JP2009051798A - Production method of hexafluoroisopropanol - Google Patents

Production method of hexafluoroisopropanol Download PDF

Info

Publication number
JP2009051798A
JP2009051798A JP2007222845A JP2007222845A JP2009051798A JP 2009051798 A JP2009051798 A JP 2009051798A JP 2007222845 A JP2007222845 A JP 2007222845A JP 2007222845 A JP2007222845 A JP 2007222845A JP 2009051798 A JP2009051798 A JP 2009051798A
Authority
JP
Japan
Prior art keywords
hexafluoroacetone
hexafluoroisopropanol
catalyst
reaction
hydrogen fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007222845A
Other languages
Japanese (ja)
Other versions
JP5076739B2 (en
Inventor
Yutaka Katsuhara
豊 勝原
Tatsuya Hayasaka
達哉 早坂
Toshimichi Maruta
順道 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2007222845A priority Critical patent/JP5076739B2/en
Publication of JP2009051798A publication Critical patent/JP2009051798A/en
Application granted granted Critical
Publication of JP5076739B2 publication Critical patent/JP5076739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining hexafluoroisopropanol from hexafluoroacetone as a raw material in a sufficiently satisfactory yield from an industrial viewpoint which can be carried out at relatively low pressure at a relatively low temperature and permits simplification of a purification step because the product essentially contains no excessively hydrogenated by-products. <P>SOLUTION: The production method of hexafluoroisopropanol comprises hydrogenating hexafluoroacetone by bringing it into contact with a hydrogen gas at -20 to 60°C in a hydrogen fluoride solvent in the presence of a metal catalyst such as palladium or ruthenium or a catalyst comprising the metal catalyst carried on a carrier. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヘキサフルオロアセトンの水素化によるヘキサフルオロイソプロパノールの製造方法に関し、より詳しくはフッ化水素溶媒中、ヘキサフルオロアセトン・フッ化水素付加体を触媒存在下で水素化分解することによる高純度のヘキサフルオロイソプロパノールの製造方法に関する。   The present invention relates to a method for producing hexafluoroisopropanol by hydrogenating hexafluoroacetone, and more specifically, high purity by hydrogenolysis of a hexafluoroacetone / hydrogen fluoride adduct in a hydrogen fluoride solvent in the presence of a catalyst. This invention relates to a method for producing hexafluoroisopropanol.

ヘキサフルオロイソプロパノールは、ポリマーに対して特異な溶解性を示す溶媒として、また、吸入麻酔剤の中間体として大量に生産されている。ヘキサフルオロイソプロパノールは、通常ヘキサフルオロアセトンの還元により製造されるが、原料であるヘキサフルオロアセトンの形態、反応形態、還元剤、触媒の種類などの組み合わせにより各種の方法が提案されている。   Hexafluoroisopropanol is produced in large quantities as a solvent that exhibits a specific solubility in polymers and as an intermediate for inhalation anesthetics. Hexafluoroisopropanol is usually produced by reduction of hexafluoroacetone, and various methods have been proposed depending on the combination of the form of hexafluoroacetone as a raw material, reaction form, reducing agent, type of catalyst, and the like.

気相法では、ヘキサフルオロアセトンの無水物をCu−Cr23−CaF2(特許文献1)、Pd/Al23(特許文献2)、Pd/C(特許文献3)などを触媒として水素により水素化する方法が知られ、ヘキサフルオロアセトンの水和物をニッケル触媒および/またはパラジウム触媒の存在下に水素により水素化する方法(特許文献4)などが知られている。 In the gas phase method, anhydrous hexafluoroacetone is catalyzed by Cu—Cr 2 O 3 —CaF 2 (Patent Document 1), Pd / Al 2 O 3 (Patent Document 2), Pd / C (Patent Document 3), and the like. A method of hydrogenating with hydrogen is known, and a method of hydrogenating hexafluoroacetone hydrate with hydrogen in the presence of a nickel catalyst and / or a palladium catalyst is known (Patent Document 4).

液相での水素ガスによるヘキサフルオロイソプロパノールの製造方法については、ヘキサフルオロアセトン水和物を用いる方法とヘキサフルオロアセトンの無水物を用いる方法が知られている。無水物を用いるものとしては酸化白金を触媒として圧力20.0〜90.0MPa(200〜900気圧)、110℃〜150℃で6時間にわたり反応させる方法(特許文献5)、ヘキサフルオロイソプロパノール溶媒中で酸化白金を触媒として圧力2.72MPa(27.2気圧)、55℃〜80℃で2時間にわたり反応させる方法(特許文献6)、ロジウム/Cを触媒として圧力3.5〜3.6MPa(35〜36気圧)、65℃で1時間にわたり反応させる方法(特許文献7)などが報告されているが、沸点(−27℃)の低いヘキサフルオロアセトンは蒸気圧が高くこれらの方法では反応器内の圧力が高くなる傾向にある。   As a method for producing hexafluoroisopropanol with hydrogen gas in a liquid phase, a method using hexafluoroacetone hydrate and a method using hexafluoroacetone anhydride are known. As an anhydride, a method of reacting platinum oxide as a catalyst at a pressure of 20.0 to 90.0 MPa (200 to 900 atm) at 110 ° C. to 150 ° C. for 6 hours (Patent Document 5), in a hexafluoroisopropanol solvent In which platinum oxide is used as a catalyst at a pressure of 2.72 MPa (27.2 atm) and reaction is carried out at 55 ° C. to 80 ° C. for 2 hours (Patent Document 6), rhodium / C as a catalyst at a pressure of 3.5 to 3.6 MPa 35 to 36 atmospheres) and a method of reacting at 65 ° C. for 1 hour (Patent Document 7) and the like have been reported, but hexafluoroacetone having a low boiling point (−27 ° C.) has a high vapor pressure, and in these methods, a reactor is used. The internal pressure tends to increase.

また、ヘキサフルオロアセトンの水和物を液相で水素化する方法には、パラジウム/Cを触媒として圧力0.35〜0.7MPa(3.5〜7kg/cm2)、70℃〜75℃で3.5時間にわたり反応させる方法(特許文献8)、パラジウム/Al23を触媒として圧力0.5MPa(5kg/cm2)、100℃で6時間にわたり反応させる方法(特許文献9)などがある。このように液相で水和物を水素化するには比較的高い温度と長い反応時間を要する。
また、水素以外の還元剤を用いる方法として、ヘキサフルオロアセトンの無水物をメタノール溶媒中で水素化ホウ素ナトリウムを還元剤とする方法、同様にジエチルエーテル、メタノール、イソプロパノール、テトラヒドロフランなどの酸素含有溶媒中で水素化リチウムアルミニウム、水素化カルシウム、水素化ナトリウムなどを還元剤とする方法が報告されている(特許文献5)。
これらいずれの還元方法においても、還元が過剰に進み過還元体である1,1,1−トリフルオロアセトンや1,1,1−トリフルオロイソプロパノールが副生物として生成し、特に1,1,1−トリフルオロアセトンは生成物であるヘキサフルオロイソプロパノール中に含まれると分離の困難な不純物となるので、その生成を避けることが望ましいが、やむを得ず生成する場合には直ぐに分離の容易な1,1,1−トリフルオロイソプロパノールまで還元する方法が(特許文献10)に高純度のヘキサフルオロイソプロパノールを製造する手段として開示されている。
このような反応に関して、反応に供するヘキサフルオロアセトンの品質について、フッ化水素はヘキサフルオロアセトンの還元において酸化白金などの金属触媒を被毒するので、フッ化水素が含まれるヘキサフルオロアセトンを使用する場合には前もって除去しなければならないとの記述が特許文献6に存在する。一方、特許文献11にヘキサフルオロイソプロパノールを安価に製造する手段として、フッ化水素を含むヘキサフルオロアセトンを還元して製造するとの記載があるが、どの様な条件でどのように生成物が得られるかについての具体的な記載はない。
ベルギー特許第634368号明細書 米国特許第3468964号明細書 米国特許第3702872号明細書 特開昭57−81424号公報 米国特許第3418337号明細書 米国特許第3607952号明細書 特開昭58−88330号公報 特開昭59−204142号公報 特開平1−301631号公報 特開平6−184025号公報 米国特許第4314087号明細書
Moreover, in the method of hydrogenating hexafluoroacetone hydrate in the liquid phase, palladium / C is used as a catalyst and the pressure is 0.35 to 0.7 MPa (3.5 to 7 kg / cm 2 ), 70 ° C. to 75 ° C. For 3.5 hours (Patent Document 8), a reaction using palladium / Al 2 O 3 as a catalyst at a pressure of 0.5 MPa (5 kg / cm 2 ) at 100 ° C. for 6 hours (Patent Document 9), etc. There is. Thus, in order to hydrogenate a hydrate in a liquid phase, a relatively high temperature and a long reaction time are required.
Further, as a method using a reducing agent other than hydrogen, a method using hexafluoroacetone anhydride in a methanol solvent and sodium borohydride as a reducing agent, similarly in an oxygen-containing solvent such as diethyl ether, methanol, isopropanol, tetrahydrofuran, etc. A method using lithium aluminum hydride, calcium hydride, sodium hydride or the like as a reducing agent has been reported (Patent Document 5).
In any of these reduction methods, the reduction proceeds excessively, and 1,1,1-trifluoroacetone and 1,1,1-trifluoroisopropanol, which are perreducts, are produced as by-products. -Trifluoroacetone is an impurity that is difficult to separate when contained in the product hexafluoroisopropanol, so it is desirable to avoid its formation, but in the case of unavoidable production, 1,1, A method of reducing to 1-trifluoroisopropanol is disclosed in (Patent Document 10) as a means for producing high-purity hexafluoroisopropanol.
Regarding such reaction, regarding the quality of hexafluoroacetone to be subjected to the reaction, hydrogen fluoride poisons metal catalysts such as platinum oxide in the reduction of hexafluoroacetone, so hexafluoroacetone containing hydrogen fluoride is used. In Patent Document 6, there is a description that the case must be removed in advance. On the other hand, Patent Document 11 describes that as a means for producing hexafluoroisopropanol at a low cost, it is described that hexafluoroacetone containing hydrogen fluoride is produced by reduction, but how the product can be obtained under any conditions. There is no specific description about.
Belgian Patent No. 634368 US Pat. No. 3,468,964 U.S. Pat. No. 3,702,872 JP-A-57-81424 U.S. Pat. No. 3,418,337 US Pat. No. 3,607,952 JP 58-88330 A JP 59-204142 A JP-A-1-301633 Japanese Patent Laid-Open No. 6-1884025 U.S. Pat. No. 4,314,087

ヘキサフルオロアセトン・フッ化水素付加体をフッ化水素溶媒中穏やかな反応条件下接触的に水素化分解し高純度のヘキサフルオロイソプロパノールを製造する方法を提供する。   Provided is a method for catalytically hydrocracking a hexafluoroacetone / hydrogen fluoride adduct in a hydrogen fluoride solvent under mild reaction conditions to produce high purity hexafluoroisopropanol.

ヘキサフルオロイソプロパノールの製造方法としては前記のように多くの方法が提案されているが、気相反応では、ホットスポットを形成し易く触媒活性の低下が起こりやすい。また、この際過剰な水素化が起こり副生物を生じる恐れがある。一方、液相においては温度のコントロールは比較的容易であるが、無水物のヘキサフルオロアセトンを原料とした場合はその自圧により反応圧力が高くなって耐圧の大きな装置を必要とし、ヘキサフルオロアセトン水和物を原料とした場合は、比較的高い温度と長い反応時間を必要とする。そこで、本発明では、ヘキサフルオロアセトンを原料として、比較的低い圧力と低い温度の下で実施でき、かつ、過還元した副生成物含有量の少ない高純度のヘキサフルオロイソプロパノールを製造する方法の提供を課題とする。   As described above, many methods for producing hexafluoroisopropanol have been proposed. However, in the gas phase reaction, hot spots are likely to be formed and the catalytic activity is likely to be reduced. At this time, excessive hydrogenation may occur and by-products may be generated. On the other hand, in the liquid phase, temperature control is relatively easy. However, when anhydrous hexafluoroacetone is used as a raw material, the reaction pressure is increased due to its own pressure, and a device with high pressure resistance is required. When hydrate is used as a raw material, a relatively high temperature and a long reaction time are required. Therefore, the present invention provides a method for producing high-purity hexafluoroisopropanol that can be carried out using hexafluoroacetone as a raw material at a relatively low pressure and low temperature and that has a reduced by-product content. Is an issue.

本発明者らは、ヘキサフルオロアセトンを原料として触媒の存在下水素ガスにより水素化してヘキサフルオロイソプロパノールを製造する方法において、ヘキサフルオロイソプロパノールに含まれる分離の困難な副生成物の生成の少ない方法を開発するべく、ヘキサフルオロアセトンの水素との反応について検討した。   In the method for producing hexafluoroisopropanol by hydrogenating with hydrogen gas in the presence of a catalyst using hexafluoroacetone as a raw material, the present inventors have developed a method that produces less by-products that are difficult to separate contained in hexafluoroisopropanol. In order to develop, the reaction of hexafluoroacetone with hydrogen was investigated.

従来技術として上述したように、ヘキサフルオロアセトンの水素化は各種の状態で行われるが、反応に関与するヘキサフルオロアセトンの形態はそれぞれ異なるものと考えられ、どの様な反応機構を経るのか明確ではない。すなわち、ヘキサフルオロアセトン(無水物)を反応基質とする場合は、   As described above as the prior art, hydrogenation of hexafluoroacetone is performed in various states, but the form of hexafluoroacetone involved in the reaction is considered to be different from each other, and it is not clear what kind of reaction mechanism goes through. Absent. That is, when hexafluoroacetone (anhydride) is used as a reaction substrate,

Figure 2009051798
Figure 2009051798

で表される化学種であるが、水溶液中においてヘキサフルオロアセトンは3水和物 In the aqueous solution, hexafluoroacetone is a trihydrate.

Figure 2009051798
Figure 2009051798

で表される化学種であるとされ、フッ化水素中では In hydrogen fluoride, the chemical species represented by

Figure 2009051798
Figure 2009051798

で表される化学種であると推測される。したがって、このように異なる化学種がヘキサフルオロアセトンの水素化反応に関与するため、具体的な反応条件は容易に推測することはできなかった。就中、副生成物の挙動についての情報は極めて少ない。
このような状況の下、本発明者らは、いずれの化学種が関与する場合においてもこの分野での技術常識から予測されるように反応温度を高くすることでヘキサフルオロイソプロパノールが生成する反応速度は増大し反応温度を低くすることで反応速度は低下することが認められたが、一方、副生成物に関しては、ヘキサフルオロイソプロパノールの十分な反応速度を維持する温度範囲においては、反応温度を低下させてもかならずしも過水素化物の生成量の減少とはならず、特定の温度範囲においてフッ化水素を溶媒として前記化学種が反応に関係する場合のみ過水素化物が顕著に減少し、1,1,1−トリフルオロアセトンを実質上含まないヘキサフルオロイソプロパノールが得られることを見出し、本発明を完成した。
It is speculated that it is a chemical species represented by Therefore, since such different chemical species are involved in the hydrogenation reaction of hexafluoroacetone, the specific reaction conditions could not be easily estimated. In particular, there is very little information about the behavior of by-products.
Under such circumstances, the present inventors, regardless of which chemical species are involved, the reaction rate at which hexafluoroisopropanol is produced by increasing the reaction temperature as predicted from the technical common sense in this field. It was observed that the reaction rate was decreased by increasing the reaction temperature and lowering the reaction temperature, while the by-product was reduced in the temperature range in which sufficient reaction rate of hexafluoroisopropanol was maintained. However, it does not necessarily reduce the amount of perhydride produced, and only when the chemical species is involved in the reaction using hydrogen fluoride as a solvent in a specific temperature range, the perhydride is significantly reduced. The present invention was completed by finding that hexafluoroisopropanol substantially free of 1,1-trifluoroacetone was obtained.

本発明は、次のとおりである。
[請求項1]フッ化水素溶媒中において金属触媒の存在下−20〜60℃でヘキサフルオロアセトンと水素ガスを接触させて水素化することからなるヘキサフルオロイソプロパノールの製造方法。
[請求項2]金属触媒がパラジウム、白金、ルテニウム、ロジウムおよびニッケルから選らばれた1種以上の金属からなる触媒またはその金属を活性炭に担持した触媒である請求項1に記載のヘキサフルオロイソプロパノールの製造方法。
[請求項3]金属触媒がルテニウムからなる触媒またはルテニウムを活性炭に担持した触媒である請求項1に記載のヘキサフルオロイソプロパノールの製造方法。
[請求項4]ヘキサフルオロアセトンが、ヘキサフルオロアセトンまたはヘキサフルオロアセトン・フッ化水素付加体以外の有機物を実質的に含まないヘキサフルオロアセトンである請求項1〜2に記載のヘキサフルオロイソプロパノールの製造方法。
[請求項5]フッ化水素溶媒中において金属触媒の存在下−20〜60℃でヘキサフルオロアセトンと水素ガスを接触させて得られたヘキサフルオロイソプロパノールを含む反応器内容物から金属触媒を含まない液体成分を取得する工程と、さらに、その液体成分から蒸留によりフッ化水素を分離回収するとともに、ヘキサフルオロイソプロパノールを分離回収する工程を有する請求項1〜4のいずれかに記載のヘキサフルオロイソプロパノールの製造方法。
The present invention is as follows.
[1] A process for producing hexafluoroisopropanol, comprising hydrogenating a hydrogen fluoride solvent by bringing hexafluoroacetone and hydrogen gas into contact with each other at −20 to 60 ° C. in the presence of a metal catalyst.
[Claim 2] The hexafluoroisopropanol according to claim 1, wherein the metal catalyst is a catalyst composed of one or more metals selected from palladium, platinum, ruthenium, rhodium and nickel, or a catalyst having the metal supported on activated carbon. Production method.
[3] The method for producing hexafluoroisopropanol according to [1], wherein the metal catalyst is a catalyst comprising ruthenium or a catalyst having ruthenium supported on activated carbon.
[Claim 4] The production of hexafluoroisopropanol according to claim 1 or 2, wherein the hexafluoroacetone is hexafluoroacetone substantially free from organic substances other than hexafluoroacetone or hexafluoroacetone / hydrogen fluoride adduct. Method.
[Claim 5] The reactor catalyst containing hexafluoroisopropanol obtained by contacting hexafluoroacetone with hydrogen gas at -20 to 60 ° C in the presence of a metal catalyst in a hydrogen fluoride solvent does not contain a metal catalyst. The hexafluoroisopropanol according to any one of claims 1 to 4, further comprising a step of obtaining a liquid component, and further, a step of separating and collecting hydrogen fluoride from the liquid component by distillation and a step of separating and collecting hexafluoroisopropanol. Production method.

本発明の方法は、ヘキサフルオロアセトンからヘキサフルオロイソプロパノールを合成するのに反応速度の点からは必ずしも有利とはいえない低い温度範囲で反応させるにも拘わらず、意外にも反応速度の低下を伴わず、かつ、生成物には過剰に水素化された副生成物を実質上含まないことから精製工程を簡略化できることから、工業的に十分満足の行く収率でヘキサフルオロイソプロパノールが得られるという効果を奏する。   The method of the present invention surprisingly involves a decrease in the reaction rate, although the reaction is performed in a low temperature range, which is not necessarily advantageous from the viewpoint of the reaction rate, to synthesize hexafluoroisopropanol from hexafluoroacetone. In addition, since the product does not substantially contain an excessively hydrogenated by-product, the purification process can be simplified, so that hexafluoroisopropanol can be obtained in a sufficiently satisfactory yield industrially. Play.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

明細書において、ヘキサフルオロアセトンを「HFA」と表すことがある。
明細書において、ヘキサフルオロアセトン・フッ化水素付加体を「HFA・HF」と表すことがある。
明細書において、ヘキサフルオロアセトン水和物は水和数を限定しない水和物またはその水溶液をいい、ヘキサフルオロアセトン3水和物を含む概念である。
明細書において、ヘキサフルオロアセトン3水和物を「HFA・3W」と表すことがある。
明細書において、ヘキサフルオロイソプロパノールを「HFIP」と表すことがある。
In the specification, hexafluoroacetone may be represented as “HFA”.
In the specification, the hexafluoroacetone / hydrogen fluoride adduct may be referred to as “HFA · HF”.
In the specification, hexafluoroacetone hydrate refers to a hydrate that does not limit the number of hydration or an aqueous solution thereof, and includes hexafluoroacetone trihydrate.
In the specification, hexafluoroacetone trihydrate may be represented as “HFA · 3W”.
In the specification, hexafluoroisopropanol may be expressed as “HFIP”.

ヘキサフルオロアセトンは公知の方法で製造できる。例えば、ヘキサクロロアセトンをクロム/炭素触媒の存在下フッ化水素でフッ素化する方法や、ヘキサフルオロプロペンを酸化して得られたヘキサフルオロプロペンエポキシドを異性化する方法により製造することができる。   Hexafluoroacetone can be produced by a known method. For example, it can be produced by a method of fluorinating hexachloroacetone with hydrogen fluoride in the presence of a chromium / carbon catalyst or a method of isomerizing hexafluoropropene epoxide obtained by oxidizing hexafluoropropene.

本発明においてヘキサフルオロアセトンはフッ化水素に溶解されるが、どの様な方法で溶解されたものであってもよく、例えば、気体のヘキサフルオロアセトンを液体のフッ化水素に吸収させ、もしくは気体のヘキサフルオロアセトンを気体のフッ化水素と混合した後冷却して溶液とすることができ、または、前記フッ素化により得られる未反応のフッ化水素とヘキサフルオロアセトンの混合ガスから塩化水素を除去したものを液化させて不純物を除去することで調製できる。さらに、ヘキサフルオロアセトン水和物をフッ化水素と混合して蒸留することにより得られるヘキサフルオロアセトンとフッ化水素の混合物であってもよく、このものも本発明において好ましい「ヘキサフルオロアセトンをフッ化水素に溶解して得られた溶液」である。   In the present invention, hexafluoroacetone is dissolved in hydrogen fluoride, but it may be dissolved in any way, for example, gas hexafluoroacetone is absorbed in liquid hydrogen fluoride, or gas The hexafluoroacetone can be mixed with gaseous hydrogen fluoride and cooled to form a solution, or hydrogen chloride can be removed from the mixed gas of unreacted hydrogen fluoride and hexafluoroacetone obtained by the fluorination. The product can be prepared by liquefying and removing impurities. Further, it may be a mixture of hexafluoroacetone and hydrogen fluoride obtained by mixing and distilling hexafluoroacetone hydrate with hydrogen fluoride, which is also preferable in the present invention. A solution obtained by dissolving in hydrogen fluoride ”.

本発明を完成させる過程において発明者等は、本発明にかかる「ヘキサフルオロアセトンをフッ化水素に溶解して得られた溶液」は、フッ化水素溶液中において次の平衡が成立しており、   In the process of completing the present invention, the inventors have found that the “solution obtained by dissolving hexafluoroacetone in hydrogen fluoride” according to the present invention has the following equilibrium in the hydrogen fluoride solution:

Figure 2009051798
Figure 2009051798

ヘキサフルオロアセトン・フッ化水素付加体がヘプタフルオロイソプロパノールであり、過剰量のHFが共存すると、室温以上でも分解することなく安定にヘプタフルオロイソプロパノールのまま存在することをHF中でのNMR測定により確認した。 Hexafluoroacetone / hydrogen fluoride adduct is heptafluoroisopropanol. When excessive amount of HF coexists, it is confirmed by NMR measurement in HF that heptafluoroisopropanol exists stably without decomposition even at room temperature or higher. did.

本発明の方法におけるフッ化水素溶媒中のヘキサフルオロアセトンの比率は、攪拌可能な程度に保たれれば特に限定されないが、ヘキサフルオロアセトン1モルに対して、フッ化水素1〜100モルであり、2〜70モルが好ましく、3〜50モルがさらに好ましい。   The ratio of hexafluoroacetone in the hydrogen fluoride solvent in the method of the present invention is not particularly limited as long as it is maintained at a stirrable level, but is 1 to 100 mol of hydrogen fluoride per 1 mol of hexafluoroacetone. 2 to 70 mol is preferable, and 3 to 50 mol is more preferable.

本発明においては、触媒としてパラジウム(Pd)、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)などの貴金属またはニッケルなどの金属を用いることができる。これらのうち、入手の容易さにおいてパラジウム、ルテニウムは特に好ましい。金属としては、還元金属、または酸化物、水酸化物、塩化物などの化合物の形態が挙げられ、またはこれらの金属を含む錯体であってもよく、金属の酸化数は限定されない。これらの金属を用いる際には液相の反応系に懸濁あるいは溶解させて用いてもよいが、触媒を繰り返し使用する場合通常は適宜の担体に担持させて用いるのが反応生成物と触媒との分離が容易で好適である。担体としては、活性炭やフッ化アルミなどの金属フッ化物などが採用でき、通常は、活性炭に担持して用いるのが最も取り扱いやすく、入手も容易であるので好ましい。担持量は、触媒質量に対し金属換算して0.0001〜30質量%であり、0.01〜20質量%が好ましく、0.1〜10質量%がより好ましい。具体的には、市販されている0.1〜5質量%程度のパラジウム担持活性炭触媒または0.1〜5質量%担持ルテニウム担持活性炭触媒が特に好ましいものとして挙げることができる。
従来の技術によるとルテニウムを使用して水素化分解した場合、過還元副生物、特に分離の困難な1,1,1−トリフルオロアセトンの生成は少ないが、反応性が低いという欠点が知られている(特開平6−184025号公報、特開昭58−88330号公報」)。しかしながら、フッ化水素を溶媒とする本発明の方法においては、ルテニウムを触媒とすると1,1,1−トリフルオロアセトンの生成は少ないという特徴を示しながら、パラジウムと同等以上の反応性を発現させることができる。
触媒の粒径は特に限定されないが、触媒を懸濁させるのに適した形状が好ましく、触媒の系内での分布の均一化を容易にし反応物と触媒の接触を多くするように、微粉末状の触媒を使用するのが好ましい。また、反応後触媒を回収して再使用しまたは生成物から分離するのにも微粒子であることが好ましい。これらの触媒の調製方法は公知の方法を採用でき、市販されている触媒をそのまま又は乾燥もしくは活性化処理をして使用してもよい。
In the present invention, a noble metal such as palladium (Pd), platinum (Pt), ruthenium (Ru), rhodium (Rh) or a metal such as nickel can be used as a catalyst. Of these, palladium and ruthenium are particularly preferable because of their availability. The metal may be in the form of a reduced metal or a compound such as an oxide, hydroxide, or chloride, or may be a complex containing these metals, and the oxidation number of the metal is not limited. When these metals are used, they may be suspended or dissolved in a liquid-phase reaction system. However, when the catalyst is used repeatedly, it is usually supported on an appropriate carrier to use the reaction product and the catalyst. Is easy and suitable. As the carrier, metal fluorides such as activated carbon and aluminum fluoride can be adopted, and it is usually preferable to carry it on activated carbon because it is the easiest to handle and easy to obtain. The supported amount is 0.0001 to 30% by mass in terms of metal with respect to the catalyst mass, preferably 0.01 to 20% by mass, and more preferably 0.1 to 10% by mass. Specifically, a commercially available palladium-supported activated carbon catalyst of about 0.1 to 5% by mass or a ruthenium-supported activated carbon catalyst of 0.1 to 5% by mass is particularly preferable.
According to the prior art, when hydrocracking using ruthenium, the production of overreduced by-products, especially 1,1,1-trifluoroacetone, which is difficult to separate, is small, but the disadvantage is low reactivity. (Japanese Patent Laid-Open Nos. 6-184025 and 58-88330). However, in the method of the present invention using hydrogen fluoride as a solvent, when ruthenium is used as a catalyst, 1,1,1-trifluoroacetone is generated less, while exhibiting a reactivity equivalent to or higher than that of palladium. be able to.
The particle size of the catalyst is not particularly limited, but a shape suitable for suspending the catalyst is preferable, and a fine powder is used so as to facilitate uniform distribution of the catalyst in the system and increase contact between the reactant and the catalyst. It is preferable to use a catalyst in the form of a catalyst. The fine particles are also preferable for recovering the catalyst after the reaction and reusing it or separating it from the product. A known method can be adopted as a method for preparing these catalysts, and a commercially available catalyst may be used as it is or after being dried or activated.

触媒の使用量は、特に限定されないが、ヘキサフルオロアセトン1質量部(HFA・HFとしては、1.12質量部)に対して0.00001〜0.1質量部であり、0.0005〜0.03質量部が好ましく、0.001〜0.01質量部がより好ましい。   Although the usage-amount of a catalyst is not specifically limited, It is 0.00001-0.1 mass part with respect to 1 mass part of hexafluoroacetone (1.12 mass parts as HFA * HF), 0.0005-0 0.03 part by mass is preferable, and 0.001 to 0.01 part by mass is more preferable.

本発明の方法においては、フッ化水素を溶媒とするが、さらにフッ化水素に溶解しうる溶媒を併用することもできる。そのようなものとしては本発明の方法の生成物であるヘキサフルオロイソプロパノールおよび水を例示することができる。   In the method of the present invention, hydrogen fluoride is used as a solvent, but a solvent that can be dissolved in hydrogen fluoride can also be used in combination. Such can be exemplified by hexafluoroisopropanol and water which are products of the process of the present invention.

本発明の方法は、反応温度は−20〜60℃であり、5〜50℃が好ましく、10〜30℃がより好ましい。−20℃未満では特別な冷却設備が必要となると共に反応速度が小さくなり、60℃を超えると反応速度は高まるが反応生成物中に1,1,1−トリフルオロアセトンなどの過還元不純物の副生や触媒寿命が短くなる恐れが生じるので好ましくない。   In the method of the present invention, the reaction temperature is -20 to 60 ° C, preferably 5 to 50 ° C, more preferably 10 to 30 ° C. When the temperature is lower than -20 ° C, a special cooling facility is required and the reaction rate is reduced. When the temperature exceeds 60 ° C, the reaction rate is increased. However, the reaction product contains overreduced impurities such as 1,1,1-trifluoroacetone. This is not preferable because by-products and catalyst life may be shortened.

また本発明の方法は、反応圧力は0.05〜5MPaであり、0.1〜1MPaが好ましく、0.1〜0.5MPaがより好ましい。溶媒であるフッ化水素の分圧は反応温度範囲では大きいため、0.1MPa未満では効率的な還元反応を引き起こすに必要な水素ガスの分圧が確保できず、5MPa以上では特別な耐圧仕様の反応設備が必要になるので好ましくない。   In the method of the present invention, the reaction pressure is 0.05 to 5 MPa, preferably 0.1 to 1 MPa, and more preferably 0.1 to 0.5 MPa. Since the partial pressure of hydrogen fluoride as a solvent is large in the reaction temperature range, if it is less than 0.1 MPa, the partial pressure of hydrogen gas necessary to cause an efficient reduction reaction cannot be secured, and if it is 5 MPa or more, a special pressure resistance specification is required. This is not preferable because a reaction facility is required.

本発明の好適な反応条件の選択により、比較的低温、低圧においても工業的に十分満足の行く速度で接触還元反応が可能となり、生成物中に過剰に還元された副生成物を実質上含まない製品が収率良く得られ、さらに触媒寿命が長いため経済的に有利な製造方法である。   The selection of suitable reaction conditions of the present invention enables a catalytic reduction reaction at an industrially satisfactory rate even at a relatively low temperature and low pressure, and the product substantially contains an excessively reduced by-product. This is an economically advantageous production method because a product with a high yield is obtained and the catalyst life is long.

本発明のヘキサフルオロイソプロパノールの製造方法は、バッチ式、半バッチ式、連続式または流通式のいずれかの形式でも実施できる。装置の材質は、ステンレス鋼、ニッケル合金鋼、銀、フッ素樹脂、炭素、ポリエチレンまたはこれらの材質でライニングされもしくはクラッドされた金属材料が使用できる。   The method for producing hexafluoroisopropanol of the present invention can be carried out in any of batch, semi-batch, continuous, or flow-through formats. As the material of the apparatus, stainless steel, nickel alloy steel, silver, fluororesin, carbon, polyethylene, or a metal material lined or clad with these materials can be used.

以下にバッチ式による実施形態で本発明を説明する。他の実施形式について実施する条件等については、以下の説明とこの分野の技術常識に基づいて容易に変更し、決定できる。   Hereinafter, the present invention will be described with reference to batch-type embodiments. Conditions and the like to be implemented for other implementation formats can be easily changed and determined based on the following description and common general technical knowledge in this field.

反応器は、攪拌機を備えたものが好ましいが反応速度が大きいため必ずしも必須ではない。通常は温度調節可能なように加熱装置および/または冷却装置を備えることが好ましく、特に冷却装置を備えるのが好ましい。   The reactor is preferably equipped with a stirrer, but is not necessarily essential because the reaction rate is high. Usually, it is preferable to provide a heating device and / or a cooling device so that the temperature can be adjusted, and it is particularly preferable to provide a cooling device.

反応器への原料の投入の順序は限定されないが、前述の「ヘキサフルオロアセトンをフッ化水素に溶解して得られた溶液」と触媒を投入した後、攪拌しながら水素ガスを導入して所定の圧力に保って反応を開始する。反応は0℃またはそれ以下の温度で開始する。また、反応を調節するためには、反応温度または水素圧力を調整することとおよび攪拌の強度で行うこともできる。反応の終了時期は水素の所定量の消費または吸収停止で確認すればよい。   The order in which the raw materials are charged into the reactor is not limited. However, after the above-mentioned “solution obtained by dissolving hexafluoroacetone in hydrogen fluoride” and the catalyst are charged, hydrogen gas is introduced while stirring and a predetermined amount is obtained. The reaction is started at a pressure of The reaction starts at a temperature of 0 ° C. or below. Moreover, in order to adjust reaction, it can also carry out by adjusting reaction temperature or hydrogen pressure, and the intensity | strength of stirring. The completion time of the reaction may be confirmed by consuming a predetermined amount of hydrogen or stopping absorption.

反応完了後、反応器内容物はフッ化水素と有機物を含む溶液についての公知の分離精製方法を適用することができる。反応器内容物を水または氷水に投入して得られた水溶液を直接または中和した後蒸留に付して低沸点成分として回収することができる。本発明の方法ではフッ化水素を多量に含むため、直ちに水へ投入することなく、反応器内容物からあらかじめ蒸留により可能な限りフッ化水素を除去した後、水に投入し得られた水溶液を直接または中和した後蒸留に付して低沸点成分として回収することが好ましい。いずれの場合も、反応器内容物には触媒が含まれているので濾過等により分離回収しておくのが好ましい。また、通常は触媒は再使用するため、反応器から内容物を移液する際に反応器内に残存させるのが効率的で好ましい。   After completion of the reaction, a known separation and purification method for a solution containing hydrogen fluoride and an organic substance can be applied to the reactor contents. The aqueous solution obtained by putting the reactor contents into water or ice water can be recovered directly or after neutralization and then recovered as a low boiling point component. Since the method of the present invention contains a large amount of hydrogen fluoride, without removing it immediately into the water, after removing hydrogen fluoride as much as possible from the reactor contents by distillation in advance, an aqueous solution obtained by adding it into water is used. It is preferable to recover directly as a low-boiling component by neutralization or neutralization. In any case, since the reactor content contains a catalyst, it is preferably separated and recovered by filtration or the like. Further, since the catalyst is usually reused, it is efficient and preferable to leave the catalyst in the reactor when the contents are transferred from the reactor.

水溶液から蒸留により回収されたヘキサフルオロイソプロパノールはさらに、公知の蒸留方法によりさらに精製することができる。また、回収されたフッ化水素は再度反応に使用することができる。   Hexafluoroisopropanol recovered from the aqueous solution by distillation can be further purified by a known distillation method. The recovered hydrogen fluoride can be used again for the reaction.

以下に、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。有機物の分析は、別途記述のある場合を除き、ガスクロマトグラフィー(FID検出器)で行った。また、実施例においては、別途記述のある場合を除き、ゲージ圧(大気圧を0MPaとした相対圧力をいう。)とし、MPa−Gで表示する。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. The organic matter was analyzed by gas chromatography (FID detector) unless otherwise stated. In Examples, unless otherwise stated, the gauge pressure (referred to as a relative pressure with atmospheric pressure of 0 MPa) is expressed in MPa-G.

[実施例1]
電磁攪拌機を備えたステンレス鋼製の1Lオートクレーブ(内径7.4cm内径、24cm高さ)を氷で外部冷却し、そこへ触媒として5質量%Pd/活性炭(N.E.ケムキャット製、50質量%含水品)を6.6g(1質量%)、冷蔵保存したヘキサフルオロアセトンのフッ化水素溶液(ヘキサフルオロアセトンと8モル倍のフッ化水素の混合物)を332g、各々秤量して投入した。氷冷下N2で1回,H2で2回加圧パージし、500rpmで撹拌しながら、H2加圧を開始した。内温が9℃を示した時点でH2吸収が認められ、内温が徐々に上昇した。撹拌を停止すると、内温の上昇が止まることが確認され還元反応がこの温度域から開始したことが認められた。その後、オートクレーブを外部から室温風冷しH2で内圧1.0MPa−Gとして、水素化反応を開始した。
[Example 1]
A stainless steel 1 L autoclave equipped with a magnetic stirrer (inner diameter 7.4 cm inner diameter, 24 cm height) was externally cooled with ice, and 5 mass% Pd / activated carbon (manufactured by NE Chemcat, 50 mass%) as a catalyst there. 6.6 g (1% by mass) of water-containing product) and 332 g of a hexafluoroacetone hydrogen fluoride solution (a mixture of hexafluoroacetone and 8 moles of hydrogen fluoride) that had been refrigerated were weighed and added. Under ice cooling, the pressure was purged once with N 2 and twice with H 2 , and H 2 pressurization was started while stirring at 500 rpm. When the internal temperature showed 9 ° C., H 2 absorption was observed, and the internal temperature gradually increased. When the stirring was stopped, it was confirmed that the internal temperature stopped rising, and it was confirmed that the reduction reaction started from this temperature range. Thereafter, the autoclave was air-cooled from the outside at room temperature, and the hydrogenation reaction was started at an internal pressure of 1.0 MPa-G with H 2 .

内温は開始時12℃であったが、反応熱により徐々に上昇し、1時間後に最高温度54℃に到達し、以後徐々に内温は低下した。この時までに、当量の98%に当たるH2を消費した。反応開始から1時間半後、内温43℃となりH2吸収が認められなくなった時点で反応を終了した。サンプリング管から少量のフッ化水素溶液をポリエチレン製容器に抜き出し、NMRにより測定したところ、ヘキサフルオロアセトンのヘキサフルオロイソプロパノールへの変換率は100%、選択率100%であった。 The internal temperature was 12 ° C. at the start, but gradually increased due to the heat of reaction, reached a maximum temperature of 54 ° C. after 1 hour, and thereafter the internal temperature gradually decreased. By this time, H 2 equivalent to 98% of the equivalent had been consumed. One and a half hours after the start of the reaction, the reaction was terminated when the internal temperature became 43 ° C. and no H 2 absorption was observed. When a small amount of hydrogen fluoride solution was extracted from the sampling tube into a polyethylene container and measured by NMR, the conversion of hexafluoroacetone to hexafluoroisopropanol was 100% and the selectivity was 100%.

触媒を含んだままで反応器内容物のうち288gをフッ素樹脂製蒸留装置の蒸留ポットに投入し、塔頂からフッ化水素を留出させた。釜残有機物は136gで、そのうちヘキサフルオロイソプロパノールは87質量%で残りはフッ化水素であった。   288 g of the reactor contents were put into the distillation pot of the fluororesin distillation apparatus while containing the catalyst, and hydrogen fluoride was distilled from the top of the column. The residual amount of organic matter was 136 g, of which hexafluoroisopropanol was 87% by mass and the remainder was hydrogen fluoride.

釜残有機物のうち126gに水酸化ナトリウム18gと水を加え中和した液289gをガラス製の単蒸留装置で蒸留し、塔頂から93g(蒸留収率72%)の粗ヘキサフルオロイソプロパノールを回収した。   A total of 289 g of a neutralized solution obtained by adding 18 g of sodium hydroxide and water to 126 g of the residual organic matter in the kettle was distilled with a glass single distillation apparatus, and 93 g (distillation yield 72%) of crude hexafluoroisopropanol was recovered from the top of the tower. .

回収された粗ヘキサフルオロイソプロパノールは、水分(0.9質量%)を除き99.95%のヘキサフルオロイソプロパノール純度であった。1,1,1−トリフルオロアセトン(TFA)の含量は0.002%であり、蒸留による精製工程において純度99.99%以上のヘキサフルオロイソプロパノールが蒸留収率95%で得られた。   The recovered crude hexafluoroisopropanol had a hexafluoroisopropanol purity of 99.95% excluding moisture (0.9% by mass). The content of 1,1,1-trifluoroacetone (TFA) was 0.002%, and in the purification step by distillation, hexafluoroisopropanol having a purity of 99.99% or more was obtained with a distillation yield of 95%.

[実施例2]
外部から冷却しながら反応温度を最高30℃に保ったほかは、実施例1と同様の操作により実施した。触媒として5質量%Pd/活性炭を6.4g(1質量%)、ヘキサフルオロアセトンのフッ化水素溶液(ヘキサフルオロアセトンと8モル倍のフッ化水素の混合物)を320g用いて水素化分解反応を実施した。
[Example 2]
The same operation as in Example 1 was performed except that the reaction temperature was kept at a maximum of 30 ° C. while cooling from the outside. The hydrocracking reaction was carried out using 6.4 g (1 mass%) of 5 mass% Pd / activated carbon as a catalyst and 320 g of a hydrogen fluoride solution of hexafluoroacetone (a mixture of hexafluoroacetone and 8 mol times hydrogen fluoride). Carried out.

内温は開始時12℃であったが、反応熱により徐々に上昇し、0.5時間後に最高温度30℃に到達し、以後内温を一定に保つよう外部冷却した。この時までに、当量の50%に当たるH2を消費した。反応開始から2時間後、H2吸収が認められなくなった時点で反応を終了した。サンプリング管から少量の反応器内容物をポリエチレン製容器に抜き出し、NMRにより測定したところ、ヘキサフルオロアセトンのヘキサフルオロイソプロパノールへの変換率は100%、選択率100%であった。 The internal temperature was 12 ° C. at the start, but gradually increased due to the heat of reaction, reached a maximum temperature of 30 ° C. after 0.5 hours, and thereafter externally cooled to keep the internal temperature constant. By this time, H 2 equivalent to 50% of the equivalent had been consumed. Two hours after the start of the reaction, the reaction was terminated when no H 2 absorption was observed. When a small amount of the reactor contents were extracted from the sampling tube into a polyethylene container and measured by NMR, the conversion of hexafluoroacetone to hexafluoroisopropanol was 100% and the selectivity was 100%.

反応器内容物の全量について実施例1と同様の処理をして、粗ヘキサフルオロイソプロパノールを132g(収率80%)回収した。   The total amount of the reactor contents was treated in the same manner as in Example 1 to recover 132 g of crude hexafluoroisopropanol (yield 80%).

回収された粗ヘキサフルオロイソプロパノールは、水分(1.2質量%)を除き99.97%のヘキサフルオロイソプロパノール純度であった。1,1,1−トリフルオロアセトンの含量は0.002%以下であり、蒸留による精製工程において純度99.99%以上のヘキサフルオロイソプロパノールが蒸留収率95%で得られた。   The recovered crude hexafluoroisopropanol had a hexafluoroisopropanol purity of 99.97% excluding moisture (1.2% by mass). The content of 1,1,1-trifluoroacetone was 0.002% or less, and hexafluoroisopropanol having a purity of 99.99% or more was obtained with a distillation yield of 95% in the purification step by distillation.

[実施例3]
外部から冷却しながら反応温度を最高30℃に保ったほかは、実施例1と同様の操作により実施した。触媒として5質量%Ru/活性炭(N.E.ケムキャット製、Bタイプ、48質量%含水品)を6.0g(1質量%)、ヘキサフルオロアセトンのフッ化水素溶液(ヘキサフルオロアセトンと8モル倍のフッ化水素の混合物)310gを用いて水素化分解反応を実施した。
[Example 3]
The same operation as in Example 1 was performed except that the reaction temperature was kept at a maximum of 30 ° C. while cooling from the outside. As a catalyst, 6.0 g (1 mass%) of 5 mass% Ru / activated carbon (manufactured by NE Chemcat, B type, 48 mass% water-containing product), hydrogen fluoride solution of hexafluoroacetone (hexafluoroacetone and 8 mol) The hydrocracking reaction was carried out using 310 g of a double hydrogen fluoride mixture.

内温が0℃を示した時点でH2吸収が認められ、内温が徐々に上昇した。15分後に最高温度30℃に到達し、以後内温を一定に保つよう外部冷却した。この時までに当量の30%にあたるH2を消費した。反応開始から1.5時間後、H2吸収が認められなくなった時点で反応を終了した。この時までに、当量の100%にあたるH2を消費した。サンプリング管から少量の反応器内容物をポリエチレン製容器に抜き出し、NMRにより測定したところ、ヘキサフルオロアセトンのヘキサフルオロイソプロパノールへの変換率は100%、選択率100%であった。 When the internal temperature showed 0 ° C., H 2 absorption was observed, and the internal temperature gradually increased. After 15 minutes, the maximum temperature of 30 ° C. was reached, and thereafter external cooling was performed so as to keep the internal temperature constant. By this time, H 2 equivalent to 30% of the equivalent had been consumed. 1.5 hours after the start of the reaction, the reaction was terminated when no H 2 absorption was observed. By this time, H 2 equivalent to 100% of the equivalent had been consumed. When a small amount of the reactor contents were extracted from the sampling tube into a polyethylene container and measured by NMR, the conversion of hexafluoroacetone to hexafluoroisopropanol was 100% and the selectivity was 100%.

反応器内容物の全量について実施例1と同様の処理をして、粗ヘキサフルオロイソプロパノールを149g(収率91%)得た。   The total amount of the reactor contents was treated in the same manner as in Example 1 to obtain 149 g (yield 91%) of crude hexafluoroisopropanol.

回収された粗ヘキサフルオロイソプロパノールは、水分(1.5質量%)を除き99.97%のヘキサフルオロイソプロパノール純度であった。1,1,1−トリフルオロアセトンの含量は0.002%以下であり、蒸留による精製工程において純度99.99%以上のヘキサフルオロイソプロパノールが蒸留収率95%で得られた。   The recovered crude hexafluoroisopropanol had a hexafluoroisopropanol purity of 99.97% excluding moisture (1.5% by mass). The content of 1,1,1-trifluoroacetone was 0.002% or less, and hexafluoroisopropanol having a purity of 99.99% or more was obtained with a distillation yield of 95% in the purification step by distillation.

[実施例4]
水素圧(反応器内圧)を0.2MPa−Gとする以外は実施例3と同様の操作により実施した。触媒として5質量%Ru/活性炭(N.E.ケムキャット製、Bタイプ、48質量%含水品)を6.0g(1質量%)、ヘキサフルオロアセトンのフッ化水素溶液(ヘキサフルオロアセトンと8モル倍のフッ化水素の混合物)を320gを用いて水素化分解反応を実施した。
[Example 4]
The same operation as in Example 3 was performed except that the hydrogen pressure (reactor internal pressure) was 0.2 MPa-G. As a catalyst, 6.0 g (1 mass%) of 5 mass% Ru / activated carbon (manufactured by NE Chemcat, B type, 48 mass% water-containing product), hydrogen fluoride solution of hexafluoroacetone (hexafluoroacetone and 8 mol) Hydrogenolysis reaction was carried out using 320 g of a double hydrogen fluoride mixture).

内温が0℃を示した時点でH2吸収が認められ、内温が徐々に上昇した。20分後に最高温度30℃に到達し、以後内温を一定に保つよう外部冷却した。この時までに、当量の30%にあたるH2を消費した。反応開始から2時間後、H2吸収が認められなくなった時点で反応を終了した。この時までに、当量の100%にあたるH2を消費した。サンプリング管から少量の反応器内容物をポリエチレン製容器に抜き出し、NMRにより測定したところ、ヘキサフルオロアセトンのヘキサフルオロイソプロパノールへの変換率は100%、選択率100%であった。 When the internal temperature showed 0 ° C., H 2 absorption was observed, and the internal temperature gradually increased. After 20 minutes, the maximum temperature of 30 ° C. was reached, and then external cooling was performed to keep the internal temperature constant. By this time, H 2 equivalent to 30% of the equivalent had been consumed. Two hours after the start of the reaction, the reaction was terminated when no H 2 absorption was observed. By this time, H 2 equivalent to 100% of the equivalent had been consumed. When a small amount of the reactor contents were extracted from the sampling tube into a polyethylene container and measured by NMR, the conversion of hexafluoroacetone to hexafluoroisopropanol was 100% and the selectivity was 100%.

攪拌を停止して触媒をオートクレーブ底部に沈降させた後、サンプリング管から275gの反応器内容物をフッ素樹脂製蒸留装置の蒸留ポットに投入した。オートクレーブ底部には約45gの反応混合物が触媒の大部分を含んで残存した。蒸留装置の塔頂からフッ化水素を蒸留により抜き出し、釜残有機物145gが得られ、釜残有機物中のヘキサフルオロイソプロパノールは95重量%で、残りはフッ化水素であった。   After stirring was stopped and the catalyst was allowed to settle to the bottom of the autoclave, 275 g of the reactor contents were charged from the sampling tube into the distillation pot of the fluororesin distillation apparatus. About 45 g of the reaction mixture remained at the bottom of the autoclave, including most of the catalyst. Hydrogen fluoride was extracted from the top of the distillation apparatus by distillation to obtain 145 g of organic residue in the kettle. The amount of hexafluoroisopropanol in the residual residue was 95% by weight, and the remainder was hydrogen fluoride.

釜残有機物のうち133gに水酸化ナトリウム18gと水を加え中和した液300gをガラス製の単蒸留装置で蒸留し、塔頂から120g(蒸留収率87%)の粗ヘキサフルオロイソプロパノールを回収した。   Of the remaining organic matter in the kettle, 133 g of neutralized solution of 18 g of sodium hydroxide and water was distilled with a single distillation apparatus made of glass, and 120 g (distillation yield 87%) of crude hexafluoroisopropanol was recovered from the top of the tower. .

回収された粗ヘキサフルオロイソプロパノールは、水分(1.4質量%)を除き99.99%のヘキサフルオロイソプロパノール純度であった。1,1,1−トリフルオロアセトンの含量は0.002%以下であり、蒸留による精製工程において純度99.99%以上のヘキサフルオロイソプロパノールが蒸留収率95%で得られた。   The recovered crude hexafluoroisopropanol had a purity of 99.99% excluding moisture (1.4% by mass). The content of 1,1,1-trifluoroacetone was 0.002% or less, and hexafluoroisopropanol having a purity of 99.99% or more was obtained with a distillation yield of 95% in the purification step by distillation.

[実施例5]
実施例4でオートクレーブ底部に残存した触媒を含む反応混合物に、ヘキサフルオロアセトンのフッ化水素溶液(ヘキサフルオロアセトンと8モル倍のフッ化水素の混合物)を300−330g加え、4回繰り返して実施例4と同様の水素化分解反応を実施した。実施例4を含め全5例の反応条件と結果を下表に示す。繰り返し回数が重なっても、所要の反応時間、収率に殆ど変化は見られず、触媒活性が変化していないことがわかった。
[Example 5]
To the reaction mixture containing the catalyst remaining at the bottom of the autoclave in Example 4, 300-330 g of a hexafluoroacetone hydrogen fluoride solution (a mixture of hexafluoroacetone and 8 moles of hydrogen fluoride) was added and repeated four times. The same hydrogenolysis reaction as in Example 4 was performed. The reaction conditions and results for all 5 cases including Example 4 are shown in the table below. Even when the number of repetitions overlapped, it was found that there was almost no change in the required reaction time and yield, and the catalytic activity did not change.

Figure 2009051798
Figure 2009051798

[参考例]
攪拌装置を備えた500mlのSUS−316製オ−トクレ−ブにヘキサフルオロアセトン水和物(3水和物)200g(1.0mol)を入れ5%−Pd/アルミナ坦持触媒1.0重量%および水酸化アルミニウム0.3重量%、炭酸水素ナトリウム0.05重量%を添加した。容器内を水素で置換し油浴にて100℃に昇温すると共に水素圧力を0.5MPa−G(5Kg/cm2−G)に保ち攪拌を開始すると水素の吸収が始った。6時間後に加熱、攪拌を止め冷却後、分析したところヘキサフルオロアセトン水和物の反応率は99.9%であった。また、ヘキサフルオロイソプロパノールの純度は99.0%であり、1,1,1−トリフルオロアセトンは0.2%、1,1,1−トリフルオロイソプロパノール(TFIP)は0.6%であった。
この粗ヘキサフルオロイソプロパノールを蒸留したが、1,1,1−トリフルオロアセトンがヘキサフルオロイソプロパノールと共沸様挙動を示すためヘキサフルオロイソプロパノールの純度は99.9を越すことはできなかった。
[Reference example]
200 g (1.0 mol) of hexafluoroacetone hydrate (trihydrate) was placed in a 500 ml SUS-316 autoclave equipped with a stirrer, and 5% -Pd / alumina supported catalyst 1.0 weight. % And 0.3% by weight aluminum hydroxide and 0.05% by weight sodium bicarbonate were added. When the inside of the vessel was replaced with hydrogen, the temperature was raised to 100 ° C. in an oil bath, and stirring was started while maintaining the hydrogen pressure at 0.5 MPa-G (5 Kg / cm 2 -G), hydrogen absorption started. After 6 hours, heating, stirring was stopped, and after cooling, analysis revealed that the reaction rate of hexafluoroacetone hydrate was 99.9%. The purity of hexafluoroisopropanol was 99.0%, 1,1,1-trifluoroacetone was 0.2%, and 1,1,1-trifluoroisopropanol (TFIP) was 0.6%. .
The crude hexafluoroisopropanol was distilled, but the purity of hexafluoroisopropanol could not exceed 99.9 because 1,1,1-trifluoroacetone exhibited an azeotropic behavior with hexafluoroisopropanol.

本発明の方法によると、比較的低い温度で反応させることで、生成物中に収率の低下を招く分離の困難な不純物を実質上含まないヘキサフルオロイソプロパノールが得られるため、工業的に有利な高純度のヘキサフルオロイソプロパノールの製造方法として利用できる。   According to the method of the present invention, by reacting at a relatively low temperature, hexafluoroisopropanol which is substantially free from impurities which are difficult to separate and which leads to a decrease in yield in the product is obtained, which is industrially advantageous. It can be used as a method for producing high-purity hexafluoroisopropanol.

Claims (5)

フッ化水素溶媒中において金属触媒の存在下−20〜60℃でヘキサフルオロアセトンと水素ガスを接触させて水素化することからなるヘキサフルオロイソプロパノールの製造方法。 A method for producing hexafluoroisopropanol, comprising hydrogenation by bringing hexafluoroacetone and hydrogen gas into contact with each other at −20 to 60 ° C. in the presence of a metal catalyst in a hydrogen fluoride solvent. 金属触媒がパラジウム、白金、ルテニウム、ロジウムおよびニッケルから選らばれた1種以上の金属からなる触媒またはその金属を活性炭に担持した触媒である請求項1に記載のヘキサフルオロイソプロパノールの製造方法。 The method for producing hexafluoroisopropanol according to claim 1, wherein the metal catalyst is a catalyst composed of one or more metals selected from palladium, platinum, ruthenium, rhodium and nickel, or a catalyst having the metal supported on activated carbon. 金属触媒がルテニウムからなる触媒またはルテニウムを活性炭に担持した触媒である請求項1に記載のヘキサフルオロイソプロパノールの製造方法。 The method for producing hexafluoroisopropanol according to claim 1, wherein the metal catalyst is a catalyst comprising ruthenium or a catalyst in which ruthenium is supported on activated carbon. ヘキサフルオロアセトンが、ヘキサフルオロアセトンまたはヘキサフルオロアセトン・フッ化水素付加体以外の有機物を実質的に含まないヘキサフルオロアセトンである請求項1〜2のいずれかに記載のヘキサフルオロイソプロパノールの製造方法。 The method for producing hexafluoroisopropanol according to any one of claims 1 to 2, wherein the hexafluoroacetone is hexafluoroacetone substantially free of organic substances other than hexafluoroacetone or hexafluoroacetone / hydrogen fluoride adduct. フッ化水素溶媒中において金属触媒の存在下−20〜60℃でヘキサフルオロアセトンと水素ガスを接触させて得られたヘキサフルオロイソプロパノールを含む反応器内容物から金属触媒を含まない液体成分を取得する工程と、さらに、その液体成分から蒸留によりフッ化水素を分離回収するとともに、ヘキサフルオロイソプロパノールを分離回収する工程を有する請求項1〜4のいずれかに記載のヘキサフルオロイソプロパノールの製造方法。 A liquid component not containing a metal catalyst is obtained from the reactor contents containing hexafluoroisopropanol obtained by contacting hexafluoroacetone and hydrogen gas in a hydrogen fluoride solvent at -20 to 60 ° C. in the presence of the metal catalyst. The method for producing hexafluoroisopropanol according to any one of claims 1 to 4, further comprising a step of separating and collecting hydrogen fluoride by distillation from the liquid component and further separating and collecting hexafluoroisopropanol.
JP2007222845A 2007-08-29 2007-08-29 Method for producing hexafluroisopropanol Active JP5076739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222845A JP5076739B2 (en) 2007-08-29 2007-08-29 Method for producing hexafluroisopropanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222845A JP5076739B2 (en) 2007-08-29 2007-08-29 Method for producing hexafluroisopropanol

Publications (2)

Publication Number Publication Date
JP2009051798A true JP2009051798A (en) 2009-03-12
JP5076739B2 JP5076739B2 (en) 2012-11-21

Family

ID=40503204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222845A Active JP5076739B2 (en) 2007-08-29 2007-08-29 Method for producing hexafluroisopropanol

Country Status (1)

Country Link
JP (1) JP5076739B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187691A (en) * 2015-05-05 2016-12-07 浙江蓝天环保高科技股份有限公司 A kind of method reclaiming hexafluoroisopropanol from the gaseous mixture containing hexafluoroisopropanol and hydrogen
US9637435B1 (en) 2016-11-16 2017-05-02 Central Glass Company, Limited Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether (sevoflurane)
CN110961040A (en) * 2019-12-30 2020-04-07 天津市长芦化工新材料有限公司 Device for preparing hexafluoroisopropanol through catalytic hydrogenation and using method thereof
CN111790401A (en) * 2020-06-22 2020-10-20 山东东岳高分子材料有限公司 Catalyst for synthesizing hexafluoroisopropanol, preparation method and application
CN114276215A (en) * 2021-11-25 2022-04-05 上海浦景化工技术股份有限公司 Method for purifying hexafluoroisopropanol used as GPC test mobile phase and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888330A (en) * 1981-11-24 1983-05-26 Asahi Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoro-2-propanol
JPS62289547A (en) * 1986-05-29 1987-12-16 ロ−ヌ−プラン シミ Manufacture of 4-fluoroaniline
JPH0454144A (en) * 1990-06-22 1992-02-21 Central Glass Co Ltd Method for purifying hexafluoropropylidene group-containing aromatic compound
JPH06184025A (en) * 1992-12-21 1994-07-05 Central Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
WO2001046099A1 (en) * 1999-12-22 2001-06-28 Honeywell International Inc. Method of making hydrofluorocarbons
WO2001056961A1 (en) * 2000-02-02 2001-08-09 Daikin Industries, Ltd. Production process of hydrofluorocarbons
JP2005171900A (en) * 2003-12-11 2005-06-30 Toyota Motor Corp Knock control system of engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888330A (en) * 1981-11-24 1983-05-26 Asahi Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoro-2-propanol
JPS62289547A (en) * 1986-05-29 1987-12-16 ロ−ヌ−プラン シミ Manufacture of 4-fluoroaniline
JPH0454144A (en) * 1990-06-22 1992-02-21 Central Glass Co Ltd Method for purifying hexafluoropropylidene group-containing aromatic compound
JPH06184025A (en) * 1992-12-21 1994-07-05 Central Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
WO2001046099A1 (en) * 1999-12-22 2001-06-28 Honeywell International Inc. Method of making hydrofluorocarbons
WO2001056961A1 (en) * 2000-02-02 2001-08-09 Daikin Industries, Ltd. Production process of hydrofluorocarbons
JP2005171900A (en) * 2003-12-11 2005-06-30 Toyota Motor Corp Knock control system of engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187691A (en) * 2015-05-05 2016-12-07 浙江蓝天环保高科技股份有限公司 A kind of method reclaiming hexafluoroisopropanol from the gaseous mixture containing hexafluoroisopropanol and hydrogen
US9637435B1 (en) 2016-11-16 2017-05-02 Central Glass Company, Limited Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether (sevoflurane)
EP3323798A1 (en) 2016-11-16 2018-05-23 Central Glass Company, Limited Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether (sevoflurane)
CN110961040A (en) * 2019-12-30 2020-04-07 天津市长芦化工新材料有限公司 Device for preparing hexafluoroisopropanol through catalytic hydrogenation and using method thereof
CN110961040B (en) * 2019-12-30 2023-11-24 天津市长芦化工新材料有限公司 Device for preparing hexafluoroisopropanol by catalytic hydrogenation and application method thereof
CN111790401A (en) * 2020-06-22 2020-10-20 山东东岳高分子材料有限公司 Catalyst for synthesizing hexafluoroisopropanol, preparation method and application
CN114276215A (en) * 2021-11-25 2022-04-05 上海浦景化工技术股份有限公司 Method for purifying hexafluoroisopropanol used as GPC test mobile phase and application thereof

Also Published As

Publication number Publication date
JP5076739B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
CA2950490C (en) Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether
JP5076739B2 (en) Method for producing hexafluroisopropanol
EP2243762B1 (en) Process for production of 2-propanol
CN102762523B (en) Method for producing 3,3,3-trifluoro propene
JP4641101B2 (en) Method for producing tetrafluorobenzene methanols
JP3852972B2 (en) Method for producing saturated ester
KR101639487B1 (en) Manufacturing apparatus of trans-1,4-cyclohexanedimethanol for simplifying process
KR101659171B1 (en) Method of direct conversion to trans-1,4-cyclohexanedimethanol
JP2880060B2 (en) Method for producing acetic acid, methyl acetate and acetic anhydride by carbonylation of methanol
JPH083081A (en) Liquid-phase production of 1,1,1,4,4,4-hexafluorobutane
WO1997044302A1 (en) Process for preparing a c2-6-alkanol containing from two to four hydroxyl groups
JP3794859B2 (en) Method for producing perhalogenated cyclopentane
JP7206501B2 (en) Method for producing halogenated cycloalkane compound
JP4248051B2 (en) High purity monochloroacetic acid and process for producing the same
JP4288451B2 (en) Process for producing 1,1,1,3,3,3-hexafluoropropan-2-ol
JP2001158754A (en) Method for producing tetrafluorobenzenedimethanol
JP4064727B2 (en) Method for producing 1,1,1-trifluoroacetone
JP4306081B2 (en) Method for producing 1,1,2,2,3,3,4-heptafluorocyclopentane and apparatus for producing the same
JP2001240567A (en) Preparation method of heptafluorocyclopentane
JP2000178216A (en) Production of isobutylene glycol
JP6372765B2 (en) Process for producing bis (2-hydroxyethyl) 1,4-cyclohexanedicarboxylate
JPH02131449A (en) Preparation of 6-hydroxycaprate
JPH01301631A (en) Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
WO2023282241A1 (en) Octafluorocyclobutane production method
JPH11335309A (en) Production of fluorinated unsaturated hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250