JPS6054931B2 - Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol - Google Patents
Method for producing 1,1,1,3,3,3-hexafluoro-2-propanolInfo
- Publication number
- JPS6054931B2 JPS6054931B2 JP56186826A JP18682681A JPS6054931B2 JP S6054931 B2 JPS6054931 B2 JP S6054931B2 JP 56186826 A JP56186826 A JP 56186826A JP 18682681 A JP18682681 A JP 18682681A JP S6054931 B2 JPS6054931 B2 JP S6054931B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- catalyst
- pressure
- hydrogen
- rhodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【発明の詳細な説明】
本発明は、特定の触媒の存在下にヘキサフルオロアセト
ンCF、C0CF3(以下HFAと略記)を水素で還元
することからなる1、1、1、3、3、3−ヘキサフル
オロー2−プロパノールCF3CHOHCF3(以下H
FIPAと略記)の製法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a 1,1,1,3,3,3- Hexafluoro-2-propanol CF3CHOHCF3 (hereinafter H
FIPA (abbreviated as FIPA).
HFIPAは、界面活性剤、乳化剤、あるいはいくつか
のポリマーの溶媒として有用である。HFIPA is useful as a surfactant, emulsifier, or solvent for some polymers.
また、HFIPAは種々の含フッ素化合物の合成中間体
としても価値があり、たとえばHFIPAを出発原料と
して、HFIPAのアルコール基の水素をメチル、フル
オロメチル、エチル基で置換したエーテルは吸入麻酔剤
としても提案されている。かかるHFIPAの製法とし
ては従来より各種の一方法が知られており、HFAを触
媒の存在下に水素で還元することからなる製法も提案さ
れている。そして、かかる還元反応触媒としてはPt系
触媒、Pd系触媒、Cu−Cr。O。系触媒などが知ら
れ、ているが、いずれも原料■Aの転化率が不充分。て
あり、目的とするHFIPAの収率が低く、高い反応温
度や高い反応圧力を必要とし、原料中の不純物や反応副
生物により反応活性を阻害され、あるいは触媒の耐久性
に劣るなどの難点をもつている。即ち、米国特許341
8337号公報にはPt0触媒を用いる液相反応が示さ
れているが、200〜9叩気圧の極めて高い反応圧力を
必要としている。HFIPA is also valuable as an intermediate for the synthesis of various fluorine-containing compounds; for example, using HFIPA as a starting material, ethers in which hydrogen in the alcohol group of HFIPA is replaced with methyl, fluoromethyl, or ethyl groups can be used as inhalation anesthetics. Proposed. Various methods have been known for producing HFIPA, and a production method has also been proposed in which HFA is reduced with hydrogen in the presence of a catalyst. Such reduction reaction catalysts include Pt-based catalysts, Pd-based catalysts, and Cu-Cr. O. Type catalysts are known, but the conversion rate of raw material A is insufficient in all of them. However, the yield of the target HFIPA is low, high reaction temperature and pressure are required, the reaction activity is inhibited by impurities in the raw materials and reaction by-products, and the durability of the catalyst is poor. I have it too. That is, U.S. Patent 341
Although Japanese Patent No. 8337 discloses a liquid phase reaction using a Pt0 catalyst, it requires an extremely high reaction pressure of 200 to 9 beat pressure.
また、米国特許360795訝公報には同じくptO触
媒を用いて液相反応をより低い反応圧力下で進行させる
方法が示されているが、目的生成物であるHFIPAを
反応当初より系に添加しておく必要がある。Additionally, U.S. Patent No. 360,795 discloses a method in which the liquid phase reaction proceeds under a lower reaction pressure using a ptO catalyst, but the desired product, HFIPA, is added to the system from the beginning of the reaction. It is necessary to keep it.
また、西独特許2113551号公開公報によればPd
/活性炭をNa2CO、などのアルカリで処理した触媒
を用いる液相反応でHFIPAを得ているが、かかる触
媒の調製は複雑かつ煩瑣である。一方、気相法によるH
FAの水素還元でHFIPAを得る触媒としてはCu−
Cr、Os−CaF、触媒(特公昭39−8210号公
報)、Pd/Al2O3触媒(米国特許3468964
号公報)、Pd/ C触媒(特公昭48−21925号
公報)が知られているが、高い反応温度を必要としたり
、触媒の活性、耐久性に不満足であるなどの難点を有し
ている。本発明者は、HFAの水素によるHFIPAへ
の接触還元反応について、これらの難点を解決し、優れ
た触媒を提供すべく種々の研究を重ねた結果、次の如き
新規知見を得、かかる知見に基づいて本発明を完成した
ものである。Also, according to West German Patent Publication No. 2113551, Pd
HFIPA has been obtained through a liquid phase reaction using a catalyst prepared by treating activated carbon with an alkali such as Na2CO, but the preparation of such a catalyst is complicated and cumbersome. On the other hand, H
As a catalyst for obtaining HFIPA by hydrogen reduction of FA, Cu-
Cr, Os-CaF, catalyst (Japanese Patent Publication No. 39-8210), Pd/Al2O3 catalyst (US Pat. No. 3,468,964)
Pd/C catalyst (Japanese Patent Publication No. 48-21925) is known, but it has drawbacks such as requiring a high reaction temperature and unsatisfactory catalyst activity and durability. . The present inventor has conducted various studies in order to solve these difficulties and provide an excellent catalyst for the catalytic reduction reaction of HFA to HFIPA using hydrogen, and has obtained the following new findings. Based on this, the present invention has been completed.
即ちロジウム触媒はこの還元反応に対し高活性を有する
と共に目的HFIPAの生成率の点でも優れており、さ
らに耐久性や不純物に影響されにくい点においても優れ
るものである。かくして、本発明は、HFAをロジウム
触媒の存在下に水素で還元することを特徴とする81P
Aの製法を新規に提供するものである。本発明において
は、ロジウム触媒を使用することが重要である。That is, the rhodium catalyst has high activity for this reduction reaction, and is also excellent in terms of the production rate of the target HFIPA, and is also excellent in terms of durability and resistance to impurities. Thus, the present invention provides 81P characterized in that HFA is reduced with hydrogen in the presence of a rhodium catalyst.
This provides a new method for producing A. In the present invention, it is important to use a rhodium catalyst.
ロジウム触媒としては還元ロジウム、または酸化ロジウ
ム、水酸化ロジウム、塩化ロジウムなどのロジウム化合
物があげられ、ロジウムを含有する錯体であつてもよく
、いずれもロジウムの酸化数は特には問わない。なかで
もO価のロジウムが効果的で、還元ロジウムは好ましい
例である。また、還元ロジウムは反応当初から存在して
いても、反応中にたとえば過渡的に存在してもよい。か
かるロジウム触媒をたとえば液相反応系によるこの還元
反応に使用する場合にはそのまま反応系に懸濁あるいは
溶解させて用いてもよいが、通常は適宜の担体に担持さ
せて気相反応系あるいは液相反応系に使用するのが好便
である。担体としては、活性炭、アルミナ、シリカ、シ
リカ−アルミナ、マグネシア、アスベスト、ケイソウ土
、その他の酸化物、硫酸塩、炭酸塩、フッ化物などが採
用でき、なかでも活性炭、アルミナが好便である。担持
触媒におけるロジウム分の担持量は特には限定されない
が、金属ロジウム換算で担体重量に対し0.1〜2鍾量
%、特には0.5〜1唾量%が好ましい。担体の粒径は
特には限定さ.れないが、触媒を懸濁させた液相反応系
などを採用する場合には、触媒の系内での分布の均一化
を容易にし反応物と触媒との接触を多くするように、微
粉末状の担体を使用するのが一般に好ましい。また、固
定床触媒による気相反応系または液.相反応系などを採
用する場合には、触媒層に触媒を保持でき、かつ流体流
通抵抗を適切な圧力損失範囲に維持できるように、1朗
以上の粒径の担体を使用するのが一般に好ましい。さら
にまた、流動床方式による反応なども適宜の粒径の触媒
を用・いて採用できる。かかるロジウム触媒の調製には
担持方法も含めて公知乃至周知の各種方法が採用でき、
また市販の各種のロジウム触媒も使用しうる。Examples of the rhodium catalyst include reduced rhodium, or rhodium compounds such as rhodium oxide, rhodium hydroxide, and rhodium chloride, and may be complexes containing rhodium, and the oxidation number of rhodium is not particularly limited. Among them, O-valent rhodium is effective, and reduced rhodium is a preferable example. Further, reduced rhodium may be present from the beginning of the reaction, or may be present transiently during the reaction. When such a rhodium catalyst is used, for example, in this reduction reaction using a liquid phase reaction system, it may be used as it is by being suspended or dissolved in the reaction system, but it is usually supported on a suitable carrier and used in a gas phase reaction system or liquid phase reaction system. It is conveniently used in phase reaction systems. As the carrier, activated carbon, alumina, silica, silica-alumina, magnesia, asbestos, diatomaceous earth, other oxides, sulfates, carbonates, fluorides, etc. can be used, and activated carbon and alumina are particularly convenient. The amount of rhodium supported on the supported catalyst is not particularly limited, but it is preferably 0.1 to 2 weight percent, particularly 0.5 to 1 weight percent, based on the weight of the carrier in terms of metallic rhodium. The particle size of the carrier is not particularly limited. However, when using a liquid phase reaction system with a suspended catalyst, it is necessary to use fine powder to facilitate uniform distribution of the catalyst within the system and increase contact between the reactants and the catalyst. It is generally preferred to use a carrier of the same type. In addition, gas phase reaction systems or liquid reaction systems using fixed bed catalysts can be used. When employing a phase reaction system, it is generally preferable to use a carrier with a particle size of 1 dia or more so that the catalyst can be retained in the catalyst layer and the fluid flow resistance can be maintained within an appropriate pressure drop range. . Furthermore, a reaction using a fluidized bed method can also be employed using a catalyst with an appropriate particle size. Various known and well-known methods can be used to prepare such rhodium catalysts, including supporting methods.
Various commercially available rhodium catalysts may also be used.
調製済の触媒をそのまま使用したり、あるいは適宜活性
化処理して使用してさしつかえない。本発明に使用する
HFAは各種の方法により調製しうるが、調製に伴なう
不純物が混入されていても本発明の原料として使用しう
る。The prepared catalyst may be used as it is, or may be activated as appropriate. HFA used in the present invention can be prepared by various methods, but it can be used as a raw material in the present invention even if it is contaminated with impurities associated with the preparation.
たとえばヘキサクロルアセトンから得られ、したがつて
モノクロルペンタフルオロアセトンなどを不純物として
含むHF′Aであつてもよく、あるいはヘキサフルオロ
プロペン(以下HFPと略記)から直接川こ、またはヘ
キサフルオロプロペンエポキシドを経由して得られ、し
たがつてHFPlヘキサフルオロプロペンエポキシド、
ペンタフルオロプロピオニルフルオリドなどを不純物と
して含むHFAであつてもよい。さらにまた、他の含フ
ッ素ある・いは含塩素の化合物を不純物として含んでい
てもさしつかえない。適宜な精製法でこれらの不純物を
減少もしくは除去したものても使用しうることは言うま
でもない。本発明は液相法、気相法のいずれの方法で行
な・つてもよい。For example, it may be HF'A obtained from hexachloroacetone and therefore containing monochloropentafluoroacetone as an impurity, or directly from hexafluoropropene (hereinafter abbreviated as HFP) or hexafluoropropene epoxide. obtained via HFPl hexafluoropropene epoxide,
HFA containing pentafluoropropionyl fluoride or the like as an impurity may also be used. Furthermore, it may contain other fluorine-containing or chlorine-containing compounds as impurities. It goes without saying that products in which these impurities are reduced or removed by appropriate purification methods can also be used. The present invention may be carried out by either a liquid phase method or a gas phase method.
本発明を液相法で行なう場合には溶媒または希釈剤を用
いてもよいし、用いなくてもよい。使用しうる溶媒また
は希釈剤としてはHF′IPA,.CF3CH2OHl
メタノール、エタノール、シクロヘキサノールなどのア
ルコール類、CF2ClCFCl2,CF2Cl2,H
FPなどのハロゲン化炭化水素類、ヘプタン、シクロヘ
キサンなどの炭化水素類、ヘキサフルオロプロペンエポ
キシド、ジオキサンなどのエーテル類などの挙げること
ができるが、目的生成物でもあるHFIPAを溶媒とす
ることは好適である。水を溶媒とし、あるいは混入させ
ることは、HFAが水と反応して、還元を受けにくい(
CF3)2C(0H)2となるので、どちらかといえば
好適でない。反応温度、反応圧力などの反応条件につい
ては特には限定がなく、従来より公知乃至周知の条件が
採用できる。反応開始時に原料1FAの全量を仕込むバ
ッチ式またはセミバッチ式液相反応に例をとれば、反応
圧力は水素分圧を含めて0.5〜70気圧、特には1〜
5洩圧が好ましく、反応温度は0〜200℃、特には2
0〜100℃が好ましい。触媒の使用量は金属ロジウム
換算で供給8A重量に対し0.0001〜1Wt%、特
には0.001〜0.1wt%が好ましい。反応時間は
反応温度など他の反応条件あるいは操作条件にもよるが
、例えば1分〜50C@間程度が採用しうる。水素は単
独で供給してもよく、窒素などの不活性ガスと混合して
供給してもよい。水素分圧は0.3〜50気圧、特には
0.5〜(至)気圧が好ましい。水素供給総量は原料H
FAと等モル以上であればよく、これより過剰に水素を
供給してもさしつかえない。また、原料HFAモル数よ
り少ないモル数の水素を供給することによりHF′IP
Aへの転化率を100%以下の適宜の数値にとどめたり
、反応速度や反応温度を適宜調整することも可能である
。水素供給総量を反応開始時に一度に反応系に供給して
もよく、反応進行とともに複数回に分割供給してもよく
、また連続的に供給してもよい。水素供給総量を反応開
始時に一度に供給する場合には、反応圧力および水素分
圧は水素供給直後に上述した圧力範囲であることが好ま
しいが、反応終了時にはこの圧力範囲を下回つてもよい
。When carrying out the present invention by a liquid phase method, a solvent or diluent may or may not be used. Solvents or diluents that can be used include HF'IPA, . CF3CH2OHl
Alcohols such as methanol, ethanol, cyclohexanol, CF2ClCFCl2, CF2Cl2, H
Examples include halogenated hydrocarbons such as FP, hydrocarbons such as heptane and cyclohexane, and ethers such as hexafluoropropene epoxide and dioxane, but it is preferable to use HFIPA, which is also the target product, as a solvent. be. When water is used as a solvent or mixed with water, HFA reacts with water and is less susceptible to reduction (
CF3)2C(0H)2, which is rather unsuitable. Reaction conditions such as reaction temperature and reaction pressure are not particularly limited, and conventionally known or well-known conditions can be employed. For example, in a batch or semi-batch liquid phase reaction in which the entire amount of raw material 1FA is charged at the start of the reaction, the reaction pressure is 0.5 to 70 atm including hydrogen partial pressure, particularly 1 to 70 atm.
5 leakage pressure is preferable, and the reaction temperature is 0 to 200°C, especially 2
0 to 100°C is preferred. The amount of the catalyst used is preferably 0.0001 to 1 wt%, particularly 0.001 to 0.1 wt%, based on the weight of the supplied 8A in terms of metallic rhodium. Although the reaction time depends on other reaction conditions such as reaction temperature or operating conditions, it can be, for example, about 1 minute to 50 C@. Hydrogen may be supplied alone or in a mixture with an inert gas such as nitrogen. The hydrogen partial pressure is preferably 0.3 to 50 atm, particularly 0.5 to (to) atm. The total amount of hydrogen supplied is raw material H
It is sufficient if the amount is at least equimolar to FA, and there is no problem even if hydrogen is supplied in excess of this amount. In addition, by supplying a smaller number of moles of hydrogen than the number of moles of raw material HFA, HF'IP
It is also possible to keep the conversion rate to A at an appropriate value of 100% or less, or to adjust the reaction rate and reaction temperature as appropriate. The total amount of hydrogen to be supplied may be supplied to the reaction system all at once at the start of the reaction, may be supplied in multiple portions as the reaction progresses, or may be supplied continuously. When the total amount of hydrogen is supplied at once at the start of the reaction, the reaction pressure and hydrogen partial pressure are preferably within the above-mentioned pressure range immediately after hydrogen supply, but may fall below this pressure range at the end of the reaction.
これは、即ち反応進行により水素が消費され、蒸気圧の
大きい8Aが減少し、蒸気圧の小さい81PAが増加し
、結果として反応圧力、水素分圧とも低下するからであ
る。This is because hydrogen is consumed as the reaction progresses, 8A having a high vapor pressure decreases, and 81PA having a low vapor pressure increases, resulting in a decrease in both the reaction pressure and the hydrogen partial pressure.
この点は水素を複数回に分割して間欠的に供給する場合
も同様である。また、水素、HFAlさらに必要に応じ
て溶媒または希釈剤を連続的に反応系に供給する流通式
液相反応、あるいは原料の一部もしくは全部をリサイク
ルして反応系に供給する循環式液相反応なども適宜採用
しうる。なお、上記記載において液相反応とは反応系に
おいて判然とした液相が存在する場合のみならず、凝液
相、即ち、気相と液相との判然とした区別が不能の臨界
温度以上の温度における物質の状態にある場合をも包含
するものである。本発明を気相法で行なう場合には、水
素および1(FAを連続的に固定触媒層に通する気相流
通反応法は好適な一例である。This point also applies to the case where hydrogen is divided into multiple portions and supplied intermittently. In addition, a flow type liquid phase reaction in which hydrogen, HFAl, and a solvent or diluent are continuously supplied to the reaction system as necessary, or a circulating liquid phase reaction in which part or all of the raw materials are recycled and supplied to the reaction system. etc. may be adopted as appropriate. In the above description, a liquid phase reaction is defined not only when there is a clear liquid phase in the reaction system, but also when there is a condensed liquid phase, that is, a temperature above the critical temperature where it is impossible to clearly distinguish between the gas phase and the liquid phase. It also includes the state of matter at different temperatures. When carrying out the present invention by a gas phase method, a suitable example is a gas phase flow reaction method in which hydrogen and 1(FA) are continuously passed through a fixed catalyst bed.
反応ガスには窒素などの不活性ガスや、HFP,CF2
ClCFCl2などの希釈剤を同時に、あるいは間欠的
に通じても差しつかえない。反応条件は特には限定され
ないが、反応温度は50〜400特C1特には150〜
3000Cが好ましく、反応圧力は0.5〜W気圧、特
には1〜4気圧が好ましい。I(F′Aに対する水素の
供給モル比は1以上てあることが好ましく、特には1.
5〜5の範囲であることが好ましい。接触時間は、たと
えは担持触媒を使用する場合にあつてはロジウム分の担
持率などによつて変えうるが0.1〜1000秒、特に
は1〜1(1)秒が好ましい。また、この還元反応は発
熱反応であるので不活性ガスその他の希釈剤をあわせ通
することにより触媒温度が過度に上昇することを防止ま
たは抑制するのはしばしば触媒寿命の延長などにつなが
つて有効であり、同様な目的などから触媒を不活性また
は低活性の充填体と混合して用いるなどの手法も採用で
きる。なお、固定床反応方式に限定されす、移動床方式
または流動床方式なども適宜採用しうる。液相法にあつ
ても気相法にあつても、一度反応に供した触媒を水素処
理、減圧脱気処理その他の適宜の方法で再活性化するこ
とも採用できる。かくして本発明の方法によれば、■漬
の水素還元によりHFIPAが好便な反応条件により高
活性、高収率で得られ、また、触媒の耐久性にすぐれ、
ないしは不純物に影響されにくいなどの効果を奏するも
のであるが、さらに本発明の実施例について具体的に説
明する。なお、かかる説明によつて本発明が何ら限定さ
れるものでないことは言うまでもない。実施例1
圧力計、導入口およびニードルバルブを有する内容積約
50m1のSUS製たて型円筒状耐圧容器に、ロジウム
担持率2Wt%の金属ロジウム/活性炭微粉末担持触媒
(日本エンゲルハルド社製)0.25yとテフロン9被
覆攪拌子を入れたのち、系内を室温で真空脱気した。Reaction gases include inert gases such as nitrogen, HFP, CF2, etc.
A diluent such as ClCFCl2 may be passed simultaneously or intermittently. The reaction conditions are not particularly limited, but the reaction temperature is 50 to 400 C1, especially 150 to
3000C is preferred, and the reaction pressure is preferably 0.5 to W atm, particularly preferably 1 to 4 atm. The molar ratio of hydrogen to I(F'A) to be supplied is preferably 1 or more, particularly 1.
It is preferably in the range of 5 to 5. The contact time may be changed depending on the rhodium loading rate when a supported catalyst is used, but it is preferably 0.1 to 1000 seconds, particularly 1 to 1 (1) seconds. Additionally, since this reduction reaction is an exothermic reaction, it is often effective to prevent or suppress the catalyst temperature from rising excessively by passing an inert gas or other diluent along with it, as this can extend the life of the catalyst. However, for the same purpose, it is also possible to use a method in which a catalyst is mixed with an inert or low-activity packing. Note that the reaction method is not limited to a fixed bed reaction method, but a moving bed method or a fluidized bed method may also be adopted as appropriate. In either the liquid phase method or the gas phase method, it is also possible to reactivate the catalyst once subjected to the reaction by hydrogen treatment, vacuum degassing treatment, or other appropriate methods. Thus, according to the method of the present invention, HFIPA can be obtained with high activity and high yield under convenient reaction conditions through hydrogen reduction by dipping, and the catalyst has excellent durability.
Although the present invention has the advantage of being less susceptible to impurities, examples of the present invention will be described in detail. It goes without saying that the present invention is not limited in any way by this explanation. Example 1 A metal rhodium/activated carbon fine powder supported catalyst with a rhodium loading rate of 2 wt% (manufactured by Nippon Engelhard Co., Ltd.) was placed in a vertical cylindrical pressure-resistant container made of SUS with an internal volume of about 50 m1 and equipped with a pressure gauge, an inlet port, and a needle valve. After adding 0.25y and a Teflon 9-coated stirring bar, the inside of the system was vacuum degassed at room temperature.
ついで、この耐圧容器を120℃に加熱しながら約3紛
間真空脱気をつづけて、活性炭担体に吸着している水分
などを除去した。”ついで、この耐圧容器を閉じたまま
ドライアイス/アセトン浴で冷却し、HFA容器と接続
して25yの粗HFAを導入した。この粗HF′Aは純
度約90%で主たる不純物は1IF′Pであつた。つい
で、この耐圧容器を水素ボンベと接続すると共に、ウ・
オーターバスに入れて約65゜Cに加熱し、あわせて電
磁攪拌機により耐圧容器内容物を攪拌した。圧力は2直
圧を示した。浴温をこの温度に維持し、かつ攪拌をつづ
けながら水素を導入して圧力を34気圧とした。ただち
に圧力が35気圧まで上昇した)のち、約1分後には(
至)気圧まで低下した。再び水素を導入して圧力を35
気圧とした。圧力は36気圧まで上昇したのち、その約
1.紛後には2蜆圧まで低下した。このようにして圧力
が29〜3観圧に低下するごとに間欠的に水素を導入し
て圧力を35〜36気圧にすることを反復して第1回の
水素導入後1時間で計11回の水素導入を行なうことが
できた。反応時間の経過と共に圧力低下速度は遅くなり
、したがつて導入回数を重ねる毎に導入間隔は長くなつ
た。1時間後に耐圧容器をウォーターバスからとり出し
、ドライアイス/アセトン浴で冷却し、残存する水素を
ゆつくりと放出した。Next, this pressure-resistant container was heated to 120° C. and vacuum deaeration was continued for about 30 minutes to remove water and the like adsorbed on the activated carbon carrier. ``Next, this pressure-resistant container was cooled in a dry ice/acetone bath while being closed, and connected to an HFA container to introduce 25y crude HFA.This crude HF'A has a purity of about 90% and the main impurity is 1IF'P. Next, this pressure-resistant container was connected to a hydrogen cylinder, and
The mixture was placed in an autobath and heated to approximately 65°C, and the contents of the pressure vessel were simultaneously stirred using a magnetic stirrer. The pressure showed 2 direct pressure. While maintaining the bath temperature at this temperature and continuing to stir, hydrogen was introduced to bring the pressure to 34 atmospheres. The pressure immediately rose to 35 atmospheres), and about 1 minute later (
To) Atmospheric pressure decreased to Introduce hydrogen again and increase the pressure to 35
It was taken as atmospheric pressure. After the pressure rose to 36 atmospheres, the pressure rose to about 1. After the incident, the pressure dropped to 2. In this way, hydrogen was introduced intermittently every time the pressure decreased to 29 to 3 atmospheres, and the pressure was increased to 35 to 36 atmospheres, which was repeated for a total of 11 times in one hour after the first hydrogen introduction. We were able to introduce hydrogen. As the reaction time progressed, the rate of pressure drop slowed, and therefore the interval between introductions became longer as the number of introductions increased. After 1 hour, the pressure vessel was removed from the water bath and cooled in a dry ice/acetone bath to slowly release the remaining hydrogen.
ついて系を閉じたまま温水て解凍し、氷水で冷却したな
かて溶存していた水素、未反応HFA.HFPなどをゆ
つくりと放出したのち、耐圧容器を開いて生成物を回収
した。Fl9−NMRおよびガスクロマトグラフで分析
したところ、得られた生成物はほとんどがHFIPAで
、供給した正味のHFAを基準とするHFIPAのモル
比率は95%であつた。比較例1主として触媒を変えた
他は実施例1とほぼ同様にして粗HFA(7)H2によ
る液相接触還元反応を行なつた結果を次表に示す。Then, the system was thawed with warm water with the system closed, and then cooled with ice water to remove dissolved hydrogen and unreacted HFA. After slowly releasing HFP and the like, the pressure container was opened and the product was recovered. Analysis by Fl9-NMR and gas chromatography revealed that the obtained product was mostly HFIPA, and the molar ratio of HFIPA based on the net HFA supplied was 95%. Comparative Example 1 A liquid phase catalytic reduction reaction using crude HFA(7)H2 was carried out in substantially the same manner as in Example 1, except that the catalyst was mainly changed. The results are shown in the following table.
いずれの場合も圧力低下速度は実施例1の場合より遅く
、かつパラジウム/活性炭触媒の場合の他は当初の1〜
2回の水素導入後はほとんど圧力低下が認められなくな
つた。また、パラジウム/活性炭触媒の場合は、1時間
の反応時間に水素供給は6回しかできなかつた。内径8
T!nφのU字型SUS製反応管にロジウム担持率2w
t%の金属ロジウム/粒状活性炭(10〜20メッシュ
)担持触媒(日本エンケルハルド社製)10m1を充填
した。In all cases, the pressure drop rate was slower than in Example 1, and except for the palladium/activated carbon catalyst, the pressure drop rate was from 1 to 1.
After introducing hydrogen twice, almost no pressure drop was observed. In addition, in the case of the palladium/activated carbon catalyst, hydrogen could only be supplied six times in one hour of reaction time. Inner diameter 8
T! Rhodium loading rate 2w in nφ U-shaped SUS reaction tube
10 ml of t% metallic rhodium/granular activated carbon (10 to 20 mesh) supported catalyst (manufactured by Nippon Enkelhard Co., Ltd.) was filled.
系内をN2で置換したのち、反応管を180℃の塩浴に
入れて加熱した。窒素、ついで水素を通じて前処理した
のち、実施例1に用いたと同様の粗HFAと水素とをそ
れぞれ10〜15m11min(室温換算、以下同じ)
、約30m1′Minの流量になるように混合して反応
系に供給した。反応)管出口ガスは2段の氷水浴トラッ
プを経てベントに放出した。凝縮物の多くは第1段の氷
水浴トラップに捕促され、実質的にそのすべてがHFI
PAであつた。1時間毎にトラップを交換して凝縮物を
分析したところ3.0〜3時間までのHFIPAモル・
収率は実質的に100%であり、つぎのl時間のHF′
IPAモル比率は98%であつた。After purging the system with N2, the reaction tube was placed in a 180° C. salt bath and heated. After pretreatment with nitrogen and then hydrogen, the same crude HFA and hydrogen as used in Example 1 were each added for 10 to 15 ml for 11 min (calculated at room temperature, the same applies hereinafter).
, and were mixed at a flow rate of approximately 30 ml/min and supplied to the reaction system. Reaction) The tube outlet gas was discharged to the vent via a two-stage ice-water bath trap. Much of the condensate is captured in the first stage ice-water trap, and virtually all of it is HFI.
It was P.A. When the trap was replaced every hour and the condensate was analyzed, HFIPA mol.
The yield is practically 100%, and for the next l hour HF'
The IPA molar ratio was 98%.
比較例2
触媒をパラジウム担持率a%の金属パラジウム/粒状活
性炭(10〜20メッシュ)担持触媒田”本エンゲルハ
イド社製)に代えた他は実施例2とほぼ同様にして粗H
FAの還元反応を行なつた。Comparative Example 2 Rough H
A reduction reaction of FA was performed.
0〜3時間まてのHFIPAモル収率は90%であ、つ
ぎの1時間のHFIPAモル比率は75%であつた。The HFIPA molar yield from 0 to 3 hours was 90%, and the HFIPA molar ratio during the next hour was 75%.
また、粗HFAの代りに小型ボンベ入りの高純度試薬H
FAを用いてほぼ同様の還元反応を行なつた。0〜3時
間までのHFIPAモル比率は84〜94%であつた。Also, instead of crude HFA, high-purity reagent H in a small cylinder is available.
Almost the same reduction reaction was performed using FA. The HFIPA molar ratio from 0 to 3 hours was 84-94%.
この結果はパラジウム/活性炭系触媒はかなり高活性で
あり、かつ8A中の不純物にも比較的影響されにくいが
、ロジウム系触媒の方がさらに活性、耐久性にまさり、
かつ不純物にも影響されないことを示している。比較例
3
触媒をパラジウム担持率0.5Wt%の金属パラジウム
/粒状活性Al2O3(10〜20メッシュ)担持触媒
(日本エンゲルハルド社製)に代え、反応温度を120
℃に代えた他は実施例2とほぼ同様にして粗HF′Aお
よび高純度試薬HFAの還元反応を行なつた。These results show that the palladium/activated carbon catalyst has considerably high activity and is relatively unaffected by impurities in 8A, but the rhodium catalyst has even better activity and durability.
It also shows that it is not affected by impurities. Comparative Example 3 The catalyst was replaced with a metal palladium/granular activated Al2O3 (10-20 mesh) supported catalyst (manufactured by Nippon Engelhard Co., Ltd.) with a palladium loading rate of 0.5 Wt%, and the reaction temperature was set at 120
The reduction reaction of crude HF'A and high purity reagent HFA was carried out in substantially the same manner as in Example 2, except that the temperature was changed to .degree.
Claims (1)
水素で還元することを特徴とする1、1、1、3、3、
3−ヘキサフルオロ−2−プロパノールの製法。1, 1, 1, 3, 3, characterized in that hexafluoroacetone is reduced with hydrogen in the presence of a rhodium catalyst
Method for producing 3-hexafluoro-2-propanol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56186826A JPS6054931B2 (en) | 1981-11-24 | 1981-11-24 | Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56186826A JPS6054931B2 (en) | 1981-11-24 | 1981-11-24 | Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5888330A JPS5888330A (en) | 1983-05-26 |
JPS6054931B2 true JPS6054931B2 (en) | 1985-12-03 |
Family
ID=16195282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56186826A Expired JPS6054931B2 (en) | 1981-11-24 | 1981-11-24 | Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6054931B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03115824U (en) * | 1989-11-28 | 1991-12-02 | ||
WO2018139441A1 (en) | 2017-01-27 | 2018-08-02 | 住友化学株式会社 | Composition and light emitting element which is obtained using said composition |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1038586C (en) * | 1991-05-01 | 1998-06-03 | 大制药株式会社 | Pyrazine derivatives and process for preparing same |
JPWO2002026679A1 (en) * | 2000-09-27 | 2004-02-05 | 旭硝子株式会社 | Method for producing fluorinated alcohol |
JP5028731B2 (en) * | 2001-09-18 | 2012-09-19 | 旭硝子株式会社 | Method for producing halogenated alcohol |
JP5076739B2 (en) * | 2007-08-29 | 2012-11-21 | セントラル硝子株式会社 | Method for producing hexafluroisopropanol |
US7524995B1 (en) | 2008-06-12 | 2009-04-28 | E.I. Du Pont De Nemours And Company | Continuous process to produce hexafluoroisopropanol |
-
1981
- 1981-11-24 JP JP56186826A patent/JPS6054931B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03115824U (en) * | 1989-11-28 | 1991-12-02 | ||
WO2018139441A1 (en) | 2017-01-27 | 2018-08-02 | 住友化学株式会社 | Composition and light emitting element which is obtained using said composition |
Also Published As
Publication number | Publication date |
---|---|
JPS5888330A (en) | 1983-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
UA77384C2 (en) | Catalyst and process for producing vinyl acetate | |
EP0349115A1 (en) | Hydrodehalogenation of 1,1,1,2-tetrafluorochloroethane in the presence of supported Pd | |
EP0593458B1 (en) | Process of vapor phase catalytic hydrogenation of maleic anhydride to gamma-butyrolactone in high conversion and high selectivity using an activated catalyst | |
RU1811522C (en) | Method of 1,1,1,2-tetrafluoroethane synthesis | |
JPS6054931B2 (en) | Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol | |
EP1165474A1 (en) | Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane | |
US4507494A (en) | Process for the production of a diester of oxalic acid | |
US5663429A (en) | Process for the preparation of acetic acid | |
JPH08165256A (en) | Production of 1,1,1,2,3,3-hexafluoropropane | |
JPS6362525B2 (en) | ||
KR101343660B1 (en) | Pentafluoroethane producing method | |
JPS6113689B2 (en) | ||
US6855662B2 (en) | Catalyst for preparing fluorine-containing alcohol compound and a process for preparation of fluorine-containing alcohol compound | |
US3862236A (en) | Production of propionaldehyde | |
NO152045B (en) | PROCEDURE FOR THE PREPARATION OF METHYL FORMINATE AND METHANOL FOR THE REACTION OF CARBON MONOXIDE AND HYDROGEN | |
EP1205246B1 (en) | Process for preparation of catalyst | |
JP2838852B2 (en) | Method for producing glycolaldehyde | |
EP0526974B1 (en) | Process for the preparation of acetic acid | |
US4661643A (en) | Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol | |
JPH062702B2 (en) | Method for producing methyl isobutyl ketone | |
KR930005305B1 (en) | Catalyst for preparation of dimethyl carbonate and process for preparation of it and its use | |
JP2608722B2 (en) | Method for producing 4-methyl-1-pentene | |
WO2000069557A1 (en) | Catalysts for the preparation of fluorinated alcohols and process for the preparation of fluorinated alcohols | |
JP3804697B2 (en) | Method for producing methyl formate | |
KR100280261B1 (en) | Method for preparing methanol from carbon dioxide using palladium / zinc oxide catalyst |