を用いることにより容易に本発明の成形体を得ることが可能である。 When there are many small domains, although the bending strength is improved, the thermal conductivity is hardly increased. On the other hand, when there are many large domains, although the thermal conductivity is high, there is a problem that the bending strength is lowered. By adjusting the resin composition, component ratio, and molding conditions, small domains and large domains can coexist and be dispersed in the resin. For example, the viscosity of the resin forming the Matrigel Tsu box and close the viscosity of the resin for forming the domain, fine domains are formed. In the case of having vastly different viscosities, the domain size increases. Therefore, when the resin having the same structure is used as the domain, the molded article of the present invention can be easily obtained by using a resin in which a large molecular weight and a small molecular weight are mixed.

また、マトリクスを形成する樹脂と、ドメインを形成する樹脂の側鎖や官能基等の構造の相性によっても、ドメインの大きさは異なる。従って、複数種類のドメインとなる樹脂を混合すると、容易に大きさの異なるドメインの成形体を得ることが可能となる。 Further, the resin forming the Matrigel Tsu box, by affinity of the structure of the side chain or a functional group such as a resin for forming the domain, the different sizes of the domains. Accordingly, when a plurality of types of domains are mixed, it is possible to easily obtain molded articles having different sizes of domains.

本発明で得られた熱可塑性成形品は、例えば、熱交換機,熱放熱板,光ピックアップ等といった内部で発生した熱を外部に放熱する部品に適している。また、それ以外にもLED,センサー,コネクター,ソケット,端子台,モータ部品,ECUケース等の電気・電子部品,照明部品,プリンター関連部品,ファクシミリ関連部品,プロジェクター関連部品,ヒーター,エアコン用部品等の家庭・事務電気製品部品等に用いることが出来る。   The thermoplastic molded article obtained by the present invention is suitable for a part that radiates heat generated inside such as a heat exchanger, a heat radiating plate, an optical pickup and the like. In addition, LEDs, sensors, connectors, sockets, terminal blocks, motor parts, electrical / electronic parts such as ECU cases, lighting parts, printer-related parts, facsimile-related parts, projector-related parts, heaters, air conditioner parts, etc. It can be used for home and office electrical product parts.

以下、実施例により本発明を具体的に説明する。なお、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described specifically by way of examples. The present invention is not limited to these.

まず、各実施例,比較例の樹脂成形品の製造方法を説明する。   First, the manufacturing method of the resin molded product of each Example and a comparative example is demonstrated.

参考例1)
PPSに高熱伝導を有した無機フィラを充填させるためには、樹脂の粘度を下げる必要があった。低粘度化させるには、融点が低く、PPSに含まれる硫黄と相性のよいポリアミドを混合することとした。ポリアミドとPPSを混合することによりドメインを形成し、ポリアミドの分子量分布により大きさの異なるドメインが形成するものと予想した。
( Reference Example 1)
In order to fill PPS with an inorganic filler having high thermal conductivity, it was necessary to reduce the viscosity of the resin. In order to reduce the viscosity, a polyamide having a low melting point and a good compatibility with sulfur contained in PPS was mixed. It was expected that domains were formed by mixing polyamide and PPS, and domains having different sizes were formed due to the molecular weight distribution of the polyamide.

マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:A900)と分散相のポリアミド樹脂(ユニチカ製:ナイロン66,A1030BRL)とを7:3の体積比で混合し、樹脂組成物を得た。樹脂混合物を二軸押出機を用いて、樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機を用いて、成形温度290℃で射出成形し成形品を得た。成形条件は、射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。 A matrix phase polyphenylene sulfide resin (PPS) (manufactured by Toray: A900) and a dispersed phase polyamide resin (unitika: nylon 66, A1030BRL) were mixed at a volume ratio of 7: 3 to obtain a resin composition. The resin mixture was melt-kneaded at a resin temperature of 270 to 290 ° C. using a twin-screw extruder and pelletized. Next, the pellets were injection molded at a molding temperature of 290 ° C. using an injection molding machine to obtain a molded product. The molding conditions are injection pressure: 1200 (kg / cm 2 ), injection speed: 3.5 (m / min).

参考例1の熱可塑性成形品について、当初推定した断面イメージ図を図2−1に示す。一方、電子顕微鏡(SEM)で実際に観察した成形品の断面写真を図2−2に示す。 About the thermoplastic molded article of Reference Example 1, an initially estimated cross-sectional image diagram is shown in FIG. On the other hand, FIG. 2-2 shows a cross-sectional photograph of a molded product actually observed with an electron microscope (SEM).

(実施例
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:A900)樹脂と分散相の液晶性樹脂(上野製薬製:5540G)とを7:3の体積比で混合し、樹脂混合物とした。樹脂組成物を二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、参考例1と同様に成形温度290℃,射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。
(Example 1 )
A matrix phase polyphenylene sulfide resin (PPS) (Toray: A900) resin and a dispersed phase liquid crystal resin (Ueno Pharmaceutical: 5540G) were mixed at a volume ratio of 7: 3 to obtain a resin mixture. The resin composition was melt-kneaded at a resin temperature of 270 to 290 ° C. with a twin-screw extruder and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 3.5 (m / min) as in Reference Example 1.

(実施例
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:A900)と分散相のポリアミド樹脂(ユニチカ製:ナイロン66,A1030BRL)及び液晶性樹脂(上野製薬製:5540G)とを、5:2:3の混合比で樹脂組成物とした。樹脂組成物を二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、参考例1と同様に成形温度290℃,射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。
(Example 2 )
A matrix phase polyphenylene sulfide resin (PPS) (manufactured by Toray: A900), a dispersed phase polyamide resin (manufactured by Unitika: nylon 66, A1030BRL), and a liquid crystal resin (manufactured by Ueno Pharmaceutical: 5540G) are in a ratio of 5: 2: 3. It was set as the resin composition by the mixing ratio. The resin composition was melt-kneaded at a resin temperature of 270 to 290 ° C. with a twin-screw extruder and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 3.5 (m / min) as in Reference Example 1.

(実施例
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:A900)と分散相の液晶性樹脂(上野製薬製:5540G)と液晶性樹脂(住友化学製:E6008L)とを、5:3:2の体積比で混合し樹脂組成物とした。樹脂混合物を二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、参考例1と同様に成形温度290℃,射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。
(Example 3 )
Volume of matrix phase polyphenylene sulfide resin (PPS) (Toray: A900), dispersed phase liquid crystal resin (Ueno Pharmaceutical: 5540G) and liquid crystal resin (Sumitomo Chemical: E6008L) in a volume of 5: 3: 2. The resin composition was mixed at a ratio. The resin mixture was melt-kneaded at a resin temperature of 270 to 290 ° C. with a twin-screw extruder and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 3.5 (m / min) as in Reference Example 1.

(実施例
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:A900)と分散相のポリブチレンテレフタレート(東レ製:A60823)及び液晶性樹脂(上野製薬製:5540G)とを、5:2:3の体積比で混合し、樹脂組成物とした。樹脂混合物を二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、参考例1と同様に成形温度290℃,射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。
(Example 4 )
Matrix phase polyphenylene sulfide resin (PPS) (Toray: A900) and dispersed phase polybutylene terephthalate (Toray: A60823) and liquid crystal resin (Ueno Pharmaceutical: 5540G) in a volume ratio of 5: 2: 3. To obtain a resin composition. The resin mixture was melt-kneaded at a resin temperature of 270 to 290 ° C. with a twin-screw extruder and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 3.5 (m / min) as in Reference Example 1.

(実施例
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:503F)樹脂と分散相の液晶性樹脂(上野製薬製:5540G)とを7:3の体積比で混合し、樹脂組成物とした。樹脂混合物と樹脂量に対して40vol%の無機充填材の窒化ホウ素(昭和電工:SGP)とを二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、参考例1と同様に成形温度290℃,射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。
(Example 5 )
A matrix phase polyphenylene sulfide resin (PPS) (Toray: 503F) resin and a dispersed phase liquid crystal resin (Ueno Pharmaceutical: 5540G) were mixed at a volume ratio of 7: 3 to obtain a resin composition. The resin mixture and 40% by volume of inorganic filler boron nitride (Showa Denko: SGP) with respect to the resin amount were melt-kneaded at a resin temperature of 270 to 290 ° C. by a twin-screw extruder, and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 3.5 (m / min) as in Reference Example 1.

(実施例
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:503F)と分散相のポリアミド樹脂(ユニチカ製:ナイロン66,A1030BRL)及び液晶性樹脂(上野製薬製:5540G)とを5:2:3の体積比で混合し、樹脂組成物とした。樹脂混合物と、樹脂量に対して40vol%の無機充填材の窒化ホウ素(昭和電工製,HGPE)を二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、参考例1と同様に成形温度290℃,射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。
(Example 6 )
Volume of matrix phase polyphenylene sulfide resin (PPS) (Toray: 503F), dispersed phase polyamide resin (Unitika: nylon 66, A1030BRL) and liquid crystalline resin (Ueno Pharmaceutical: 5540G) in a volume of 5: 2: 3. The resin composition was mixed at a ratio. The resin mixture and 40% by volume of inorganic filler boron nitride (made by Showa Denko, HGPE) with respect to the resin amount were melt-kneaded at a resin temperature of 270 to 290 ° C. by a twin-screw extruder and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 3.5 (m / min) as in Reference Example 1.

(実施例
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:503F)と分散相の液晶性樹脂(上野製薬:5540G)と液晶性樹脂(住友化学製:E6008L)とを5:3:2の体積比で混合し、樹脂組成物とした。樹脂混合物と樹脂量に対して40vol%の無機充填材の窒化ホウ素(昭和電工製:HGPE)を二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、参考例1と同様に成形温度290℃,射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。
(Example 7 )
Matrix phase polyphenylene sulfide resin (PPS) (Toray: 503F), dispersed phase liquid crystal resin (Ueno Pharmaceutical: 5540G) and liquid crystal resin (Sumitomo Chemical: E6008L) in a volume ratio of 5: 3: 2. The resin composition was mixed. Boron nitride (made by Showa Denko: HGPE) of 40 vol% inorganic filler with respect to the resin mixture and the resin amount was melt-kneaded at a resin temperature of 270 to 290 ° C. by a twin-screw extruder and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 3.5 (m / min) as in Reference Example 1.

(実施例
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:503F)と分散相のポリブチレンテレフタレート(東レ製:A60823)及び液晶性樹脂(上野製薬製:5540G)とを5:2:3の体積比で混合し、樹脂組成物とした。樹脂混合物と樹脂量に対して40vol%の無機充填材の窒化ホウ素(昭和電工製:SGP)を二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、参考例1と同様に成形温度290℃,射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。
(Example 8 )
A matrix phase polyphenylene sulfide resin (PPS) (Toray: 503F) and a dispersed phase polybutylene terephthalate (Toray: A60823) and a liquid crystalline resin (Ueno Pharmaceutical: 5540G) in a volume ratio of 5: 2: 3. The resin composition was mixed. Boron nitride (made by Showa Denko: SGP) of 40 vol% inorganic filler with respect to the resin mixture and the amount of resin was melt-kneaded at a resin temperature of 270 to 290 ° C. with a twin-screw extruder, and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 3.5 (m / min) as in Reference Example 1.

(実施例
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:503F)と分散相のポリアミド樹脂(ユニチカ製:ナイロン66,A1030BRL)及び液晶性樹脂(上野製薬製:5540G)とを、5:2:3の体積比で混合し、樹脂組成物とした。樹脂混合物と無機充填材の窒化ホウ素(昭和電工製:HGPE)を樹脂量に対して30vol%,酸化マグネシウムを樹脂量に対して20vol%を、二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、参考例1と同様に成形温度290℃,射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。
(Example 9 )
A matrix phase polyphenylene sulfide resin (PPS) (manufactured by Toray: 503F), a dispersed phase polyamide resin (manufactured by Unitika: nylon 66, A1030BRL), and a liquid crystalline resin (manufactured by Ueno Pharmaceutical: 5540G) are mixed at a ratio of 5: 2: 3. The resin composition was mixed at a volume ratio. The resin mixture and the inorganic filler boron nitride (made by Showa Denko: HGPE) are 30 vol% with respect to the resin amount, and magnesium oxide is 20 vol% with respect to the resin amount, at a resin temperature of 270 to 290 ° C. with a twin screw extruder. Melt-kneaded and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 3.5 (m / min) as in Reference Example 1.

(実施例10
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:503F)と分散相の液晶性樹脂(上野製薬製:5540G)と液晶性樹脂(住友化学製:E6008L)とを、5:3:2の体積比で混合し、樹脂組成物とした。樹脂混合物と無機充填材の窒化ホウ素(昭和電工製:HGPE) を樹脂量に対して30vol%,炭酸カルシウムを樹脂量に対して20vol%とを二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、参考例1と同様に成形温度290℃,射出圧力:1200(kg/cm2),射出速度:3.5(m/分)である。
(Example 10 )
A matrix phase polyphenylene sulfide resin (PPS) (Toray: 503F), a dispersed phase liquid crystal resin (Ueno Pharmaceutical: 5540G) and a liquid crystal resin (Sumitomo Chemical: E6008L) in a volume of 5: 3: 2. The resin composition was mixed at a ratio. Resin mixture and inorganic filler boron nitride (made by Showa Denko: HGPE) 30 vol% with respect to the resin amount and calcium carbonate 20 vol% with respect to the resin amount at a resin temperature of 270 to 290 ° C. with a twin screw extruder. Melt-kneaded and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 3.5 (m / min) as in Reference Example 1.

参考
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:A900)と分散相のポリアミド樹脂(ユニチカ製:ナイロン66:A1030BRL)とを、7:3の体積比で混合し、混合物とポリブチレンテレフタレート(PBO)繊維(東洋紡)5vol%,樹脂量に対して30vol%の無機充填材の窒化ホウ素(昭和電工製:HGPE)を二軸押出機にて樹脂温度290〜300℃で混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、成形温度290℃,射出圧力:1200(kg/cm2),射出速度:6.5(m/分)である。
( Reference Example 2 )
A polyphenylene sulfide resin (PPS) in a matrix phase (manufactured by Toray: A900) and a polyamide resin in a dispersed phase (manufactured by Unitika: nylon 66: A1030BRL) are mixed at a volume ratio of 7: 3, and the mixture and polybutylene terephthalate (PBO) are mixed. ) Boron nitride (made by Showa Denko: HGPE), an inorganic filler of 5 vol% fiber (Toyobo) and 30 vol% based on the resin amount, was kneaded at a resin temperature of 290 to 300 ° C. by a twin screw extruder and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 1200 (kg / cm 2 ), and an injection speed of 6.5 (m / min).

(比較例1)
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:503F)と分散相のポリアミド樹脂(ユニチカ製:ナイロン66,A1030BRL)とを、9:1の体積比で混合し、混合物を二軸押出機にて樹脂温度290〜300℃で混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、成形温度290℃,射出圧力:300(kg/cm2),射出速度:6.5(m/分)である。
(Comparative Example 1)
A polyphenylene sulfide resin (PPS) in the matrix phase (Toray: 503F) and a polyamide resin in the dispersed phase (Unitika: nylon 66, A1030BRL) are mixed at a volume ratio of 9: 1, and the mixture is mixed into a twin screw extruder. The mixture was kneaded at a resin temperature of 290 to 300 ° C. and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 300 (kg / cm 2 ), and an injection speed of 6.5 (m / min).

比較例1には、ガラスファイバーが混合され、樹脂粘度を高くしたPPS樹脂をマトリクスに用いた。比較例1の熱可塑性成形品について、当初推定した複合樹脂の断面イメージ図を図3−1に示す。一方、電子顕微鏡(SEM)で実際に観察した成形品の断面写真を図3−2に示す。ドメインが非常に大きくなり(300μm以上)、20μm以下の小さいドメインが含まれていない。マトリクスの樹脂とドメインの樹脂の粘度が大きく異なるので、ドメインとなる樹脂は均一分散しにくく、層状に近い状態になった。その結果、樹脂の熱伝導率は低下すると考えられる。また、混合した樹脂が層状になると、複合樹脂の曲げ強度は極端に低下した。このようなドメインは、混合する樹脂の粘度に極端に差がある場合や、樹脂同士の親和性がない場合に生じた。 Comparative Example 1, the glass fibers are mixed with high the PPS resin of the resin viscosity Matrigel Tsu box. About the thermoplastic molded article of the comparative example 1, the cross-sectional image figure of the composite resin estimated initially is shown to FIGS. On the other hand, a cross-sectional photograph of the molded product actually observed with an electron microscope (SEM) is shown in FIG. Domains become very large (300 μm or more) and do not include small domains of 20 μm or less. The viscosity of Matrigel Tsu box of resin and domain resin are greatly different, the resin serving as the domain hardly uniformly dispersed to a state close to a laminar. As a result, the thermal conductivity of the resin is considered to decrease. Further, when the mixed resin was layered, the bending strength of the composite resin was extremely lowered. Such a domain occurred when the viscosity of resins to be mixed is extremely different or when there is no affinity between resins.

(比較例2)
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:A900)と分散相の液晶性樹脂(上野製薬製:5540G)とを、9:1の体積比で混合し、樹脂混合物を二軸押出機にて樹脂温度300℃〜320℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、成形温度320℃,射出圧力:300(kg/cm2),射出速度:6.5(m/分)である。比較例2の複合樹脂は、小さいドメインが多くなり、熱伝導率が低下していた。
(Comparative Example 2)
A matrix phase polyphenylene sulfide resin (PPS) (manufactured by Toray: A900) and a dispersed phase liquid crystal resin (manufactured by Ueno Pharmaceutical: 5540G) are mixed at a volume ratio of 9: 1, and the resin mixture is mixed into a twin screw extruder. The mixture was melt-kneaded at a resin temperature of 300 ° C. to 320 ° C. and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 320 ° C., an injection pressure of 300 (kg / cm 2 ), and an injection speed of 6.5 (m / min). The composite resin of Comparative Example 2 had many small domains, and the thermal conductivity was lowered.

(比較例3)
マトリックス相のポリフェニレンサルファイド樹脂(PPS)(東レ製:A900)と分散相のポリアミド樹脂(ユニチカ製:ナイロン66,A1030BRL)とを、9:1の体積比で混合し、混合物と樹脂量に対して30vol%の無機充填材の窒化ホウ素(昭和電工製:SGP)40vol%とを二軸押出機にて樹脂温度290〜300℃で混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は、成形温度290℃,射出圧力:700(kg/cm2),射出速度:6.5(m/分)である。比較例3の複合樹脂は、小さいドメインが少なく、熱伝導率,曲げ強度とも低下していた。
(Comparative Example 3)
A matrix phase polyphenylene sulfide resin (PPS) (Toray: A900) and a dispersed phase polyamide resin (Unitika: Nylon 66, A1030BRL) are mixed at a volume ratio of 9: 1. 30 vol% of an inorganic filler, boron nitride (Showa Denko: SGP) 40 vol%, was kneaded at a resin temperature of 290 to 300 ° C by a twin screw extruder and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are a molding temperature of 290 ° C., an injection pressure of 700 (kg / cm 2 ), and an injection speed of 6.5 (m / min). The composite resin of Comparative Example 3 had few small domains, and both thermal conductivity and bending strength were reduced.

(比較例4)
ポリフェニレンサルファイド樹脂(PPS)(東レ製:503F)と、樹脂量に対して30vol%の無機充填材の窒化ホウ素(昭和電工製:HGPE)40vol%とを、二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は比較例3と同様に、成形温度290℃,射出圧力:700(kg/cm2),射出速度:6.5(m/分)である。
(Comparative Example 4)
Polyphenylene sulfide resin (PPS) (manufactured by Toray: 503F) and 30 vol% of inorganic filler, boron nitride (manufactured by Showa Denko: HGPE), 40 vol% with respect to the amount of resin, a resin temperature of 270 to It was melt-kneaded at 290 ° C. and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are the same as in Comparative Example 3, the molding temperature is 290 ° C., the injection pressure is 700 (kg / cm 2 ), and the injection speed is 6.5 (m / min).

(比較例5)
ポリフェニレンサルファイド樹脂(PPS)(東レ製:503F)と、無機充填材として樹脂量に対して30vol%の窒化ホウ素(昭和電工製:HGPE),樹脂量に対して20vol%の炭酸カルシウムを、二軸押出機にて樹脂温度270〜290℃で溶融混練し、ペレット化した。次いで、該ペレットを射出成形機にて射出成形し、成形品を得た。成形条件は比較例3と同様に、成形温度290℃,射出圧力:700(kg/cm2),射出速度:6.5(m/分)である。
(Comparative Example 5)
Polyphenylene sulfide resin (PPS) (manufactured by Toray: 503F), 30vol% boron nitride (Showa Denko: HGPE) relative to the resin amount as an inorganic filler, and 20vol% calcium carbonate relative to the resin amount are biaxial. It was melt-kneaded at a resin temperature of 270 to 290 ° C. in an extruder and pelletized. Next, the pellet was injection molded with an injection molding machine to obtain a molded product. The molding conditions are the same as in Comparative Example 3, the molding temperature is 290 ° C., the injection pressure is 700 (kg / cm 2 ), and the injection speed is 6.5 (m / min).

上記の実施例/参考例/比較例の熱可塑性成形品の評価方法などは以下の通りである。 The methods for evaluating thermoplastic molded articles of the above-mentioned examples / reference examples / comparative examples are as follows.

(1)樹脂の溶融粘度:島津製作所製フローテスタCFT−500A型を用いて、300℃で加熱溶融されたサンプル樹脂を20kgfの加重下で、内径:2mm,長さ:10mmのノズルから押した際の溶融粘度を測定した。   (1) Melt viscosity of resin: Using a flow tester CFT-500A manufactured by Shimadzu Corporation, a sample resin heated and melted at 300 ° C. was pushed from a nozzle having an inner diameter of 2 mm and a length of 10 mm under a load of 20 kgf. The melt viscosity was measured.

(2)熱伝導率:熱可塑性成形品から約13mm×2mmの大きさを切り出したサンプルを用い、専用ラボラホルダに数個セットし熱拡散測定(Xeフラッシュ)法で熱拡散率を測定し、樹脂密度,樹脂比熱の関係から熱伝導率を求めた(熱伝導率=樹脂比熱×樹脂密度×熱拡散率)。   (2) Thermal conductivity: Using a sample cut out of a size of approximately 13mm x 2mm from a thermoplastic molded product, several samples are set in a dedicated laboratory holder, and the thermal diffusivity is measured by the thermal diffusion measurement (Xe flash) method. Thermal conductivity was determined from the relationship between density and specific resin heat (thermal conductivity = specific resin heat x resin density x thermal diffusivity).

(3)曲げ強度:熱可塑性成形品から約100mm×10mm×2mmの大きさを切り出したサンプルを用いて、島津製作所製引張り試験機DSS−5000型でJIS−7171に準じて室温(22℃)での三点曲げ強度を測定した(曲げ強度=(3×破断荷重×スパン間距離)/(2×幅×(厚さ)2))。 (3) Bending strength: room temperature (22 ° C.) according to JIS-7171 with a tensile tester DSS-5000 manufactured by Shimadzu Corporation using a sample obtained by cutting out a size of about 100 mm × 10 mm × 2 mm from a thermoplastic molded product The three-point bending strength was measured at (bending strength = (3 × breaking load × span distance) / (2 × width × (thickness) 2 )).

(4)体積抵抗率:熱可塑性成形品から約100mm×100mm×2mmの大きさを切り出したサンプルにJISK6911に従い表面及び裏面に電極を形成した後、(株)アドバンテスト社製デジタル超高抵抗/微小電流計R8340型で、500Vの電圧を1分間充電し体積抵抗を測定し、体積抵抗率を算出した。   (4) Volume resistivity: After forming electrodes on the front and back surfaces in accordance with JISK6911 on a sample cut out of a size of about 100 mm × 100 mm × 2 mm from a thermoplastic molded product, digital super high resistance / microscopic manufactured by Advantest Corporation With an ammeter R8340, a voltage of 500 V was charged for 1 minute, the volume resistance was measured, and the volume resistivity was calculated.

(5)島状ドメインの大きさ,比率:熱可塑性成形品の断面を電子顕微鏡により観察し、島状ドメインの大きさと面積を測定した。ドメインの大きさは、断面に現れた各ドメインの最大径を測定した。測定した各ドメインを、20μm以下,20〜50μm,50〜300μm,300μm以上に分けた。また、面積比率をドメインの体積比率として把握した。各成形品に対し、20μm以下の島状ドメインの体積と、50〜300μmのドメインの体積の合計のうち、20μm以下のドメインが占める割合を算出した。20μm以下のドメインの合計面積と、50〜300μmのドメインの合計面積を100%とし、20μm以下のドメインの面積比率をX、50〜300μmのドメインの面積比率をYとした。また、X,Yに含まれないドメイン量を測定した。全ドメインの合計面積のうち、20〜50μm,300μm以上のドメインの面積比率をZとした。   (5) Size and ratio of island-like domains: The cross section of the thermoplastic molded product was observed with an electron microscope, and the size and area of the island-like domains were measured. For the size of the domain, the maximum diameter of each domain that appeared in the cross section was measured. Each measured domain was divided into 20 μm or less, 20 to 50 μm, 50 to 300 μm, and 300 μm or more. The area ratio was grasped as the volume ratio of the domain. For each molded article, the ratio of the domain of 20 μm or less to the total of the volume of the island-shaped domain of 20 μm or less and the volume of the domain of 50 to 300 μm was calculated. The total area of the domains of 20 μm or less and the total area of the domains of 50 to 300 μm were defined as 100%, the area ratio of the domains of 20 μm or less as X, and the area ratio of the domains of 50 to 300 μm as Y. In addition, the amount of domain not included in X and Y was measured. Of the total area of all domains, the area ratio of domains of 20 to 50 μm and 300 μm or more was defined as Z.

(6)融点温度:示差熱量測定で熱天秤により昇温速度:10℃/分,雰囲気:200ml/分の条件で、吸熱量を測定し、吸熱ピーク温度を融点温度とした。   (6) Melting point temperature: The endothermic amount was measured under the conditions of differential calorimetry using a thermobalance at a heating rate of 10 ° C./min and an atmosphere of 200 ml / min, and the endothermic peak temperature was taken as the melting point temperature.

各実施例,比較例で得た成形品の300℃での溶融粘度,熱伝導率,曲げ強度,体積抵抗率,島状ドメインの大きさと、大きさ毎の比率を測定した。また、上記ペレットの300℃での溶融粘度についても測定した。   The melt viscosity at 300 ° C., the thermal conductivity, the bending strength, the volume resistivity, the size of the island-like domain, and the ratio of each size were measured for the molded products obtained in each Example and Comparative Example. Further, the melt viscosity at 300 ° C. of the pellet was also measured.

上記実施例1ないし10、参考例1ないし2、比較例1ないし5の結果を表1に示す。 Table 1 shows the results of Examples 1 to 10, Reference Examples 1 and 2, and Comparative Examples 1 to 5.

Figure 0005029344
Figure 0005029344

図1は、熱可塑性樹脂成形品のドメインの大きさの傾向と、熱伝導率の関係を示す図である。図1には、複合樹脂の熱伝導率,曲げ強度の関係を示した。各複合樹脂について、熱伝導率と小さいドメインの占める割合との関連を検討すると、30〜70体積%の場合が好ましく、大きいドメインが多い場合は、曲げ強度が低下し熱伝導率の向上が図れる。これに対して、小さいドメインが多い場合は、曲げ強度は高い値を示す半面、熱伝導率が低下している。   FIG. 1 is a diagram showing the relationship between the tendency of the domain size of a thermoplastic resin molded product and the thermal conductivity. FIG. 1 shows the relationship between the thermal conductivity and bending strength of the composite resin. Examining the relationship between the thermal conductivity and the proportion of small domains for each composite resin, the case of 30 to 70% by volume is preferable, and when there are many large domains, the bending strength decreases and the thermal conductivity can be improved. . On the other hand, when there are many small domains, the flexural strength shows a high value, but the thermal conductivity is lowered.

熱可塑性樹脂成形品のドメイン比率と曲げ強度及び熱伝導率の関係を示す図である。It is a figure which shows the relationship between the domain ratio of a thermoplastic resin molded product, bending strength, and thermal conductivity. 参考例1の熱可塑性成形品について、当初推定した断面イメージ図(2−1)、及び電子顕微鏡(SEM)で観察した断面写真図(2−2)である。 It is the cross-sectional image figure (2-1) initially estimated about the thermoplastic molded article of the reference example 1, and the cross-sectional photograph figure (2-2) observed with the electron microscope (SEM). 比較例1の熱可塑性成形品について、当初推定したイメージ図(3−1)及びSEMで観察した断面写真図(3−2)である。It is the image figure (3-1) initially estimated about the thermoplastic molded article of the comparative example 1, and the cross-sectional photograph figure (3-2) observed by SEM.

1 ドメイン
2 マトリクス相の熱可塑性樹脂
3 ガラス繊維
1 domain 2 Matricaria Tsu thermoplastic resin 3 fiberglass hex phase

Claims (6)

可塑性樹脂がマトリクス相を形成する熱可塑性樹脂と、島状ドメインの分散相を形成する熱可塑性樹脂に分離している熱可塑性樹脂成形品であって、
前記マトリックス相を形成する熱可塑性樹脂は、ポリフェニレンサルファイドであり、前記分散相を形成する熱可塑性樹脂は、液晶性樹脂であり、
前記分散相の熱可塑性樹脂は、20μm以下の島状ドメインと、50μm〜300μmの島状ドメインとを含み、20μm以下の島状ドメインと、50μm〜300μmの島状ドメインとの合計体積量のうち、50μm〜300μmの島状ドメインが30体積%〜70体積%であることを特徴とする熱可塑性樹脂成形品。
A thermoplastic resin molded article the thermoplastic resin are separated from the thermoplastic resin forming the Matrigel Tsu box phase, the thermoplastic resin forming the dispersed phase of the islands domain,
The thermoplastic resin that forms the matrix phase is polyphenylene sulfide, and the thermoplastic resin that forms the dispersed phase is a liquid crystalline resin,
The thermoplastic resin in the dispersed phase includes an island-shaped domain of 20 μm or less and an island-shaped domain of 50 μm to 300 μm, and is a total volume amount of the island-shaped domain of 20 μm or less and the island-shaped domain of 50 μm to 300 μm. A thermoplastic resin molded product characterized in that island-shaped domains of 50 μm to 300 μm are 30% by volume to 70% by volume.
請求項1に記載された熱可塑性樹脂成形品であって、
前記熱可塑性樹脂中の前記マトリクス相が40vol%〜70vol%、前記分散層が60vol%〜30vol%であることを特徴とする熱可塑性樹脂成形品。
A thermoplastic resin molded article according to claim 1,
The heat the Matrigel Tsu box phase in the thermoplastic resin is 40vol% ~70vol%, a thermoplastic resin molded article wherein the dispersing layer is characterized in that it is a 60vol% ~30vol%.
請求項1または2に記載された熱可塑性樹脂成形品であって、
前記分散相を形成する熱可塑性樹脂として、さらに、溶融温度の異なる別の熱可塑性樹脂を含み、当該別の熱可塑性樹脂が、液晶性樹脂,ポリアミド樹脂,ポリブチレンテレフタレートのいずれかであることを特徴とする熱可塑性樹脂成形品。
A thermoplastic resin molded article according to claim 1 or 2 ,
As the thermoplastic resin forming the dispersed phase further includes a different alternative thermoplastic resin melting temperature, the another thermoplastic resin, liquid crystal resin, a polyamide resin, is either polybutylene terephthalate A thermoplastic resin molded product characterized by that.
請求項3に記載された熱可塑性樹脂成形品であって、A thermoplastic resin molded product according to claim 3,
前記分散相を形成する2種類の熱可塑性樹脂は、溶融温度が20℃以上異なることを特徴とする熱可塑性樹脂成形品。The two types of thermoplastic resins forming the dispersed phase differ in melting temperature by 20 ° C. or more.
請求項1ないしのいずれかに記載された熱可塑性樹脂成形品であって、
無機充填材が混合されていることを特徴とする熱可塑性樹脂成形品。
The thermoplastic resin molded product according to any one of claims 1 to 4 ,
A thermoplastic resin molded product comprising an inorganic filler mixed therein.
請求項に記載された熱可塑性樹脂成形品であって、
前記無機充填材がガラスファイバ,窒化ホウ素,炭酸カルシウム,酸化マグネシウムのいずれかを含むことを特徴とする熱可塑性樹脂成形品。
A thermoplastic resin molded article according to claim 5 ,
A thermoplastic resin molded article, wherein the inorganic filler contains any of glass fiber, boron nitride, calcium carbonate, and magnesium oxide.
JP2007331318A 2007-12-25 2007-12-25 Thermoplastic resin molded product Expired - Fee Related JP5029344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007331318A JP5029344B2 (en) 2007-12-25 2007-12-25 Thermoplastic resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007331318A JP5029344B2 (en) 2007-12-25 2007-12-25 Thermoplastic resin molded product

Publications (2)

Publication Number Publication Date
JP2009155359A JP2009155359A (en) 2009-07-16
JP5029344B2 true JP5029344B2 (en) 2012-09-19

Family

ID=40959730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331318A Expired - Fee Related JP5029344B2 (en) 2007-12-25 2007-12-25 Thermoplastic resin molded product

Country Status (1)

Country Link
JP (1) JP5029344B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024071B2 (en) * 2008-01-18 2012-09-12 テクノポリマー株式会社 Heat dissipation resin composition
JP4909293B2 (en) * 2008-02-01 2012-04-04 テクノポリマー株式会社 Thermoplastic resin composition used for production of a composite comprising a resin member and a metal member
JP4941385B2 (en) * 2008-04-01 2012-05-30 東レ株式会社 Polyethersulfone resin composition, process for producing the same, and molded article
JP5109186B2 (en) * 2008-04-24 2012-12-26 大塚化学株式会社 High thermal conductive resin composition
CN102286207B (en) * 2011-06-22 2015-12-02 四川大学 A kind of thermoplastic polymer based thermal conductive composite and preparation method thereof
JP6194155B2 (en) * 2012-03-02 2017-09-06 大日本印刷株式会社 RESIN COMPOSITION FOR REFLECTOR, RESIN FRAME FOR REFLECTOR, REFLECTOR, SEMICONDUCTOR LIGHT EMITTING DEVICE, AND MOLDING METHOD
JP6523650B2 (en) * 2014-10-16 2019-06-05 旭化成株式会社 Polyamide resin composition, molded product thereof, and method for producing polyamide resin composition

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625303B2 (en) * 1988-02-01 1994-04-06 宇部興産株式会社 Impact resistant polyarylene sulfide resin composition
JPH03100055A (en) * 1989-09-13 1991-04-25 Ube Ind Ltd Thermoplastic resin composition
JP3007139B2 (en) * 1990-11-29 2000-02-07 三菱化学株式会社 Olefin polymer composition with excellent impact resistance
JP3047472B2 (en) * 1990-12-28 2000-05-29 東レ株式会社 Blow blow molding
JP3219824B2 (en) * 1991-01-14 2001-10-15 呉羽化学工業株式会社 Composition comprising polyarylene sulfide and polyamide
JP2639518B2 (en) * 1991-10-30 1997-08-13 大日本スクリーン製造株式会社 Image processing method
JP3173192B2 (en) * 1992-12-01 2001-06-04 東レ株式会社 Polyphenylene sulfide resin composition
JPH07316313A (en) * 1994-05-23 1995-12-05 Toyota Central Res & Dev Lab Inc Polyphenylene sulfide resin composition and production thereof
JP3355061B2 (en) * 1994-10-18 2002-12-09 ポリプラスチックス株式会社 Thermoplastic resin composition, injection molding method and injection molded article thereof
JPH0920849A (en) * 1995-07-07 1997-01-21 Idemitsu Petrochem Co Ltd Styrene-based resin molding
JP3627403B2 (en) * 1996-10-30 2005-03-09 東ソー株式会社 Polyphenylene sulfide resin composition
JP3637715B2 (en) * 1997-01-29 2005-04-13 東ソー株式会社 Polyphenylene sulfide resin composition
JP3800783B2 (en) * 1997-02-27 2006-07-26 東レ株式会社 Polyphenylene sulfide resin composition
JP4609743B2 (en) * 1999-10-12 2011-01-12 東レ株式会社 Resin structure and its use
JP4214669B2 (en) * 1999-10-12 2009-01-28 東レ株式会社 Resin structure and its use
JP4069629B2 (en) * 2001-07-31 2008-04-02 東レ株式会社 Polyphenylene sulfide resin composition and method for producing the same
JP2003261687A (en) * 2002-03-08 2003-09-19 Toray Ind Inc Member equipped with water supply
JP2003301107A (en) * 2002-04-11 2003-10-21 Toray Ind Inc Resin composition
WO2006030577A1 (en) * 2004-09-17 2006-03-23 Toray Industries, Inc. Polyphenylene sulfide resin composition
JP2007211087A (en) * 2006-02-08 2007-08-23 Shin Etsu Polymer Co Ltd Electrically insulating and thermally conducting resin and method for producing the same
JP2007291222A (en) * 2006-04-25 2007-11-08 Toray Ind Inc Biaxially oriented polyarylene sulfide film and method for producing biaxially oriented polyarylene sulfide film
JP5028873B2 (en) * 2006-06-09 2012-09-19 株式会社カネカ High thermal conductivity thermoplastic resin composition
JP5220290B2 (en) * 2006-08-21 2013-06-26 大塚化学株式会社 Compatibilizer for polymer alloy, polymer alloy and masterbatch for preparing polymer alloy

Also Published As

Publication number Publication date
JP2009155359A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5029344B2 (en) Thermoplastic resin molded product
KR102347760B1 (en) Thermoplastic resin composite composition for shielding electromagnetc wave
EP2195374B1 (en) Heat-processable thermally conductive polymer composition
JP5861185B2 (en) Thermally conductive polymer composition
US6710109B2 (en) Thermally conductive and high strength injection moldable composition
KR100927702B1 (en) Electrically insulating high thermal conductive resin composition
CN102070899A (en) Insulating and heat-conducting polyamide composite material and preparation method thereof
KR20100075227A (en) Thermally conductive insulating resin composition and plastic article
JP2008260830A (en) Heat-conductive resin composition
JP2009280650A (en) Thermoplastic resin composition and thermoplastic resin molded article
US20150152310A1 (en) Polyester compositions
JP2006312741A (en) Ic tray and composition for the same
JP5359825B2 (en) Thermally conductive resin composition
KR100885653B1 (en) Hybrid filler type resin composition for high thermal conductivity
KR101355026B1 (en) Thermoplastic resin composition with excellent thermal conductivity and moldability
KR20140080115A (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and reduced anisotropy in thermal conductivity
JP2007016221A (en) Resin material for molding and molded product
KR20130118078A (en) Method for preparing the molded parts of heat resistant and thermally conductive polymer compositions and the molded parts of heat resistant and thermally conductive polymer compositions prepared by the same method
KR102394809B1 (en) Resin with high themal conductivity
JPH01254766A (en) Electrically conductive polyaylene sulfide resin composition
WO2018143224A1 (en) Resin compound and molded product of resin compound
KR20170100469A (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and reduced anisotropy in thermal conductivity
JP4265328B2 (en) Polyarylene sulfide resin composition and molded article using the same
KR101567450B1 (en) Antistatic composition
KR20200083687A (en) Long fiber reinforced thermoplastic resin composition having excellent thermal conductivity and EMI shielding property and molded article comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees