JPH01301631A - Production of 1,1,1,3,3,3-hexafluoropropan-2-ol - Google Patents

Production of 1,1,1,3,3,3-hexafluoropropan-2-ol

Info

Publication number
JPH01301631A
JPH01301631A JP63131455A JP13145588A JPH01301631A JP H01301631 A JPH01301631 A JP H01301631A JP 63131455 A JP63131455 A JP 63131455A JP 13145588 A JP13145588 A JP 13145588A JP H01301631 A JPH01301631 A JP H01301631A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrate
reaction
hfa
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63131455A
Other languages
Japanese (ja)
Inventor
Takaaki Yoshimura
孝明 吉村
Toshikazu Kawai
俊和 河合
Junji Negishi
根岸 順二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP63131455A priority Critical patent/JPH01301631A/en
Publication of JPH01301631A publication Critical patent/JPH01301631A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject compound useful as an intermediate for medicines, such as anesthetic agent, agricultural chemicals or chemical products, by bringing a readily handleable hexafluoroacetone hydrate in the liquid phase into contact with hydrogen using a palladium catalyst, supported on alumina and having a long life and carrying out hydrogenolysis. CONSTITUTION:Hexafluoroacetone hydrate readily obtained by absorbing hexafluoroacetone is water in a liquid phase state is brought into contact with hydrogen in the presence of a palladium catalyst supported on alumina (amount thereof used is preferably 0.1-5.0wt.% based on the raw material hydrate) to carry out hydrogenolysis and afford 1,1,1,3,3,3-hexafluoropropan-2-ol. The resultant compound has specific solvency itself and is useful as a solvent. The above- mentioned method is industrially excellent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1,1.、L3,3.3−ヘキサフルオロプロ
パン−2−オール(HFIP)の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention comprises 1.1. , relates to a method for producing L3,3,3-hexafluoropropan-2-ol (HFIP).

HFIPはそれ自体特異な溶解力を有する溶媒として有
用であるばかりでなく麻酔剤の中間体をはじめ医農薬の
中間体および化学製品の中間体としても有用な化合物で
ある。
HFIP is a compound that is not only useful as a solvent having a unique dissolving power, but also as an intermediate for anesthetics, pharmaceuticals and agricultural chemicals, and intermediates for chemical products.

〔従来の技術〕[Conventional technology]

=1− HFIPの公知の製造方法には、■ヘキサフルオロアセ
トン(HFA)の水素化ホウ素すl・リウム(ソ連特許
第138604号)あるいは水素化アルミニウムリチウ
ム(米国特許第3227674号)を用いた液相還元法
、■米国特許第3607952号に代表されるHFAを
液相で貴金属触媒の存在下水素化する方法、■ドイツ特
許第1956629号に代表されるHFAを気相で水素
とともに触媒層を通ずことによる(接触水素化)方法が
ある。
=1- Known methods for producing HFIP include: ■ Hexafluoroacetone (HFA) liquid using sulfur borohydride (USSR Patent No. 138604) or lithium aluminum hydride (US Patent No. 3227674); Phase reduction method, ■ A method of hydrogenating HFA in the liquid phase in the presence of a noble metal catalyst, as typified by US Pat. There is a catalytic hydrogenation method.

これらはいずれも原料としてHFAを使用するものであ
るが、HFAは常温では気体(bp、−28°C)であ
る有毒物質であり、その取扱、貯蔵、運搬等には非常に
注意を要するものである。また、■の方法は工業的な製
造方法とはいえず、また■ではHFAがそれ自体液化ガ
スであるため可及的に、その反応温度でHFAが液相で
あるためには大きな反応圧力が必要であり、反応容器と
しては特殊なものが要求される。■では常圧下連続的に
水素化せしめることが可能であるが、水素化反応が発熱
をともなうため触媒層に熱点を作るなど反応温度の制御
は非常に困難である。充填触媒は活性が経時的に低下す
ることが避けられず、製品の経時的な確認および反応条
件の適性化操作といった煩雑さを免れない。またHFA
の十分なる転化を期すためには過剰量の水素を用いるこ
とが一般的であるが、過剰水素の損失は製造コストの上
昇を招き、回収のためには特に装置が必要である。
All of these use HFA as a raw material, but HFA is a toxic substance that is a gas (BP, -28°C) at room temperature, and requires extreme care when handling, storing, and transporting it. It is. In addition, method (2) cannot be called an industrial production method, and in (2), HFA itself is a liquefied gas, so in order for HFA to be in a liquid phase at the reaction temperature, a large reaction pressure is required. A special reaction vessel is required. In case (2), it is possible to carry out hydrogenation continuously under normal pressure, but since the hydrogenation reaction generates heat, it is very difficult to control the reaction temperature, such as by creating hot spots in the catalyst layer. The activity of packed catalysts inevitably decreases over time, and it is unavoidable that it is complicated to check the product over time and to optimize the reaction conditions. Also HFA
Although it is common to use an excess amount of hydrogen to ensure sufficient conversion of hydrogen, the loss of excess hydrogen increases production costs and requires special equipment for recovery.

HFAは液化ガスであり、また毒性を有するため取扱が
難しいが、かかるHFAを用いる不利を克服する方法と
して、HFAの水和物を用い、気相でニッケル系触媒ま
たはパラジウム系触媒存在下、水素化分解することによ
るHFIPの製造法については既に本出願人が特開昭5
7−81424号により提案しているところであるが、
しかしこの方法もHF Aを用いる■における問題点が
そのまま適用される。
HFA is difficult to handle because it is a liquefied gas and has toxicity. However, as a method to overcome the disadvantages of using HFA, a hydrate of HFA is used to react with hydrogen in the gas phase in the presence of a nickel-based or palladium-based catalyst. Regarding the production method of HFIP by chemical decomposition, the present applicant has already published Japanese Patent Application Laid-open No. 5
As proposed by No. 7-81424,
However, the problems in (2) using HFA are also applied to this method.

かかる不都合のないHF I Pの製造法として、HF
Aの水和物を液相にて炭素担持パラジウム触媒存在下、
水素化分解する方法が提案されており、例えば特開昭5
9−204142号等に示されている。
As a method for producing HF I P without such inconveniences, HF
A hydrate in the liquid phase in the presence of a carbon-supported palladium catalyst,
Hydrogenolysis methods have been proposed, for example, in JP-A-5
No. 9-204142, etc.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らはHFA水和物の液相水素化分解の触媒とし
てアルミナ担持パラジウム触媒が特異的に優れた触媒活
性を示すことを見出し本発明に到達したものである。す
なわち本発明はへキサフルオロアセトン水和物を、アル
ミナ担持パラジウム触媒の存在下、液相状態で水素と接
触せしめ水素化分解をおこなうことを特徴とするLLI
、3,3.3−ヘキサフルオロプロパン−2−オールの
製造法である。本発明においてHFA水和物とはHFA
を水に吸収せしめることにより容易に得られ、製造方法
によってはHFAを取り扱うことなく直接製造すること
もできるHFAと水のモル比が約3で106°Cの低沸
点液状組成物を指すものである。
The present inventors have arrived at the present invention by discovering that an alumina-supported palladium catalyst exhibits uniquely excellent catalytic activity as a catalyst for liquid phase hydrogenolysis of HFA hydrate. That is, the present invention provides an LLI characterized in that hexafluoroacetone hydrate is brought into contact with hydrogen in a liquid phase state in the presence of an alumina-supported palladium catalyst to perform hydrogenolysis.
, 3,3.3-hexafluoropropan-2-ol. In the present invention, HFA hydrate refers to HFA
It refers to a low boiling point liquid composition with a molar ratio of HFA and water of about 3 and a temperature of 106°C, which can be easily obtained by absorbing HFA in water, and depending on the production method, it can also be produced directly without handling HFA. be.

本発明において用いる水素化分解触媒はアルミナ担持パ
ラジウム触媒が好ましく、その使用量はHFA水和物に
対して0.1〜5.0重量%の範囲が好ましく、これよ
り少ないと触媒活性が寸分ではなく、またこれより多く
しても添加量に見合った効果はなく経済的ではない。ア
ルミナ中のパラジウム担持量は通常用いられる0、5〜
5重量%で十分である。また反応温度は60〜100 
’Cの範囲が好ましく、これより低い温度では反応が十
分に進行せず、これより高い場合には生成したHFIP
の蒸気圧が大きくなり一定圧力下での水素の分圧が相対
的に低下し、また100℃以上にしなくとも十分な反応
速度を有しているため、経済的には100°C以下が好
ましい。
The hydrocracking catalyst used in the present invention is preferably an alumina-supported palladium catalyst, and the amount used is preferably in the range of 0.1 to 5.0% by weight based on the HFA hydrate. Moreover, even if the amount is increased, the effect is not commensurate with the amount added and is not economical. The amount of palladium supported in alumina is usually 0.5~
5% by weight is sufficient. In addition, the reaction temperature is 60 to 100
'C range is preferable; at temperatures lower than this, the reaction does not proceed sufficiently, and at temperatures higher than this, the produced HFIP
The vapor pressure of hydrogen increases, the partial pressure of hydrogen under a constant pressure decreases relatively, and the reaction rate is sufficient even if the temperature does not exceed 100°C, so it is economically preferable to set the temperature below 100°C. .

また、水素圧力は4〜15kg/cn(の範囲が好まし
く、これより小さい場合には反応が進行するに従って生
成したH F r Pが反応温度においてかなりの蒸気
圧を有するため相対的に水素圧が減少するため反応速度
が小さくなり、好ましくない。一方水素圧をこれより大
きくすると反応速度は高まるが反応容器に制約が生し、
特にこれより大きくしなくとも十分な反応速度を有して
いるため、必ずしも必要ない。
In addition, the hydrogen pressure is preferably in the range of 4 to 15 kg/cn (if it is smaller than this, the H F r P produced as the reaction progresses will have a considerable vapor pressure at the reaction temperature, so the hydrogen pressure will be relatively low). As the hydrogen pressure decreases, the reaction rate decreases, which is undesirable.On the other hand, increasing the hydrogen pressure higher than this increases the reaction rate, but places constraints on the reaction vessel.
In particular, it is not necessary because the reaction rate is sufficient even if it is not made larger than this.

本発明は気液反応であり、攪拌は反応速度に大きな影響
を与え、十分な攪拌をおこなうことが好ましい。
The present invention is a gas-liquid reaction, and stirring has a large effect on the reaction rate, so it is preferable to perform sufficient stirring.

HFA水和物が十分に反応した時点で加熱および攪拌を
停止し、触媒が反応容器底部に沈降したのち上澄を生成
物として回収する。反応器内には上記の反応生成物の一
部および触媒と水素か残存するが、さらに原料HFA水
和物を添加して再度反応をおこなうことができ、触媒、
水素は損失なしに再使用できるとともに改めて反応容器
を水素で置換する操作も省略できる。触媒は反応を繰り
返すことにより漸次活性が低下して(るので通常は毎回
当初使用触媒の1/10程度補充することにより、毎回
好ましい反応速度および反応生成物を与える。
When the HFA hydrate has sufficiently reacted, heating and stirring are stopped, and after the catalyst has settled to the bottom of the reaction vessel, the supernatant is collected as a product. Although some of the above reaction products, catalyst, and hydrogen remain in the reactor, the raw material HFA hydrate can be further added to carry out the reaction again, and the catalyst,
Hydrogen can be reused without loss, and the operation of replacing the reaction vessel with hydrogen again can be omitted. The activity of the catalyst gradually decreases as the reaction is repeated (therefore, by replenishing about 1/10 of the initially used catalyst each time, a desired reaction rate and reaction product can be obtained each time.

本発明においては反応は目的物であるH F I Pや
水あるいはその他年活性な有機溶媒(エーテル、エタノ
ール、メタノール等)中でも実施でき、その他励触媒、
受酸剤としてカーボン、水酸化アルミニウム等を用いる
こともできる。
In the present invention, the reaction can be carried out in the target H F I P, water or other active organic solvents (ether, ethanol, methanol, etc.), and can be carried out in the presence of other active catalysts,
Carbon, aluminum hydroxide, etc. can also be used as the acid acceptor.

本発明により製造されるHFIPは水および場合によっ
ては未反応HF A水和物、またある場合−〇− には副生成物との混合物であるが、この粗HFIPは通
常の常圧蒸留により収率よく分別精製される。本発明に
おいて反応容器の材質は特に限定されず、ガラス、ガラ
スライニング、フッ素樹脂ライニング、ステンレス鋼な
どが好適である。
The HFIP produced by the present invention is a mixture of water and possibly unreacted HF A hydrate, and in some cases by-products, and the crude HFIP can be recovered by conventional atmospheric distillation. It is efficiently fractionated and purified. In the present invention, the material of the reaction vessel is not particularly limited, and glass, glass lining, fluororesin lining, stainless steel, etc. are suitable.

以下実施例を挙げさらに本発明の詳細な説明する。The present invention will be further explained in detail with reference to Examples below.

実施例I 攪拌装置を備えた200c c 5US−316オート
クレープに30 g (0,]、36mol)のHFA
水和物を入れ5%パラジウム−アルミナ担持触媒0.5
重量%を添加した。容器内を水素で置換し油浴にて95
°Cに昇温した。水素圧力を7 kg / cnlに保
ちマグネチソクスターラにて攪拌を開始すると水素の吸
収が始まった。8時間後に加熱・攪拌を止め分析したと
ころHFA水和物の反応率は94.7%、HFIPの選
択率は99゜3%であった。
Example I 30 g (0,], 36 mol) of HFA in a 200cc 5US-316 autoclave equipped with a stirrer
Add hydrate and 5% palladium-alumina supported catalyst 0.5
% by weight was added. The inside of the container was replaced with hydrogen and heated to 95% in an oil bath.
The temperature was raised to °C. When the hydrogen pressure was maintained at 7 kg/cnl and stirring was started using a magnetic stirrer, hydrogen absorption began. After 8 hours, heating and stirring were stopped and analysis revealed that the reaction rate of HFA hydrate was 94.7% and the selectivity of HFIP was 99.3%.

実施例2 添加剤として0.10重量%のカーボン粉末を添加した
ほかは実施例1と同様にして反応をおこなった。反応を
8時間おこなったのち分析したところHFA水和物の反
応率は96.3%、HFIPの選択率は99.4%であ
った。
Example 2 A reaction was carried out in the same manner as in Example 1 except that 0.10% by weight of carbon powder was added as an additive. After the reaction was carried out for 8 hours, analysis revealed that the reaction rate of HFA hydrate was 96.3% and the selectivity of HFIP was 99.4%.

実施例3 添加剤として0.30重量%の水酸化アルミニウムを添
加したほかは実施例1と同様にして反応をおこなった。
Example 3 A reaction was carried out in the same manner as in Example 1 except that 0.30% by weight of aluminum hydroxide was added as an additive.

反応を8時間おこなったのち分析したところ HF A
水和物の反応率は94.3%、HFIPの選択率は99
,3%であった。
After 8 hours of reaction, analysis showed that HF A
Hydrate reaction rate is 94.3%, HFIP selectivity is 99
, 3%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば取扱の容易なHFA水和物から収率よ<
 HF I Pを得ることができ、触媒の寿命も長く工
業的に優れた方法である。
According to the present invention, the yield from HFA hydrate, which is easy to handle, is
It is an industrially excellent method that can yield HF I P and has a long catalyst life.

Claims (1)

【特許請求の範囲】[Claims]  ヘキサフルオロアセトン水和物を、アルミナ担持パラ
ジウム触媒の存在下、液相状態で水素と接触せしめ水素
化分解をおこなうことを特徴とする1,1,1,3,3
,3−ヘキサフルオロプロパン−2−オールの製造法
1, 1, 1, 3, 3 characterized in that hexafluoroacetone hydrate is brought into contact with hydrogen in a liquid phase state in the presence of an alumina-supported palladium catalyst to perform hydrogenolysis.
, 3-hexafluoropropan-2-ol manufacturing method
JP63131455A 1988-05-31 1988-05-31 Production of 1,1,1,3,3,3-hexafluoropropan-2-ol Pending JPH01301631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131455A JPH01301631A (en) 1988-05-31 1988-05-31 Production of 1,1,1,3,3,3-hexafluoropropan-2-ol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131455A JPH01301631A (en) 1988-05-31 1988-05-31 Production of 1,1,1,3,3,3-hexafluoropropan-2-ol

Publications (1)

Publication Number Publication Date
JPH01301631A true JPH01301631A (en) 1989-12-05

Family

ID=15058359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131455A Pending JPH01301631A (en) 1988-05-31 1988-05-31 Production of 1,1,1,3,3,3-hexafluoropropan-2-ol

Country Status (1)

Country Link
JP (1) JPH01301631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524995B1 (en) 2008-06-12 2009-04-28 E.I. Du Pont De Nemours And Company Continuous process to produce hexafluoroisopropanol
WO2010125899A1 (en) 2009-04-28 2010-11-04 セントラル硝子株式会社 Process for producing fluoromethyl hexafluoroisopropyl ether
US9637435B1 (en) 2016-11-16 2017-05-02 Central Glass Company, Limited Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether (sevoflurane)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781424A (en) * 1980-11-11 1982-05-21 Central Glass Co Ltd Preparation of 1,1,1,3,3,3-hexafluoropropane-2-ol
JPS59204142A (en) * 1983-04-28 1984-11-19 Nippon Mektron Ltd Production of hexafluoroisopropyl alcohol
JPS6069047A (en) * 1983-09-27 1985-04-19 Central Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoropropan-2-ol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781424A (en) * 1980-11-11 1982-05-21 Central Glass Co Ltd Preparation of 1,1,1,3,3,3-hexafluoropropane-2-ol
JPS59204142A (en) * 1983-04-28 1984-11-19 Nippon Mektron Ltd Production of hexafluoroisopropyl alcohol
JPS6069047A (en) * 1983-09-27 1985-04-19 Central Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoropropan-2-ol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524995B1 (en) 2008-06-12 2009-04-28 E.I. Du Pont De Nemours And Company Continuous process to produce hexafluoroisopropanol
WO2010125899A1 (en) 2009-04-28 2010-11-04 セントラル硝子株式会社 Process for producing fluoromethyl hexafluoroisopropyl ether
US8865946B2 (en) 2009-04-28 2014-10-21 Central Glass Company, Limited Process for producing fluoromethyl hexafluoroisopropyl ether
US9637435B1 (en) 2016-11-16 2017-05-02 Central Glass Company, Limited Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether (sevoflurane)

Similar Documents

Publication Publication Date Title
US9914680B2 (en) Method for producing fluorinated organic compounds
CA2950490C (en) Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether
US5481051A (en) 2,2-dichlorohexafluoropropane hydrogenolysis
US20070100172A1 (en) Preparation and application of novel chromium based nanocatalyst for gas-phase fluorination and hydrofluorination reactions
US6291729B1 (en) Halofluorocarbon hydrogenolysis
US5523501A (en) Catalytic hydrogenolysis
CN102762523A (en) Method for producing 3,3,3-trifluoro propene
JP5076739B2 (en) Method for producing hexafluroisopropanol
JPS6069047A (en) Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
JPH05378B2 (en)
JP2638727B2 (en) Method for producing 1,1,1,3,3,3-hexafluoropropan-2-ol
JPS6125694B2 (en)
JPH01301631A (en) Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
JPH085838B2 (en) Method for producing biphenyltetracarboxylic acid
US4250093A (en) Process for the preparation of laotams
JPH0649664B2 (en) Method for producing 2,2,2-trifluoroethanol
JP4432390B2 (en) Method for producing chlorobenzene
JP2737308B2 (en) Method for producing partially chlorinated methane
GB2086889A (en) Process for preparing acetaldehyde
KR100884315B1 (en) Process for preparing of isopropanol
US3592825A (en) P-dioxene synthesis
JP2662462B2 (en) Method for producing biaryl
Luo et al. An Overview of the Synthesis of Hexafluoroisopropanol and Its Key Intermediates
JPH08245477A (en) Production of formaldehyde by catalytic hydrogenation of carbon dioxide
US20230150900A1 (en) Method for producing fluorinated organic compounds