JP5028731B2 - Method for producing halogenated alcohol - Google Patents

Method for producing halogenated alcohol Download PDF

Info

Publication number
JP5028731B2
JP5028731B2 JP2001283414A JP2001283414A JP5028731B2 JP 5028731 B2 JP5028731 B2 JP 5028731B2 JP 2001283414 A JP2001283414 A JP 2001283414A JP 2001283414 A JP2001283414 A JP 2001283414A JP 5028731 B2 JP5028731 B2 JP 5028731B2
Authority
JP
Japan
Prior art keywords
catalyst
component
halogenated
group
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001283414A
Other languages
Japanese (ja)
Other versions
JP2003089666A (en
Inventor
洋一 高木
秀一 岡本
一也 大春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001283414A priority Critical patent/JP5028731B2/en
Publication of JP2003089666A publication Critical patent/JP2003089666A/en
Application granted granted Critical
Publication of JP5028731B2 publication Critical patent/JP5028731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン化ケトンおよび該ハロゲン化ケトンの水和物から選ばれる少なくとも1種の化合物を還元してハロゲン化アルコ−ルを製造する方法に関する。さらに詳しくは、特定の2種の元素を必須とする触媒の存在下で還元反応を行い、ハロゲン化アルコールを製造する方法に関する。
【0002】
【従来の技術】
ハロゲン化アルコ−ルは、各種有機化合物の合成原料等として有用な化合物である。特に1,1,1,3,3,3−ヘキサフルオロプロパン−2−オ−ル(以下、HFIPと略記する)は、溶媒、界面活性剤、乳化剤、および麻酔剤等の医農薬の合成中間体、等として有用な化合物である。
【0003】
従来、ハロゲン化アルコールの製法としては、ハロゲン化ケトンを還元する方法が知られている。ここで、原料物質であるハロゲン化ケトンには、水と反応してハロゲン化ケトン水和物を形成するものがある。例えばヘキサフルオロアセトン(以下、HFAと略記する)は、水と接触させると、HFA水和物が容易に得られることが知られている。HFA水和物は、CF3C(OH)2CF3・nH2O(n≧0)で表されるジオ−ル構造を有する化合物と考えられており(特開昭60−69047号公報)、1水和物(n=0)や3水和物(n=2)として安定に存在することが知られている。これらの水和物は、水に容易に溶解し、また該水和物は水溶液中でも安定に存在し得る。
【0004】
ハロゲン化ケトンやハロゲン化ケトン水和物を還元して対応するハロゲン化アルコ−ルを製造する方法としては、(1)金属銅および酸化クロムを含む触媒の存在下、気相で、HFAを還元する方法(特公昭39−8210号公報)、(2)パラジウム/アルミナ触媒の存在下、気相で、HFAを還元する方法(米国特許第3468964号)、(3)パラジウム/炭素触媒の存在下、気相で、1,3−ジクロロ−1,1,3,3−テトラフルオロアセトン、クロロペンタフルオロアセトンまたはHFAを還元する方法(特公昭48−21925号公報)、(4)ニッケル触媒の存在下、気相で、HFAを還元する方法(特開昭56−139433号公報)、(5)パラジウム−炭素触媒の存在下、液相で、HFA水和物を還元する方法(特公昭61−25694号公報)等が知られている。
【0005】
しかし、上記の製法にはつぎの欠点がある。すなわち、ハロゲン化ケトンやハロゲン化ケトン水和物中には、その製造工程において副生する塩化水素、フッ化水素等の酸性化合物が含まれており、これらは、触媒を失活させる原因物質である。そのため、ハロゲン化ケトンやハロゲン化ケトン水和物は、還元工程を行う前に高純度に精製する必要があった。そしてこの製法には複雑な工程と多額の費用が必要であった。
また、高純度に精製したハロゲン化ケトンやハロゲン化ケトン水和物を用いても、還元反応によって、塩化水素、フッ化水素、有機酸等の酸性化合物が副生する問題がある。そのため、前記(1)〜(5)のいずれの方法においても、使用する触媒が該酸性化合物により失活して、ハロゲン化アルコ−ルの収率が低下する問題があった。
一方、酸性化合物による触媒失活を抑制するため、受酸剤としての水酸化アルミニウムや水酸化ナトリウムを添加する方法も提案されている(特開平4−10456号公報)。しかし、受酸剤の効果は不充分であり、また、受酸剤を多量に添加した場合には、原料が過水素分解されて、ハロゲン化アルコ−ルの収率を低下させる問題が認められた。
【0006】
また、前記方法のうち、気相で還元反応を行う(1)〜(4)の方法では、触媒層に熱点が形成されて触媒層温度が上昇する問題がある。触媒層温度の上昇は活性成分である金属微粒子の凝集(シンタリング)や結晶状態の変化等を起こし、これにより触媒が失活してハロゲン化アルコ−ルの収率の低下を招く問題が認められた。
特に、(1)および(3)の方法では、触媒の還元能が低く、150℃を越える高い反応温度を必要とするため、酸性化合物の生成と触媒層温度の上昇が著しく、触媒が早期に失活してハロゲン化アルコ−ルの収率が大きく低下する問題が認められた。
【0007】
【発明が解決しようとする課題】
本発明は、前述の課題を解決して、長期の反応を行った場合においてもハロゲン化アルコールを継続して高収率で得る製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
即ち、本発明は、以下の製造方法を提供する。
【0009】
1.第一成分として9および10族元素から選ばれる少なくとも1種の元素と、第二成分として11族元素から選ばれる少なくとも1種の元素とを含む触媒の存在下に、RCORで表されるハロゲン化ケトンおよび該ハロゲン化ケトンの水和物から選ばれる少なくとも1種の原料化合物を還元剤の作用のもとに反応させることを特徴とするRCHOHRで表されるハロゲン化アルコ−ルの製造方法。ここで、RおよびRはそれぞれ独立に、フッ素原子を必須とする少なくとも1種のハロゲン原子が結合した炭素数1〜40のハロゲン化アルキル基を示し、RはRに対応し、RはRに対応し、それぞれ、RおよびRと同一の基、または、RおよびRが、それぞれ塩素原子、臭素原子、およびヨウ素原子から選ばれる1種以上のハロゲン原子を有する基である場合には、該ハロゲン原子の1つ以上が水素原子に置換されていてもよい。
【0010】
2.原料化合物がCFCOCFおよびその水和物から選ばれる少なくとも1種の化合物からなり、ハロゲン化アルコールが(CFCHOHである上記製造方法。
3.還元剤が水素である上記製造方法。
4.原料化合物に対して化学量論量以上の水素を用いる上記製造方法。
5.触媒における第一成分がPd、Co、Ni、Ru、Rh、IrおよびPtからなる群から選ばれる少なくとも1種であり、第二成分がCu、AgおよびAuからなる群から選ばれる少なくとも1種である上記製造方法。
6.触媒における第一成分がPdであり、第二成分がAuである上記製造方法。
.触媒における第二成分の量が、第一成分と第二成分の合計質量に対して0.01〜90質量%である上記製造方法。
.触媒が、活性炭上、アルミナ担体上、またはジルコニア担体上に、第一成分および第二成分が担持された触媒である上記製造方法。
.受酸剤を用いずに反応を行う上記製造方法。
【0011】
【発明の実施の形態】
本発明においては、第一成分としての周期表の8〜10族から選ばれる元素および第二成分としての周期表の11族元素を含む触媒を用いることが特徴の一つである。第一成分である周期表の8〜10族元素としては、例えば、Pd、Fe、Co、Ni、Ru、Rh、Ir、Pt等が好ましく、特にPd、Rh、Ir、Ptが好ましい。周期表の8〜10族元素は、還元能の高い活性成分である。
第二成分である周期表の11族元素としては、Cu、AgおよびAuから選択され、特にAuが好ましい。第二成分は、第一成分を触媒中に高分散化させる効果や、安定化させる効果を有する。第一成分が高分散化、安定化されると、(a)活性点の数と活性が増加して触媒の還元能が向上するため、150℃以下の低い反応温度でも還元反応が進行し、高い収率と長期の触媒寿命でハロゲン化アルコ−ルを得ることができる。また、(b)金属微粒子の凝集(シンタリング)が抑制されるため、耐熱性が向上し、触媒層温度が上昇しても触媒失活が起こりにくい。さらに、(c)触媒表面が常に高い還元状態に保たれるため、被毒物質である塩化水素、フッ化水素等の酸性化合物が、触媒表面へ吸着するのを抑制し、高い収率と長期の触媒寿命でハロゲン化アルコ−ルを得ることができる。それに加えて、原料のハロゲン化ケトンやハロゲン化ケトン水和物を高純度に精製するための複雑な工程が不要となる、等の利点がある。
第二成分の第一成分に対する量は、第一成分を高分散化、安定化させる効果の点で0.01〜90質量%が好ましく、より好ましくは0.01〜50質量%、特に好ましくは、0.1〜30質量%である。
【0012】
本発明において用いられる触媒は、上記第一成分と上記第二成分を含むものであればよく、通常は第一成分と第二成分とが担体上に担持された触媒であるのが好ましい。担体としては、例えば、活性炭、アルミナ、ジルコニア等が好適であり、特に活性炭が好ましい。活性炭は、木材、木炭、果実ガラ、ヤシガラ、泥炭、亜炭、または石炭などの原料から調製したものを使用でき、鉱物質原料よりも植物質原料が好ましく、特にヤシガラ活性炭が最適である。ヤシガラ活性炭は、他の活性炭に比べて表面積が大きく、シリカ等の不純物が少なく、耐酸性が高いため、活性と耐久性に優れると考えられる。また、活性炭の灰分は0.01〜20質量%が好ましい。
第一成分の、担体に対する担持量は、触媒の還元能と経済性の点で0.01〜50質量%が好ましく、より好ましくは0.01〜10質量%、特に好ましくは、0.5〜5質量%である。
【0013】
触媒の調製法は特に限定されず、特開平1−319438号公報に記載されているような通常の貴金属触媒の調製法が適用可能であり、例えば8〜10族の金属塩と11族の金属塩とを担体に担持させた後乾燥させる等の方法が挙げられる。ここで、8〜10族の金属塩としては、塩化パラジウム、硫酸パラジウム、塩化白金酸、塩化ロジウム、塩化イリジウム、硫酸ロジウム等が挙げられ、11族の金属塩としては、硫酸銅、塩化金酸、硫酸銀等が挙げられる。なお、該方法においては、担体に担持した金属塩の少なくとも一部は還元するのが好ましい。
【0014】
本発明における触媒の具体例としては、後述する実施例に記載する触媒の他、Rh−Co−Cu/活性炭(C)(RhとCoとCuとを活性炭に坦持させた触媒、以下同様の意味である。)、Rh−Co−Ag/C、Rh−Co−Au/C、Pt−Au/C、Pd−Ni−Cu/C、Pd−Ni−Ag/C、Pd−Ni−Au/C、Ru−Au/C、Pd−Cu/Al23、Pd−Ag/Al23、Pd−Au/Al23、Pd−Pt−Au/Al23、Pd−Rh−Au/Al23、Pd−Ir−Au/Al23、Rh−Ag/Al23、Rh−Au/Al23、Rh−Co−Cu/Al23、Rh−Co−Ag/Al23、Rh−Co−Au/Al23、Pt−Au/Al23、Pd−Ni−Cu/Al23、Pd−Ni−Ag/Al23、Pd−Ni−Au/Al23、Ru−Au/Al23、Pd−Cu/ZrO2、Pd−Ag/ZrO2、Pd−Au/ZrO2、Pd−Pt−Au/ZrO2、Pd−Rh−Au/ZrO2、Pd−Ir−Au/ZrO2、Rh−Ag/ZrO2、Rh−Au/ZrO2、Rh−Co−Cu/ZrO2、Rh−Co−Ag/ZrO2、Rh−Co−Au/ZrO2、Pt−Au/ZrO2、Pd−Ni−Cu/ZrO2、Pd−Ni−Ag/ZrO2、Pd−Ni−Au/ZrO2、Ru−Au/ZrO2等が挙げられる。
これらの触媒は、本発明の反応を長時間実施しても、ほとんど失活することなく、繰り返し使用でき、耐久性にすぐれた触媒である。さらに、本発明の方法においては、該触媒を使用することにより、受酸剤等を使用しなくても、優れた反応成績が維持されうる。
【0015】
本発明においては、上記触媒の存在下に還元反応を行う。還元剤を作用させる反応の形態は、気相法または液相法であるのが好ましく、原料と触媒を接触させうる方法であれば、特に限定されない。このうち、気相法では、触媒を充填した固定床や流動床の反応器に原料を連続的に導入する方法等が、液相法では、触媒を充填した耐圧容器にバッチまたは連続で原料を導入する方法等が好適に用いられる。
【0016】
本発明の原料化合物としては、R1COR2(ただし、R1およびR2は、それぞれ独立に、フッ素原子を必須とする少なくとも1種のハロゲン原子が結合した炭素数1〜40のハロゲン化アルキル基を示す。)で表されるハロゲン化ケトンまたはその水和物である。R1およびR2の炭素数はそれぞれ1〜10が好ましく、1〜3が特に好ましい。ハロゲン化アルキル基の構造は限定されず、直鎖構造または分岐構造であるのが好ましい。
ハロゲン化アルキル基は、アルキル基の水素原子の1個以上が、フッ素原子を必須とするハロゲン原子によって置換された基であり、該ハロゲン化アルキル基中には水素原子が存在していてもよく、または存在しなくても(すなわち、ペルハロゲン化アルキル基であっても)よい。ハロゲン化アルキル基におけるハロゲン原子としては1種であっても2種以上であってもよく、フッ素原子のみ、またはフッ素原子と塩素原子であるのが好ましい。
ハロゲン化ケトンの具体例としては、CF3COCF3、CF3COCHF2、CF3COCH2F、CF3COCH3、CF3COCF2Cl、CF3COCFCl2、CF3COCH2Cl、CF3COCHCl2、CF3COCCl3、CF2ClCOCF2Cl等が挙げられる。
ハロゲン化ケトンの入手方法としては、特に限定されず、たとえば、公知の方法によって製造したハロゲン化ケトンが挙げられる。また、ハロゲン化ケトンのうちR1およびR2がペルフルオロ化された基であるハロゲン化ケトンは、部分フッ素化されたエステル化合物を液相フッ素化法によりペルフルオロエステル化合物とし、つぎにエステル結合を分解することによっても製造できる。
また、本発明の原料化合物は、前記ハロゲン化ケトンの水和物であってもよい。該水和物は、ハロゲン化ケトンを水に吸収または水と接触させることで容易に得られる。ハロゲン化ケトンの水和物としては、CF3C(OH)2CF3で表される1水和物、CF3C(OH)2CF3・2H2Oで表される3水和物等が挙げられる。なお、水和物は、原料段階において水和物でないものが、反応系中の水分等によって水和物に変化して形成する場合もありうる。
【0017】
還元剤を作用させるときに用いる還元剤と原料化合物の割合は、特に限定されない。還元剤としては水素(H2)が好ましい。還元剤として水素を使用する場合には、原料化合物に対する水素量は化学量論量以上であるのが好ましく、より好ましくは1.2〜10倍モル、特に好ましくは1.5〜5倍モルにするのが反応活性、触媒耐久性、生成物回収の点で好ましい。
【0018】
還元剤を作用させる際の反応圧力は、常圧、または加圧が好ましいが、減圧であってもよい。また、反応温度は、低すぎると反応速度が遅くなり、ハロゲン化アルコ−ルの収率が低くなり、高すぎると酸性化合物の生成や触媒層温度の上昇にともなう触媒劣化が起こるため、反応温度は30〜450℃が好ましく、より好ましくは50〜200℃、特に好ましくは70〜150℃である。
また、気相法で反応を行う場合には、原料と生成物が反応器内で気体であり続ける反応温度と圧力を用いるのが好ましい。また、気相法における触媒に対する接触時間は、0.1〜1000秒が好ましく、より好ましくは1〜100秒、特に好ましくは5〜20秒である。
【0019】
本発明の反応では、ハロゲン化ケトンまたはその水和物のカルボニル基の還元反応が起こる。また、水和する水の脱離や、水和する水との結合の切断がおこる。そして、R3CHOHR4で表されるハロゲン化アルコールが生成する。ここで、R3はR1に対応する基、R4はR2に対応する基である。ハロゲン化ケトンまたはその水和物中のハロゲン原子がフッ素のみである場合には、R3およびR4は、それぞれR1およびR2と同一の基である。一方、R1およびR2がそれぞれハロゲン原子として、塩素原子、臭素原子およびヨウ素原子から選ばれる1種以上のハロゲン原子を含む基である場合、本発明の反応によって、該ハロゲン原子の1つ以上が水素原子に置換されてもよい。該場合においては、R3およびR4は、それぞれR1およびR2のフッ素原子以外のハロゲン原子の一部が水素原子に置換された基となりうる。ハロゲン化ケトンまたはその水和物がフッ素原子以外のハロゲン原子を有する場合、ハロゲン化アルコールは2種以上の混合物として生成しうる。ハロゲン化アルコールが2種以上生成した場合には必要に応じて、これらを分離するのが好ましい。
ハロゲン化アルコールの具体例としは、CF3CH(OH)CF3,CHF2CH(OH)CF3,CHF2CH(OH)CHF2,CF2ClCH(OH)CF3、CF2ClCH(OH)CF2Cl、CH3CH(OH)CF3などが挙げられる。これらのハロゲン化アルコールは、溶媒として、界面活性剤、乳化剤、医薬の原料、各種有機合成中間体として有用な化合物である。
【0020】
【実施例】
以下に本発明の具体的態様を実施例および比較例により説明するが、本発明は必ずしもこれに限定されない。
【0021】
[調製例1]
ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸させた。これに塩化パラジウムと硫酸銅をPdとCuの質量比換算で9:1の割合で溶解した水溶液を活性炭の質量に対する金属成分の全質量が0.5%となる量まで少しずつ滴下してイオン成分を活性炭に吸着させた。さらに純水を用いて洗浄した後、150℃で5時間乾燥した。次に窒素中550℃で4時間乾燥した後、水素を導入し、5時間、250℃に保持して還元して、触媒(Pd−Cu/C触媒)を得た。
【0022】
[調製例2]
調製例1における塩化パラジウムと硫酸銅を、硫酸パラジウムと硫酸銀をPd:Ag=9:1(換算質量比)に変更すること以外は調整例1と同様に行い、触媒(Pd−Ag/C触媒)を得た。
【0023】
[調製例3]
調製例1における塩化パラジウムと硫酸銅を、塩化パラジウムと塩化金酸をPd:Au=9:1(換算質量比)に変更し、調製例1における乾燥温度550℃を500℃に変更すること以外は調整例1と同様に行い、触媒(Pd−Au/C触媒)を得た。
【0024】
[調製例4]
調製例1における塩化パラジウムと硫酸銅を、塩化パラジウム、塩化白金酸、および、塩化金酸をPd:Pt:Au=90:2:8(換算質量比)に変更し、調製例1における乾燥温度550℃を500℃に変更すること以外は調整例1と同様に行い、触媒(Pd−Pt−Au/C触媒)を得た。
【0025】
[調製例5]
調製例1における塩化パラジウムと硫酸銅を、塩化パラジウム、塩化ロジウム、および、塩化金酸をPd:Rh:Au=90:1:9(換算質量比)に変更し、調製例1における乾燥温度550℃を500℃に変更すること以外は調整例1と同様に行い、触媒(Pd−Rh−Au/C触媒)を得た。
【0026】
[調製例6]
調製例1における塩化パラジウムと硫酸銅を、塩化パラジウム、塩化イリジウム、および、塩化金酸をPd:Ir:Au=90:1:9(換算質量比)に変更し、調製例1における乾燥温度(550℃)を500℃に、還元温度(250℃)を300℃に変更すること以外は調整例1と同様に行い、触媒(Pd−Ir−Au/C触媒)を得た。
【0027】
[調製例7]
調製例1における塩化パラジウムと硫酸銅を、硫酸ロジウムと硫酸銀をRh:Ag=9:1(換算質量比)に変更し、調製例1における還元温度(250℃)を300℃に変更すること以外は調整例1と同様に行い、触媒(Rh−Ag/C触媒)を得た。
【0028】
[調製例8]
調製例1における塩化パラジウムと硫酸銅を、塩化ロジウムと塩化金酸をRh:Au=9:1(換算質量比)に変更し、調製例1における還元温度(250℃)を300℃に変更すること以外は調整例1と同様に行い、触媒(Rh−Au/C触媒)を得た。
【0029】
[実施例1〜8]
調製例1〜8において調製した触媒100mlを、それぞれ内径16mm、長さ1mのインコネル600製反応管に充填してオイルバスで加熱し、これに水素とHFAを導入して、表1に示す反応条件で還元反応を行った。100時間反応後の結果を表1に示す。
【0030】
【表1】

Figure 0005028731
【0031】
[実施例9〜11]
調製例1〜3において調製した触媒100mlを、それぞれ内径16mm、長さ1mのインコネル600製反応管に充填してオイルバスで加熱し、これに水素と1,3−ジクロロ−1,1,3,3−テトラフルオロアセトンを導入して表2に示す反応条件で還元反応を行った。100時間反応後の結果を表2に示す。
【0032】
【表2】
Figure 0005028731
【0033】
[実施例12〜14]
調製例1〜3において調製した触媒100mlを、それぞれ内径16mm、長さ1mのインコネル600製反応管に充填してオイルバスで加熱し、これに水素とクロロペンタフルオロアセトンを導入して表3に示す反応条件で還元反応を行った。100時間反応後の結果を表3に示す。
【0034】
【表3】
Figure 0005028731
【0035】
[比較例1]
0.5%Pd/アルミナ触媒(日本エンゲルハルド社製、100ml)を、内径16mm、長さ1mのインコネル600製反応管に充填して水素を導入し、300℃で5時間保持して還元した。次いで、これに水素とHFAを導入して、表5に示す反応条件で反応を行った。100時間反応後の結果を表4に示す。
【0036】
[比較例2]
還元ニッケル触媒(Ni:45〜47%,Cr:2〜3%,Cu:2〜3%,ケイソウ土:27〜29%,黒鉛:4〜5%、日揮化学社製)100mlを、内径16mm、長さ1mのインコネル600製反応管に充填して水素を導入し、300℃で5時間保持して還元した。次いで、これに水素とHFAを導入して表5に示す反応条件で反応を行った。100時間反応後の結果を表4に示す。
【0037】
[比較例3]
2%Pd/活性炭触媒(日本エンゲルハルド社製、100ml)を、内径16mm、長さ1mのインコネル600製反応管に充填して水素を導入し、300℃で5時間保持して還元した。次いで、これに水素とHFAを導入して表5に示す反応条件で反応を行った。100時間反応後の結果を表4に示す。
【0038】
[比較例4]
銅−酸化クロム触媒(CuO:44〜46%,Cr23:43〜44%,MnO2:4〜5%)100mlを、内径16mm、長さ1mのインコネル600製反応管に充填して水素を導入し、300℃で5時間保持して還元した。次いで、これに水素とHFAを導入して表5に示す反応条件で反応を行った。100時間反応後の結果を表4に示す。
【0039】
【表4】
Figure 0005028731
【0040】
[実施例15〜17、比較例5]
CF3COCF3を3倍モル以上の水に吸収させ、これを蒸留することでCF3C(OH)2CF3・2H2Oの共沸混合物(沸点:105〜106℃)を得た。次に、2Lの容量を有するハステロイ製の加圧撹拌式オートクレーブ中に、調製例1〜3において調製した触媒(10g、実施例15〜17)または2%Pd/活性炭触媒(日本エンゲルハルド社製)(10g、比較例5)と、上記調製したCF3C(OH)2CF3・2H2O(1000g)をそれぞれ仕込み、水素で容器内を置換した後、0.5MPa(ゲージ圧)に加圧して、表4に示す反応温度で反応を行った。5時間反応させた後に触媒を、フィルタ−によって反応物と濾別し、同様の反応を10回繰り返した。10回目の反応終了後の結果を表5に示す。
【0041】
【表5】
Figure 0005028731
【0042】
【発明の効果】
本発明によれば、特定の2種の元素を必須とする触媒を用いてHFA等のハロゲン化ケトンまたはHFA水和物等のハロゲン化ケトンの水和物の還元反応を行うことにより、高い転化率および高い選択率で目的とするハロゲン化アルコールを得ることができる。また、本発明の反応は長時間継続させた場合にも高い転化率および高い選択率が維持できる工業的にすぐれた方法である。また、用いた触媒はくり返し用いることができ、かつ、くり返し用いても良好な反応成績が維持される利点がある。よって、本発明の方法によれば、触媒を長期に用いながら、ハロゲン化アルコ−ルを高収率で得ることができ、受酸剤等を使用しなくても、良好な反応成績を維持することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing a halogenated alcohol by reducing at least one compound selected from a halogenated ketone and a hydrate of the halogenated ketone. More specifically, the present invention relates to a method for producing a halogenated alcohol by carrying out a reduction reaction in the presence of a catalyst essentially containing two specific elements.
[0002]
[Prior art]
Halogenated alcohol is a useful compound as a raw material for synthesizing various organic compounds. In particular, 1,1,1,3,3,3-hexafluoropropan-2-ol (hereinafter abbreviated as HFIP) is an intermediate in the synthesis of medical and agricultural chemicals such as solvents, surfactants, emulsifiers, and anesthetics. It is a useful compound as a body.
[0003]
Conventionally, a method for reducing a halogenated ketone is known as a method for producing a halogenated alcohol. Here, some halogenated ketones which are raw material substances react with water to form halogenated ketone hydrates. For example, it is known that HFA hydrate can be easily obtained when hexafluoroacetone (hereinafter abbreviated as HFA) is brought into contact with water. HFA hydrate is considered to be a compound having a diol structure represented by CF 3 C (OH) 2 CF 3 .nH 2 O (n ≧ 0) (JP-A-60-69047). It is known to exist stably as a monohydrate (n = 0) or a trihydrate (n = 2). These hydrates are readily soluble in water, and the hydrates can exist stably in aqueous solutions.
[0004]
As a method of producing a corresponding halogenated alcohol by reducing a halogenated ketone or halogenated ketone hydrate, (1) reducing HFA in the gas phase in the presence of a catalyst containing copper metal and chromium oxide. (2) A method of reducing HFA in the gas phase in the presence of a palladium / alumina catalyst (US Pat. No. 3,468,964), (3) In the presence of a palladium / carbon catalyst A method of reducing 1,3-dichloro-1,1,3,3-tetrafluoroacetone, chloropentafluoroacetone or HFA in the gas phase (Japanese Patent Publication No. 48-21925), (4) presence of nickel catalyst A method for reducing HFA in the gas phase (Japanese Patent Laid-Open No. 56-139433), (5) a method for reducing HFA hydrate in the liquid phase in the presence of a palladium-carbon catalyst (special Akira 61-25694 Patent Publication), and the like.
[0005]
However, the above production method has the following drawbacks. That is, halogenated ketones and halogenated ketone hydrates contain acidic compounds such as hydrogen chloride and hydrogen fluoride that are by-produced in the production process, and these are causative substances that deactivate the catalyst. is there. Therefore, halogenated ketones and halogenated ketone hydrates need to be purified with high purity before the reduction step. This manufacturing method requires complicated processes and large costs.
Further, even when a halogenated ketone or halogenated ketone hydrate purified to a high purity is used, there is a problem that acidic compounds such as hydrogen chloride, hydrogen fluoride, and organic acids are by-produced by the reduction reaction. Therefore, in any of the methods (1) to (5), there is a problem in that the catalyst used is deactivated by the acidic compound and the yield of the halogenated alcohol is lowered.
On the other hand, a method of adding aluminum hydroxide or sodium hydroxide as an acid acceptor in order to suppress catalyst deactivation by an acidic compound has been proposed (Japanese Patent Laid-Open No. 4-10456). However, the effect of the acid acceptor is insufficient, and when a large amount of the acid acceptor is added, there is a problem that the raw material is perhydrolyzed and the yield of the halogenated alcohol is lowered. It was.
[0006]
Further, among the above methods, the methods (1) to (4) in which the reduction reaction is performed in the gas phase has a problem that a hot spot is formed in the catalyst layer and the catalyst layer temperature rises. A rise in the catalyst layer temperature causes aggregation (sintering) of the metal fine particles, which are active components, and changes in the crystalline state. As a result, there is a problem that the catalyst is deactivated and the yield of the halogenated alcohol is reduced. It was.
In particular, in the methods (1) and (3), since the reducing ability of the catalyst is low and a high reaction temperature exceeding 150 ° C. is required, the formation of acidic compounds and the increase in the temperature of the catalyst layer are remarkable, and the catalyst is rapidly released. There was a problem that the yield of halogenated alcohol was greatly reduced due to deactivation.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems and to provide a production method for continuously obtaining a halogenated alcohol in a high yield even when a long-term reaction is performed.
[0008]
[Means for Solving the Problems]
That is, this invention provides the following manufacturing methods.
[0009]
1. In the presence of a catalyst containing at least one element selected from Group 9 and 10 elements as the first component and at least one element selected from Group 11 elements as the second component, represented by R 1 COR 2 A halogenated alcohol represented by R 3 CHOH 4 , wherein at least one raw material compound selected from halogenated ketones and hydrates of the halogenated ketones is reacted under the action of a reducing agent Manufacturing method. Here, R 1 and R 2 each independently represent a halogenated alkyl group having 1 to 40 carbon atoms to which at least one halogen atom essential for a fluorine atom is bonded, R 3 corresponds to R 1 , R 4 corresponds to R 2, respectively, R 1 and R 2 the same group, or, R 1 and R 2 are each a chlorine atom, a bromine atom, and one or more halogen atoms selected from iodine atom In the case of the group having one or more, one or more of the halogen atoms may be substituted with hydrogen atoms.
[0010]
2. Starting compound consists of at least one compound selected from CF 3 COCF 3 and its hydrates, halogenated alcohol (CF 3) the production method is 2 CHOH.
3. The said manufacturing method whose reducing agent is hydrogen.
4). The said manufacturing method using hydrogen more than stoichiometric amount with respect to a raw material compound.
5. The first component in the catalyst is at least one selected from the group consisting of Pd, Co, Ni, Ru, Rh, Ir and Pt, and the second component is at least one selected from the group consisting of Cu, Ag and Au. A manufacturing method as described above.
6). The said manufacturing method whose 1st component in a catalyst is Pd and whose 2nd component is Au.
7 . The said manufacturing method whose quantity of the 2nd component in a catalyst is 0.01-90 mass% with respect to the total mass of a 1st component and a 2nd component.
8 . The above production method, wherein the catalyst is a catalyst in which a first component and a second component are supported on activated carbon, an alumina support, or a zirconia support.
9 . The said manufacturing method which reacts without using an acid acceptor.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, it is one of the features that a catalyst containing an element selected from Group 8 to 10 of the periodic table as the first component and a Group 11 element of the periodic table as the second component is used. As the group 8-10 elements of the periodic table as the first component, for example, Pd, Fe, Co, Ni, Ru, Rh, Ir, Pt and the like are preferable, and Pd, Rh, Ir, and Pt are particularly preferable. Group 8-10 elements of the periodic table are active components with high reducing ability.
The group 11 element of the periodic table, which is the second component, is selected from Cu, Ag, and Au, and Au is particularly preferable. The second component has the effect of highly dispersing the first component in the catalyst and the effect of stabilizing. When the first component is highly dispersed and stabilized, (a) the number and activity of active sites increase and the reducing ability of the catalyst improves, so that the reduction reaction proceeds even at a low reaction temperature of 150 ° C. or lower. The halogenated alcohol can be obtained with a high yield and a long catalyst life. In addition, (b) aggregation (sintering) of the metal fine particles is suppressed, so that the heat resistance is improved and the catalyst deactivation is unlikely to occur even when the catalyst layer temperature rises. Furthermore, (c) the catalyst surface is always kept in a highly reduced state, so that poisonous substances such as hydrogen chloride and hydrogen fluoride are prevented from adsorbing on the catalyst surface, resulting in high yields and long-term performance. A halogenated alcohol can be obtained with a catalyst life of In addition, there is an advantage that a complicated process for purifying the raw material halogenated ketone or halogenated ketone hydrate with high purity becomes unnecessary.
The amount of the second component relative to the first component is preferably from 0.01 to 90% by mass, more preferably from 0.01 to 50% by mass, particularly preferably from the viewpoint of the effect of highly dispersing and stabilizing the first component. 0.1 to 30% by mass.
[0012]
The catalyst used in the present invention only needs to contain the first component and the second component, and it is usually preferable that the first component and the second component are supported on a carrier. As the carrier, for example, activated carbon, alumina, zirconia and the like are preferable, and activated carbon is particularly preferable. As the activated carbon, those prepared from raw materials such as wood, charcoal, fruit glass, coconut shell, peat, lignite, or coal can be used, and plant material is preferable to mineral material, and coconut shell activated carbon is particularly preferable. Coconut shell activated carbon has a large surface area compared to other activated carbons, has few impurities such as silica, and has high acid resistance, so it is considered to be excellent in activity and durability. Moreover, 0.01-20 mass% is preferable for the ash content of activated carbon.
The amount of the first component supported on the carrier is preferably 0.01 to 50% by mass, more preferably 0.01 to 10% by mass, and particularly preferably 0.5 to 50% by mass from the viewpoint of reducing ability and economy of the catalyst. 5% by mass.
[0013]
The method for preparing the catalyst is not particularly limited, and a conventional method for preparing a noble metal catalyst as described in JP-A-1-319438 can be applied. For example, a group 8-10 metal salt and a group 11 metal are applicable. Examples thereof include a method in which a salt is supported on a carrier and then dried. Here, examples of the group 8-10 metal salt include palladium chloride, palladium sulfate, chloroplatinic acid, rhodium chloride, iridium chloride, rhodium sulfate, etc., and group 11 metal salts include copper sulfate, chloroauric acid. And silver sulfate. In this method, it is preferable to reduce at least a part of the metal salt supported on the carrier.
[0014]
Specific examples of the catalyst in the present invention include Rh-Co-Cu / activated carbon (C) (a catalyst in which Rh, Co, and Cu are supported on activated carbon, and the same in the following, in addition to the catalysts described in the examples described later. Meaning Rh—Co—Ag / C, Rh—Co—Au / C, Pt—Au / C, Pd—Ni—Cu / C, Pd—Ni—Ag / C, Pd—Ni—Au / C, Ru—Au / C, Pd—Cu / Al 2 O 3 , Pd—Ag / Al 2 O 3 , Pd—Au / Al 2 O 3 , Pd—Pt—Au / Al 2 O 3 , Pd—Rh— Au / Al 2 O 3 , Pd—Ir—Au / Al 2 O 3 , Rh—Ag / Al 2 O 3 , Rh—Au / Al 2 O 3 , Rh—Co—Cu / Al 2 O 3 , Rh—Co -Ag / Al 2 O 3, Rh -Co-Au / Al 2 O 3, Pt-Au / Al 2 O 3, Pd-Ni-Cu / Al 2 O 3 Pd-Ni-Ag / Al 2 O 3, Pd-Ni-Au / Al 2 O 3, Ru-Au / Al 2 O 3, Pd-Cu / ZrO 2, Pd-Ag / ZrO 2, Pd-Au / ZrO 2 , Pd—Pt—Au / ZrO 2 , Pd—Rh—Au / ZrO 2 , Pd—Ir—Au / ZrO 2 , Rh—Ag / ZrO 2 , Rh—Au / ZrO 2 , Rh—Co—Cu / ZrO 2 , Rh—Co—Ag / ZrO 2 , Rh—Co—Au / ZrO 2 , Pt—Au / ZrO 2 , Pd—Ni—Cu / ZrO 2 , Pd—Ni—Ag / ZrO 2 , Pd—Ni—Au / ZrO 2 , Ru—Au / ZrO 2 and the like.
These catalysts can be used repeatedly with almost no deactivation even when the reaction of the present invention is carried out for a long time, and are excellent in durability. Furthermore, in the method of the present invention, by using the catalyst, excellent reaction results can be maintained without using an acid acceptor or the like.
[0015]
In the present invention, the reduction reaction is performed in the presence of the catalyst. The reaction mode in which the reducing agent is allowed to act is preferably a gas phase method or a liquid phase method, and is not particularly limited as long as it is a method capable of bringing a raw material and a catalyst into contact with each other. Among them, the gas phase method introduces the raw material continuously into a fixed bed or fluidized bed reactor filled with a catalyst, and the liquid phase method introduces the raw material in batch or continuously into a pressure vessel filled with the catalyst. And the like are preferably used.
[0016]
Examples of the starting compound of the present invention include R 1 COR 2 (wherein R 1 and R 2 are each independently an alkyl halide having 1 to 40 carbon atoms to which at least one halogen atom essential for a fluorine atom is bonded). A halogenated ketone or a hydrate thereof. R 1 and the carbon number of R 2 is 1 to 10 each preferably 1 to 3 particularly preferred. The structure of the halogenated alkyl group is not limited and is preferably a linear structure or a branched structure.
The halogenated alkyl group is a group in which one or more hydrogen atoms of the alkyl group are substituted with a halogen atom essential for a fluorine atom, and a hydrogen atom may be present in the halogenated alkyl group. Or absent (ie, may be a perhalogenated alkyl group). The halogen atom in the halogenated alkyl group may be one type or two or more types, and is preferably only a fluorine atom, or a fluorine atom and a chlorine atom.
Specific examples of the halogenated ketone include CF 3 COCF 3 , CF 3 COCHF 2 , CF 3 COCH 2 F, CF 3 COCH 3 , CF 3 COCF 2 Cl, CF 3 COCFCl 2 , CF 3 COCH 2 Cl, CF 3 COCHCl 2 , CF 3 COCCl 3 , CF 2 ClCOCF 2 Cl and the like.
The method for obtaining the halogenated ketone is not particularly limited, and examples thereof include a halogenated ketone produced by a known method. Among halogenated ketones, halogenated ketones in which R 1 and R 2 are perfluorinated groups are obtained by converting a partially fluorinated ester compound into a perfluoroester compound by a liquid phase fluorination method, and then decomposing the ester bond. Can also be manufactured.
Moreover, the raw material compound of the present invention may be a hydrate of the halogenated ketone. The hydrate can be easily obtained by absorbing a halogenated ketone in water or bringing it into contact with water. As hydrates of halogenated ketones, monohydrates represented by CF 3 C (OH) 2 CF 3 , trihydrates represented by CF 3 C (OH) 2 CF 3 .2H 2 O, etc. Is mentioned. In addition, a hydrate that is not a hydrate in the raw material stage may be formed by changing to a hydrate due to moisture or the like in the reaction system.
[0017]
The ratio of the reducing agent and the raw material compound used when the reducing agent is allowed to act is not particularly limited. As the reducing agent, hydrogen (H 2 ) is preferable. When hydrogen is used as the reducing agent, the amount of hydrogen relative to the raw material compound is preferably greater than or equal to the stoichiometric amount, more preferably 1.2 to 10 times mol, particularly preferably 1.5 to 5 times mol. It is preferable in terms of reaction activity, catalyst durability, and product recovery.
[0018]
The reaction pressure when the reducing agent is allowed to act is preferably normal pressure or increased pressure, but may be reduced. On the other hand, if the reaction temperature is too low, the reaction rate will be slow, and the yield of the halogenated alcohol will be low. If it is too high, the catalyst will deteriorate due to the formation of acidic compounds and the increase in the catalyst layer temperature. Is preferably 30 to 450 ° C, more preferably 50 to 200 ° C, and particularly preferably 70 to 150 ° C.
Further, when the reaction is carried out by a gas phase method, it is preferable to use a reaction temperature and a pressure in which the raw material and the product remain gas in the reactor. The contact time with the catalyst in the gas phase method is preferably from 0.1 to 1000 seconds, more preferably from 1 to 100 seconds, and particularly preferably from 5 to 20 seconds.
[0019]
In the reaction of the present invention, a reduction reaction of the carbonyl group of the halogenated ketone or its hydrate occurs. In addition, the hydration water is detached and the bond with the hydration water is broken. Then, a halogenated alcohol represented by R 3 CHOHR 4 is generated. Here, R 3 is a group corresponding to R 1 , and R 4 is a group corresponding to R 2 . When the halogen atom in the halogenated ketone or its hydrate is only fluorine, R 3 and R 4 are the same groups as R 1 and R 2 , respectively. On the other hand, when each of R 1 and R 2 is a group containing one or more halogen atoms selected from a chlorine atom, a bromine atom and an iodine atom as a halogen atom, one or more of the halogen atoms can be obtained by the reaction of the present invention. May be replaced by a hydrogen atom. In this case, R 3 and R 4 can be groups in which a part of halogen atoms other than the fluorine atoms of R 1 and R 2 are replaced with hydrogen atoms, respectively. When the halogenated ketone or hydrate thereof has a halogen atom other than a fluorine atom, the halogenated alcohol can be produced as a mixture of two or more. When two or more types of halogenated alcohols are produced, it is preferable to separate them as necessary.
Specific examples of the halogenated alcohol include CF 3 CH (OH) CF 3 , CHF 2 CH (OH) CF 3 , CHF 2 CH (OH) CHF 2 , CF 2 ClCH (OH) CF 3 , CF 2 ClCH (OH ) CF 2 Cl, CH 3 CH (OH) CF 3 and the like. These halogenated alcohols are useful compounds as solvents, emulsifiers, pharmaceutical raw materials, and various organic synthetic intermediates as solvents.
[0020]
【Example】
Specific embodiments of the present invention will be described below with reference to examples and comparative examples, but the present invention is not necessarily limited thereto.
[0021]
[Preparation Example 1]
Coconut charcoal activated carbon was immersed in pure water to impregnate water into the pores. An aqueous solution in which palladium chloride and copper sulfate are dissolved at a ratio of 9: 1 in terms of the mass ratio of Pd and Cu is added dropwise to an amount such that the total mass of the metal component with respect to the mass of the activated carbon is 0.5%. The components were adsorbed on activated carbon. Furthermore, after washing | cleaning using a pure water, it dried at 150 degreeC for 5 hours. Next, after drying at 550 ° C. for 4 hours in nitrogen, hydrogen was introduced and reduced by holding at 250 ° C. for 5 hours to obtain a catalyst (Pd—Cu / C catalyst).
[0022]
[Preparation Example 2]
Palladium chloride and copper sulfate in Preparation Example 1 were prepared in the same manner as in Preparation Example 1 except that palladium sulfate and silver sulfate were changed to Pd: Ag = 9: 1 (converted mass ratio), and the catalyst (Pd-Ag / C Catalyst).
[0023]
[Preparation Example 3]
Other than changing palladium chloride and copper sulfate in Preparation Example 1 to palladium chloride and chloroauric acid to Pd: Au = 9: 1 (converted mass ratio), and changing the drying temperature 550 ° C. in Preparation Example 1 to 500 ° C. Was carried out in the same manner as in Preparation Example 1 to obtain a catalyst (Pd—Au / C catalyst).
[0024]
[Preparation Example 4]
Palladium chloride and copper sulfate in Preparation Example 1 were changed to Pd: Pt: Au = 90: 2: 8 (converted mass ratio) of palladium chloride, chloroplatinic acid, and chloroauric acid, and the drying temperature in Preparation Example 1 Except changing 550 degreeC to 500 degreeC, it carried out similarly to the adjustment example 1, and obtained the catalyst (Pd-Pt-Au / C catalyst).
[0025]
[Preparation Example 5]
Palladium chloride and copper sulfate in Preparation Example 1 were changed to Pd: Rh: Au = 90: 1: 9 (converted mass ratio) from palladium chloride, rhodium chloride, and chloroauric acid, and the drying temperature 550 in Preparation Example 1 was changed. A catalyst (Pd—Rh—Au / C catalyst) was obtained in the same manner as in Preparation Example 1 except that the temperature was changed to 500 ° C.
[0026]
[Preparation Example 6]
Palladium chloride and copper sulfate in Preparation Example 1 were changed to Pd: Ir: Au = 90: 1: 9 (equivalent mass ratio) for palladium chloride, iridium chloride, and chloroauric acid, and the drying temperature in Preparation Example 1 ( 550 ° C.) was changed to 500 ° C., and the reduction temperature (250 ° C.) was changed to 300 ° C. in the same manner as in Preparation Example 1 to obtain a catalyst (Pd—Ir—Au / C catalyst).
[0027]
[Preparation Example 7]
Changing palladium chloride and copper sulfate in Preparation Example 1 to rhodium sulfate and silver sulfate to Rh: Ag = 9: 1 (converted mass ratio), and changing the reduction temperature (250 ° C.) in Preparation Example 1 to 300 ° C. Except that, it carried out similarly to the adjustment example 1, and obtained the catalyst (Rh-Ag / C catalyst).
[0028]
[Preparation Example 8]
Palladium chloride and copper sulfate in Preparation Example 1 are changed to rhodium chloride and chloroauric acid to Rh: Au = 9: 1 (converted mass ratio), and the reduction temperature (250 ° C.) in Preparation Example 1 is changed to 300 ° C. Except for this, the same procedure as in Preparation Example 1 was carried out to obtain a catalyst (Rh—Au / C catalyst).
[0029]
[Examples 1 to 8]
100 ml of the catalyst prepared in each of Preparation Examples 1 to 8 was filled in an Inconel 600 reaction tube having an inner diameter of 16 mm and a length of 1 m, heated in an oil bath, and hydrogen and HFA were introduced into the reaction tube. The reduction reaction was performed under the conditions. The results after 100 hours of reaction are shown in Table 1.
[0030]
[Table 1]
Figure 0005028731
[0031]
[Examples 9 to 11]
100 ml of the catalyst prepared in Preparation Examples 1 to 3 was filled into an Inconel 600 reaction tube having an inner diameter of 16 mm and a length of 1 m, respectively, and heated in an oil bath, to which hydrogen and 1,3-dichloro-1,1,3 were added. , 3-tetrafluoroacetone was introduced to carry out a reduction reaction under the reaction conditions shown in Table 2. The results after 100 hours of reaction are shown in Table 2.
[0032]
[Table 2]
Figure 0005028731
[0033]
[Examples 12 to 14]
100 ml of the catalyst prepared in Preparation Examples 1 to 3 was filled in an Inconel 600 reaction tube having an inner diameter of 16 mm and a length of 1 m, respectively, and heated in an oil bath. Hydrogen and chloropentafluoroacetone were introduced into this, and Table 3 The reduction reaction was carried out under the reaction conditions shown. The results after 100 hours of reaction are shown in Table 3.
[0034]
[Table 3]
Figure 0005028731
[0035]
[Comparative Example 1]
A 0.5% Pd / alumina catalyst (manufactured by Engelhard Japan, 100 ml) was filled into an Inconel 600 reaction tube having an inner diameter of 16 mm and a length of 1 m, hydrogen was introduced, and the reaction was reduced by holding at 300 ° C. for 5 hours. . Next, hydrogen and HFA were introduced into this, and the reaction was carried out under the reaction conditions shown in Table 5. The results after 100 hours of reaction are shown in Table 4.
[0036]
[Comparative Example 2]
100 ml of reduced nickel catalyst (Ni: 45-47%, Cr: 2-3%, Cu: 2-3%, diatomaceous earth: 27-29%, graphite: 4-5%, manufactured by JGC Chemical Co., Ltd.) Then, the reaction tube made of Inconel 600 having a length of 1 m was charged and hydrogen was introduced, followed by reduction at 300 ° C. for 5 hours. Next, hydrogen and HFA were introduced thereto, and the reaction was carried out under the reaction conditions shown in Table 5. The results after 100 hours of reaction are shown in Table 4.
[0037]
[Comparative Example 3]
A 2% Pd / activated carbon catalyst (Nippon Engelhard, 100 ml) was charged into an Inconel 600 reaction tube having an inner diameter of 16 mm and a length of 1 m, and hydrogen was introduced, followed by reduction at 300 ° C. for 5 hours. Next, hydrogen and HFA were introduced thereto, and the reaction was carried out under the reaction conditions shown in Table 5. The results after 100 hours of reaction are shown in Table 4.
[0038]
[Comparative Example 4]
100 ml of a copper-chromium oxide catalyst (CuO: 44 to 46%, Cr 2 O 3 : 43 to 44%, MnO 2 : 4 to 5%) is charged into an Inconel 600 reaction tube having an inner diameter of 16 mm and a length of 1 m. Hydrogen was introduced and reduced by holding at 300 ° C. for 5 hours. Next, hydrogen and HFA were introduced thereto, and the reaction was carried out under the reaction conditions shown in Table 5. The results after 100 hours of reaction are shown in Table 4.
[0039]
[Table 4]
Figure 0005028731
[0040]
[Examples 15 to 17, Comparative Example 5]
CF 3 COCF 3 was absorbed in 3 times mole or more of water and distilled to obtain an azeotropic mixture of CF 3 C (OH) 2 CF 3 .2H 2 O (boiling point: 105 to 106 ° C.). Next, the catalyst (10 g, Examples 15 to 17) prepared in Preparation Examples 1 to 3 or 2% Pd / activated carbon catalyst (manufactured by Nippon Engelhard Co., Ltd.) in a Hastelloy pressurized stirring autoclave having a capacity of 2 L. ) (10 g, Comparative Example 5) and the above prepared CF 3 C (OH) 2 CF 3 .2H 2 O (1000 g) were charged, and the inside of the container was replaced with hydrogen, and then the pressure was reduced to 0.5 MPa (gauge pressure). The reaction was carried out at the reaction temperature shown in Table 4 under pressure. After reacting for 5 hours, the catalyst was filtered off from the reactant through a filter, and the same reaction was repeated 10 times. The results after the completion of the 10th reaction are shown in Table 5.
[0041]
[Table 5]
Figure 0005028731
[0042]
【Effect of the invention】
According to the present invention, a high conversion is achieved by carrying out a reduction reaction of a halogenated ketone such as HFA or a hydrated ketone hydrate such as HFA hydrate using a catalyst essentially comprising two specific elements. The desired halogenated alcohol can be obtained at a high rate and a high selectivity. In addition, the reaction of the present invention is an industrially superior method that can maintain a high conversion and high selectivity even when the reaction is continued for a long time. Further, the used catalyst can be used repeatedly, and there is an advantage that good reaction results are maintained even if used repeatedly. Therefore, according to the method of the present invention, the halogenated alcohol can be obtained in a high yield while using the catalyst for a long time, and good reaction results are maintained without using an acid acceptor or the like. be able to.

Claims (9)

第一成分として9および10族元素から選ばれる少なくとも1種の元素と、第二成分として11族元素から選ばれる少なくとも1種の元素とを含む触媒の存在下に、RCORで表されるハロゲン化ケトンおよび該ハロゲン化ケトンの水和物から選ばれる少なくとも1種の原料化合物を還元剤の作用のもとに反応させることを特徴とするRCHOHRで表されるハロゲン化アルコ−ルの製造方法。
ここで、RおよびRはそれぞれ独立に、フッ素原子を必須とする少なくとも1種のハロゲン原子が結合した炭素数1〜40のハロゲン化アルキル基を示し、RはRに対応し、RはRに対応し、それぞれ、RおよびRと同一の基、または、RおよびRが、それぞれ塩素原子、臭素原子、およびヨウ素原子から選ばれる1種以上のハロゲン原子を有する基である場合には、該ハロゲン原子の1つ以上が水素原子に置換されていてもよい。
In the presence of a catalyst containing at least one element selected from Group 9 and 10 elements as the first component and at least one element selected from Group 11 elements as the second component, represented by R 1 COR 2 A halogenated alcohol represented by R 3 CHOH 4 , wherein at least one raw material compound selected from halogenated ketones and hydrates of the halogenated ketones is reacted under the action of a reducing agent Manufacturing method.
Here, R 1 and R 2 each independently represent a halogenated alkyl group having 1 to 40 carbon atoms to which at least one halogen atom essential for a fluorine atom is bonded, R 3 corresponds to R 1 , R 4 corresponds to R 2, respectively, R 1 and R 2 the same group, or, R 1 and R 2 are each a chlorine atom, a bromine atom, and one or more halogen atoms selected from iodine atom In the case of the group having one or more, one or more of the halogen atoms may be substituted with hydrogen atoms.
原料化合物がCFCOCFおよびその水和物から選ばれる少なくとも1種の化合物からなり、ハロゲン化アルコールが(CFCHOHである請求項1に記載の製造方法。The production method according to claim 1, wherein the raw material compound comprises at least one compound selected from CF 3 COCF 3 and hydrates thereof, and the halogenated alcohol is (CF 3 ) 2 CHOH. 還元剤が水素である請求項1または2に記載の製造方法。  The production method according to claim 1 or 2, wherein the reducing agent is hydrogen. 原料化合物に対して化学量論量以上の水素を用いる請求項3に記載の製造方法。  The production method according to claim 3, wherein a stoichiometric amount or more of hydrogen is used with respect to the raw material compound. 触媒における第一成分がPd、Co、Ni、Ru、Rh、IrおよびPtからなる群から選ばれる少なくとも1種であり、第二成分がCu、AgおよびAuからなる群から選ばれる少なくとも1種である請求項1〜4のいずれかに記載の製造方法。The first component in the catalyst is at least one selected from the group consisting of Pd, Co, Ni, Ru, Rh, Ir and Pt, and the second component is at least one selected from the group consisting of Cu, Ag and Au. The manufacturing method in any one of Claims 1-4. 触媒における第一成分がPdであり、第二成分がAuである請求項1〜5のいずれかに記載の製造方法。The production method according to claim 1, wherein the first component in the catalyst is Pd and the second component is Au. 触媒における第二成分の量が、第一成分と第二成分の合計質量に対して0.01〜90質量%である請求項1〜のいずれかに記載の製造方法。The amount of the second component in the catalyst is, the production method according to any one of the first component and claims 1-6 is 0.01 to 90% by weight relative to the total weight of the second component. 触媒が、活性炭上、アルミナ担体上、またはジルコニア担体上に、第一成分および第二成分が担持された触媒である請求項1〜のいずれかに記載の製造方法。Catalyst, on activated carbon, on an alumina support, or on the zirconia support, a manufacturing method according to any one of claims 1 to 7 the first and second components is a catalyst supported. 受酸剤を用いずに反応を行う請求項1〜のいずれかに記載の製造方法。The production method according to any one of claims 1 to 8 , wherein the reaction is carried out without using an acid acceptor.
JP2001283414A 2001-09-18 2001-09-18 Method for producing halogenated alcohol Expired - Fee Related JP5028731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283414A JP5028731B2 (en) 2001-09-18 2001-09-18 Method for producing halogenated alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283414A JP5028731B2 (en) 2001-09-18 2001-09-18 Method for producing halogenated alcohol

Publications (2)

Publication Number Publication Date
JP2003089666A JP2003089666A (en) 2003-03-28
JP5028731B2 true JP5028731B2 (en) 2012-09-19

Family

ID=19106903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283414A Expired - Fee Related JP5028731B2 (en) 2001-09-18 2001-09-18 Method for producing halogenated alcohol

Country Status (1)

Country Link
JP (1) JP5028731B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091368A (en) * 2002-08-30 2004-03-25 Central Glass Co Ltd Halogen-containing alcohol and its production method
KR100645667B1 (en) 2003-02-12 2006-11-13 에스케이 주식회사 Process for producing 1-n-halophenylethanol
JP5130957B2 (en) * 2008-03-03 2013-01-30 エヌ・イーケムキャット株式会社 Platinum fixed carbon catalyst for catalytic hydrogenation of aliphatic ketones and process for producing aliphatic secondary alcohols from aliphatic ketones using the same
US7524995B1 (en) 2008-06-12 2009-04-28 E.I. Du Pont De Nemours And Company Continuous process to produce hexafluoroisopropanol
JP6237862B1 (en) * 2016-11-16 2017-11-29 セントラル硝子株式会社 Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether (sevoflurane)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054931B2 (en) * 1981-11-24 1985-12-03 旭硝子株式会社 Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol
JPS59204142A (en) * 1983-04-28 1984-11-19 Nippon Mektron Ltd Production of hexafluoroisopropyl alcohol
JPS6069047A (en) * 1983-09-27 1985-04-19 Central Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
JPH05339182A (en) * 1992-06-12 1993-12-21 Asahi Glass Co Ltd Production of hydrogen-containing fluoromethane compound
JP2638727B2 (en) * 1992-12-21 1997-08-06 セントラル硝子株式会社 Method for producing 1,1,1,3,3,3-hexafluoropropan-2-ol
JP3513962B2 (en) * 1995-02-13 2004-03-31 ダイキン工業株式会社 Method for producing 1,1,1,3,3-pentafluoropropane

Also Published As

Publication number Publication date
JP2003089666A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US5136113A (en) Catalytic hydrogenolysis
JP4328026B2 (en) Two-step process for the production of 1,3-propanediol by catalytic hydrogenation of 3-hydroxypropanal
EP0644173A1 (en) Processes for producing 1,1,1,2,3-pentafluoropropene and producing 1,1,1,2,3-pentafluoropropane
US8044250B2 (en) Manufacture of 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2-tetrafluoropropane via catalytic hydrogenation
JPH0267235A (en) Production of 1, 1, 1, 2-tetrafluoroethane
CA2054828C (en) Preparation of fluoroethylenes and chlorofluoroethylenes
JP5028731B2 (en) Method for producing halogenated alcohol
EP0799172B1 (en) Catalytic hydrogenolysis
US6291729B1 (en) Halofluorocarbon hydrogenolysis
GB2092138A (en) Process for preparing oxalic acid diesters
JP2523753B2 (en) Method for producing 2,3-dichloropyridine
JPH08337542A (en) Production of 1,1,1,3,3-pentafluoropropane
US5648568A (en) Method for producing a hydrofluorocarbon
JPH0125729B2 (en)
JP7206501B2 (en) Method for producing halogenated cycloalkane compound
JP2537638B2 (en) Bromperfluoroethyl hypofluorite and its production method
KR20190038062A (en) Preparation method of ruthenium-platinum-tin catalyst for hydrogenation of cyclohexane dicarboxylic acid (CHDA) and method for producing cyclohexane dimethanol (CHDM) using said catalyst
JP2531215B2 (en) Method for producing tetrafluoroethane
JP2586129B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JPH06279328A (en) Production of hexafluoropropane
JP2712475B2 (en) Method for producing propane having difluoromethylene group
US5602288A (en) Catalytic process for producing CF3 CH2 F
JP3819560B2 (en) Method for producing halogenated phenylpropionic acid compound
EP0149905A2 (en) Method for the preparation of 2,2,2-trifluoroethanol
JP2001240567A (en) Preparation method of heptafluorocyclopentane

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees