JPS6125694B2 - - Google Patents

Info

Publication number
JPS6125694B2
JPS6125694B2 JP58075574A JP7557483A JPS6125694B2 JP S6125694 B2 JPS6125694 B2 JP S6125694B2 JP 58075574 A JP58075574 A JP 58075574A JP 7557483 A JP7557483 A JP 7557483A JP S6125694 B2 JPS6125694 B2 JP S6125694B2
Authority
JP
Japan
Prior art keywords
hexafluoroacetone
hydrate
reaction
catalyst
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58075574A
Other languages
Japanese (ja)
Other versions
JPS59204142A (en
Inventor
Kazuma Yokoi
Takao Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP58075574A priority Critical patent/JPS59204142A/en
Publication of JPS59204142A publication Critical patent/JPS59204142A/en
Publication of JPS6125694B2 publication Critical patent/JPS6125694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、ヘキサフルオロイソプロピルアルコ
ールの製造法に関する。更に詳しくは、ヘキサフ
ルオロアセトン水和物を水素ガスにより水素化す
ることからなるヘキサフルオロイソプロピルアル
コールの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hexafluoroisopropyl alcohol. More specifically, the present invention relates to a method for producing hexafluoroisopropyl alcohol, which comprises hydrogenating hexafluoroacetone hydrate with hydrogen gas.

ヘキサフルオロアセトン水和物をニツケル触媒
および/またはパラジウム触媒の存在下に気相状
態で水素ガスにより水素化し、ヘキサフルオロイ
ソプロピルアルコールを製造することは、特開昭
57―81424号公報に記載されている。このヘキサ
フルオロアセトン水和物を原料物質に用いて水素
化する方法は、それ以前に提案されていたヘキサ
フルオロアセトンを原料物質とする方法の不利
益、即ちヘキサフルオロアセトンが常温で気体で
あり(沸点−27℃)、その取扱い、貯蔵、運搬な
どに注意が必要であるばかりではなく、その中に
混在する塩化水素、フツ化水素、クロルペンタフ
ルオロアセトンなどの微量不純物による触媒の劣
化などの工業的に不利な点をいずれも解消させ
る。
The production of hexafluoroisopropyl alcohol by hydrogenating hexafluoroacetone hydrate in the gas phase with hydrogen gas in the presence of a nickel catalyst and/or a palladium catalyst was disclosed in Japanese Patent Application Laid-Open No.
It is described in Publication No. 57-81424. This method of hydrogenation using hexafluoroacetone hydrate as a raw material has the disadvantages of previously proposed methods using hexafluoroacetone as a raw material, namely, hexafluoroacetone is a gas at room temperature ( Boiling point -27℃), not only does it require careful handling, storage, and transportation, but it also poses industrial risks such as deterioration of the catalyst due to trace impurities such as hydrogen chloride, hydrogen fluoride, and chlorpentafluoroacetone. Eliminate all disadvantages.

ヘキサフルオロアセトンの水和物としては、一
水和物、三水和物などが知られているが、これら
はヘキサフルオロアセトンと水との単なる混合物
または水の吸着物ではなく、例えば一水和物の場
合、次式の平衡式に従つて生成し、しかも平衡が
著しく右に片寄つている融点52℃の固体である。
Monohydrates, trihydrates, etc. are known as hydrates of hexafluoroacetone, but these are not mere mixtures of hexafluoroacetone and water or adsorbates of water; In the case of solids, it is a solid with a melting point of 52°C, which is produced according to the following equilibrium equation, and whose equilibrium is significantly shifted to the right.

また、ヘキサフルオロアセトンを等モル量以上
の水に吸収させて蒸留すると、一般式(CF32C
(OH)2×nHzOで表わされる水和物であつてn=
0.2〜0.7前後の主留分液状物(ヘキサフルオロア
セトンの1.2〜1.7水和物)が得られ、それは、安
定に存在するヘキサフルオロアセトン―水和物の
98.1〜93.6%水溶液もしくはヘキサフルオロアセ
トンの88.5〜84.4%水溶液に相当するものと考え
ることができる。
In addition, when hexafluoroacetone is absorbed in an equimolar amount or more of water and distilled, the general formula (CF 3 ) 2 C
(OH) 2 ×nHzO hydrate, where n=
A main distillate liquid (1.2-1.7 hydrate of hexafluoroacetone) with a concentration of around 0.2-0.7 was obtained, which is composed of the stably existing hexafluoroacetone-hydrate.
It can be considered to correspond to a 98.1-93.6% aqueous solution or an 88.5-84.4% aqueous solution of hexafluoroacetone.

これらのヘキサフルオロアセトン水和物は、こ
のように常温では固体または液体であり、従つて
取扱い、貯蔵などの面で便利であり、また水和物
の形ではそれの高純度の精製が容易であるなどの
長所を有している。
These hexafluoroacetone hydrates are solid or liquid at room temperature, so they are convenient in terms of handling and storage, and in the form of hydrates, they can be easily purified to high purity. It has advantages such as:

ところで、かかる長所を有するヘキサフルオロ
アセトン水和物を原料物質として用いた気相状態
での水素ガスによる水素化では、水和物をわざわ
ざ気化させて反応に供しており、比較的低融点の
水和物を用いた意義を半減させている。
By the way, in hydrogenation using hydrogen gas in the gas phase using hexafluoroacetone hydrate, which has such advantages, as a raw material, the hydrate is purposely vaporized before being subjected to the reaction, and water with a relatively low melting point is used. The significance of using Japanese products is halved.

そこで、本発明者らは、それの合成、精製およ
び取扱いなどの容易なヘキサフルオロアセトン水
和物またはその水溶液の液相中での水素ガスによ
る水素化を検討したところ、気相法では有効なニ
ツケル触媒では反応が全く進行せず、またパラジ
ウム―アルミナ触媒では反応は進行するものの、
反応に長時間を要ししかも収率の低下がみられる
のに対し、パラジウム―炭素触媒を用いるとその
1/3程度の反応時間でも好収率でヘキサフルオロ
イソプロピルアルコールが製造され、しかも回収
触媒をくり返して使用し得ることを見出した。こ
れにより、ヘキサフルオロアセトンは、水和物ま
たはその水溶液の形を有効にいかしたままで、ヘ
キサフルオロイソプロピルアルコールの製造が可
能となつた。
Therefore, the present inventors investigated hydrogenation using hydrogen gas in the liquid phase of hexafluoroacetone hydrate or its aqueous solution, which is easy to synthesize, purify, and handle. With a nickel catalyst, the reaction does not proceed at all, and with a palladium-alumina catalyst, although the reaction does proceed,
The reaction takes a long time and the yield decreases, but using a palladium-carbon catalyst
We have found that hexafluoroisopropyl alcohol can be produced in good yield even with a reaction time of about 1/3, and that the recovered catalyst can be used repeatedly. This has made it possible to produce hexafluoroisopropyl alcohol while effectively utilizing hexafluoroacetone in its hydrate or aqueous solution form.

水素ガスによる水素化反応は、オートクレーブ
などの耐圧装置を用い、一般に水素ガス圧が約1
〜20Kg/cm2、好ましくは経済的な見地から約3.5〜
7Kg/cm2の圧力および約60〜100℃、好ましくは約
70〜85℃の温度条件で、一般の水素化反応に用い
られるパラジウム―炭素触媒を用いて行われる。
The hydrogenation reaction using hydrogen gas uses a pressure-resistant device such as an autoclave, and generally the hydrogen gas pressure is approximately 1.
~20Kg/cm 2 , preferably about 3.5~ from an economical point of view
7Kg/ cm2 pressure and about 60-100℃, preferably about
It is carried out at a temperature of 70 to 85°C using a palladium-carbon catalyst used in general hydrogenation reactions.

用いられた触媒は、その触媒活性を失わない限
り、くり返して使用することができ、即ちオート
クレーブなどの耐圧装置内にフイルターを設置
し、水素化反応後はフイルターによつて触媒と生
成物とをロ別し、ロ過されなかつた触媒はそのま
ま反応容器内に残り、そこに新たな原料物質を供
給するだけで再度水素化反応を行なうことができ
る。一方、ロ過された生成物は、蒸留により容易
に高純化される。
The used catalyst can be used repeatedly as long as it does not lose its catalytic activity. In other words, a filter is installed in a pressure-resistant device such as an autoclave, and after the hydrogenation reaction, the catalyst and products are separated by the filter. The catalyst that has not been filtered remains in the reaction vessel, and the hydrogenation reaction can be carried out again simply by supplying new raw materials therein. On the other hand, the filtered product is easily purified to a high degree by distillation.

本発明に係る液相法は、従来の気相法と比較し
て、沸点104〜105℃のヘキサフルオロアセトン水
和物を気化させる必要がないばかりではなく、比
較的低温で反応を行なうことができ、即ち気相法
では上記沸点以上の約120〜130℃で反応が行われ
るのに対し、液相法では好ましくは約70〜85℃で
反応させることができる。更に、気相法では水和
物に対して約3〜5倍モル程度の水素ガスを必要
としているのに対し、液相法ではほぼ等モル量で
も十分に水素化反応が行われる。
Compared to the conventional gas phase method, the liquid phase method according to the present invention not only does not require the vaporization of hexafluoroacetone hydrate, which has a boiling point of 104 to 105°C, but also allows the reaction to be carried out at a relatively low temperature. That is, in the gas phase method, the reaction is carried out at a temperature of about 120 to 130°C, which is higher than the above boiling point, whereas in the liquid phase method, the reaction can preferably be carried out at about 70 to 85°C. Furthermore, while the gas phase method requires about 3 to 5 times the molar amount of hydrogen gas relative to the hydrate, the liquid phase method can sufficiently carry out the hydrogenation reaction even with approximately equimolar amounts.

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例 ヘキサフルオロアセトンを約70重量%含有する
水和物5.0Kgを容量10のオートクレーブに仕込
み、5%パラジウム―炭素触媒200gをそこに加
えた後、水素ガスで約3.5〜7Kg/cm2に加圧し、70
〜75℃の温度で3.5時間反応させた。反応終了
後、触媒からロ別された生成物水溶液を蒸留する
と、沸点58〜59℃のヘキサフルオロイソプロピル
アルコール(ガスクロマトグラフによる純度99.9
%以上)が2.90Kg(収率82.8%)得られた。
Example: 5.0 kg of hydrate containing about 70% by weight of hexafluoroacetone was charged into an autoclave with a capacity of 10, 200 g of 5% palladium-carbon catalyst was added thereto, and the mixture was heated to about 3.5 to 7 kg/cm 2 with hydrogen gas. Pressurize, 70
The reaction was carried out for 3.5 hours at a temperature of ~75°C. After the reaction is complete, the aqueous product solution filtered from the catalyst is distilled to yield hexafluoroisopropyl alcohol with a boiling point of 58-59°C (purity 99.9 as determined by gas chromatography).
% or more) was obtained in an amount of 2.90 kg (yield: 82.8%).

回収されたパラジウム―炭素触媒を用い、同様
に上記水和物5.05Kgの水素化および蒸留を行なつ
てところ、沸点58〜59℃のヘキサフルオロイソプ
ロピルアルコール(純度99.9%以上)が3.37Kg
(収率96%)得られた。
When 5.05 kg of the above hydrate was similarly hydrogenated and distilled using the recovered palladium-carbon catalyst, 3.37 kg of hexafluoroisopropyl alcohol (purity of 99.9% or higher) with a boiling point of 58-59°C was obtained.
(yield 96%).

比較例 実施例において5%パラジウム―炭素触媒200
gの代りに0.5%パラジウム―アルミナ触媒2.00
Kgを用い、反応時間3.5時間を10時間に延長し
た。その結果、沸点58〜59℃のヘキサフルオロイ
ソプロピルアルコール(純度99.9%以上)が2.55
Kg(収率72.0%)得られた。
Comparative Example In the example, 5% palladium-carbon catalyst 200
0.5% palladium-alumina catalyst instead of g 2.00
Kg was used to extend the reaction time from 3.5 hours to 10 hours. As a result, hexafluoroisopropyl alcohol (purity of 99.9% or more) with a boiling point of 58-59℃
Kg (yield 72.0%) was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1.ヘキサフルオロアセトン水和物またはその水
溶液を、液相中でパラジウム―炭素触媒の存在下
で水素ガスにより水素化することを特徴とするヘ
キサフルオロイソプロピルアルコールの製造法。
1. A method for producing hexafluoroisopropyl alcohol, which comprises hydrogenating hexafluoroacetone hydrate or an aqueous solution thereof with hydrogen gas in the presence of a palladium-carbon catalyst in a liquid phase.
JP58075574A 1983-04-28 1983-04-28 Production of hexafluoroisopropyl alcohol Granted JPS59204142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075574A JPS59204142A (en) 1983-04-28 1983-04-28 Production of hexafluoroisopropyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075574A JPS59204142A (en) 1983-04-28 1983-04-28 Production of hexafluoroisopropyl alcohol

Publications (2)

Publication Number Publication Date
JPS59204142A JPS59204142A (en) 1984-11-19
JPS6125694B2 true JPS6125694B2 (en) 1986-06-17

Family

ID=13580092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075574A Granted JPS59204142A (en) 1983-04-28 1983-04-28 Production of hexafluoroisopropyl alcohol

Country Status (1)

Country Link
JP (1) JPS59204142A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142110A1 (en) 2006-06-05 2007-12-13 Daikin Industries, Ltd. Novel carboxylic acid compound, use thereof, and process for producing the same
WO2008004466A1 (en) 2006-07-06 2008-01-10 Daikin Industries, Ltd. NOVEL α-FLUOROMETHOXYCARBOXYLIC ESTER, PROCESS FOR PRODUCING THE α-FLUOROMETHOXYCARBOXYLIC ESTER, AND PROCESS FOR PRODUCING SEVOFLURANE
WO2009063783A1 (en) 2007-11-13 2009-05-22 Daikin Industries, Ltd. Novel carboxylic acid ester, use of the same, and method for producing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069047A (en) * 1983-09-27 1985-04-19 Central Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
FR2567875B1 (en) * 1984-07-18 1986-08-08 Atochem PROCESS FOR THE SYNTHESIS OF TRIFLUORO-2,2,2 ETHANOL AND ALCOHOL HEXAFLUORO-1,1,1,3,3,3 ISOPROPYLIC
JPH01301631A (en) * 1988-05-31 1989-12-05 Central Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
ATE345321T1 (en) 2001-07-19 2006-12-15 Daikin Ind Ltd METHOD FOR PRODUCING HEXAFLUOROCACETONE AND ITS HYDRATE
JP5028731B2 (en) * 2001-09-18 2012-09-19 旭硝子株式会社 Method for producing halogenated alcohol
US7524995B1 (en) 2008-06-12 2009-04-28 E.I. Du Pont De Nemours And Company Continuous process to produce hexafluoroisopropanol
JP5434236B2 (en) 2009-04-28 2014-03-05 セントラル硝子株式会社 Method for producing fluoromethylhexafluoroisopropyl ether
JP5585291B2 (en) * 2010-08-12 2014-09-10 セントラル硝子株式会社 Method for producing hexafluoroacetone monohydrate
JP6237862B1 (en) 2016-11-16 2017-11-29 セントラル硝子株式会社 Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether (sevoflurane)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607952A (en) * 1969-03-28 1971-09-21 Du Pont Process for preparation of hexafluoroisopropanol
JPS5781424A (en) * 1980-11-11 1982-05-21 Central Glass Co Ltd Preparation of 1,1,1,3,3,3-hexafluoropropane-2-ol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607952A (en) * 1969-03-28 1971-09-21 Du Pont Process for preparation of hexafluoroisopropanol
JPS5781424A (en) * 1980-11-11 1982-05-21 Central Glass Co Ltd Preparation of 1,1,1,3,3,3-hexafluoropropane-2-ol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142110A1 (en) 2006-06-05 2007-12-13 Daikin Industries, Ltd. Novel carboxylic acid compound, use thereof, and process for producing the same
EP2479161A1 (en) 2006-06-05 2012-07-25 Daikin Industries, Ltd. A novel process for producing 1,1,1,3,3,3-hexafluoro-2-methoxypropane
WO2008004466A1 (en) 2006-07-06 2008-01-10 Daikin Industries, Ltd. NOVEL α-FLUOROMETHOXYCARBOXYLIC ESTER, PROCESS FOR PRODUCING THE α-FLUOROMETHOXYCARBOXYLIC ESTER, AND PROCESS FOR PRODUCING SEVOFLURANE
WO2009063783A1 (en) 2007-11-13 2009-05-22 Daikin Industries, Ltd. Novel carboxylic acid ester, use of the same, and method for producing the same

Also Published As

Publication number Publication date
JPS59204142A (en) 1984-11-19

Similar Documents

Publication Publication Date Title
JPS6125694B2 (en)
JPS638929B2 (en)
US5523501A (en) Catalytic hydrogenolysis
JP2523753B2 (en) Method for producing 2,3-dichloropyridine
JPS6069047A (en) Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
JPH0441495A (en) Production of cyclopentyltrichlorosilane
US4164616A (en) Production of dihydroxy alkane
JP4312334B2 (en) Indan manufacturing method
JPH0710808A (en) Preparation of methyl ester of chlorine-free cyclo- propanecarboxylic acid
JP2811065B2 (en) Method for producing benzylamine
US3364261A (en) Preparation of cyclohexylamine from phenol
JP4288451B2 (en) Process for producing 1,1,1,3,3,3-hexafluoropropan-2-ol
JPS63303937A (en) Manufacture of propynol
JP3904854B2 (en) Method for producing fluorine-containing alicyclic dicarboxylic acid compound
JPH11335309A (en) Production of fluorinated unsaturated hydrocarbon
JP3682805B2 (en) Method for producing saturated aliphatic carboxylic acid amide
WO2018139654A1 (en) Method for producing 1,1,2,2-tetrafluoropropane
JP2738042B2 (en) Method for producing 3,3-dichloro-1,1,1,2,2-pentafluoropropane
EP0149905A2 (en) Method for the preparation of 2,2,2-trifluoroethanol
CA1256452A (en) Process for preparing aminobenzylamine
JP3937186B2 (en) Method for purifying cyclopropanecarbaldehyde
JPH0749385B2 (en) Method for producing 3,3,5-trimethylcyclohexanone
JPH075490B2 (en) Process for producing 1,1,1,3,3,3-hexafluoropropan-2-d-2-ol-d
JPH02121946A (en) Continuous production of succinic acid
JPS6094968A (en) Production of decahydroisoquinoline