JPS6260376B2 - - Google Patents

Info

Publication number
JPS6260376B2
JPS6260376B2 JP56034269A JP3426981A JPS6260376B2 JP S6260376 B2 JPS6260376 B2 JP S6260376B2 JP 56034269 A JP56034269 A JP 56034269A JP 3426981 A JP3426981 A JP 3426981A JP S6260376 B2 JPS6260376 B2 JP S6260376B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
acetaldehyde
acetic acid
acetic anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56034269A
Other languages
Japanese (ja)
Other versions
JPS57146731A (en
Inventor
Seishiro Nakamura
Masuhiko Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP56034269A priority Critical patent/JPS57146731A/en
Priority to CA000376493A priority patent/CA1226585A/en
Priority to US06/261,805 priority patent/US4351964A/en
Priority to DE8181103751T priority patent/DE3160416D1/en
Priority to EP81103751A priority patent/EP0040414B1/en
Publication of JPS57146731A publication Critical patent/JPS57146731A/en
Publication of JPS6260376B2 publication Critical patent/JPS6260376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は無水酢酸と水素とを反応させることに
よりアセトアルデヒドを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing acetaldehyde by reacting acetic anhydride with hydrogen.

アセトアルデヒドの主たる製造方法は、工業的
にはエチレンを原料とするものであるが、原料事
情の変化により最近エチレンを用いない方法にも
関心が向けられている。その一つに無水酢酸を原
料とし、これを水素化する方法がある。従来提案
されているのは、たとえば(i)酸化白金触媒または
硫酸バリウムに担持された金属パラジウム触媒を
用いて常温、常圧下に液相で無水酢酸と水素とを
反応させる方法(Chem.Ber.、95、1844
(1962))、(ii)コバルトカルボニル触媒を用いて無
水酢酸および合成ガスからアセトアルデヒドを生
成させる方法(特公昭48−19285号)、(iii)塩化ロジ
ウム触媒を用いこれにトリフエニルホスフインを
共存させて100〜200℃の温度で液相加圧下に無水
酢酸を水素化することによりアセトアルデヒドを
生成させる方法(米国特許第3579566号)などで
ある。しかしながら、無水酢酸を原料とするこれ
らの方法は、アセトアルデヒドの収率ならびに選
択率が極めて低いので工業的に有利な方法とは言
い難い。本発明者らはかかる観点から無水酢酸と
水素とを反応させることによりアセトアルデヒド
を合成する改善された方法について検討した結
果、反応を担体に担持された金属パラジウム触
媒、金属白金触媒または金属ロジウム触媒(以
下、これらを担持パラジウム触媒、担持白金触媒
または担持ロジウム触媒と記す)の存在下気相で
行なうことによりアセトアルデヒドの収率ならび
に選択率が著しく向上することを見出した(特開
昭56−161336号および特開昭56−164126号)。そ
の後さらに検討を続けたところ、このたび反応供
給ガス中に無水酢酸に対して3モル%以上の酢酸
を同伴(含有)させることにより、アセトアルデ
ヒドの収率および選択率の低下を伴うことなく、
触媒の活性寿命を長期に亘つて安定に維持しうる
ことを見出し、本発明に至つた。本発明の方法に
おいてはアセトアルデヒドのほかに酢酸が生成
し、その生成量は用いる反応温度、圧力等の反応
条件によつて若干変化するが、通常アセトアルデ
ヒドに対し等モル近辺の量である。
Industrially, the main method for producing acetaldehyde is to use ethylene as a raw material, but due to changes in the raw material situation, there has recently been interest in methods that do not use ethylene. One of these methods is to use acetic anhydride as a raw material and hydrogenate it. Conventionally proposed methods include (i) a method in which acetic anhydride and hydrogen are reacted in a liquid phase at room temperature and pressure using a platinum oxide catalyst or a metal palladium catalyst supported on barium sulfate (Chem.Ber. , 95 , 1844
(1962)), (ii) A method for producing acetaldehyde from acetic anhydride and synthesis gas using a cobalt carbonyl catalyst (Japanese Patent Publication No. 19285-1985), (iii) Coexistence of triphenylphosphine using a rhodium chloride catalyst. For example, acetaldehyde is produced by hydrogenating acetic anhydride under liquid phase pressure at a temperature of 100 to 200°C (US Pat. No. 3,579,566). However, these methods using acetic anhydride as a raw material have extremely low yields and selectivities of acetaldehyde, and therefore cannot be said to be industrially advantageous. From this viewpoint, the present inventors investigated an improved method for synthesizing acetaldehyde by reacting acetic anhydride with hydrogen. As a result, the present inventors found that the reaction can be carried out using a metal palladium catalyst, a metal platinum catalyst, or a metal rhodium catalyst supported on a carrier. We have found that the yield and selectivity of acetaldehyde can be significantly improved by carrying out these processes in the gas phase in the presence of a supported palladium catalyst, supported platinum catalyst, or supported rhodium catalyst (hereinafter referred to as supported palladium catalyst, supported platinum catalyst, or supported rhodium catalyst) (Japanese Patent Application Laid-open No. 161336/1983). and Japanese Patent Publication No. 56-164126). After further investigation, we found that by entraining (containing) 3 mol% or more of acetic acid relative to acetic anhydride in the reaction supply gas, we could achieve this without reducing the yield and selectivity of acetaldehyde.
The inventors have discovered that the active life of the catalyst can be stably maintained over a long period of time, leading to the present invention. In the method of the present invention, acetic acid is produced in addition to acetaldehyde, and the amount of acetic acid produced varies slightly depending on the reaction conditions used, such as the reaction temperature and pressure, but is usually in an amount close to equimolar to acetaldehyde.

本発明方法において、反応供給ガスに同伴(含
有)させる酢酸の量は前述のように無水酢酸に対
して3モル%以上であり、好ましくは10%以上
100%以下である。反応供給ガス中に同伴させる
酢酸の量が無水酢酸に対して3モル%未満では酢
酸を同伴させたことによる効果が実質的に発現し
ない。酢酸の含有量について厳密な意味での上限
は存在しないが、酢酸の含有量を不必要に多くす
ると反応速度が低下するので、通常、無水酢酸に
対して2倍モルまでにとどめるのがよい。酢酸を
反応供給ガスに同伴させる方法としては、酢酸と
無水酢酸を別々に蒸発器で気化させたのち混合す
る方法、あるいは酢酸を混合した無水酢酸を蒸発
器で気化させる方法などがある。
In the method of the present invention, the amount of acetic acid entrained (contained) in the reaction supply gas is 3 mol% or more, preferably 10% or more based on acetic anhydride, as described above.
Less than 100%. If the amount of acetic acid entrained in the reaction supply gas is less than 3 mol % based on acetic anhydride, the effect of acetic acid entrained will not be substantially exhibited. Although there is no strict upper limit on the content of acetic acid, if the content of acetic acid is increased unnecessarily, the reaction rate will be reduced, so it is usually best to limit the content to two times the molar amount relative to acetic anhydride. Methods for bringing acetic acid into the reaction supply gas include a method in which acetic acid and acetic anhydride are vaporized separately in an evaporator and then mixed, or a method in which acetic anhydride mixed with acetic acid is vaporized in an evaporator.

本発明の方法においては、前述のように、担持
パラジウム、担持白金触媒または担持ロジウム触
媒を使用する。該担持触媒に使用可能な担体とし
てはたとえばアルミナ、シリカ、シリカアルミ
ナ、チタニア、ジルコニア、活性炭などをあげる
ことができる。担体に対する金属パラジウム、金
属白金または金属ロジウムの濃度は臨界的ではな
いが、一般に0.1〜5重量%、好ましくは0.5〜2
重量%である。触媒の調製は公知の方法により行
なうことができる。たとえば、「反応別実用触
媒」(化学工業社刊、昭和45年12月25日発行)第
134−137頁に記載されている方法に従つてパラジ
ウム塩、白金塩またはロジウム塩の水溶液を担体
に含浸させたのち乾燥し、次いで担体上の金属塩
を還元することにより目的とする触媒を得ること
ができる。
In the process of the present invention, supported palladium, supported platinum catalysts or supported rhodium catalysts are used, as described above. Examples of carriers that can be used in the supported catalyst include alumina, silica, silica-alumina, titania, zirconia, and activated carbon. The concentration of metallic palladium, metallic platinum or metallic rhodium relative to the support is not critical, but is generally between 0.1 and 5% by weight, preferably between 0.5 and 2%.
Weight%. The catalyst can be prepared by known methods. For example, "Practical Catalysts by Reaction" (published by Kagaku Kogyosha, December 25, 1970), Vol.
The desired catalyst is obtained by impregnating a carrier with an aqueous solution of palladium salt, platinum salt, or rhodium salt according to the method described on pages 134-137, drying it, and then reducing the metal salt on the carrier. be able to.

本発明に従う反応は前記触媒に無水酢酸、水
素、酢酸および所望により窒素ガス、メタンガ
ス、エタンガスなどの反応に不活性な希釈ガスを
含む混合ガスを接触させることにより行なわれ
る。混合ガスに含まれる無水酢酸の割合は任意で
よいが、一般的にはモル濃度で約50%以下、好ま
しくは5〜40%である。無水酢酸/水素のモル比
を約1/20〜約5/1とするのが一般に好まし
い。
The reaction according to the present invention is carried out by contacting the catalyst with a mixed gas containing acetic anhydride, hydrogen, acetic acid, and optionally a diluent gas inert to the reaction, such as nitrogen gas, methane gas, or ethane gas. The proportion of acetic anhydride contained in the mixed gas may be arbitrary, but is generally about 50% or less in molar concentration, preferably 5 to 40%. It is generally preferred to have an acetic anhydride/hydrogen molar ratio of about 1/20 to about 5/1.

本発明に従う反応を実施するにあたり、反応温
度は約50〜300℃、とくに100〜200℃が好まし
い。反応温度が約300℃を越えるとメタン、一酸
化炭素、アセトン等の副生が顕著になる傾向がみ
られる。反応圧力は一般的には常圧から約20気圧
までの範囲内であるのが望ましい。反応圧力がこ
の範囲から外れていても反応を行うことはできる
が、それにより特別の利益がもたらされることは
ない。
In carrying out the reaction according to the invention, the reaction temperature is preferably about 50 to 300°C, particularly 100 to 200°C. When the reaction temperature exceeds about 300°C, there is a tendency for by-products such as methane, carbon monoxide, and acetone to become noticeable. It is generally desirable that the reaction pressure be within the range of normal pressure to about 20 atmospheres. Although the reaction can be carried out at reaction pressures outside this range, it does not provide any particular benefit.

本発明の方法を実施するにあたり固定触媒床お
よび流動触媒床のいずれの反応形式を採用するこ
ともできるが、固定触媒床で反応を行なうと触媒
が反応中に摩耗して損失することがないので有利
である。この固定触媒床による反応は通常、粒径
が約3〜6mmの球状または円柱状成形担体に担持
された触媒を用い、前記混合ガスを空間速度(S.
V.)約100〜10000(全ガス/触媒・hr)、好
ましくは300〜5000(全ガス/触媒・hr)で
触媒上に通過させることにより実施することがで
きる。
In carrying out the method of the present invention, either a fixed catalyst bed or a fluidized catalyst bed can be used; however, if the reaction is carried out in a fixed catalyst bed, the catalyst will not be lost due to wear during the reaction. It's advantageous. This reaction using a fixed catalyst bed usually uses a catalyst supported on a spherical or cylindrical shaped support with a particle size of about 3 to 6 mm, and the mixed gas is moved at a space velocity (S.
V.) Can be carried out by passing over the catalyst at about 100 to 10000 (total gas/catalyst.hr), preferably 300 to 5000 (total gas/catalyst.hr).

以下、実施例によつて本発明を詳細に説明す
る。実施例中の部は重量部である。なお酢酸を除
く各生成物の選択率は次式にしたがつて算出し
た。
Hereinafter, the present invention will be explained in detail with reference to Examples. Parts in the examples are parts by weight. Note that the selectivity of each product except acetic acid was calculated according to the following formula.

特定生成物の選択率(%) =単位時間当りに生成した特定生成物のモル数/A+
B×2+C+D+E×2+F ×100 ただし、 A:単位時間当りに生成したアセトアルデヒドの
モル数 B:単位時間当りに生成したエチリデンジアセテ
ートのモル数 C:単位時間当りに生成した酢酸エチルのモル数 D: 〃 エタノールのモル数 E: 〃 アセトンのモル数 F: 〃 メタンのモル数 実施例 1 粒径4〜6mmのアルミナ(水沢化学製、商品名
「ネオビードC」)を1200℃で3時間焼成し、表面
積9m2/gおよび細孔容積0.21c.c./gのアルミナ
を得た。得られたアルミナ50部を、50部の水に塩
化パラジウムナトリウム0.80部を溶解した溶液に
加え、蒸気浴上で蒸発乾固した。次いでアルミナ
上のパラジウム塩をヒドラジンヒドレートで還元
し、充分水洗したのち乾燥した。このようにして
得られた触媒10g(約8c.c.)を内径10mmの硬質ガ
ラス製反応管に充填し、この反応管に無水酢酸、
酢酸および水素からなる混合ガス(無水酢酸:酢
酸:水素=30:8:62(モル比))を毎時12の
速度で導入することにより反応温度180℃常圧で
反応させた。反応開始より2時間後の反応生成物
を分析した結果、アセトアルデヒドが148g/触
媒・hrの生成速度で生成し、アセトアルデヒド
に対し約1.15倍モルの酢酸が生成していた。また
アセトアルデヒドの選択率は90%であり、その他
の生成物としてエチリデンジアセテート2.6%、
酢酸エチル3.2%、メタンおよび一酸化炭素4.0
%、アセトンとエタノールが微量生成していた。
反応条件を一定にして30日反応させた後生成物を
分析した結果、アセトアルデヒドの生成速度は
135g/触媒・hrであり、また各生成物の選択
率は反応開始より2時間後の場合とほぼ同様であ
つた。
Selectivity of specific product (%) = Number of moles of specific product produced per unit time/A+
B×2+C+D+E×2+F×100 However, A: Number of moles of acetaldehyde produced per unit time B: Number of moles of ethylidene diacetate produced per unit time C: Number of moles of ethyl acetate produced per unit time D: 〃 Number of moles of ethanol E: 〃 Number of moles of acetone F: 〃 Number of moles of methane Example 1 Alumina with a particle size of 4 to 6 mm (manufactured by Mizusawa Chemical, trade name “Neobead C”) was calcined at 1200°C for 3 hours, Alumina was obtained with a surface area of 9 m 2 /g and a pore volume of 0.21 cc/g. 50 parts of the obtained alumina were added to a solution of 0.80 parts of sodium palladium chloride in 50 parts of water, and the mixture was evaporated to dryness on a steam bath. Next, the palladium salt on the alumina was reduced with hydrazine hydrate, thoroughly washed with water, and then dried. 10 g (approximately 8 c.c.) of the catalyst thus obtained was packed into a hard glass reaction tube with an inner diameter of 10 mm, and acetic anhydride,
A mixed gas consisting of acetic acid and hydrogen (acetic anhydride: acetic acid: hydrogen = 30:8:62 (molar ratio)) was introduced at a rate of 12 per hour to carry out the reaction at a reaction temperature of 180°C and normal pressure. Analysis of the reaction product 2 hours after the start of the reaction revealed that acetaldehyde was produced at a production rate of 148 g/catalyst/hr, and about 1.15 times the mole of acetic acid was produced relative to acetaldehyde. In addition, the selectivity of acetaldehyde is 90%, and other products include ethylidene diacetate, 2.6%,
Ethyl acetate 3.2%, methane and carbon monoxide 4.0
%, trace amounts of acetone and ethanol were produced.
After 30 days of reaction under constant reaction conditions, we analyzed the product and found that the rate of acetaldehyde production was
It was 135 g/catalyst/hr, and the selectivity of each product was almost the same as in the case 2 hours after the start of the reaction.

比較例 1 実施例1で用いた触媒と同様の触媒および装置
を用い、反応管に導入する混合ガスのガス組成を
無水酢酸:水素=30:70(モル比)とする以外は
実施例1と同じ反応条件で反応させた。その結果
反応開始より2時間後のアセトアルデヒドの生成
速度は142g/触媒・hrであつたが、30日後の
それは52g/触媒・hrに低下した。アセトアル
デヒドおよびその他の生成物の選択率は反応開始
より2時間および30日後ともに実施例1の場合と
ほぼ同様の値であつた。
Comparative Example 1 The same catalyst and equipment as those used in Example 1 were used, and the same procedure as Example 1 was used except that the gas composition of the mixed gas introduced into the reaction tube was acetic anhydride:hydrogen = 30:70 (molar ratio). The reaction was carried out under the same reaction conditions. As a result, the production rate of acetaldehyde 2 hours after the start of the reaction was 142 g/catalyst/hr, but after 30 days it had decreased to 52 g/catalyst/hr. The selectivity of acetaldehyde and other products was approximately the same as in Example 1 both at 2 hours and 30 days after the start of the reaction.

実施例 2 実施例1で用いた触媒と同様の触媒および装置
を用い、反応管に導入する混合ガスのガス組成を
無水酢酸:酢酸:水素=30:25:45(モル比)と
する以外は実施例1と同じ反応条件で反応させ
た。その結果反応開始より2時間後のアセトアル
デヒドの生成速度は91g/触媒・hrであり、そ
の選択率は92%であつた。酢酸はアセトアルデヒ
ドに対して約1.1倍モル生成していた。アセトア
ルデヒドと酢酸を除く他の生成物の選択率はエチ
リデンジアセテート1.8%、酢酸エチル2.8%、メ
タンおよび一酸化炭素3.0%であり、このほかに
アセトンとエタノールが微量生成していた。反応
開始より40日後のアセトアルデヒドの生成速度お
よび選択率は反応開始より2時間後のそれとほぼ
同じであつた。
Example 2 A catalyst and equipment similar to those used in Example 1 were used, except that the gas composition of the mixed gas introduced into the reaction tube was acetic anhydride:acetic acid:hydrogen = 30:25:45 (molar ratio). The reaction was carried out under the same reaction conditions as in Example 1. As a result, the production rate of acetaldehyde 2 hours after the start of the reaction was 91 g/catalyst/hr, and the selectivity was 92%. The amount of acetic acid produced was about 1.1 times that of acetaldehyde. The selectivity for other products other than acetaldehyde and acetic acid was 1.8% ethylidene diacetate, 2.8% ethyl acetate, 3.0% methane and carbon monoxide, and trace amounts of acetone and ethanol were also produced. The production rate and selectivity of acetaldehyde 40 days after the start of the reaction were almost the same as those 2 hours after the start of the reaction.

実施例 3 実施例1で用いたアルミナと同様のアルミナを
1000℃で3時間焼成し、表面積90m2/gおよび細
孔容積0.38c.c./gのアルミナを得た。得られたア
ルミナ35部を、50部の水に塩化パラジウムナトリ
ウム0.97部を溶解した溶液に加え、実施例1と同
様にして触媒を調製した。このようにして得られ
た触媒10g(約10c.c.)を実施例1において用いた
反応管と同じ反応管に無水酢酸、酢酸および水素
からなる混合ガス(無水酢酸:酢酸:水素=20:
6:77(モル比))を毎時15の速度で導入する
ことにより反応温度165℃常圧で反応させた。反
応開始より2時間後の反応生成物を分析した結
果、アセトアルデヒドが70g/触媒・hrの生成
速度で生成し、アセトアルデヒドに対し約1.1倍
モルの酢酸が生成していた。またアセトアルデヒ
ドの選択率は90%であり、その他の生成物として
エチリデンジアセテート2.0%、酢酸エチル2.5
%、メタンおよび一酸化炭素3.5%、アセトンと
エタノールが微量生成していた。反応条件を一定
にして30日反応させた微生成物を分析した結果、
アセトアルデヒドの生成速度は68g/触媒・hr
であり、また各生成物の選択率は反応開始より2
時間後の場合とほぼ同様であつた。
Example 3 Alumina similar to the alumina used in Example 1 was
It was calcined at 1000° C. for 3 hours to obtain alumina with a surface area of 90 m 2 /g and a pore volume of 0.38 cc/g. A catalyst was prepared in the same manner as in Example 1 by adding 35 parts of the obtained alumina to a solution of 0.97 parts of sodium palladium chloride in 50 parts of water. 10 g (approximately 10 c.c.) of the thus obtained catalyst was placed in the same reaction tube as that used in Example 1 with a mixed gas consisting of acetic anhydride, acetic acid, and hydrogen (acetic anhydride: acetic acid: hydrogen = 20:
6:77 (molar ratio)) was introduced at a rate of 15 per hour to carry out the reaction at a reaction temperature of 165° C. and normal pressure. Analysis of the reaction product 2 hours after the start of the reaction revealed that acetaldehyde was produced at a production rate of 70 g/catalyst/hr, and about 1.1 times the mole of acetic acid was produced relative to acetaldehyde. In addition, the selectivity of acetaldehyde is 90%, and other products include ethylidene diacetate 2.0% and ethyl acetate 2.5%.
%, methane and carbon monoxide 3.5%, and trace amounts of acetone and ethanol. As a result of analyzing the microproducts after 30 days of reaction under constant reaction conditions,
The production rate of acetaldehyde is 68g/catalyst/hr
, and the selectivity of each product is 2 from the start of the reaction.
It was almost the same as the case after hours.

比較例 2 実施例3で用いた触媒と同様の触媒および装置
を用い、反応管に導入する混合ガスのガス組成を
無水酢酸:水素=20:80(モル比)とする以外は
実施例3と同じ反応条件で反応させた。その結果
反応開始より2時間後のアセトアルデヒドの生成
速度は69g/触媒・hrであつたが、30日後のそ
れは28g/触媒・hrに低下した。アセトアルデ
ヒドおよびその他の生成物の選択率は反応開始よ
り2時間後および30日後ともに実施例3の場合と
ほぼ同様の値であつた。
Comparative Example 2 The same catalyst and equipment as those used in Example 3 were used, and the same as Example 3 except that the gas composition of the mixed gas introduced into the reaction tube was acetic anhydride:hydrogen = 20:80 (molar ratio). The reaction was carried out under the same reaction conditions. As a result, the production rate of acetaldehyde 2 hours after the start of the reaction was 69 g/catalyst/hr, but after 30 days it had decreased to 28 g/catalyst/hr. The selectivity of acetaldehyde and other products was approximately the same as in Example 3 both 2 hours and 30 days after the start of the reaction.

実施例 4 直径3mm、高さ3〜5mmの円柱状のシリカ(日
揮化学製、商品名「N608」)に対してパラジウム
の担持量が0.7重量%となるように塩化パラジウ
ムナトリウムの水溶液を該シリカに含浸させ、
100℃で乾燥させたのち、実施例1と同様にして
触媒を調製した。このようにして得られた触媒10
c.c.を実施例1において用いた反応管と同じ反応管
に充填し、この反応管に無水酢酸、酢酸および水
素からなる混合ガス(無水酢酸:酢酸:水素=
35:5:60(モル比))を毎時15の速度で導入
することにより反応温度170℃常圧で反応させ
た。反応開始より2時間後の反応生成物を分析し
た結果、アセトアルデヒドが62g/触媒・hrの
生成速度で生成し、アセトアルデヒドに対し約
1.05倍モルの酢酸が生成していた。またアセトア
ルデヒドの選択率は92%であり、その他の生成物
としてエチリデンジアセテート1.2%、酢酸エチ
ル1.8%、メタンおよび一酸化炭素4.0%、アセト
ンとエタノールが微量生成していた。反応条件を
一定にして20日反応させた後生成物を分析した結
果、アセトアルデヒドの生成速度は59g/触媒
・hrであり、また各生成物の選択率は反応開始
より2時間後の場合とほぼ同様であつた。
Example 4 An aqueous solution of sodium palladium chloride was added to cylindrical silica (manufactured by JGC Chemical, trade name "N608") with a diameter of 3 mm and a height of 3 to 5 mm so that the supported amount of palladium was 0.7% by weight. impregnated with
After drying at 100°C, a catalyst was prepared in the same manner as in Example 1. Catalyst 10 thus obtained
cc was charged into the same reaction tube as used in Example 1, and a mixed gas consisting of acetic anhydride, acetic acid, and hydrogen (acetic anhydride:acetic acid:hydrogen=
35:5:60 (molar ratio)) was introduced at a rate of 15 per hour to carry out the reaction at a reaction temperature of 170° C. and normal pressure. As a result of analyzing the reaction product 2 hours after the start of the reaction, acetaldehyde was produced at a production rate of 62 g/catalyst/hr, which was approximately
1.05 times the mole of acetic acid was produced. The selectivity for acetaldehyde was 92%, and other products were 1.2% ethylidene diacetate, 1.8% ethyl acetate, 4.0% methane and carbon monoxide, and trace amounts of acetone and ethanol. As a result of analyzing the products after 20 days of reaction under constant reaction conditions, the production rate of acetaldehyde was 59 g/catalyst/hr, and the selectivity of each product was almost the same as that after 2 hours from the start of the reaction. It was the same.

比較例 3 実施例4で用いた触媒と同様の触媒および装置
を用い、反応管に導入する混合ガスのガス組成を
無水酢酸:水素=35:65(モル比)とする以外は
実施例4と同じ反応条件で反応させた。その結果
反応開始より2時間後のアセトアルデヒドの生成
速度は60g/触媒・hrであつたが、20日後のそ
れは22g/触媒・hrに低下した。アセトアルデ
ヒドおよびその他の生成物の選択率は反応開始よ
り2時間後および20日後ともに実施例4の場合と
ほぼ同様の値であつた。
Comparative Example 3 The same catalyst and equipment as those used in Example 4 were used, and the same as Example 4 except that the gas composition of the mixed gas introduced into the reaction tube was acetic anhydride:hydrogen = 35:65 (molar ratio). The reaction was carried out under the same reaction conditions. As a result, the production rate of acetaldehyde 2 hours after the start of the reaction was 60 g/catalyst/hr, but after 20 days it had decreased to 22 g/catalyst/hr. The selectivity of acetaldehyde and other products was approximately the same as in Example 4 both 2 hours and 20 days after the start of the reaction.

実施例 5 表面積34m2/gおよび粒径3〜4mmの球形チタ
ニア(堺化学製、商品名「CS−200−24」)に対
して白金の担持量が1.0重量%となるように塩化
白金酸の水溶液を該チタニアに含浸させ、100℃
で乾燥させたのち、実施例1と同様にして触媒を
調製した。このようにして得られた触媒10c.c.を実
施例1で用いたのと同じ反応管に充填し、この反
応管に無水酢酸、酢酸、水素および窒素からなる
混合ガス(無水酢酸:酢酸:水素:窒素=20:
3:50:28(モル比))を毎時12の速度で導入
することにより反応温度185℃常圧で反応させ
た。反応開始より2時間後の反応生成物を分析し
た結果、アセトアルデヒドが22g/触媒・hrの
生成速度で生成し、その選択率は87%であること
がわかつた。酢酸はアセトアルデヒドに対し約
1.15倍モル生成していた。アセトアルデヒドと酢
酸を除く他の生成物の選択率はエチリデンジアセ
テート3.8%、酢酸エチル2.5%、一酸化炭素およ
びメタン6.0%であり、このほかにアセトンとエ
タノールが微量生成していた。反応条件を一定に
して15日反応させた後生成物を分析した結果、ア
セトアルデヒドの生成速度は20g/触媒・hrで
あり、また各生成物の選択率は反応開始より2時
間後の場合とほぼ同様であつた。
Example 5 Chloroplatinic acid was added so that the amount of platinum supported was 1.0% by weight on spherical titania (manufactured by Sakai Chemical Co., Ltd., trade name "CS-200-24") with a surface area of 34 m 2 /g and a particle size of 3 to 4 mm. The titania was impregnated with an aqueous solution of
After drying, a catalyst was prepared in the same manner as in Example 1. 10 c.c. of the catalyst thus obtained was charged into the same reaction tube as used in Example 1, and the reaction tube was filled with a mixed gas consisting of acetic anhydride, acetic acid, hydrogen, and nitrogen (acetic anhydride: acetic acid: Hydrogen: Nitrogen = 20:
3:50:28 (molar ratio)) was introduced at a rate of 12 per hour to carry out the reaction at a reaction temperature of 185° C. and normal pressure. As a result of analyzing the reaction product 2 hours after the start of the reaction, it was found that acetaldehyde was produced at a production rate of 22 g/catalyst/hr, and the selectivity was 87%. Acetic acid is approximately equal to acetaldehyde.
1.15 times the molar amount was produced. The selectivity of other products other than acetaldehyde and acetic acid was 3.8% ethylidene diacetate, 2.5% ethyl acetate, 6.0% carbon monoxide and methane, and trace amounts of acetone and ethanol were also produced. Analysis of the products after 15 days of reaction under constant reaction conditions revealed that the production rate of acetaldehyde was 20 g/catalyst/hr, and the selectivity of each product was approximately the same as that after 2 hours from the start of the reaction. It was the same.

比較例 4 実施例5で用いた触媒と同様の触媒および装置
を用い、反応管に導入する混合ガスのガス組成を
無水酢酸:水素:窒素=20:50:30(モル比)と
する以外は実施例5と同じ反応条件で反応させ
た。その結果反応開始より2時間後のアセトアル
デヒドの生成速度は20g/触媒・hrであつた
が、15日後のそれは12g/触媒・hrに低下し
た。アセトアルデヒドおよびその他の生成物の選
択率は反応開始より2時間後および15日後ともに
実施例5の場合とほぼ同様の値であつた。
Comparative Example 4 A catalyst and equipment similar to those used in Example 5 were used, except that the gas composition of the mixed gas introduced into the reaction tube was acetic anhydride:hydrogen:nitrogen=20:50:30 (molar ratio). The reaction was carried out under the same reaction conditions as in Example 5. As a result, the production rate of acetaldehyde 2 hours after the start of the reaction was 20 g/catalyst/hr, but after 15 days it had decreased to 12 g/catalyst/hr. The selectivity of acetaldehyde and other products was approximately the same as in Example 5 both 2 hours and 15 days after the start of the reaction.

実施例 6 直径3mm、高さ3.5mmのペレツト状アルミナに
対してロジウムが0.5重量%担持された触媒(日
本エンゲルハルド製、製品名「0.5%Rhアルミナ
ペレツト」)10gを実施例1で用いたのと同じ反
応管に充填し、実施例3と同一の反応条件で反応
させた。反応開始より2時間後の反応生成物を分
析した結果、アセトアルデヒドが12g/触媒・
hrの生成速度で生成し、その選択率は76%であつ
た。酢酸はアセトアルデヒドに対して約1.3倍モ
ル生成していた。アセトンの選択率は18%であ
り、このほかに少量の酢酸エチル、エチリデンジ
アセテート、一酸化炭素、メタンおよびエタノー
ルなどが生成していた。反応開始より10日後のア
セトアルデヒドの生成速度および選択率は反応開
始より2時間後のそれとほぼ同じであつた。
Example 6 10 g of a catalyst supporting 0.5% by weight of rhodium (manufactured by Nippon Engelhard, product name "0.5% Rh alumina pellets") was used in Example 1 on pellet-like alumina with a diameter of 3 mm and a height of 3.5 mm. The mixture was filled into the same reaction tube as in Example 3, and the reaction was carried out under the same reaction conditions as in Example 3. As a result of analyzing the reaction product 2 hours after the start of the reaction, the amount of acetaldehyde was 12g/catalyst.
It was produced at a production rate of hr, and the selectivity was 76%. Acetic acid was produced approximately 1.3 times as much in mole as acetaldehyde. The selectivity of acetone was 18%, and small amounts of ethyl acetate, ethylidene diacetate, carbon monoxide, methane, and ethanol were also produced. The acetaldehyde production rate and selectivity 10 days after the start of the reaction were almost the same as those 2 hours after the start of the reaction.

比較例 5 実施例6で用いた触媒と同様の触媒および装置
を用い、比較例2と同様の反応条件で反応させ
た。その結果反応開始より2時間後のアセトアル
デヒドの生成速度は12g/触媒・hrであつた
が、10日後のそれは5g/触媒・hrに低下し
た。アセトアルデヒドおよびその他の生成物の選
択率は反応開始より2時間および10日後ともに実
施例6の場合とほぼ同様の値であつた。
Comparative Example 5 Using the same catalyst and equipment as those used in Example 6, a reaction was carried out under the same reaction conditions as in Comparative Example 2. As a result, the production rate of acetaldehyde 2 hours after the start of the reaction was 12 g/catalyst/hr, but after 10 days it had decreased to 5 g/catalyst/hr. The selectivity of acetaldehyde and other products was approximately the same as in Example 6 both at 2 hours and 10 days after the start of the reaction.

Claims (1)

【特許請求の範囲】[Claims] 1 無水酢酸と水素とを担体に担持された金属パ
ラジウム、金属白金または金属ロジウム触媒の存
在下気相で反応させてアセトアルデヒドを製造す
るに際し、反応供給ガス中に無水酢酸に対して3
モル%以上の酢酸を同伴させることを特徴とする
アセトアルデヒドの製造方法。
1. When producing acetaldehyde by reacting acetic anhydride and hydrogen in the gas phase in the presence of a metal palladium, metal platinum or metal rhodium catalyst supported on a carrier, 3% of acetic anhydride is added to the reaction supply gas.
A method for producing acetaldehyde, which comprises entraining acetic acid in an amount of mol % or more.
JP56034269A 1980-05-19 1981-03-09 Preparation of acetaldehyde Granted JPS57146731A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56034269A JPS57146731A (en) 1981-03-09 1981-03-09 Preparation of acetaldehyde
CA000376493A CA1226585A (en) 1980-05-19 1981-04-29 Process for producing acetaldehyde
US06/261,805 US4351964A (en) 1980-05-19 1981-05-08 Process for producing acetaldehyde
DE8181103751T DE3160416D1 (en) 1980-05-19 1981-05-15 Process for producing acetaldehyde
EP81103751A EP0040414B1 (en) 1980-05-19 1981-05-15 Process for producing acetaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56034269A JPS57146731A (en) 1981-03-09 1981-03-09 Preparation of acetaldehyde

Publications (2)

Publication Number Publication Date
JPS57146731A JPS57146731A (en) 1982-09-10
JPS6260376B2 true JPS6260376B2 (en) 1987-12-16

Family

ID=12409436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56034269A Granted JPS57146731A (en) 1980-05-19 1981-03-09 Preparation of acetaldehyde

Country Status (1)

Country Link
JP (1) JPS57146731A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152340A (en) * 1986-08-14 1988-06-24 Idemitsu Kosan Co Ltd Production of carboxylic acid ester
JP4553077B2 (en) * 1999-02-10 2010-09-29 三菱瓦斯化学株式会社 Process for producing carboxylic anhydride and aldehydes

Also Published As

Publication number Publication date
JPS57146731A (en) 1982-09-10

Similar Documents

Publication Publication Date Title
UA77384C2 (en) Catalyst and process for producing vinyl acetate
CZ20023735A3 (en) Process for preparing vinyl acetate
US4507494A (en) Process for the production of a diester of oxalic acid
EP0040414B1 (en) Process for producing acetaldehyde
JPS6260376B2 (en)
JPH08165256A (en) Production of 1,1,1,2,3,3-hexafluoropropane
JPH01294643A (en) Production of oxygen-containing compound
JPS642091B2 (en)
JPS6340417B2 (en)
JPS62258335A (en) Production of methyl isobutyl ketone
US5602288A (en) Catalytic process for producing CF3 CH2 F
US3965155A (en) Process for preparing vinyl esters of carboxylic acids
JP2940917B2 (en) Method for producing allyl acetate
JPH0237329B2 (en)
JPH10158227A (en) Production of n,n-dimethylformamide
JPS6337092B2 (en)
JPH10120605A (en) Production of acetaldehyde and acetic acid
JPS6056937A (en) Production of oxalic acid diester
JPH05140009A (en) Production of 1,1,1,2,2,3,4,5,5,5-decafluoropentane
JPS63162639A (en) Production of ethanol
JPS6147420A (en) Manufacture of hydrocarbon and oxidated hydrocarbon
JPS5833850B2 (en) Production method of allyl acetate
JPS6210984B2 (en)
JPS5913745A (en) Preparation of acetaldehyde
JPS63233936A (en) Production of acetic acid and methyl acetate