JPH062702B2 - Method for producing methyl isobutyl ketone - Google Patents

Method for producing methyl isobutyl ketone

Info

Publication number
JPH062702B2
JPH062702B2 JP61101325A JP10132586A JPH062702B2 JP H062702 B2 JPH062702 B2 JP H062702B2 JP 61101325 A JP61101325 A JP 61101325A JP 10132586 A JP10132586 A JP 10132586A JP H062702 B2 JPH062702 B2 JP H062702B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
methyl isobutyl
isobutyl ketone
acetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61101325A
Other languages
Japanese (ja)
Other versions
JPS62258335A (en
Inventor
保彦 東尾
敏男 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP61101325A priority Critical patent/JPH062702B2/en
Publication of JPS62258335A publication Critical patent/JPS62258335A/en
Publication of JPH062702B2 publication Critical patent/JPH062702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はアセトンと水素とを原料とし,一段の反応でメ
チルイソブチルケトンを製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for producing methyl isobutyl ketone by a one-step reaction using acetone and hydrogen as raw materials.

メチルイソブチルケトン(以下MIBKと称す)は有機
溶剤,塗料,安定剤等の原料として有用である。
Methyl isobutyl ketone (hereinafter referred to as MIBK) is useful as a raw material for organic solvents, paints, stabilizers and the like.

<従来の技術> MIBKは通常アセトンと水素を原料として,次のよう
な三段法によって工業的に製造されている。
<Prior Art> MIBK is industrially produced from acetone and hydrogen as raw materials by the following three-step method.

この三段法の特徴は上式に示される縮合,脱水,および
水素添加の工程を順次行なうものである。まずアセトン
を水酸化バリウム等の団体塩基触媒を用いて10〜20℃,
常圧液相で反応させることによりジアセトンアルコール
を合成し,次に縮合して得られたジアセトンアルコール
を硫酸,リン酸等の酸触媒の存在下に液相で100〜120℃
に加熱して脱水反応を行ないメシチルオキシドを得る。
続いて,このメシチルオキシドを分離精製した後,ラネ
ーニッケル触媒等の存在下に水素添加を行なうことによ
りMIBKを製造するという方法である。
The feature of this three-step method is that the steps of condensation, dehydration, and hydrogenation shown in the above formula are sequentially performed. First, using acetone as a base catalyst such as barium hydroxide,
Diacetone alcohol was synthesized by reacting in the liquid phase at atmospheric pressure, and the resulting diacetone alcohol was condensed at 100-120 ℃
The mixture is heated to a dehydration reaction to obtain mesityl oxide.
Subsequently, the mesityl oxide is separated and purified, and then hydrogenated in the presence of a Raney nickel catalyst or the like to produce MIBK.

この方法は広く工業的に行なわれているが,縮合,脱
水,水素添加工程と三つの反応工程があり,またそれぞ
れの工程でジアセトンアルコール,メシチルオキシド等
の中間体の分離精製が必要であり,操作が繁雑である。
さらにアセトンからジアセトンアルコールへの縮合反応
は平衡反応のため,その転化率は15%程度と低いとい
う問題点がある。
Although this method is widely used industrially, it has three reaction steps of condensation, dehydration and hydrogenation, and each step requires separation and purification of intermediates such as diacetone alcohol and mesityl oxide. Yes, operation is complicated.
Furthermore, since the condensation reaction of acetone to diacetone alcohol is an equilibrium reaction, there is a problem that the conversion rate is as low as about 15%.

そのためにアセトンと水素から一工程でメチルイソブチ
ルケトンを製造する検討が行なわれている。この方法は
平衡的に有利であり,1回通過あたりの原料転化率を上
げることができ,三段法に比して経済的に有利となる。
このような一段法によるMIBKの製造法として従来,
酸型イオン交換樹脂とパラジウム一炭素を触媒として使
用する方法(ドイツ特許第1238453号明細書),リン酸
ジルコニウムにパラジウムを担持させた触媒を用いる方
法(特公昭49−6994号公報),H型ゼオライトパラジウ
ムを担持させた触媒を用いる方法(特公昭46-2643号公
報)等が報告されている。
Therefore, studies are being made to produce methyl isobutyl ketone from acetone and hydrogen in one step. This method is advantageous in equilibrium, can increase the raw material conversion rate per one pass, and is economically advantageous as compared with the three-step method.
Conventionally, as a method for manufacturing MIBK by such a one-step method,
Method using an acid type ion exchange resin and palladium-carbon as a catalyst (German Patent No. 1238453), method using a catalyst in which palladium is supported on zirconium phosphate (JP-B-49-6994), H type A method using a catalyst supporting zeolite palladium (Japanese Patent Publication No. 46-2643) has been reported.

しかしながら,これらの従来の方法においては樹脂を用
いるために反応温度を上げることができず原料転化率が
低い,触媒の調製が煩雑である,あるいはMIBK収率が低
いという欠点を有しており工業的に満足できる結果が得
られていなかった。
However, these conventional methods have the disadvantages that the reaction temperature cannot be raised because a resin is used, the raw material conversion rate is low, the catalyst preparation is complicated, or the MIBK yield is low. The result was not satisfactory.

<発明が解決しようとする問題点> 本発明は,アセトンと水素とを原料として,MIBKを製造
する方法において従来の方法の欠点,即ち原料転化率が
低く,MIBKの収率が低いこと,触媒調製が煩雑であるこ
と等の欠点を改善し,簡単な操作でMIBKを高収率で
得ることを目的とする。
<Problems to be Solved by the Invention> The present invention has drawbacks in the conventional method for producing MIBK from acetone and hydrogen as raw materials, namely, low raw material conversion rate, low yield of MIBK, and catalyst. The object is to improve the drawbacks such as complicated preparation and to obtain MIBK in a high yield by a simple operation.

<問題点を解決するための手段> 本発明は,アセトンと水素を反応させてメチルイソブチ
ルケトンを製造する方法において,アルミナと酸化カル
シウム,酸化マグネシウム,酸化ストロンチウムのうち
から選ばれた一種又は二種以上の金属酸化物とから成る
担体にパラジウムを担持した触媒を用いることを特徴と
するメチルイソブチルケトンの製造法に関するものであ
る。
<Means for Solving Problems> The present invention relates to a method for producing methyl isobutyl ketone by reacting acetone and hydrogen, and one or two kinds selected from alumina and calcium oxide, magnesium oxide, or strontium oxide. The present invention relates to a method for producing methyl isobutyl ketone, which comprises using a catalyst in which palladium is supported on a carrier composed of the above metal oxide.

以下,本発明を具体的に説明する。Hereinafter, the present invention will be specifically described.

本発明方法に用いられる触媒はアルミナと酸化カルシウ
ム,酸化マグネシウム,酸化ストロンチウムのうちから
選ばれた一種又は二種以上の金属酸化物とから成る担体
にパラジウムを担持したものである。本発明方法に用い
られる担体は通常アルミナを酢酸カルシウムの水溶液に
浸漬した後,焼成することにより製造される。アルミナ
としてはガンマーアルミナが好ましく用いられる。カル
シウム,マグネシウム,ストロンチウムの水溶液として
はこれらの金属の酢酸塩,硝酸塩,シュウ酸塩等の水溶
液が用いられ,好ましくはこれらの金属の酢酸塩の水溶
液が用いられる。焼成は通常300〜600℃の温度で行なわ
れる。300℃以下或いは600℃以上の焼成では低い活性し
か得られない。
The catalyst used in the method of the present invention is one in which palladium is supported on a carrier composed of alumina and one or more metal oxides selected from calcium oxide, magnesium oxide and strontium oxide. The carrier used in the method of the present invention is usually produced by immersing alumina in an aqueous solution of calcium acetate and then calcining. Gamma-alumina is preferably used as alumina. As an aqueous solution of calcium, magnesium and strontium, an aqueous solution of acetate, nitrate, oxalate of these metals is used, and preferably an aqueous solution of acetate of these metals is used. Firing is usually performed at a temperature of 300 to 600 ° C. When activated below 300 ° C or above 600 ° C, only low activity is obtained.

パラジウムの担持量は通常0.01〜5.0重量%であり,好
ましくは0.05〜1.0重量%である。0.01重量%以下では
良好な活性が得られず,5.0重量%以上では担持された
パラジウムが有効に用いられない。
The amount of palladium supported is usually 0.01 to 5.0% by weight, preferably 0.05 to 1.0% by weight. If it is less than 0.01% by weight, good activity cannot be obtained, and if it is more than 5.0% by weight, the supported palladium cannot be effectively used.

本発明方法に用いられる触媒は通常アルミナを酢酸カル
シウム等の水溶液に浸漬,焼成した後パラジウムを担持
することにより製造されるが,場合によってはアルミナ
担体にパラジウムを担持した後にこれを酢酸カルシウム
等の水溶液に浸漬,焼成して製造することもできる。
The catalyst used in the method of the present invention is usually produced by immersing alumina in an aqueous solution of calcium acetate or the like, calcining it, and then supporting palladium, but in some cases, after supporting palladium on an alumina carrier, it is treated with calcium acetate or the like. It can also be manufactured by dipping in an aqueous solution and firing.

本発明方法の反応形態としては触媒を断熱あるいは等温
型反応器に充填し,そこにアセトンと水素とを通じるい
わゆる固定床流通反応を採用してもよいし,または触媒
をアセトン中に懸濁させ,そこに水素を吹き込んで反応
を行なわしめてもよい。固定床流通反応で反応を行なう
場合,気相で反応させてもよいし,液相で反応させても
よいが好ましくは液相で反応が行なわれる。懸濁法で反
応を行なう場合,反応を回分式または連続式のいずれの
方法で行なってもよい。
As the reaction mode of the method of the present invention, the catalyst may be packed in an adiabatic or isothermal reactor and a so-called fixed bed flow reaction in which acetone and hydrogen are passed therethrough, or the catalyst may be suspended in acetone. , Hydrogen may be blown into it to carry out the reaction. When the reaction is carried out by a fixed bed flow reaction, the reaction may be carried out in the gas phase or the liquid phase, but the reaction is preferably carried out in the liquid phase. When the reaction is carried out by the suspension method, the reaction may be carried out batchwise or continuously.

反応温度は通常80〜250℃で行なわれ,好ましくは120〜
200℃で行なわれる。この温度より低い温度では反応速
度が小さくなり,またこの温度より高温ではアセトンの
高縮合生成物が増加する。
The reaction temperature is usually 80 to 250 ° C, preferably 120 to 250 ° C.
It is carried out at 200 ° C. At temperatures lower than this temperature, the reaction rate becomes slower, and at temperatures higher than this temperature, highly condensation products of acetone increase.

反応圧力は通常大気圧〜50気圧で反応が行なわれ,反応
温度にもよるが好ましくは10〜30気圧である。
The reaction pressure is usually from atmospheric pressure to 50 atm, and it is preferably from 10 to 30 atm, although it depends on the reaction temperature.

本発明方法は触媒の調製が容易であり,また触媒の活性
が高く,選択性も良好である。さらに触媒の安定性が高
く,その寿命が長いため長時間安定して高収率でMIB
Kを製造することができる。
According to the method of the present invention, the preparation of the catalyst is easy, the activity of the catalyst is high, and the selectivity is good. Furthermore, the high stability of the catalyst and its long life make it stable for a long time with a high yield of MIB.
K can be manufactured.

以下に実施例によって本発明方法をさらに具体的に説明
するが,本発明の範囲はこれによって制限を受けるもの
ではない。
Hereinafter, the method of the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited thereto.

<実施例> 実施例1. アルミナペレット(住友アルミ製KHD−24)100mを
1モル/リットルの酢酸カルシウム水溶液500m)に3
時間浸漬した。その後このペレットを取り出し400℃で
焼成した。
<Example> Example 1. Alumina pellets (KHD-24 manufactured by Sumitomo Aluminum Co., Ltd.) 100 m in 3 mol of 1 mol / l calcium acetate aqueous solution 3
Soak for hours. Then, the pellets were taken out and fired at 400 ° C.

この担体を塩化パラジウムの水溶液に浸漬し,ヒドラジ
ンで還元後300℃で焼成した。パラジウムの担持量は0.1
重量%であった。
This carrier was immersed in an aqueous solution of palladium chloride, reduced with hydrazine, and calcined at 300 ° C. The amount of palladium carried is 0.1
% By weight.

この触媒100mを内径28mmの垂直に配置した反応管内に
充填し,温度160℃,圧力20kg/cm2の条件下アセトンを
158g/hr(LHSV=2),水素256Nm/minの供給速
度で反応器に導入し反応を行ない,第1表に示す結果を
得た。反応結果は反応液のガスクロマトグラフィー分析
によって得た。
100 m of this catalyst was filled in a vertically arranged reaction tube with an inner diameter of 28 mm, and acetone was added under the conditions of a temperature of 160 ° C. and a pressure of 20 kg / cm 2.
158 g / hr (LHSV = 2) and hydrogen at a feed rate of 256 Nm / min were introduced into the reactor to carry out the reaction, and the results shown in Table 1 were obtained. The reaction result was obtained by gas chromatography analysis of the reaction solution.

実施例2.〜4. 実施例1.で用いた酢酸カルシウムのかわりに第2表に記
載した化合物を用いて触媒の調製を行ない,これらの触
媒を用いてMIBKの合成反応を行なった。なお酢酸カ
ルシウムのかわりに第2表に記載した化合物を用いる以
外の触媒調製条件及び反応条件についてはすべて実施例
1.に記載したのと同じ条件で行なった。
Examples 2 to 4. Catalysts were prepared using the compounds shown in Table 2 instead of the calcium acetate used in Example 1, and MIBK synthesis reaction was carried out using these catalysts. The catalyst preparation conditions and reaction conditions except that the compounds shown in Table 2 were used in place of calcium acetate
The conditions were the same as described in 1.

実施例5.〜7. 実施例1.に記載した調製法に従って調製した触媒を用い
て第3表に示した反応条件で反応を行ない,第3表に示
す結果を得た。なお第3表に示した反応条件以外はすべ
て実施例1.に記載したのと同じ条件で反応を行なった。
Examples 5 to 7. Using the catalyst prepared according to the preparation method described in Example 1, the reaction was carried out under the reaction conditions shown in Table 3, and the results shown in Table 3 were obtained. The reaction was carried out under the same conditions as described in Example 1 except for the reaction conditions shown in Table 3.

実施例8. 内容積200mの電磁撹拌機付オートクレーブ中にアセト
ン100mと実施例1.に記載した方法で調製した触媒を粉
砕し,粉末状にした触媒2gを加えた,オートクレーブ
を160℃に加熱し,オートクレーブ内の圧力が20kg/cm2
になるように水素を加え撹拌しながら反応を行なった。
反応の進行に伴って消費される水素は連続的に補給し,
全圧を常に20kg/cm2に保った。2時間反応を行なった
後,オートクレーブを冷却し反応生成物を取り出し,水
素ならびに触媒を分離した後,ガスクロマトグラフィー
により分析し下記の結果を得た。
Example 8. In an autoclave with an internal volume of 200 m equipped with a magnetic stirrer, 100 m of acetone and the catalyst prepared by the method described in Example 1 were crushed, 2 g of the powdered catalyst was added, and the autoclave was heated to 160 ° C. The pressure inside the autoclave is 20 kg / cm 2
The reaction was carried out while adding hydrogen so as to be stirred.
Hydrogen consumed as the reaction progresses is continuously replenished,
The total pressure was always kept at 20 kg / cm 2 . After reacting for 2 hours, the autoclave was cooled, the reaction product was taken out, hydrogen and the catalyst were separated, and then analyzed by gas chromatography to obtain the following results.

アセトン転化率………45.7% MIBK選択率………93.1% IPA 選択率……… 1.5% DIBK選択率……… 2.4% 比較例1. アルミナペレット(住友アルミ製KHD−24)100mを
塩化パラジウム水溶液に浸漬し,ヒドラジンで還元後30
0℃で焼成し,触媒を調製した。パラジウムの担持量は
0.1重量%であった。
Acetone conversion rate ………… 45.7% MIBK selectivity ………… 93.1% IPA selectivity ……… 1.5% DIBK selectivity ……… 2.4% Comparative Example 1. Alumina pellets (KHD-24 made by Sumitomo Aluminum) 100m in palladium chloride Soak in aqueous solution and reduce with hydrazine 30
The catalyst was prepared by firing at 0 ° C. The amount of palladium carried is
It was 0.1% by weight.

この触媒100mを用いてMIBKの合成反応を行なった。な
お触媒以外の反応条件は実施例1.に記載したのと同じ条
件で行なった。
MIBK was synthesized using 100 m of this catalyst. The reaction conditions other than the catalyst were the same as those described in Example 1.

反応開始10時間後にサンプリングを行ない,反応液をガ
スクロマトグラフィーで分析し,下記の結果を得た。
Sampling was performed 10 hours after the start of the reaction, and the reaction solution was analyzed by gas chromatography to obtain the following results.

アセトン転化率……19.8% IPA 選択率……9.6% MIBK選択率……86.4% DIBK選択率……3.0% <発明の効果> 以上の如く本発明によりアルミナと酸化カルシウム,酸
化マグネシウム,酸化ストロンチウムのうちから選ばれ
た1種又は二種以上の金属酸化物とから成る担体にパラ
ジウムを担持した触媒の存在下にアセトンと水素とを反
応させることにより一段の反応でメチルイソブチルケト
ンが収率よく得られるようになった。
Acetone conversion rate …… 19.8% IPA selectivity …… 9.6% MIBK selectivity …… 86.4% DIBK selectivity …… 3.0% <Effect of the invention> As described above, according to the present invention, alumina and calcium oxide, magnesium oxide, and strontium oxide were selected. Methyl isobutyl ketone is obtained in a high yield in a one-step reaction by reacting acetone and hydrogen in the presence of a catalyst in which palladium is supported on a carrier composed of one or more metal oxides selected from the above. Came to be.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アセトンと水素を反応させてメチルイソブ
チルケトンを製造する方法において,アルミナと酸化カ
ルシウム,酸化マグネシウム,酸化ストロンチウムのう
ちから選ばれた一種又は二種以上の金属酸化物とから成
る担体にパラジウムを担持した触媒を用いることを特徴
とするメチルイソブチルケトンの製造法。
1. A method for producing methyl isobutyl ketone by reacting acetone with hydrogen, the carrier comprising alumina and one or more metal oxides selected from calcium oxide, magnesium oxide and strontium oxide. A method for producing methyl isobutyl ketone, which comprises using a catalyst having palladium supported on it.
JP61101325A 1986-04-30 1986-04-30 Method for producing methyl isobutyl ketone Expired - Lifetime JPH062702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101325A JPH062702B2 (en) 1986-04-30 1986-04-30 Method for producing methyl isobutyl ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101325A JPH062702B2 (en) 1986-04-30 1986-04-30 Method for producing methyl isobutyl ketone

Publications (2)

Publication Number Publication Date
JPS62258335A JPS62258335A (en) 1987-11-10
JPH062702B2 true JPH062702B2 (en) 1994-01-12

Family

ID=14297667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101325A Expired - Lifetime JPH062702B2 (en) 1986-04-30 1986-04-30 Method for producing methyl isobutyl ketone

Country Status (1)

Country Link
JP (1) JPH062702B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458216B1 (en) * 1990-05-21 1994-08-10 Mitsubishi Chemical Corporation Method for producing methyl isobutyl ketone
GB0011858D0 (en) 2000-05-18 2000-07-05 Ici Plc Aldol condensation reaction and catalyst therefor
CN102190568A (en) * 2010-03-19 2011-09-21 中国石油天然气股份有限公司 Method for synthesizing methyl isobutyl ketone
CN107185566B (en) * 2017-06-15 2020-01-07 中南大学 Catalyst for synthesizing methyl isobutyl ketone by acetone hydrogenation liquid phase method and application
CN116041158A (en) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 Method for preparing methyl isobutyl ketone by liquid phase hydrogenation of 4-methyl-3-pentene-2-one

Also Published As

Publication number Publication date
JPS62258335A (en) 1987-11-10

Similar Documents

Publication Publication Date Title
US4780552A (en) Preparation of furan by decarbonylation of furfural
JPH0465818B2 (en)
JPS6159612B2 (en)
US4214106A (en) Process for the preparation of ethylene glycol
US4229374A (en) Amine process using Cu-Sn-Na catalyst
CN109890782A (en) Produce the single-stage process of butadiene
EP0056993B1 (en) Process for preparing oxalic acid diesters
US3932518A (en) Methylation of cyclohexanone with simultaneous dehydrogenation
JPH035374B2 (en)
US4206149A (en) Amine process using copper-rhenium catalyst
JP2632166B2 (en) Method for producing carboxylic acid
JPH062702B2 (en) Method for producing methyl isobutyl ketone
US5684207A (en) Preparation of methyl isobutyl ketone
US3944627A (en) Hydrogenolysis of phenyl alkyl ketones and 1-phenylalkanols
CA1274546A (en) Process for production of methyl isobutyl ketone
EA000698B1 (en) Process for producing n-methyl-2-(3,4 dimethoxyphenyl)-ethylamine
KR0131203B1 (en) Process for the production of ñò-butyrolactone
JPS6054947B2 (en) Amine manufacturing method
US6509504B1 (en) Method for the production of serinol
JPH0250088B2 (en)
JPS6256788B2 (en)
JP2737295B2 (en) Method for producing methyl isobutyl ketone
EP0056994B1 (en) Process for preparation of oxalic acid diesters
SU453824A3 (en) METHOD FOR OBTAINING ALIPHATIC OR AROMATIC CARBONIC ACIDS AND / OR COMPLEX ESTERS
KR100710559B1 (en) Method for the effective preparation of 1-cyclohexyl-1-ethanol