JPS5888330A - Production of 1,1,1,3,3,3-hexafluoro-2-propanol - Google Patents

Production of 1,1,1,3,3,3-hexafluoro-2-propanol

Info

Publication number
JPS5888330A
JPS5888330A JP56186826A JP18682681A JPS5888330A JP S5888330 A JPS5888330 A JP S5888330A JP 56186826 A JP56186826 A JP 56186826A JP 18682681 A JP18682681 A JP 18682681A JP S5888330 A JPS5888330 A JP S5888330A
Authority
JP
Japan
Prior art keywords
rhodium
catalyst
reaction
hydrogen
hfa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56186826A
Other languages
Japanese (ja)
Other versions
JPS6054931B2 (en
Inventor
Yoshio Oda
小田 吉男
Yoshimasa Arai
新井 義正
Arata Yasuda
新 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP56186826A priority Critical patent/JPS6054931B2/en
Publication of JPS5888330A publication Critical patent/JPS5888330A/en
Publication of JPS6054931B2 publication Critical patent/JPS6054931B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:The hydrogenation of hexafluoroacetone is carried out in the presence of a rhodium catalyst to produce in high yield the titled substance that is used as a surface active agent, emulsifier, polymer solvent, synthetic intermediate of fluorine-containing compounds and intermediate of inhalation anesthetic. CONSTITUTION:The titled substance is obtained by hydrogenation of hexafluoroacetone in the presence of a rhodium catalyst such as reduced rhodium, rhodium oxide, rhodium hydroxide, or rhodium chloride. As a catalyst, 0-valent rhodium is effective and reduced rhodium is preferred. The catalyst is generally in the form of rhodium on a support (such as activated carbon or alumina)[the content of rhodium is 0.5-10wt% based on the support (calculated as metallic rhodium)] and the reaction is preferably carried out in a gaseous or liquid system. The amount of the catalyst ued is 0.001-0.1wt% based on the starting material calculated as metallic rhodium and reaction conditions are 20-100 deg.C, 0.5- 30 atmospheric pressure in the hydrogen partial pressure and 1min to 500hr in reaction time.

Description

【発明の詳細な説明】 本発明は、特定の触媒の存在下にヘキサフルオロアセト
ン−〇FgCOCFm (以下HFAと略記)を水素で
還元することからなる1、 1.1.3.3.3−ヘキ
サフルオロ−2−プロパツールCFs OHOHCFg
(以下HFIPAと略記)の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention consists of reducing hexafluoroacetone-〇FgCOCFm (hereinafter abbreviated as HFA) with hydrogen in the presence of a specific catalyst 1, 1.1.3.3.3- Hexafluoro-2-propanol CFs OHOHCFg
(hereinafter abbreviated as HFIPA).

HFIPAは、界面活性剤、乳化剤、あるいはいくつか
のポリマーの溶媒として有用である。また、HFIPA
は種々の含フツ素化合物の合成中間体としても価値があ
り、たとえばHFIPAを出発原料として2、)iF工
PAのアルコール基の水素をメチル、フルオロメチル、
エチル基で置換したエーテルは吸入麻酔剤としても提案
されている。
HFIPA is useful as a surfactant, emulsifier, or solvent for some polymers. Also, HFIPA
is also valuable as an intermediate for the synthesis of various fluorine-containing compounds. For example, using HFIPA as a starting material, 2) hydrogen of the alcohol group of iF-PA is converted into methyl, fluoromethyl,
Ethyl-substituted ethers have also been proposed as inhalation anesthetics.

かかるI(FIPAの製法としては従来より各種の方法
が知られており、HFAを触媒の存在下に水素で還元す
ることからなる製法も提案されている。そして、かかる
還元反応触媒としてはpt系触媒、Pd系触媒、0u−
(3rzOs系触媒などが知られているが、いずれも原
料HFAの転化率が不充分であり、目的、とするHFI
PAの収率が低く、高い反応温度や高い反応圧力を必要
とし、原料中の不純物や反応副生物により反応活性を阻
害され、あるいは触媒の耐久性に劣るなどの難点をもっ
ている。
Various methods have been known for producing I (FIPA), and a production method consisting of reducing HFA with hydrogen in the presence of a catalyst has also been proposed. Catalyst, Pd-based catalyst, 0u-
(Although 3rzOs-based catalysts are known, they all have an insufficient conversion rate of the raw material HFA, and the target HFI
It has disadvantages such as low yield of PA, high reaction temperature and high reaction pressure, impurities in raw materials and reaction by-products inhibiting reaction activity, and poor catalyst durability.

即ち、米国特許3.418.337号公報にはpto触
媒を用いる液相反応が示されているが、200〜900
気圧の極めて高い反応圧力を必要としている。また、米
国特許3,607,952号公報には同じ< pto触
媒を用いて液相反応をより低い反応圧力下で進行させる
方法が示されているが、目的生成物でりるHFIPAを
反応当初より系に添加しておく必要がある。また、西独
特許2. ] l 3.551号公開公報によればPd
/活性炭をNa2COsなどのアルカリで処理した触媒
を用いる液相反応でl(E、TPAを得ているが、かか
る触媒の調製は複雑かつ煩瑣である。
That is, U.S. Pat. No. 3,418,337 discloses a liquid phase reaction using a PTO catalyst;
Requires extremely high reaction pressure. Furthermore, U.S. Patent No. 3,607,952 discloses a method in which the liquid phase reaction proceeds under a lower reaction pressure using the same <pto catalyst, but HFIPA, which is the desired product, is used at the beginning of the reaction. It is necessary to add more to the system. In addition, West German patent 2. ] l According to Publication No. 3.551, Pd
/I(E,TPA) has been obtained by a liquid phase reaction using a catalyst prepared by treating activated carbon with an alkali such as Na2COs, but the preparation of such a catalyst is complicated and cumbersome.

一方、気相法によるHFAの水素還元で)JFIPAを
得る触媒としてはOu−Orgys−Ca’F宜触媒(
特公昭39−8210号公報)、Pd/A1!0!触媒
(米国特許3,468,964号公報)、Pd/C触媒
(特公昭48−21925号公報)が知られているが、
高い反応温度を必要としたシ、触媒の活性、耐久性に不
満足であるなどの難点を有している。
On the other hand, Ou-Orgys-Ca'F catalyst (
Special Publication No. 39-8210), Pd/A1!0! Catalysts (US Pat. No. 3,468,964) and Pd/C catalysts (Japanese Patent Publication No. 48-21925) are known.
It has disadvantages such as requiring a high reaction temperature and being unsatisfactory in catalyst activity and durability.

本発明者は、)(FAの水素によるHFIPAへの接触
還元反応について、これらの難点を解決し、優れた触媒
を提供すべく種々の研究を重ねた結果、次の如き新規知
見を得、かかる知見に基づいて本発明を完成したもので
ある。即ちロジウム触媒はこの還元反応に対し高活性を
有すると共に目的HF工PAの生成率の点でも優れてお
り、さらに耐久性や不純′ト、・・に影響されにくい点
におい1ても優れるものである。かくして、本発明は、
HFAをロジウム触媒の存在下に水素で還元することを
特徴とするHFXPAの製法を新規°に提供するもので
ある。
The present inventor has conducted various researches in order to resolve these difficulties and provide an excellent catalyst for the catalytic reduction reaction of FA to HFIPA using hydrogen, and has obtained the following new findings. The present invention was completed based on the knowledge that rhodium catalysts have high activity for this reduction reaction and are also excellent in terms of the production rate of the target HF engineered PA, as well as durability, impurities, etc. The present invention is excellent in that it is not easily influenced by
The present invention provides a novel method for producing HFXPA, which is characterized by reducing HFA with hydrogen in the presence of a rhodium catalyst.

本発明においては、ロジウム触媒を使用することが重要
である。ロジウム触媒としては還元ロジウム、または酸
化ロジウム、水酸化ロジウム、塩化ロジウムなどのロジ
ウム化合物があげられ、ロジウムを含有する錯体であっ
てもよく、いずれもロジウムの酸化数は特には問わない
In the present invention, it is important to use a rhodium catalyst. Examples of the rhodium catalyst include reduced rhodium, or rhodium compounds such as rhodium oxide, rhodium hydroxide, and rhodium chloride, and may also be complexes containing rhodium, and the oxidation number of rhodium is not particularly limited.

なかでも0価のロジウムが効果的で、還元ロジウムは好
ましい例である。また、還元ロジウムは反応当初から存
在していても、反応中にたとえば過渡的に存在してもよ
い。かかるロジウム触媒をたとえば液相反応系によるこ
の還元反応に使用する場合にはそのまま反応系に懸濁あ
るいは溶解させて用゛いてもよいが、通常は適宜の担体
に担持させて気相反応系あるいは液相反応系に使用する
のが好便である。担体としては、活性炭、アルミナ、シ
リカ、ノリカーアルミナ、マグネシア、アスベスト、ケ
イソウ土、その他の酸化物、硫酸塩、炭酸塩、フッ化物
などが採用でき、なかでも活性炭、アルミナが好便であ
る。相持触媒におけるロジウム分の担持ぎは特には限定
されないが、金属ロジウム換算で担体重量に対し0.1
〜20重量%、特には05〜10重量%が好ましい。担
体の粒径は特には限定されないが、触媒を懸濁させた液
相反応系などを採用する場合には、触媒の系内での分布
の均一化を容易にし反応物と触媒との接触を多くするよ
うに、微粉末状の担体を使用するのが一般に好ましい。
Among them, zero-valent rhodium is effective, and reduced rhodium is a preferable example. Further, reduced rhodium may be present from the beginning of the reaction, or may be present transiently during the reaction. When such a rhodium catalyst is used, for example, in this reduction reaction in a liquid phase reaction system, it may be suspended or dissolved in the reaction system as it is, but it is usually supported on a suitable carrier and used in a gas phase reaction system or in a gas phase reaction system. It is convenient to use in liquid phase reaction systems. As the carrier, activated carbon, alumina, silica, norica alumina, magnesia, asbestos, diatomaceous earth, other oxides, sulfates, carbonates, fluorides, etc. can be used, and activated carbon and alumina are particularly convenient. The supported rhodium content in the supported catalyst is not particularly limited, but is 0.1% relative to the carrier weight in terms of metallic rhodium.
~20% by weight, especially 05-10% by weight is preferred. The particle size of the carrier is not particularly limited, but when using a liquid phase reaction system with a suspended catalyst, it is important to make it easier to homogenize the distribution of the catalyst within the system and to prevent contact between the reactants and the catalyst. As such, it is generally preferred to use a finely divided carrier.

まだ、固定床触媒による気相反応系または液相反応系な
どを採用する場合には、触媒層に触媒を保持でき、かつ
流体流通抵抗を適切な圧力損失範囲に維持できるように
、1訪以上の粒径の担体を使用するのが一般に好ましい
When adopting a gas phase reaction system or liquid phase reaction system using a fixed bed catalyst, it is necessary to conduct at least one visit so that the catalyst can be retained in the catalyst layer and the fluid flow resistance can be maintained within an appropriate pressure loss range. It is generally preferred to use a carrier having a particle size of .

さらにlた、流動床方式による反応なども適宜の粒径の
触媒を用いて採用できる。
Furthermore, a reaction using a fluidized bed method can also be employed using a catalyst of an appropriate particle size.

かかるロジウム触媒の調製には担持方法も含めて公知乃
至周知の各栴方法が採用でき、また市販の各種のロジウ
ム触媒も使用しうる。訓製済の触媒をその1ま使用した
り、あるいは適宜活性化処理して使用してさしつがえな
い。
For the preparation of such a rhodium catalyst, various well-known and well-known methods including a supporting method can be employed, and various commercially available rhodium catalysts can also be used. It is possible to use a pre-prepared catalyst, or to use it after appropriate activation treatment.

本発明に使用するHFAは各種の方法により調製しうる
が、調製に伴なう不純物が混入されていても本発明の原
料として使用しうる。たとえばヘキサクロルアセトンか
ら得られ、したがってモノクロルペンタフルオロアセト
ンなトラ不純物として含むHFAであってもよく、ある
いはへキサフルオロプロペン(以下HF’P、!:略記
)から直接に、またはヘキサフルオロプロペンエポキシ
ドを経由して得られ、したがって)TFP、ヘキサフル
オロプロペンエポキシド、ペンタフルオロプロピオニル
フルオリトナトラ不純物として含むHFAであってもよ
い。さらにまた、他の含フッ素あるいは含塩素の化合物
を不純物として含んでいてもさしつかえない。
HFA used in the present invention can be prepared by various methods, but it can be used as a raw material in the present invention even if it is contaminated with impurities associated with the preparation. For example, it may be HFA obtained from hexachloroacetone and therefore included as an impurity in monochloropentafluoroacetone, or directly from hexafluoropropene (hereinafter HF'P, !: abbreviation) or hexafluoropropene epoxide. (Thus) TFP, hexafluoropropene epoxide, pentafluoropropionylfluoritonatra may be HFA containing as an impurity. Furthermore, other fluorine-containing or chlorine-containing compounds may be included as impurities.

適宜な精製法でこれらの不純物を減少もしくは除去した
ものでも使用しうろことは言うまでもない。
It goes without saying that products in which these impurities are reduced or removed by appropriate purification methods may also be used.

本発明は液相法、気相法のいずれの方法で行なってもよ
い。本発明を液相法で行なう場合には齢媒または希釈剤
を用いてもよいし、用いなくてもよい。使用しうる溶媒
または希釈剤としてはHFIPA 、 CF3CH20
H、メタノール、エタノール、シクロヘキサノールナト
のアルコール類、CF2CIC!PCI! 、 0F2
C12,RFPなどのハロゲン化炭化水素類、ヘプタン
、シクロヘキサンなどの炭化水素類、ヘキサフルオロプ
ロペンエポキシド、ジオキサンなどのニーテール類など
を挙げることができるが、目的生成物でもあるHFIP
Aを溶媒とすることは好適である。水を溶媒とし、ある
いは混入させることは、HFAが水と反応して、還元を
受けにくい(CFm)、 0(OH)、となるので、ど
ちらかといえは好適でない。反応温度、反応圧力などの
反応条件については特には限定がなく、従来より公知乃
至周知の条件が採用できる。反応開始時に原料HFAの
全量を仕込むバッチ式またはセミバッチ式液相反応に例
をとれば、反応圧力は水素分圧を含めて05〜70気圧
、特には1〜50気圧が好ましく、反応温度は0〜20
0℃、特には20〜100℃が好ましい。触媒の使用量
は金斡ロジウム換算で供給HFA重量に対し0.000
1〜1 wt%、特には0.001〜O,”1wt%が
好ましい。反応時間は反応温度など他の反応条件あるい
は操作条件にもよるが、例えば1分〜500時間程度が
採用しうる。水素は単独で供給してもよく、窒素などの
不活性ガスと混合して供給してもよい。水素分圧は03
〜50気圧、特には05〜30気圧が好ましい。水素供
給総量は原料I(FAと等モル以上であればよく、これ
より過剰に水素を供給してもさしつかえない。また、厚
相HFAモル数より少ないモル数の水素を供給すること
によりHFIPAへの転化率を100チ以下の適宜の数
値にとどめたり、反応速度や反応温度を適宜調整するこ
とも可能で弗る。水素供給総量を反応開始時に一度に反
応系に供給してもよく、反応進行ととC′に複数回に分
割供給してもよく、また連続的に供給してもよい。
The present invention may be carried out by either a liquid phase method or a gas phase method. When carrying out the present invention by a liquid phase method, an aging medium or a diluent may or may not be used. Solvents or diluents that can be used include HFIPA, CF3CH20
H, methanol, ethanol, cyclohexanol nato alcohols, CF2CIC! PCI! , 0F2
Examples include halogenated hydrocarbons such as C12 and RFP, hydrocarbons such as heptane and cyclohexane, and nytails such as hexafluoropropene epoxide and dioxane.
It is preferable to use A as a solvent. It is rather unsuitable to use water as a solvent or to mix it in, since HFA reacts with water and becomes less susceptible to reduction (CFm), 0 (OH). Reaction conditions such as reaction temperature and reaction pressure are not particularly limited, and conventionally known or well-known conditions can be employed. For example, in a batch or semi-batch liquid phase reaction in which the entire amount of raw material HFA is charged at the start of the reaction, the reaction pressure is preferably 05 to 70 atm, especially 1 to 50 atm, including the hydrogen partial pressure, and the reaction temperature is 0. ~20
0°C, especially 20-100°C is preferred. The amount of catalyst used is 0.000 relative to the weight of HFA supplied in terms of gold rhodium.
It is preferably 1 to 1 wt%, particularly 0.001 to 1 wt%. The reaction time may be, for example, about 1 minute to 500 hours, although it depends on other reaction conditions such as reaction temperature or operating conditions. Hydrogen may be supplied alone or mixed with an inert gas such as nitrogen.Hydrogen partial pressure is 0.3
~50 atm, especially 05 to 30 atm is preferred. The total amount of hydrogen to be supplied should be equal to or more than the mole of raw material I (FA), and there is no problem even if hydrogen is supplied in excess.Also, by supplying a smaller number of moles of hydrogen than the number of moles of thick phase HFA, it is possible to increase the amount of hydrogen to HFIPA. It is also possible to keep the conversion rate at an appropriate value of 100 or less, or to adjust the reaction rate and reaction temperature as appropriate.The total amount of hydrogen supplied may be supplied to the reaction system at once at the start of the reaction, or the reaction progresses. It may be divided into a plurality of times and may be supplied continuously to and C'.

水素供給総量を反応開始時に一度に供給する場合には、
反応圧力および水素分圧は水素供給直後に上述した圧力
範囲であることが好ましいが、反応終了時にはこの圧力
範囲を下回ってもよい。これは、L!11ち反応進行に
より水素が消費され、蒸気圧の大きいHFAが減少し、
蒸気圧の小さいHFIPAが増加し、結果として反応圧
力′、水素分圧とも低下するからである。この点は水素
を複数回に分割して間欠的に供給する場合も同様である
。また、水素、HFA、さらに必要に応じて溶媒または
希釈剤を連続的に反応系に供給する流通式液相反応、あ
るいは原料の一部もしくは全部をリサイクルして反応系
に供給する循環式液相反応なども適宜採用しうる。
When the total amount of hydrogen is supplied at once at the start of the reaction,
The reaction pressure and hydrogen partial pressure are preferably within the above-mentioned pressure range immediately after hydrogen supply, but may be lower than this pressure range at the end of the reaction. This is L! 11. Hydrogen is consumed as the reaction progresses, HFA with high vapor pressure decreases,
This is because HFIPA, which has a low vapor pressure, increases, and as a result, both the reaction pressure and the hydrogen partial pressure decrease. This point also applies to the case where hydrogen is divided into multiple portions and supplied intermittently. In addition, a flow-through liquid phase reaction in which hydrogen, HFA, and a solvent or diluent are continuously supplied to the reaction system as necessary, or a circulating liquid phase reaction in which part or all of the raw materials are recycled and supplied to the reaction system. Reactions and the like may also be employed as appropriate.

なお、上記記載において液相反応とは反応系において判
然としだ液相が存在する場合のみならず、凝液相、即ち
、気相と液相との判然とした区別が不能の臨界γ黒度以
上の温度における物質の状態にある場合をも包含するも
のである。
In the above description, a liquid phase reaction refers not only to cases where a clear liquid phase exists in the reaction system, but also cases where there is a condensed liquid phase, that is, a critical γ blackness where it is impossible to clearly distinguish between a gas phase and a liquid phase. This also includes cases where the substance is in the state of a substance at a temperature above that temperature.

本発明を気相法で行なう場合には、水素およびHFAを
連続的に固定触媒層に通ずる気相流通反応法は好適な一
例である。反応ガスには窒素などの不活性ガスや、HF
P 、 CFzOICFOlzなどの希釈剤を同時に、
あるいは間欠的に通じても差しつかえない。反応条件は
特には限定されないが、反応温度は50〜400℃、特
には150〜300℃が好ましく、反応圧力は0.5〜
10気圧、特には1〜4気圧が好ましい。HFAに対す
る水素の供給モル比は1以上であることが好ましく、特
には1.5〜5の範囲であることが好ましい。接触時間
は、たとえば担持触媒を使用する場合にあってはロジウ
ム分の担持率などによって変えうるが0.1〜1000
秒、特には1〜100秒が好ましい。また、この還元反
応は発熱反応であるので不活性ガスその他の希釈剤をあ
わせ通ずることにより触媒温度が過度8に上昇すること
を防止または抑制するのはしばしば触媒寿命の延長など
につながって有効であシ、同様な目的などから触媒を不
活性または低活性の充填体と混合して用いるなどの手法
も採用できる。なお、固定床反応方式に限定されず、移
動床方式または流動床方式なども適宜採用しつる。
When carrying out the present invention by a gas phase method, a suitable example is a gas phase flow reaction method in which hydrogen and HFA are continuously passed through a fixed catalyst bed. Reaction gases include inert gases such as nitrogen and HF.
At the same time, diluents such as P, CFzOICFOlz,
Alternatively, it is okay to communicate intermittently. The reaction conditions are not particularly limited, but the reaction temperature is preferably 50 to 400°C, particularly 150 to 300°C, and the reaction pressure is 0.5 to 400°C.
A pressure of 10 atm, especially 1 to 4 atm is preferred. The molar ratio of hydrogen to HFA is preferably 1 or more, particularly preferably in the range of 1.5 to 5. For example, when using a supported catalyst, the contact time can be changed depending on the rhodium loading ratio, etc.
Seconds, especially 1 to 100 seconds are preferred. In addition, since this reduction reaction is an exothermic reaction, it is often effective to prevent or suppress the catalyst temperature from rising excessively by passing an inert gas or other diluent along with it, as it often extends the life of the catalyst. However, for similar purposes, it is also possible to use a method in which a catalyst is mixed with an inert or low-activity packing. Note that the reaction method is not limited to a fixed bed reaction method, and a moving bed method or a fluidized bed method may also be adopted as appropriate.

液相法にあっても気相法にあっても、一度反応に供した
触媒を水素処理、減圧脱気処理その他の適宜の方法で再
活性化することも採用できる。
Regardless of whether the method is a liquid phase method or a gas phase method, it is also possible to reactivate the catalyst once subjected to the reaction by hydrogen treatment, vacuum degassing treatment, or other appropriate methods.

かくして本発明の方法によれば、HFA’IO水素還元
により)IFIPAが好便な反応条件により高活性、高
収率で得られ、また、触媒の耐久性にすぐれ、ないしは
不純物に形勢されにくいなどの効果を奏するものである
が、さらに本発明の実施例について具体的に説明する。
Thus, according to the method of the present invention, IFIPA (by hydrogen reduction of HFA'IO) can be obtained with high activity and high yield under convenient reaction conditions, and the catalyst has excellent durability or is not easily affected by impurities. However, embodiments of the present invention will be described in detail.

なお、かかる説明によって本発明が何、ら限定されるも
のでないことは言うまでもない。
It goes without saying that the present invention is not limited in any way by this explanation.

実施例1゜ 千力計、導入口およびニードルパルプを有する内容横約
50 mlのSUS製たて型円筒状耐圧容器に、ロジウ
ム担持率2wt%の金属ロジウム/活性炭微粉末担持触
媒(日本エンケルノ・ルド社製)。、2.2とテフ・!
被覆攪拌子を入れたのち、系内を宰温で真空脱気した。
Example 1 A vertical cylindrical pressure-resistant vessel made of SUS with a content of approximately 50 ml and having a sensitometer, an inlet, and a needle pulp was filled with a metal rhodium/activated carbon fine powder supported catalyst (Nippon Enkerno Co., Ltd.) with a rhodium loading rate of 2 wt%. (manufactured by Rudo Corporation). , 2.2 and Tef!
After a coated stirring bar was added, the inside of the system was vacuum degassed at room temperature.

ついで、この耐圧容器を120℃に加熱しながら約30
分間真空脱気をつづけて、活性炭担体に吸着している水
分などを除去した。ついで、この耐圧容器を閉じたまま
ドライアイス/アセトン浴で冷却し、HFA容器と接続
して252の粗HIII’Aを導入した。この粗HFA
は純度約9−0チで主たる不純物はRFPであった。つ
いで、この耐圧容器を水素ボンベと接続すると共に、ウ
ォーターバスに入れて約65℃に加熱し、あわせて電磁
攪拌機により耐圧容器内容物を攪拌した。
Next, this pressure-resistant container was heated to 120°C for about 30 minutes.
Vacuum degassing was continued for a minute to remove water and the like adsorbed on the activated carbon carrier. The pressure vessel was then cooled in a dry ice/acetone bath while being closed, connected to an HFA vessel, and 252 crude HIII'A was introduced. This crude HFA
The purity was about 9-0% and the main impurity was RFP. Next, this pressure-resistant container was connected to a hydrogen cylinder, placed in a water bath, and heated to about 65° C., and at the same time, the contents of the pressure-resistant container were stirred using a magnetic stirrer.

圧力は29気圧を示した。浴温をこの温度に維持し、か
つ攪拌をつづけながら水素を導入して圧力を34気圧と
した。ただちに圧力が35気圧まで上昇したのち、約1
分後には30気圧まで低下した。再び水素を導入して圧
力を35気圧とした。圧力は36気圧まで上昇したのち
、その約1,5分後には29気圧まで低下した。このよ
うにして圧力が29〜30気圧に低下するごとに間欠的
に水素を導入して圧力を35〜36気圧にすることを反
復して第1回の水素導入後1時間で計11回の水素導入
を行なうことができだ。反応時間の経過と共に圧力低下
速度は遅くなり、したがって導入回数を重ねる毎に導入
間隔は長くなった。1時間後に耐圧容器をウオーク−バ
スからとシ出し、ドライアイス/アセトン浴で冷却し、
残存する水素をゆっくりと放出した。ついで系を閉じた
まま温水で解凍し、氷水で冷却したなかで溶存していた
水素、未反応HFA、HFPなどをゆっくりと放出した
のち、耐圧容器を開いて生成物を回収した。
The pressure was 29 atmospheres. While maintaining the bath temperature at this temperature and continuing to stir, hydrogen was introduced to bring the pressure to 34 atmospheres. After the pressure immediately rose to 35 atmospheres, approximately 1
After a few minutes, the pressure dropped to 30 atmospheres. Hydrogen was introduced again to bring the pressure to 35 atmospheres. After the pressure rose to 36 atmospheres, it decreased to 29 atmospheres about 1.5 minutes later. In this way, each time the pressure decreased to 29 to 30 atm, hydrogen was introduced intermittently to bring the pressure to 35 to 36 atm, and this was repeated for a total of 11 times in one hour after the first hydrogen introduction. Hydrogen can be introduced. As the reaction time progressed, the rate of pressure drop slowed, and therefore the interval between introductions became longer as the number of introductions increased. After 1 hour, the pressure container was removed from the walk bath and cooled in a dry ice/acetone bath.
The remaining hydrogen was slowly released. Next, the system was thawed with hot water while being closed, and dissolved hydrogen, unreacted HFA, HFP, etc. were slowly released while being cooled with ice water, and then the pressure container was opened and the product was recovered.

F  −NMRおよびガスクロマトクラフで分析したと
ころ、得られた生成物はほとんどがHF I PAで、
供給した正味のHFAを基準とするHFIPAのモル収
率は95%であった。
When analyzed by F-NMR and gas chromatograph, the obtained product was mostly HF I PA,
The molar yield of HFIPA was 95% based on the net HFA fed.

比較例1゜ 主として触媒を変えた他は実施例1とほぼ同様にして粗
HFAのH2による液相接触還元反応を行なった結果を
次表に示す。いずれの場合も圧力低下速度は実施例1の
場合より遅く、かつパラジウム/活性炭触媒の場合の他
は当初の1〜2回の水素導入後はほとんど圧力低下が認
められなくなった。まだ、パラジウム/活性炭触媒の場
合は、1時間の反応時間に水素供給は6回しかできなか
った。
Comparative Example 1 A liquid phase catalytic reduction reaction of crude HFA with H2 was carried out in substantially the same manner as in Example 1, except that the catalyst was mainly changed. The results are shown in the following table. In all cases, the pressure drop rate was slower than in Example 1, and almost no pressure drop was observed after the initial introduction of hydrogen once or twice, except in the case of the palladium/activated carbon catalyst. However, in the case of the palladium/activated carbon catalyst, hydrogen could only be supplied six times in one hour of reaction time.

×金属Pd/活性炭微粉末触媒(pa担持率2 wt%
 )をNazOOs水溶液で処理してNa担持率0.4
wtチとした触媒。
×Metal Pd/Activated carbon fine powder catalyst (Pa loading rate 2 wt%
) was treated with NazOOs aqueous solution to reduce the Na loading rate to 0.4.
A solid catalyst.

実施例2 内径8埴φのU字型SUs製反応管にロジウム相持率2
 wt%の金属ロジウム/粒状活性炭(10〜20メツ
シユ)担持触媒(日本エンケルハルト社製)10−を充
填した。系内をN2でIN換したのち、反応管を180
’Cの地温に入れて加熱°した。窒素、ついで水素を通
じて前処理したのち、実施例1に用いたと同様の粗HF
Aと水素とをそれぞれ10〜] 5 d / 1niR
(室温換算、以下同じ)、約307/xiの流量になる
ように混合して反応系に供給した。反応管出口ガスは2
段の氷水浴トラップを経てベントに放出した。凝縮物の
多くは第1段の氷水浴トラップに捕促され、実質的にそ
のすべてがHF’ I P Aであった。1時間毎にト
ラップを交換して凝縮物を分析したところ3.0〜3時
間までのHF工PAモル収率は実質的に100チであり
、っぎの1時間のHFIPAモル収率は98チそあった
Example 2 Rhodium compatibility ratio is 2 in a U-shaped SUs reaction tube with an inner diameter of 8 mm.
It was filled with wt% metal rhodium/granular activated carbon (10 to 20 mesh) supported catalyst (manufactured by Nippon Enkelhardt Co., Ltd.) 10-. After replacing the inside of the system with N2, the reaction tube was heated to 180℃.
It was heated in the soil temperature of 'C. Crude HF similar to that used in Example 1 after pretreatment with nitrogen and then hydrogen.
A and hydrogen each from 10 to 5 d/1niR
(calculated as room temperature, the same applies hereinafter), and the mixture was mixed at a flow rate of approximately 307/xi and supplied to the reaction system. The reaction tube outlet gas is 2
It was discharged to the vent via a tiered ice-water trap. Much of the condensate was trapped in the first stage ice-water bath trap, and virtually all of it was HF'IPA. When the trap was replaced every hour and the condensate was analyzed, the molar yield of HF processed PA from 3.0 to 3 hours was essentially 100 cm, and the molar yield of HFIPA for 1 hour was 98 cm. There it was.

比較例2゜ 触媒をパラジウム担持率2wt%の金輛パラジウム/粒
状活性炭(10〜20メツシユ)担持触媒(日本エンゲ
ルハイド社製)に代えた他は実施例2とほぼ同様にして
粗HFAの還元反応を行なった。0〜3時間までのHF
IPAモル収率は90チであり、つぎの1時間のHFI
PAモル収率は75チであった。また、粗HFAO代り
に小型ボンベ入りの高純度試薬HFAを用いてほぼ同様
−の還元反応を行なった。′0〜3時間までのHF工P
Aモル収率は84〜94チであった。この結果はパラジ
ウム/活性炭系触媒はかなり高活性であり、かつHFA
中の不純物にも比較的影響されにくいが、ロジウム系触
媒の方がさらに活性、耐久性にまさり、かつ不純物にも
影響されないことを示している。
Comparative Example 2: Reduction of crude HFA in almost the same manner as in Example 2, except that the catalyst was replaced with a metal palladium/granular activated carbon (10 to 20 mesh) supported catalyst (manufactured by Nippon Engelheide Co., Ltd.) with a palladium loading rate of 2 wt%. The reaction was carried out. HF from 0 to 3 hours
The IPA molar yield was 90 HFI for the next 1 hour.
The PA molar yield was 75%. Moreover, almost the same reduction reaction was carried out using a high purity reagent HFA contained in a small cylinder instead of the crude HFAO. 'HF work P from 0 to 3 hours
A mole yield was 84-94. This result shows that the palladium/activated carbon catalyst has considerably high activity and that HFA
Although it is relatively unaffected by impurities in the catalyst, rhodium-based catalysts have superior activity and durability, and are not affected by impurities.

比較例3゜ 触媒をパラジウム担持率0.5wt%の金属パラジウム
/粒状活性A1201 (10〜20メツシユ)相持触
媒(日本エンゲルハルト社製)に代え、反応温度を12
0℃に代えた他は実施例2とほぼ同様にして粗HFAお
よび高純度試薬HF Aの還元反応を行なった。高純度
試薬HFAを用いた場合には0〜2時間までのHFIP
Aモル収率は92%であり、粗HFAを用いた場合には
0〜2時間までのHF工PAモル収率は5チ以下であっ
た。この結果はパラジウム/活性アルミナ系触媒はHF
A中の不純物にきわめて大きく影響されることを示して
いる。同様にして銅−酸化クロム系触媒(反応温度20
0℃)、ニッケルーケイソウ土系触媒(反応温度150
℃)もHFA中の不純物にきわめて大きく影響され、H
FIPAのモル収率は高純度試薬HFAでは90〜95
%であったのに対し、粗HFAでは60チ以下であった
Comparative Example 3 The catalyst was replaced with a metal palladium/granular active A1201 (10-20 mesh) catalyst with a palladium loading rate of 0.5 wt% (manufactured by Nippon Engelhard), and the reaction temperature was increased to 12
The reduction reaction of crude HFA and high purity reagent HFA was carried out in substantially the same manner as in Example 2, except that the temperature was changed to 0°C. HFIP from 0 to 2 hours when using high purity reagent HFA
The A molar yield was 92%, and when crude HFA was used, the HF-processed PA molar yield from 0 to 2 hours was 5 H or less. This result shows that the palladium/activated alumina catalyst is
This shows that it is greatly influenced by the impurities in A. Similarly, copper-chromium oxide catalyst (reaction temperature 20
0℃), nickel-diatomaceous earth catalyst (reaction temperature 150℃), nickel-diatomaceous earth catalyst (reaction temperature 150℃)
°C) is also extremely affected by impurities in HFA, and H
The molar yield of FIPA is 90-95 for the high purity reagent HFA.
%, whereas for crude HFA it was less than 60%.

2525

Claims (1)

【特許請求の範囲】[Claims] 1、ヘキサフルオロアセトンをロジウム触媒の存在下に
水素で還元することを特徴とするJ、1゜]、 3.3
.3−ヘキサフルオロ−2−プロパツールの製法
1. J, characterized in that hexafluoroacetone is reduced with hydrogen in the presence of a rhodium catalyst, 1°], 3.3
.. Method for producing 3-hexafluoro-2-propatol
JP56186826A 1981-11-24 1981-11-24 Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol Expired JPS6054931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56186826A JPS6054931B2 (en) 1981-11-24 1981-11-24 Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56186826A JPS6054931B2 (en) 1981-11-24 1981-11-24 Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol

Publications (2)

Publication Number Publication Date
JPS5888330A true JPS5888330A (en) 1983-05-26
JPS6054931B2 JPS6054931B2 (en) 1985-12-03

Family

ID=16195282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56186826A Expired JPS6054931B2 (en) 1981-11-24 1981-11-24 Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol

Country Status (1)

Country Link
JP (1) JPS6054931B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459142A (en) * 1991-05-01 1995-10-17 Otsuka Pharmaceutical Co., Ltd. Pyrazinyl and piperazinyl substituted pyrazine compounds
WO2002026679A1 (en) * 2000-09-27 2002-04-04 Asahi Glass Company, Limited Process for producing fluorinated alcohol
JP2003089666A (en) * 2001-09-18 2003-03-28 Asahi Glass Co Ltd Method for producing halogenated alcohol
JP2009051798A (en) * 2007-08-29 2009-03-12 Central Glass Co Ltd Production method of hexafluoroisopropanol
US7524995B1 (en) 2008-06-12 2009-04-28 E.I. Du Pont De Nemours And Company Continuous process to produce hexafluoroisopropanol

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115824U (en) * 1989-11-28 1991-12-02
CN110235266B (en) 2017-01-27 2021-04-02 住友化学株式会社 Composition and light-emitting element obtained using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459142A (en) * 1991-05-01 1995-10-17 Otsuka Pharmaceutical Co., Ltd. Pyrazinyl and piperazinyl substituted pyrazine compounds
WO2002026679A1 (en) * 2000-09-27 2002-04-04 Asahi Glass Company, Limited Process for producing fluorinated alcohol
JPWO2002026679A1 (en) * 2000-09-27 2004-02-05 旭硝子株式会社 Method for producing fluorinated alcohol
JP2003089666A (en) * 2001-09-18 2003-03-28 Asahi Glass Co Ltd Method for producing halogenated alcohol
JP2009051798A (en) * 2007-08-29 2009-03-12 Central Glass Co Ltd Production method of hexafluoroisopropanol
US7524995B1 (en) 2008-06-12 2009-04-28 E.I. Du Pont De Nemours And Company Continuous process to produce hexafluoroisopropanol

Also Published As

Publication number Publication date
JPS6054931B2 (en) 1985-12-03

Similar Documents

Publication Publication Date Title
UA77384C2 (en) Catalyst and process for producing vinyl acetate
JPH08239336A (en) Production of perfluoroalkyl iodide telomer under catalysis of metal
JPS5888330A (en) Production of 1,1,1,3,3,3-hexafluoro-2-propanol
US6291729B1 (en) Halofluorocarbon hydrogenolysis
EP1165474B1 (en) Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane
EP0040414B1 (en) Process for producing acetaldehyde
JPH08165256A (en) Production of 1,1,1,2,3,3-hexafluoropropane
EP0888272A1 (en) Preparation of acetaldehyde
US3862236A (en) Production of propionaldehyde
JP2838852B2 (en) Method for producing glycolaldehyde
US4329512A (en) Process for preparing acetaldehyde
EP1205246B1 (en) Process for preparation of catalyst
EP0623584B1 (en) Process for producing carbonic diester
JPS6340417B2 (en)
US5602288A (en) Catalytic process for producing CF3 CH2 F
US4661643A (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
JPH07196552A (en) Preparation of tert- butyl alcohol from tert- butyl hydroperoxide using titania or zirconia
JP2789123B2 (en) Method for producing glycolaldehyde
KR930005305B1 (en) Catalyst for preparation of dimethyl carbonate and process for preparation of it and its use
JPH0237329B2 (en)
RU2070551C1 (en) Method of synthesis of vinyl chloride
JP3058512B2 (en) Acetic acid production method
JPH05140009A (en) Production of 1,1,1,2,2,3,4,5,5,5-decafluoropentane
JPS6260376B2 (en)
JPH10120605A (en) Production of acetaldehyde and acetic acid