JPS6337092B2 - - Google Patents

Info

Publication number
JPS6337092B2
JPS6337092B2 JP57025435A JP2543582A JPS6337092B2 JP S6337092 B2 JPS6337092 B2 JP S6337092B2 JP 57025435 A JP57025435 A JP 57025435A JP 2543582 A JP2543582 A JP 2543582A JP S6337092 B2 JPS6337092 B2 JP S6337092B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
acetaldehyde
produced
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57025435A
Other languages
Japanese (ja)
Other versions
JPS58144340A (en
Inventor
Seishiro Nakamura
Katsutoshi Ookami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP57025435A priority Critical patent/JPS58144340A/en
Publication of JPS58144340A publication Critical patent/JPS58144340A/en
Publication of JPS6337092B2 publication Critical patent/JPS6337092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は酢酸メチル、一酸化炭素および水素を
反応させることによりアセトアルデヒドを製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing acetaldehyde by reacting methyl acetate, carbon monoxide and hydrogen.

酢酸メチル、一酸化炭素および水素を周期律表
第4または第5周期の第族金属の存在下液相で
反応させることによりアセトアルデヒドを製造す
ることは公知である(特公昭48−19286号公報)。
しかしながら、前記文献に記載の方法は、300気
圧以上の高い反応圧力を必要とし、また反応後の
反応混合液から生成物を蒸留分離する際に触媒が
一部還元されて活性が比較的短期間に低下するな
ど、反応を工業的に実施するうえで難点を有す
る。また最近、パラジウム触媒およびヨウ素化合
物を含む反応帯で、反応混合液を沸騰状態に保つ
ことにより反応生成物を連続的に系外に留去させ
ながら反応を行なうことによりアセトアルデヒド
の収率を改善する方法が提案されている((特開
昭55−92335号公報)が、この方法においても触
媒の活性が短期間に低下するという問題は依然と
して未解決である。
It is known to produce acetaldehyde by reacting methyl acetate, carbon monoxide and hydrogen in the liquid phase in the presence of a group metal of period 4 or 5 of the periodic table (Japanese Patent Publication No. 19286/1986). .
However, the method described in the above literature requires a high reaction pressure of 300 atmospheres or more, and when the product is distilled and separated from the reaction mixture after the reaction, the catalyst is partially reduced and the activity remains for a relatively short period of time. There are difficulties in carrying out the reaction industrially, such as a decrease in Also, recently, the yield of acetaldehyde has been improved by carrying out the reaction in a reaction zone containing a palladium catalyst and an iodine compound by keeping the reaction mixture at a boiling state and continuously distilling the reaction products out of the system. A method has been proposed (Japanese Unexamined Patent Publication No. 55-92335), but even with this method, the problem that the activity of the catalyst decreases in a short period of time remains unsolved.

本発明者らは、上記の従来法に比較して工業的
に有利にアセトアルデヒドを製造する方法を開発
すべく鋭意研究した結果、本発明に至つた。
The present inventors have conducted extensive research to develop a method for producing acetaldehyde that is industrially more advantageous than the conventional methods described above, and as a result, they have arrived at the present invention.

すなわち、本発明によれば、酢酸メチル、一酸
化炭素および水素を(a)ロジウムまたはその化合物
および(b)パラジウムまたはその化合物が担体に担
持された触媒ならびにハロゲン化合物の存在下気
相で反応させることにより、アセトアルデヒドを
高収率かつ高選択率で製造することができる。こ
の方法は、反応を比較的低圧で実施してもアセト
アルデヒドが高収率かつ高選択率で生成するこ
と、反応を気相で行なうため触媒の活性を低下さ
せないで触媒と生成物を分離することができるこ
と、液相反応の場合のように触媒成分が反応溶液
中に溶出することがないので、触媒の活性を安定
に維持することができることなど、従来法には見
られない利点を備えている。本発明の方法におい
てはアセトアルデヒドのほかに酢酸が生成し、そ
の生成量は用いる反応温度、圧力等の反応条件に
よつて若干変化するのが、通常アセトアルデヒド
に対し1.0〜2.0モル量である。
That is, according to the present invention, methyl acetate, carbon monoxide, and hydrogen are reacted in a gas phase in the presence of a catalyst in which (a) rhodium or a compound thereof and (b) palladium or a compound thereof is supported on a carrier and a halogen compound. By this, acetaldehyde can be produced with high yield and high selectivity. This method produces acetaldehyde in high yield and high selectivity even when the reaction is carried out at relatively low pressure, and because the reaction is carried out in the gas phase, the catalyst and product can be separated without reducing the activity of the catalyst. It has advantages not found in conventional methods, such as being able to maintain stable catalyst activity because the catalyst components do not elute into the reaction solution as in the case of liquid phase reactions. . In the method of the present invention, acetic acid is produced in addition to acetaldehyde, and the amount of acetic acid produced varies slightly depending on the reaction conditions used, such as the reaction temperature and pressure, but is usually in an amount of 1.0 to 2.0 moles relative to acetaldehyde.

本発明の方法においては、前述のように、担体
にロジウムまたはその化合物およびパラジウムま
たはその化合物が担持された触媒を使用する。ロ
ジウム化合物ならびにパラジウム化合物の具体例
としては、塩化ロジウム、臭化ロジウム、ヨウ化
ロジウム、ロジウムカルボニル、酢酸パラジウ
ム、塩化パラジウム、硝酸パラジウム、パラジウ
ムカルボニルなどを挙げることができる。担体と
しては活性炭、アルミナ、シリカ、シリカアルミ
ナ、チタニア、ジルコニアなどを例示することが
できるが、高い触媒活性を得るためには活性炭の
使用がとくに好ましい。担体に対するロジウム化
合物とパラジウム化合物の濃度は臨界的ではない
が、一般には金属としてそれぞれ0.01〜5重量
%、好ましくは0.1〜2重量%である。ロジウム
またはその化合物とパラジウムまたはその化合物
との割合は、ロジウム金属とパラジウム金属との
グラム原子比で0.001〜10、とくに0.1〜1の範囲
内から選ぶのが好ましい。触媒の調製は公知の方
法によつて行なうことができる。たとえば、ロジ
ウム塩およびパラジウム塩を含有する水溶液を担
体に含浸させたのち、これを乾燥することにより
目的とする触媒を得ることができる。またロジウ
ム塩とパラジウム塩を担体に含浸させたのち、担
体上の金属塩を還元剤で還元することにより担体
にロジウムとパラジウムが担持された触媒を得る
ことができる。なお上記触媒においてロジウムま
たはその化合物およびパラジウムまたはその化合
物のほかにさらにアルカリ金属塩、アルカリ土類
金属塩、マンガン塩、ランタン塩、セリウム塩、
アルミニウム塩、鉄塩、コバルト塩、ニツケル塩
およびクロム塩から選ばれる一種もしくはそれ以
上を適当量担持させることによりアセトアルデヒ
ドの収率を一層向上させることができる。
In the method of the present invention, as described above, a catalyst in which rhodium or a compound thereof and palladium or a compound thereof are supported on a carrier is used. Specific examples of rhodium compounds and palladium compounds include rhodium chloride, rhodium bromide, rhodium iodide, rhodium carbonyl, palladium acetate, palladium chloride, palladium nitrate, palladium carbonyl, and the like. Examples of the carrier include activated carbon, alumina, silica, silica alumina, titania, and zirconia, and the use of activated carbon is particularly preferred in order to obtain high catalytic activity. The concentration of rhodium and palladium compounds relative to the support is not critical, but generally ranges from 0.01 to 5%, preferably from 0.1 to 2%, by weight of the metal. The ratio of rhodium or its compound to palladium or its compound is preferably selected from within the range of 0.001 to 10, particularly 0.1 to 1 in terms of the gram atomic ratio of rhodium metal to palladium metal. The catalyst can be prepared by known methods. For example, the desired catalyst can be obtained by impregnating a carrier with an aqueous solution containing a rhodium salt and a palladium salt and then drying the carrier. Furthermore, a catalyst in which rhodium and palladium are supported on a carrier can be obtained by impregnating a carrier with a rhodium salt and a palladium salt and then reducing the metal salt on the carrier with a reducing agent. In addition to rhodium or its compound and palladium or its compound, the above catalyst may further contain alkali metal salts, alkaline earth metal salts, manganese salts, lanthanum salts, cerium salts,
The yield of acetaldehyde can be further improved by supporting an appropriate amount of one or more selected from aluminum salts, iron salts, cobalt salts, nickel salts, and chromium salts.

本発明において前述の触媒とともに用いられる
ハロゲン化合物としては塩化物、臭化物およびヨ
ウ化物を例示することができる。具体的にはヨウ
化メチル、臭化メチルなどのハロゲン化アルキ
ル、ヨウ化アセチル、臭化アセチルなどの酸ハロ
ゲニドなどの有機ハロゲン化合物、ならびにヨウ
化水素、臭化水素などのハロゲン化水素などを挙
げることができる。これらのハロゲン化合物は単
独で用いることもできるし、また二種以上組合せ
て用いることもできる。
Examples of the halogen compound used together with the above-mentioned catalyst in the present invention include chloride, bromide, and iodide. Specific examples include organic halogen compounds such as alkyl halides such as methyl iodide and methyl bromide, acid halides such as acetyl iodide and acetyl bromide, and hydrogen halides such as hydrogen iodide and hydrogen bromide. be able to. These halogen compounds can be used alone or in combination of two or more.

本発明に従う反応は前記触媒に酢酸メチル、ハ
ロゲン化合物、水素、一酸化炭素および所望によ
り窒素、メタン、エタンなどの反応に不活性な希
釈ガスを含む混合ガスを接触させることにより行
なわれる。この場合、混合ガスに含まれるハロゲ
ン化合物と酢酸メチルのモル比(ハロゲン化合
物/酢酸メチル)が0.001〜10、好ましくは0.005
〜0.5であり、一酸化炭素と水素のモル比(CO/
H2)が0.01〜10、好ましくは0.1〜5であるのが
よい。また前記混合ガス中の水素と一酸化炭素に
対する酢酸メチルのモル比(酢酸メチル/CO+
H2)はあまり小さいと工業的な点から非実用的
であり、又あまり大きいとエチリデンジアセテー
トの生成が多くなり、アセトアルデヒドの選択率
が低くなるので、0.01〜2の範囲に保たれる必要
がある。反応は加圧条件下で行なうのが好まし
く、反応圧力は一般に10〜000圧(絶対圧)の範
囲内から選ばれる。反応温度は一般に100〜300
℃、とくに150〜250℃の範囲内から選ばれる。
The reaction according to the invention is carried out by contacting the catalyst with a mixed gas containing methyl acetate, a halogen compound, hydrogen, carbon monoxide and optionally a diluent gas inert to the reaction such as nitrogen, methane, ethane, etc. In this case, the molar ratio of the halogen compound and methyl acetate contained in the mixed gas (halogen compound/methyl acetate) is 0.001 to 10, preferably 0.005.
~0.5, and the molar ratio of carbon monoxide to hydrogen (CO/
H2 ) is preferably 0.01 to 10, preferably 0.1 to 5. Also, the molar ratio of methyl acetate to hydrogen and carbon monoxide in the mixed gas (methyl acetate/CO+
If H2 ) is too small, it is impractical from an industrial point of view, and if it is too large, more ethylidene diacetate will be produced and the selectivity of acetaldehyde will be lower, so it is necessary to keep it in the range of 0.01 to 2. There is. The reaction is preferably carried out under pressurized conditions, and the reaction pressure is generally selected from within the range of 10 to 000 pressures (absolute pressure). Reaction temperature is generally 100-300℃
℃, especially selected from within the range of 150 to 250℃.

本発明の方法を実施するにあたり固定触媒床お
よび流動触媒床のいずれの反応形式を採用するこ
ともできる。固定触媒床による反応は、反応ガス
を空間速度(S.V.)500〜10000(全ガス/触媒
・時間)で触媒上に通過させることにより実施
することができる。
In carrying out the method of the present invention, either a fixed catalyst bed or a fluidized catalyst bed reaction format can be employed. Reactions with fixed catalyst beds can be carried out by passing the reactant gases over the catalyst at a space velocity (SV) of 500 to 10,000 (total gas/catalyst/time).

以下、実施例によつて本発明をさらに詳細に説
明する。実施例中の部は重量部である。なお酢酸
を除く各生成物の選択率は次式にしたがつて算出
した。
Hereinafter, the present invention will be explained in more detail with reference to Examples. Parts in the examples are parts by weight. Note that the selectivity of each product except acetic acid was calculated according to the following formula.

特定生成物の選択率(%)=単位時間当りに生成した
特定生成物のモル数/A+2B+2C+D+E+F×100 〔ただし、 A:単位時間当りに生成したアセトアルデヒド
のモル数 B:単位時間当りに生成した酢酸エチルのモル
数 C:単位時間当りに生成したエチリデンジアセ
テートのモル数 D:単位時間当りに生成したメタンのモル数 E:単位時間当りに生成したアセトンのモル数 F:単位時間当りに生成した無水酢酸のモル
数〕 実施例 1 直径4mm、高さ4〜8mmの円柱状の活性炭(ク
ラレケミカル株式会社製、商品名「クラレコール
4GS」)50部を、40部の水に塩化パラジウムナト
リウム1.14部と塩化ロジウム・3水和物0.83部お
よび酢酸カリウム1.0部を溶解した溶液に加え、
蒸気浴上で蒸発乾固した。このようにして得られ
た触媒10c.c.(約4g)を内径16mmのハステロイ製
反応管を備えた加圧流通装置に充填した。これに
窒素ガスを流通させながら反応管を200℃まで加
熱し、ついで反応管内の圧力を40気圧に保ちなが
ら酢酸メチル、ヨウ化メチル、一酸化炭素および
水素からなる混合ガス(酢酸メチル:ヨウ化メチ
ル:一酸化炭素:水素=20:1:30:49(容量比)
を毎時50(大気圧、0℃)の速度で導入するこ
とにより反応温度200℃、40気圧で反応を行なつ
た。その結果、アセトアルデヒドが100g/触媒
l・時間の生成速度で生成し、またアセトアルデ
ヒドに対し1.5倍モルの酢酸が生成した。この他
にメタン、酢酸エチル、アセトン、エタノール、
エチリデンジアセテートなどが少量生成した。各
生成物の選択率は次のとおりであつた。
Selectivity of specific product (%) = Number of moles of specific product produced per unit time / A + 2B + 2C + D + E + F × 100 [However, A: Number of moles of acetaldehyde produced per unit time B: Number of moles of acetic acid produced per unit time Number of moles of ethyl C: Number of moles of ethylidene diacetate produced per unit time D: Number of moles of methane produced per unit time E: Number of moles of acetone produced per unit time F: Number of moles of acetone produced per unit time Number of moles of acetic anhydride] Example 1 Cylindrical activated carbon with a diameter of 4 mm and a height of 4 to 8 mm (manufactured by Kuraray Chemical Co., Ltd., product name "Kuraray Coal")
Add 50 parts of "4GS") to a solution of 1.14 parts of sodium palladium chloride, 0.83 parts of rhodium chloride trihydrate and 1.0 part of potassium acetate in 40 parts of water,
Evaporate to dryness on a steam bath. 10 c.c. (approximately 4 g) of the catalyst thus obtained was packed into a pressurized flow device equipped with a Hastelloy reaction tube having an inner diameter of 16 mm. The reaction tube is heated to 200℃ while nitrogen gas is passed through it, and then a mixed gas consisting of methyl acetate, methyl iodide, carbon monoxide, and hydrogen (methyl acetate: iodide Methyl: carbon monoxide: hydrogen = 20:1:30:49 (volume ratio)
The reaction was carried out at a reaction temperature of 200°C and 40 atmospheres by introducing 50% of the reaction mixture per hour (atmospheric pressure, 0°C). As a result, acetaldehyde was produced at a production rate of 100 g/l of catalyst per hour, and acetic acid was produced in an amount 1.5 times the mole of acetaldehyde. In addition, methane, ethyl acetate, acetone, ethanol,
A small amount of ethylidene diacetate was produced. The selectivity of each product was as follows.

アセトアルデヒド 88.4% メタン 6.2% 酢酸エチル 2.8% アセトン 1.6% エタノール 1.0% エチリデンジアセテート 極く微量 実施例 2 実施例1で用いたのと同じ活性炭50部を、35部
の酢酸に酢酸パラジウム0.48部を溶解した溶液に
加え、蒸気浴上で蒸発乾固した。このものを塩化
ロジウム・3水和物0.33部および酢酸ナトリウム
0.8部を溶解した水溶液に加え、同様にして蒸気
浴上で蒸発乾固した。このようにして得られた触
媒10c.c.(約4g)を実施例1において用いたのと
同じ反応管に充填し、反応温度を210℃に変えた
以外は実施例1と同一の反応条件下で反応を行な
つた。その結果、アセトアルデヒドが60g/触媒
l・時間の生成速度で生成し、またアセトアルデ
ヒドに対し約1.6倍モルの酢酸が生成した。この
他に実施例1と同様の生成物が生成し、それらの
選択率は次のとおりであつた。
Acetaldehyde 88.4% Methane 6.2% Ethyl acetate 2.8% Acetone 1.6% Ethanol 1.0% Ethylidene diacetate Very small amount Example 2 Dissolve 50 parts of the same activated carbon used in Example 1 and 0.48 parts of palladium acetate in 35 parts of acetic acid. solution and evaporated to dryness on a steam bath. Add this to 0.33 parts of rhodium chloride trihydrate and sodium acetate.
It was added to an aqueous solution in which 0.8 part was dissolved and evaporated to dryness on a steam bath in the same manner. The reaction conditions were the same as in Example 1, except that 10 c.c. (approximately 4 g) of the thus obtained catalyst was charged into the same reaction tube as used in Example 1, and the reaction temperature was changed to 210°C. The reaction was carried out below. As a result, acetaldehyde was produced at a production rate of 60 g/l of catalyst per hour, and about 1.6 times the mole of acetic acid was produced relative to acetaldehyde. In addition, products similar to those in Example 1 were produced, and their selectivities were as follows.

アセトアルデヒド 86.0% メタン 8.7% 酢酸エチル 3.0% アセトン 1.5% エタノール 0.8% エチリデンジアセテート 極く微量 実施例 3 直径4mm、高さ3〜8mmの円柱状の活性炭(武
田薬品工業株式会社製、白鷺炭4GC)に対して、
塩化パラジウムナトリウムと塩化ロジウムの担持
量がそれぞれ1.0重量%と0.5重量%となるよう
に、塩化パラジウムナトリウムと塩化ロジウムと
を溶解させた水溶液を該活性炭に含浸させ、100
℃で乾燥させた。このようにして得られた触媒10
c.c.を実施例1において用いたのと同じ反応管に充
填し、該反応管に酢酸メチル、ヨウ化メチル、一
酸化炭素、水素および窒素からなる混合ガス(酢
酸メチル:ヨウ化メチル:一酸化炭素:水素:窒
素=10:0.1:20:40:29.9(容量比))を毎時20
の速度で導入することにより反応温度220℃、
60気圧で反応を行なつた。その結果、アセトアル
デヒドが70g/触媒l・時間の生成速度で生成
し、その選択率は89%であつた。酢酸はアセトア
ルデヒドに対し約1.4倍モル生成した。この他に
メタン、酢酸エチル、アセトン、エタノール、エ
チリデンジアセテートなどが少量生成した。
Acetaldehyde 86.0% Methane 8.7% Ethyl acetate 3.0% Acetone 1.5% Ethanol 0.8% Ethylidene diacetate Very small amount Example 3 Cylindrical activated carbon with a diameter of 4 mm and a height of 3 to 8 mm (manufactured by Takeda Pharmaceutical Co., Ltd., Shirasagi Charcoal 4GC) For,
The activated carbon was impregnated with an aqueous solution in which sodium palladium chloride and rhodium chloride were dissolved so that the supported amounts of sodium palladium chloride and rhodium chloride were 1.0% by weight and 0.5% by weight, respectively.
Dry at ℃. Catalyst 10 thus obtained
cc was charged into the same reaction tube as used in Example 1, and a mixed gas consisting of methyl acetate, methyl iodide, carbon monoxide, hydrogen and nitrogen (methyl acetate: methyl iodide: carbon monoxide) was charged into the reaction tube. :Hydrogen:Nitrogen=10:0.1:20:40:29.9 (capacity ratio)) at 20% per hour
The reaction temperature is 220℃ by introducing at a rate of
The reaction was carried out at 60 atm. As a result, acetaldehyde was produced at a production rate of 70 g/l·hour of catalyst, and the selectivity was 89%. Acetic acid was produced in a molar amount approximately 1.4 times that of acetaldehyde. In addition, small amounts of methane, ethyl acetate, acetone, ethanol, and ethylidene diacetate were produced.

実施例 4 実施例3で用いたのと同じ活性炭に対して、塩
化パラジウムナトリウム、塩化ロジウムおよび臭
化クロムの担持量がそれぞれ0.8重量%、0.3重量
%、1.0重量%となるように、塩化パラジウムナ
トリウム、塩化ロジウムおよび臭化クロムを溶解
させた水溶液を該活性炭に含浸させ、100℃で乾
燥させた。このようにして得られた触媒10c.c.を実
施例1で用いたのと同じ反応管に充填し、該反応
管に酢酸メチル、ヨウ化メチル、一酸化炭素およ
び水素からなる混合ガス(酢酸メチル:ヨウ化メ
チル:一酸化炭素:水素=15:0.5:39.5:4.5(容
量比))を毎時60の速度で導入することにより
反応温度200℃、50気圧で反応を行なつた。その
結果、アセトアルデヒドが60g/触媒l・時間の
生成速度で生成し、その選択率は88%であつた。
酢酸はアセトアルデヒドに対し約1.5倍モル生成
した。この他にメタン、酢酸エチル、エチリデン
ジアセテート、アセトン、無水酢酸などが少量生
成した。
Example 4 Palladium chloride was added to the same activated carbon as used in Example 3 so that the supported amounts of sodium palladium chloride, rhodium chloride, and chromium bromide were 0.8% by weight, 0.3% by weight, and 1.0% by weight, respectively. The activated carbon was impregnated with an aqueous solution in which sodium, rhodium chloride, and chromium bromide were dissolved, and dried at 100°C. 10 c.c. of the catalyst thus obtained was charged into the same reaction tube as used in Example 1, and the reaction tube was filled with a mixed gas (acetic acid The reaction was carried out at a reaction temperature of 200° C. and a pressure of 50 atm by introducing methyl: methyl iodide: carbon monoxide: hydrogen = 15:0.5:39.5:4.5 (volume ratio) at a rate of 60 per hour. As a result, acetaldehyde was produced at a production rate of 60 g/l·hour of catalyst, and the selectivity was 88%.
Acetic acid was produced in about 1.5 times the molar amount of acetaldehyde. In addition, small amounts of methane, ethyl acetate, ethylidene diacetate, acetone, and acetic anhydride were produced.

実施例 5 実施例1と同様の方法で調製した触媒10c.c.を実
施例1で用いたのと同じ反応管に充填し、この反
応管に酢酸メチル、ヨウ化メチル、一酸化炭素お
よび水素からなる混合ガス(酢酸メチル:ヨウ化
メチル:一酸化炭素:水素=20:1:49:30(容
量比))を毎時60の速度で導入することにより
反応温度190℃、50気圧で反応を行なつた。その
結果、アセトアルデヒドが68g/触媒l・時間の
生成速度で生成し、その選択率は91.6%であつ
た。酢酸はアセトアルデヒドに対し1.2倍モル生
成した。この他にメタン、無水酢酸、酢酸エチ
ル、アセトン、エタノール、エチリデンジアセテ
ートなどが少量生成した。
Example 5 10 c.c. of catalyst prepared in the same manner as in Example 1 was charged into the same reaction tube as used in Example 1, and methyl acetate, methyl iodide, carbon monoxide and hydrogen were added to the reaction tube. By introducing a mixed gas consisting of (methyl acetate: methyl iodide: carbon monoxide: hydrogen = 20:1:49:30 (volume ratio)) at a rate of 60% per hour, the reaction was carried out at a reaction temperature of 190°C and 50 atm. I did it. As a result, acetaldehyde was produced at a production rate of 68 g/l·hour of catalyst, and the selectivity was 91.6%. Acetic acid was produced in a molar amount 1.2 times that of acetaldehyde. In addition, small amounts of methane, acetic anhydride, ethyl acetate, acetone, ethanol, and ethylidene diacetate were produced.

実施例 6 実施例1と同様の方法で調製した触媒10c.c.を実
施例1で用いたのと同じ反応管に充填した。これ
に窒素ガスを流通させながら反応管を150℃まで
加熱し、続いて水素:窒素=5:95(容量比)の
混合ガスを毎時5(大気圧0℃)の速度で200
℃で2時間、さらに400℃で2時間流通させるこ
とによつて、触媒を還元した。ついで反応管内の
圧力を40気圧に保ちながら酢酸メチル、ヨウ化メ
チル、一酸化炭素および水素(25:1:30:44
(容量比))を毎時30(大気圧、0℃)の速度で
導入することにより反応温度180℃、40気圧で反
応を行なつた。その結果、アセトアルデヒドが83
g/触媒l・時間の生成速度で生成し、その選択
率は89%であつた。酢酸はアセトアルデヒドに対
し1.3倍モル生成した。この他にメタン、エチリ
デンジアセテート、無水酢酸などが少量生成し
た。各生成物の選択率はつぎのとおりであつた。
Example 6 10 c.c. of catalyst prepared in the same manner as in Example 1 was charged into the same reaction tube used in Example 1. The reaction tube was heated to 150°C while nitrogen gas was passed through it, and then a mixed gas of hydrogen:nitrogen = 5:95 (volume ratio) was added at a rate of 200°C at a rate of 5/hour (atmospheric pressure 0°C).
The catalyst was reduced by flowing at 400°C for 2 hours and then at 400°C for 2 hours. Next, while maintaining the pressure inside the reaction tube at 40 atmospheres, methyl acetate, methyl iodide, carbon monoxide and hydrogen (25:1:30:44
The reaction was carried out at a reaction temperature of 180°C and 40 atmospheres by introducing (volume ratio) at a rate of 30°C (atmospheric pressure, 0°C) per hour. As a result, acetaldehyde was 83
The product was produced at a production rate of g/l of catalyst/hour, and the selectivity was 89%. Acetic acid was produced in a molar amount 1.3 times that of acetaldehyde. In addition, small amounts of methane, ethylidene diacetate, and acetic anhydride were produced. The selectivity of each product was as follows.

アセトアルデヒド 89% メタン 4% 無水酢酸 3% エチリデンジアセテート 2% アセトン <1% 酢酸エチル <1% 実施例 7 60%濃度の硝酸30部に水15部を加えて調製した
水溶液に硝酸ロジウムと硝酸パラジウムを夫々
0.71部づつ溶解した。この溶液に実施例1で用い
たのと同様の活性炭50部を加え、蒸気浴上で蒸発
乾固した。このようにして得られた触媒10c.c.を実
施例1で用いたのと同じ反応管に充填し、実施例
6と同様にして触媒を還元した。ついで反応管の
圧力を46気圧に保ちながら酢酸メチル、ヨウ化メ
チル、一酸化炭素および水素(25:1:25:49
(容量比))を毎時45(大気圧、0℃)の速度で
導入することにより反応温度185℃、46気圧で反
応をおこなつた。その結果、アセトアルデヒドが
105g/触媒l・時間の生成速度で生成し、その
選択率は91%であつた。この他にメタンが5%、
エチリデンジアセテートと無水酢酸が夫々2%生
成した。酢酸エチルとアセトンの生成は極く微量
であつた。
Acetaldehyde 89% Methane 4% Acetic anhydride 3% Ethylidene diacetate 2% Acetone <1% Ethyl acetate <1% Example 7 Rhodium nitrate and palladium nitrate were added to an aqueous solution prepared by adding 15 parts of water to 30 parts of 60% nitric acid. respectively
0.71 parts were dissolved. 50 parts of activated carbon similar to that used in Example 1 was added to this solution, and the mixture was evaporated to dryness on a steam bath. 10 c.c. of the catalyst thus obtained was packed into the same reaction tube as used in Example 1, and the catalyst was reduced in the same manner as in Example 6. Then, while maintaining the pressure in the reaction tube at 46 atm, methyl acetate, methyl iodide, carbon monoxide and hydrogen (25:1:25:49) were added.
(Volume ratio)) was introduced at a rate of 45% per hour (atmospheric pressure, 0°C) to carry out the reaction at a reaction temperature of 185°C and 46 atmospheres. As a result, acetaldehyde
It was produced at a production rate of 105 g/l of catalyst/hour, and the selectivity was 91%. In addition to this, 5% methane,
Ethylidene diacetate and acetic anhydride were produced in an amount of 2% each. The production of ethyl acetate and acetone was extremely small.

比較例 1 実施例1において塩化パラジウムナトリウムと
塩化ロジウムの両者を使用するかわりに塩化ロジ
ウムのみを2.0部使用する以外は実施例1と同様
にして反応を行なつた。その結果、アセトアルデ
ヒドはわずか6g/触媒l・時間の生成速度で生
成し、またアセトアルデヒドに対し約1.3モルの
酢酸が生成した。この他に、エチリデンジアセテ
ート、無水酢酸、アセトンなどが少量生成した。
各生成物の選択率は次のとおりであつた。
Comparative Example 1 A reaction was carried out in the same manner as in Example 1 except that 2.0 parts of rhodium chloride alone was used instead of using both sodium palladium chloride and rhodium chloride. As a result, acetaldehyde was produced at a production rate of only 6 g/l·hr of catalyst, and about 1.3 mol of acetic acid was produced relative to acetaldehyde. In addition, small amounts of ethylidene diacetate, acetic anhydride, and acetone were produced.
The selectivity of each product was as follows.

アセトアルデヒド 77.1% エチリデンジアセテート 15.5% 無水酢酸 6.1% その他 1.3% 比較例 2 実施例1において塩化パラジウムナトリウムと
塩化ロジウムの両者を使用するかわりに塩化パラ
ジウムナトリウムのみを2.5部使用する以外は実
施例1と同様にして反応を行なつた。その結果、
メタンと酢酸が少量生成するのみでアセトアルデ
ヒドその他の生成物はほとんど生成しなかつた。
Acetaldehyde 77.1% Ethylidene diacetate 15.5% Acetic anhydride 6.1% Others 1.3% Comparative Example 2 Same as Example 1 except that only 2.5 parts of sodium palladium chloride was used instead of using both sodium palladium chloride and rhodium chloride in Example 1. The reaction was carried out in the same manner. the result,
Only small amounts of methane and acetic acid were produced, and almost no acetaldehyde or other products were produced.

比較例 3 攪拌機を備えた容量1のオートクレーブに、
塩化ロジウム三水塩のかわりに塩化パラジウムナ
トリウム及び塩化ロジウム三水塩をモル比で2:
1の割合で使用する以外は、特開昭51−115409号
の実施例1に開示された方法と同様にして反応を
行なつた。その結果、各生成物の選択率は次のと
おりであつた。
Comparative Example 3 In an autoclave with a capacity of 1 equipped with a stirrer,
Instead of rhodium chloride trihydrate, use sodium palladium chloride and rhodium chloride trihydrate in a molar ratio of 2:
The reaction was carried out in the same manner as in Example 1 of JP-A-51-115409, except that the ratio of 1:1 was used. As a result, the selectivity of each product was as follows.

エチリデンジアセテート 76.3% 無水酢酸 16.5% アセトアルデヒド 6.2% その他 1.0% 比較例 4 酢酸メチル、ヨウ化メチル、一酸化炭素、水素
および窒素からなる混合ガス(酢酸メチル:ヨウ
化メチル:一酸化炭素:水素:窒素=65:1:
9:13:12(容量比))を使用する以外は実施例1
と同様にして反応を行なつた。その結果、各生成
物の選択率は次のとおりであつた。
Ethylidene diacetate 76.3% Acetic anhydride 16.5% Acetaldehyde 6.2% Others 1.0% Comparative example 4 Mixed gas consisting of methyl acetate, methyl iodide, carbon monoxide, hydrogen and nitrogen (methyl acetate: methyl iodide: carbon monoxide: hydrogen: Nitrogen = 65:1:
Example 1 except that 9:13:12 (capacity ratio) is used.
The reaction was carried out in the same manner. As a result, the selectivity of each product was as follows.

エチリデンジアセテート 7.1% メタン 12.6% アセトアルデヒド 75.8% その他 4.5% 実施例 8 酢酸メチル、ヨウ化メチル、一酸化炭素および
窒素からなる混合ガス(酢酸メチル:ヨウ化メチ
ル:一酸化炭素:水素=65:1:13:21(容量
比))を使用する以外は実施例1と同様にして反
応を行なつた。その結果、各生成物の選択率は次
のとおりであつた。
Ethylidene diacetate 7.1% Methane 12.6% Acetaldehyde 75.8% Others 4.5% Example 8 Mixed gas consisting of methyl acetate, methyl iodide, carbon monoxide and nitrogen (methyl acetate: methyl iodide: carbon monoxide: hydrogen = 65:1 :13:21 (volume ratio)) The reaction was carried out in the same manner as in Example 1. As a result, the selectivity of each product was as follows.

アセトアルデヒド 85.0% メタン 8.5% エチリデンジアセテート 1.3% その他 5.2% 以上の実施例及び比較例より本発明の効果は明
らかである。
Acetaldehyde 85.0% Methane 8.5% Ethylidene diacetate 1.3% Others 5.2% The effects of the present invention are clear from the above examples and comparative examples.

Claims (1)

【特許請求の範囲】[Claims] 1 酢酸メチル、一酸化炭素および水素を(a)ロジ
ウムまたはロジウム化合物および(b)パラジウムま
たはパラジウム化合物が担体に担持された触媒な
らびにハロゲン化合物の存在下、混合ガス中の水
素と一酸化炭素に対する酢酸メチルのモル比を
0.01〜2の範囲に保つて気相で反応させることを
特徴とするアセトアルデヒドの製造方法。
1 Methyl acetate, carbon monoxide and hydrogen in the presence of a catalyst in which (a) rhodium or a rhodium compound and (b) palladium or a palladium compound are supported on a carrier and a halogen compound, and acetic acid against hydrogen and carbon monoxide in a mixed gas. molar ratio of methyl
A method for producing acetaldehyde, characterized in that the reaction is carried out in a gas phase while maintaining the concentration in the range of 0.01 to 2.
JP57025435A 1982-02-18 1982-02-18 Production of acetaldehyde Granted JPS58144340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025435A JPS58144340A (en) 1982-02-18 1982-02-18 Production of acetaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025435A JPS58144340A (en) 1982-02-18 1982-02-18 Production of acetaldehyde

Publications (2)

Publication Number Publication Date
JPS58144340A JPS58144340A (en) 1983-08-27
JPS6337092B2 true JPS6337092B2 (en) 1988-07-22

Family

ID=12165901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025435A Granted JPS58144340A (en) 1982-02-18 1982-02-18 Production of acetaldehyde

Country Status (1)

Country Link
JP (1) JPS58144340A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2618147B1 (en) * 1987-07-16 1989-11-10 Usinor Aciers PROCESS FOR THE PREPARATION OF ALDEHYDES

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115409A (en) * 1975-03-10 1976-10-12 Halcon International Inc Method of producing ethyridene diacetate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115409A (en) * 1975-03-10 1976-10-12 Halcon International Inc Method of producing ethyridene diacetate

Also Published As

Publication number Publication date
JPS58144340A (en) 1983-08-27

Similar Documents

Publication Publication Date Title
JP3884291B2 (en) Method for producing vinyl acetate
JP4084044B2 (en) Integrated process for producing vinyl acetate
AU2000249242A1 (en) Integrated process for the production of vinyl acetate
JPS6043767B2 (en) Catalyst for alcohol carbonylation
JPS6337092B2 (en)
JP2660880B2 (en) Acetic acid production method
JP3343982B2 (en) Acetic acid production method
JPS5926611B2 (en) Method for producing acetic anhydride
JPS58134040A (en) Manufacture of acetic acid, acetaldehyde and ethanol
JPS5913745A (en) Preparation of acetaldehyde
JPS5980630A (en) Preparation of oxalic acid diester
JPH0321012B2 (en)
KR100628675B1 (en) Process for the production of vinyl acetate
JPH04297445A (en) Production of carbonic acid diester
JPS6260376B2 (en)
JPS59172436A (en) Carbonylation of dimethyl ether
KR100689647B1 (en) Integrated process for the production of vinyl acetate
JP3058512B2 (en) Acetic acid production method
JPS642091B2 (en)
JPH1072403A (en) Production of vinyl acetate
JPH0489458A (en) Production of carbonic acid diester
JPH04297443A (en) Production of carbonic acid diester
JPH04139152A (en) Production of carbonate diester
JPS59172432A (en) Preparation of 1-phenyl-2-alkoxyalkanes
JPH04297444A (en) Production of carbonic acid diester