JP2737308B2 - Method for producing partially chlorinated methane - Google Patents

Method for producing partially chlorinated methane

Info

Publication number
JP2737308B2
JP2737308B2 JP1271832A JP27183289A JP2737308B2 JP 2737308 B2 JP2737308 B2 JP 2737308B2 JP 1271832 A JP1271832 A JP 1271832A JP 27183289 A JP27183289 A JP 27183289A JP 2737308 B2 JP2737308 B2 JP 2737308B2
Authority
JP
Japan
Prior art keywords
carbon tetrachloride
hydrogen
methane
group element
partially chlorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1271832A
Other languages
Japanese (ja)
Other versions
JPH03133939A (en
Inventor
龍太郎 武居
陽一 吉田
▲こう▼一 簗瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1271832A priority Critical patent/JP2737308B2/en
Publication of JPH03133939A publication Critical patent/JPH03133939A/en
Application granted granted Critical
Publication of JP2737308B2 publication Critical patent/JP2737308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は部分塩素化メタンであるクロロホルム、塩化
メチレン、塩化メチルの製造方法に関するものである。
The present invention relates to a method for producing partially chlorinated methane, chloroform, methylene chloride, and methyl chloride.

[従来の技術及び発明が解決しようとする課題] クロロホルム、塩化メチレン、塩化メチルの製造方法
としては、従来、メタンを塩素と400〜500℃高温条件下
又は3000〜5000Åの波長の光照射下で反応させる方法が
知られている。更に、メタノールを出発原料として用い
塩酸と反応させることにより、塩化メチルを製造し、次
いでこれを塩素化して高次塩素化メタンを製造するいわ
ゆるメタノール法が知られている。
[Problems to be solved by the prior art and the invention] As a method for producing chloroform, methylene chloride, and methyl chloride, conventionally, methane is mixed with chlorine at a high temperature of 400 to 500 ° C or under light irradiation of a wavelength of 3000 to 5000 ° C. A reaction method is known. Further, there is known a so-called methanol method in which methyl chloride is produced by reacting with hydrochloric acid using methanol as a starting material, and then chlorinated to produce higher chlorinated methane.

しかしながら、いずれの方法においても生成する塩素
化メタンの組成比率は反応条件の調整により変化させる
ことは可能であるが、単一化合物だけを生成させること
はできず、必ず複数の塩素化メタンの混合物が得られ
る。より高次に塩素化されたメタンを得たい場合には生
成物をリサイクルすることによりその目的を達成するこ
とができるが完全に塩素化されてしまった四塩化炭素を
部分的に塩素化されたメタン(クロロホルム、塩化メチ
レン、塩化メチル)に転化させることは従来の塩素化プ
ロセスでは不可能である。四塩化炭素を部分的に還元す
る方法としては、塩酸を鉄と反応させて生ずる発生期の
水素による還元やメタンやエタン等の低級アルカンの存
在下に高温に加熱する方法等が知られている。しかしな
がら、前者は多量の鉄を消費するうえ副生する多量の塩
化鉄を処理せねばならずコスト的に工業的規模で採用す
ることは不可能であり、後者は塩素化エチレン等の副生
を伴う等の問題点を有している。
However, the composition ratio of the chlorinated methane produced in any of the methods can be changed by adjusting the reaction conditions, but it is not possible to produce only a single compound, and a mixture of a plurality of chlorinated methanes must be produced. Is obtained. If you want to obtain higher chlorinated methane, you can achieve its purpose by recycling the product, but partially chlorinated completely chlorinated carbon tetrachloride Conversion to methane (chloroform, methylene chloride, methyl chloride) is not possible with conventional chlorination processes. As a method of partially reducing carbon tetrachloride, there are known a method of reducing hydrogen with nascent hydrogen generated by reacting hydrochloric acid with iron and a method of heating to a high temperature in the presence of a lower alkane such as methane or ethane. . However, the former consumes a large amount of iron and must treat a large amount of by-produced iron chloride, and cannot be adopted on an industrial scale in terms of cost. It has problems such as accompanying.

[課題を解決するための手段] 本発明は前述のような従来技術の問題点を解決すべく
なされたものであり、完全に塩素化された四塩化炭素を
部分的に塩素化されたメタン(クロロホルム・塩化メチ
レン・塩化メチル)に転化させる製造方法を新規に提供
することを目的とするものである。
Means for Solving the Problems The present invention has been made to solve the problems of the prior art as described above, and completely chlorinated carbon tetrachloride is converted into partially chlorinated methane (methane). It is an object of the present invention to provide a novel production method for conversion to chloroform / methylene chloride / methyl chloride).

即ち、本発明は鉄族元素又は白金族元素触媒の存在下
に、四塩化炭素を水素と反応せしめて部分塩素化メタン
を得ることを特徴とする部分塩素化メタンの製造方法に
関するものである。
That is, the present invention relates to a method for producing partially chlorinated methane, which comprises reacting carbon tetrachloride with hydrogen in the presence of an iron group element or platinum group element catalyst to obtain partially chlorinated methane.

本発明における鉄族元素触媒としては、Fe,Co,Niを、
白金族元素触媒としてはPd,Pt,Ru,Rh等を挙げることが
できる。これらの鉄族元素や白金族元素触媒は2種以上
併用してもよく、また、活性炭、ケイソウ土あるいはア
ルミナ等の担体に担持させることができ、これにより触
媒活性を高め、触媒寿命をのばすことができる。本発明
反応においては、塩化水素が副生するため、耐酸性の高
い白金族元素触媒が好ましい。
As the iron group element catalyst in the present invention, Fe, Co, Ni,
Examples of the platinum group element catalyst include Pd, Pt, Ru, Rh and the like. These iron group element or platinum group element catalysts may be used in combination of two or more kinds, and can be supported on a carrier such as activated carbon, diatomaceous earth or alumina, thereby increasing the catalyst activity and extending the catalyst life. Can be. In the present reaction, a platinum group element catalyst having high acid resistance is preferable because hydrogen chloride is by-produced.

本発明における反応温度としては、あまり低い場合に
は反応率が充分得られず、高すぎる場合には、反応率は
高いものの副反応による高沸点成分が生成し、選択率を
低下させたり、触媒寿命を短くしたりするので、100〜4
00℃、好ましくは150〜350℃の範囲から選択するとよ
い。反応は、常圧又は加圧下に液相でも気相でも可能で
あるが、選択率や触媒寿命の観点から気相法が好まし
い。気相での反応時間はおよそ5〜600秒好ましくは10
〜100秒が適当である。
When the reaction temperature in the present invention is too low, a sufficient conversion cannot be obtained, and when it is too high, a high boiling point component is generated due to a side reaction although the reaction rate is high, and the selectivity is lowered or the catalyst is reduced. 100 to 4
The temperature may be selected from the range of 00 ° C, preferably 150 to 350 ° C. The reaction can be performed in a liquid phase or a gas phase at normal pressure or under pressure, but a gas phase method is preferred from the viewpoint of selectivity and catalyst life. The reaction time in the gas phase is approximately 5 to 600 seconds, preferably 10
~ 100 seconds is appropriate.

使用する水素の量は、使用する四塩化炭素の1倍モル
未満では四塩化炭素の反応率を100%にすることはでき
ず、又、多すぎる場合には、不必要なメタンの生成量を
多くしてしまう結果となる。従って、使用する水素の量
は、最も得たい生成物がクロロホルムであるか、塩化メ
チレンであるか、塩化メチルであるかにより最適量とす
ればよいが、およそ四塩化炭素の1〜3倍モルとするこ
とが好ましい。
If the amount of hydrogen used is less than 1 mole of the carbon tetrachloride used, the reaction rate of carbon tetrachloride cannot be made 100%, and if it is too large, the amount of unnecessary methane generated is reduced. The result is more. Therefore, the amount of hydrogen to be used may be an optimal amount depending on whether the most desired product is chloroform, methylene chloride, or methyl chloride. It is preferable that

[実施例] 実施例1 直径1インチ長さ1mの鉄製反応器に活性炭に0.5wt%
のパラジウムを担持した触媒を充填し、これをマントル
ヒーターにより250℃に加熱した。この反応器に気化さ
せた四塩化炭素154g(1モル)/hrを水素34N1/hrととも
に供給した。四塩化炭素と水素のモル比1:1.5である。
反応器出口からのガスを5%NaOH除害びん中バルブさせ
ることにより、その底部に油状生成物が得られ、又凝縮
しないガスが除害びんから出てきた。30分間のサンプリ
ングにより油状生成物45gと非凝縮ガス14を得た。ガ
スクロマトグラフィー分析によると油状生成物の組成は
面積比をモル比に補正後四塩化炭素15%、クロロホルム
68%、塩化メチレン14%、塩化メチル3%であった。
[Example] Example 1 0.5 wt% of activated carbon in an iron reactor having a diameter of 1 inch and a length of 1 m
Was charged to 250 ° C. using a mantle heater. 154 g (1 mol) / hr of vaporized carbon tetrachloride was supplied to the reactor together with 34 N / hr of hydrogen. The molar ratio of carbon tetrachloride to hydrogen is 1: 1.5.
The gas from the reactor outlet was valved in a 5% NaOH abatement bottle to give an oily product at the bottom and uncondensed gas came out of the abatement bottle. By sampling for 30 minutes, 45 g of an oily product and a non-condensed gas 14 were obtained. According to gas chromatography analysis, the composition of the oily product was corrected to 15% carbon tetrachloride, chloroform
68%, methylene chloride 14%, and methyl chloride 3%.

一方、非凝縮ガスの組成は同様にクロロホルム8%、
塩化メチレン23%、塩化メチル54%、メタン15%であっ
たが、このガスクロマトグラフィーの分析条件では水素
は検出できないので組成にはカウントされていない。
On the other hand, the composition of the non-condensed gas is chloroform 8%,
Methylene chloride was 23%, methyl chloride was 54%, and methane was 15%. However, hydrogen was not detected under the analysis conditions of the gas chromatography, so that it was not counted in the composition.

実施例2 実施例1で用いた反応器を200℃に加熱し、これに四
塩化炭素70g(0.45モル)/hr、水素25Nl/hrを供給し
た。四塩化炭素と水素のモル比は1:2.5である。実施例
1と同様に30分間のサンプリングにより除害びんの底部
に26gの油状生成物を得た。実施例1と同様なガスクロ
マトグラフィー分析によれば油状生成物の組成は四塩化
炭素38%、クロロホルム43%、塩化メチレン18%、塩化
メチル2%メタン痕跡であった。また障害びんから出た
ガスはほとんど水素であったため捕捉できなかった。
Example 2 The reactor used in Example 1 was heated to 200 ° C., and 70 g (0.45 mol) / hr of carbon tetrachloride and 25 Nl / hr of hydrogen were supplied thereto. The molar ratio of carbon tetrachloride to hydrogen is 1: 2.5. Sampling for 30 minutes as in Example 1 yielded 26 g of an oily product at the bottom of the abatement bottle. According to the same gas chromatography analysis as in Example 1, the composition of the oily product was 38% of carbon tetrachloride, 43% of chloroform, 18% of methylene chloride, and 2% of methyl chloride. In addition, the gas discharged from the bottle was almost hydrogen and could not be captured.

実施例3 実施例1で用いた反応器に2wt%の白金を活性炭に担
持した触媒を充填し、これをマントルヒーターにより25
0℃に加熱した。この反応器に気化させた四塩化炭素154
g(1モル)hrを水素34Nl/hrとともに供給した。四塩化
炭素と水素のモル比は1:1.5である。反応器出口からの
5%NaOH除害びん中バルブさせることにより、その底部
に油状生成物が得られ、又凝縮しないガスが除害びんか
ら出てきた。30分間のサンプリングにより油状生成物52
gを得た非凝縮ガスは水素がほとんどであり分析できな
かった。ガスクロマトグラフィー分析では油状生成物の
組成は四塩化炭素38%、クロロホルム48%、塩化メチレ
ン12%、塩化メチル2%であった。
Example 3 The reactor used in Example 1 was charged with a catalyst in which 2% by weight of platinum was supported on activated carbon, and this was charged with a mantle heater.
Heated to 0 ° C. Carbon tetrachloride 154 vaporized in this reactor
g (1 mol) hr were fed together with 34 Nl / hr of hydrogen. The molar ratio of carbon tetrachloride to hydrogen is 1: 1.5. By valved in a 5% NaOH abatement bottle from the reactor outlet, an oily product was obtained at the bottom and uncondensed gas came out of the abatement bottle. Oily product 52 after 30 minutes of sampling
The non-condensed gas obtained in g contained almost no hydrogen and could not be analyzed. According to gas chromatography analysis, the composition of the oily product was 38% of carbon tetrachloride, 48% of chloroform, 12% of methylene chloride, and 2% of methyl chloride.

[発明の効果] 本発明は実施例にも示されるように四塩化炭素を有効
にクロロホルム、塩化メチレン、塩化メチルに変換する
ことができる。本発明に従えば、メタンまたは塩素化反
応によって得られる四塩化炭素を部分的に還元すること
ができ、従来の塩素化反応による四塩化炭素の製法と併
用することにより、任意の部分塩素化メタンをメタン又
はメタノールから効率よく製造することが可能である。
[Effects of the Invention] The present invention can effectively convert carbon tetrachloride into chloroform, methylene chloride, and methyl chloride as shown in Examples. According to the present invention, methane or carbon tetrachloride obtained by a chlorination reaction can be partially reduced, and any partially chlorinated methane can be obtained by using it together with a conventional method for producing carbon tetrachloride by a chlorination reaction. Can be efficiently produced from methane or methanol.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄族元素又は白金族元素触媒の存在下に、
四塩化炭素を水素と反応せしめて部分塩素化メタンを得
ることを特徴とする部分塩素化メタンの製造方法。
(1) In the presence of an iron group element or platinum group element catalyst,
A method for producing partially chlorinated methane, comprising reacting carbon tetrachloride with hydrogen to obtain partially chlorinated methane.
【請求項2】鉄族元素又は白金族元素触媒が活性炭、ケ
イソウ土、又はアルミナに担持されている請求項1に記
載の製造方法。
2. The method according to claim 1, wherein the iron group element or platinum group element catalyst is supported on activated carbon, diatomaceous earth or alumina.
【請求項3】反応温度が150℃〜350℃の範囲から選ばれ
る請求項1に記載の製造方法。
3. The method according to claim 1, wherein the reaction temperature is selected from the range of 150 ° C. to 350 ° C.
【請求項4】水素を四塩化炭素の1〜3倍モル使用する
請求項1に記載の製造方法。
4. The production method according to claim 1, wherein hydrogen is used in an amount of 1 to 3 times mol of carbon tetrachloride.
JP1271832A 1989-10-20 1989-10-20 Method for producing partially chlorinated methane Expired - Lifetime JP2737308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1271832A JP2737308B2 (en) 1989-10-20 1989-10-20 Method for producing partially chlorinated methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1271832A JP2737308B2 (en) 1989-10-20 1989-10-20 Method for producing partially chlorinated methane

Publications (2)

Publication Number Publication Date
JPH03133939A JPH03133939A (en) 1991-06-07
JP2737308B2 true JP2737308B2 (en) 1998-04-08

Family

ID=17505484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1271832A Expired - Lifetime JP2737308B2 (en) 1989-10-20 1989-10-20 Method for producing partially chlorinated methane

Country Status (1)

Country Link
JP (1) JP2737308B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334782A (en) * 1991-04-23 1994-08-02 Ag Technology Co., Ltd. Method for producing a hydrogen-containing chloromethane
US7696390B2 (en) * 2008-06-10 2010-04-13 Stauffer John E Methanol synthesis
CN107876046A (en) * 2017-10-27 2018-04-06 江苏理文化工有限公司 A kind of effective catalyst of preparing chloroform by carbon tetrachloride gaseous phase hydrogenation and dechlorination

Also Published As

Publication number Publication date
JPH03133939A (en) 1991-06-07

Similar Documents

Publication Publication Date Title
EP0147219B1 (en) Pd/re hydrogenation catalyst and process for making tetrahydrofuran and 1,4-butanediol
US5118888A (en) Process for the preparation of 1,2-difluoro-ethylene and 1-chloro-1,2-difluoro-ethylene
US7098371B2 (en) Method of hydrodechlorinating nuclear-chlorinated ortho-xylenes
JPS5910331B2 (en) Method for producing chlorinated derivatives of ethylene
AU646092B2 (en) Vapor phase hydrogenation of carbon tetrachloride
JPH01287044A (en) Production of 1, 2-difluoroethane and 1, 1, 2-trifluoroethane
US6291729B1 (en) Halofluorocarbon hydrogenolysis
JP2737308B2 (en) Method for producing partially chlorinated methane
US4334107A (en) Catalytic purification of phenol
JPS6069047A (en) Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
EP0471320B1 (en) Method for producing trifluoroethylene
RU2054407C1 (en) Method for production of 1,1-dichlor-1-fluoroethane
KR101639487B1 (en) Manufacturing apparatus of trans-1,4-cyclohexanedimethanol for simplifying process
IE920875A1 (en) Preparation of pentafluoroethane by hydrogenolysis of¹chloropentafluoroethane
JPH01193246A (en) Production of 2,3-dichloropyridine
JPH0753441A (en) Production of acetic acid, methyl acetate and acetic anhydride by carbonylation of methanol
CA1135693A (en) Process for the preparation of heterocyclic compounds
KR20160056208A (en) Method of direct conversion to trans-1,4-cyclohexanedimethanol
JP4312334B2 (en) Indan manufacturing method
JPH0250886B2 (en)
US4329512A (en) Process for preparing acetaldehyde
JPS6212771B2 (en)
US5300712A (en) Homogeneous catalytic hydrodechlorination of chlorocarbons
JPH02279657A (en) Production of aniline
JP2639576B2 (en) Manufacturing method of dibenzofurans

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

EXPY Cancellation because of completion of term