JPH04297445A - Production of carbonic acid diester - Google Patents

Production of carbonic acid diester

Info

Publication number
JPH04297445A
JPH04297445A JP3132376A JP13237691A JPH04297445A JP H04297445 A JPH04297445 A JP H04297445A JP 3132376 A JP3132376 A JP 3132376A JP 13237691 A JP13237691 A JP 13237691A JP H04297445 A JPH04297445 A JP H04297445A
Authority
JP
Japan
Prior art keywords
compound
catalyst
nitrite
reaction
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3132376A
Other languages
Japanese (ja)
Inventor
Tsuneo Shimamura
島村 常夫
Satoru Fujizu
悟 藤津
Yoshinobu Toyahara
鳥屋原 慶信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP3132376A priority Critical patent/JPH04297445A/en
Publication of JPH04297445A publication Critical patent/JPH04297445A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To industrially advantageously obtain a carbonic acid diester by subjecting CO to vapor phase reaction with a nitrite under mild conditions using a solid catalyst obtained by adding an alkali (earth) metal salt of phosphoric acid to a compound of platinum group metal, compound of iron, copper, etc., and compound of V, W, etc. CONSTITUTION:Carbon monoxide is subjected to vapor phase reaction with a nitrite (particularly, methyl nitrite or ethyl nitrite) using a solid catalyst obtained by supporting a platinum group metal or compound thereof as the primary catalyst component, compound (e.g. copper (III) chloride) of a metal selected from iron, copper, Bi, Co, Ni and tin as the secondary catalyst compound, a compound (e.g. vanadium oxide) of metal selected from V, Mo and W as the tertiary catalyst component and alkali metal salt or alkaline earth metal salt (e.g. lithium phosphate of phosphoric acid as the forth component on the support to provide carbonic acid diester (e.g. dimethyl carbonate). The above-mentioned reaction can stably be carried out under mild conditions in high selectivity and yield without accompanying danger in the operation by subjecting the above-mentioned component to vapor phase reaction under low temperature and pressure using the above-mentioned catalyst. Separation of catalyst is made unnecessary and metal thereof is not eluted, because the reaction is carried out in vapor phase.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、炭酸ジエステルの製
造法に関し、より詳しくは、一酸化炭素と亜硝酸エステ
ルとから炭酸ジエステルを選択的に、かつ、安定に製造
する方法に関する。炭酸ジエステルは、医薬、農薬等の
有機合成原料として、また、ポリカーボネートやウレタ
ン等の製造のための中間体として非常に有用な化合物で
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing carbonic acid diesters, and more particularly to a method for selectively and stably producing carbonic acid diesters from carbon monoxide and nitrite. Carbonic diester is a very useful compound as a raw material for organic synthesis of medicines, agricultural chemicals, etc., and as an intermediate for the production of polycarbonate, urethane, etc.

【0002】0002

【従来技術の説明】炭酸ジエステルの製造方法としては
、ホスゲンとアルコールとを反応させる方法が非常に古
くから実施されているが、ホスゲンは毒性が極めて強く
、また、ホスゲンとアルコールとの反応で塩酸が副生す
るため装置材質上に問題があることなど、ホスゲンを使
用しない製造法が望まれていた。
[Description of the prior art] As a method for producing carbonic diester, a method of reacting phosgene and alcohol has been practiced for a very long time, but phosgene is extremely toxic, and the reaction between phosgene and alcohol results in hydrochloric acid A production method that does not use phosgene has been desired, as the production of phosgene as a by-product poses problems with the equipment material.

【0003】このことからホスゲンを使用しない製造法
として、アルコールと一酸化炭素より炭酸ジエステルを
合成する方法等が各方面で研究され、提案されている(
例えば、特開昭60−75447号公報、特開昭63−
72650号公報、特開昭63−3801号公報、WO
−87/7601号明細書などを参照)。これらは、ハ
ロゲン化銅、ハロゲン化パラジウム等を触媒として用い
、アルコールと一酸化炭素との酸素酸化反応により液相
中で炭酸ジエステルを合成する方法であるが、二酢化炭
素が副生するために一酸化炭素基準の炭酸ジエステルの
選択率が低く、また水の生成により炭酸ジエステルの精
製にも手間がかかるという欠点がある。さらに、これら
の特許に開示されている方法により炭酸ジエステルの製
造を行う場合は、生成物と触媒とを分離する工程が必要
であり、必ずしも産業上有利な方法であるとは言えない
[0003] For this reason, various research and proposals have been made in various fields, including a method of synthesizing carbonic acid diester from alcohol and carbon monoxide, as a production method that does not use phosgene.
For example, JP-A-60-75447, JP-A-63-
No. 72650, JP-A-63-3801, WO
-Refer to the specification of No. 87/7601, etc.). These methods use copper halides, palladium halides, etc. as catalysts to synthesize carbonic acid diesters in the liquid phase through an oxygen oxidation reaction between alcohol and carbon monoxide, but carbon diacetate is produced as a by-product. However, the selectivity of carbonic diester based on carbon monoxide is low, and the purification of carbonic diester is time-consuming due to the production of water. Furthermore, when carbonic acid diester is produced by the methods disclosed in these patents, a step of separating the product and the catalyst is required, and it cannot necessarily be said that the method is industrially advantageous.

【0004】そこで、その改良法として、例えば、亜硝
酸エステルと一酸化炭素を、白金属金属もしくはその化
合物を担体に担持した固体触媒および一酸化炭素当たり
O2として10モル%以上の酸化剤の存在下、気相で反
応させることからなる炭酸ジエステルの製造法が、特開
昭60−181051号公報に提案されている。しかし
ながら、この方法は、シュウ酸ジエステルの副生を抑え
るために、一酸化炭素に対して上記のような割合で酸素
等の酸化剤を共存させているにもかかわらず、かなりの
量のシュウ酸ジエステルが副生しており、炭酸ジエステ
ルの選択率が低いと共に、反応速度も十分ではない。ま
た、反応に供される亜硝酸エステル、一酸化炭素、アル
コール、酸素等から成る混合ガス中における亜硝酸エス
テルの使用範囲が爆発限界を越えており、安全上からも
問題があるなど、工業的には必ずしも満足できる方法で
はない。
Therefore, as an improvement method, for example, the presence of a solid catalyst in which a nitrite ester and carbon monoxide are supported on a platinum metal or a compound thereof and an oxidizing agent in an amount of 10 mol % or more as O2 per carbon monoxide is proposed. JP-A-60-181051 proposes a method for producing carbonic acid diester which involves reaction in the gas phase. However, in this method, a considerable amount of oxalic acid is produced even though an oxidizing agent such as oxygen is coexisting with carbon monoxide at the above ratio in order to suppress the by-product of oxalic acid diester. Diester is produced as a by-product, and the selectivity for carbonic acid diester is low, and the reaction rate is not sufficient. In addition, the usage range of nitrite ester in the mixed gas consisting of nitrite ester, carbon monoxide, alcohol, oxygen, etc. used in the reaction exceeds the explosive limit, which poses safety problems. is not necessarily a satisfactory method.

【0005】[0005]

【発明が解決しようとする課題】亜硝酸エステルを使用
する従来公知の炭酸ジエステルの製造方法は、前述した
ように、一酸化炭素と亜硝酸エステルとの反応速度が十
分ではなく、また、炭素ジエステルの選択率も低いため
、生成した炭酸ジエステルの精製処理が煩雑になるとい
う欠点があったのである。さらには、反応系における亜
硝酸エステルの使用濃度範囲が爆発限界を越えており、
操作上危険を伴うという問題もあったのである。そこで
、この発明の目的は、反応生成物の分離  回収が容易
な気相法により、温和な反応条件下に、炭素ジエステル
を高選択率、高収率、かつ、安定に製造し得る工業的に
好適な炭酸ジエステルの製造法を提供することにある。 特に、実用的な固定床気相法プロセスにおいては、触媒
活性が張期にわたって安定していることが重要であり、
この発明は、そのような要望に添った炭酸ジエステルの
製造法を提供するものである。
[Problems to be Solved by the Invention] As mentioned above, in the conventionally known method for producing carbonate diester using nitrite ester, the reaction rate between carbon monoxide and nitrite ester is insufficient. Since the selectivity of the carbonic acid diester produced is also low, the purification process of the produced carbonic acid diester becomes complicated. Furthermore, the concentration range of nitrite ester used in the reaction system exceeds the explosive limit,
There was also the problem that it was dangerous to operate. Therefore, an object of the present invention is to produce an industrial carbon diester with high selectivity, high yield, and stability under mild reaction conditions by a gas phase method that facilitates the separation and recovery of reaction products. The object of the present invention is to provide a suitable method for producing carbonic diester. In particular, in practical fixed bed gas phase processes, it is important that the catalyst activity is stable over time.
The present invention provides a method for producing carbonic diester that meets such demands.

【0006】[0006]

【課題を解決するための手段】この発明者らは、従来公
知の炭酸ジエステルの製造法における前述したような問
題点を克服すべく、一酸化炭素と亜硝酸エステルとの気
相接触反応によって、炭酸ジエステルを製造する際の触
媒等、亜硝酸エステル使用による炭酸ジエステルの合成
反応について鋭意検討した結果、温和な反応条件下、前
述したような固体触媒を使用すれば、極めて高収率で目
的生成物の炭酸ジエステルが得られることを見出してこ
の発明に到達した。
[Means for Solving the Problems] In order to overcome the above-mentioned problems in the conventionally known production methods of carbonic acid diesters, the present inventors conducted a gas phase catalytic reaction between carbon monoxide and nitrite ester. As a result of intensive studies on the synthesis reaction of carbonic acid diester using nitrite ester, such as a catalyst for producing carbonic diester, we found that if a solid catalyst such as the one described above is used under mild reaction conditions, the desired product can be produced in an extremely high yield. The present invention was achieved by discovering that a carbonic acid diester of a compound can be obtained.

【0007】すなわち、この発明は、白金族金属または
その化合物と、鉄、銅、ビスマス、コバルト、ニッケル
および錫からなる群から選ばれた少なくとも1種類の金
属の化合物と、バナジウム、モリブデンおよびタングス
テンからなる群から選ばれた少なくとも1種類の金属の
化合物とリン酸のアルカリ金属塩又はアルカリ土類金属
塩とを担体に担持した固体触媒の存在下、一酸化炭素と
亜硝酸エステルとを気相接触反応させることを特徴とす
る炭酸ジエステルの製造法に関する。
[0007] That is, the present invention provides a platinum group metal or a compound thereof, a compound of at least one metal selected from the group consisting of iron, copper, bismuth, cobalt, nickel, and tin, and a combination of vanadium, molybdenum, and tungsten. Carbon monoxide and nitrite are brought into gas phase contact in the presence of a solid catalyst in which at least one metal compound selected from the group consisting of alkali metal salt or alkaline earth metal salt of phosphoric acid is supported on a carrier. The present invention relates to a method for producing carbonic acid diester, which is characterized by a reaction.

【0008】[0008]

【本発明の各要件の詳しい説明】以下に、この発明の方
法を詳しく説明する。この発明で使用される亜硝酸エス
テルとしては、亜硝酸メチル、亜硝酸エチル、亜硝酸n
−(またはi−)プロピル、亜硝酸n−(またはi−)
ブチル、亜硝酸sec−ブチル等の炭素数1〜4個の低
級脂肪族一価アルコールの亜硝酸エステル、亜硝酸シク
ロヘキシル等の脂環式アルコールの亜硝酸エステル、亜
硝酸ベンジル、亜硝酸フェニルエチル等のアルアルキル
アルコールの亜硝酸エステルなどが好適に挙げられるが
、特に前記の炭素数1〜4個の低級脂肪族一価アルコー
ルの亜硝酸エステルが好ましく、中でも亜硝酸メチルお
よび亜硝酸エチルが最も好ましい。
[Detailed Description of Each Requirement of the Present Invention] The method of the present invention will be explained in detail below. The nitrite esters used in this invention include methyl nitrite, ethyl nitrite, nitrite n
-(or i-)propyl, nitrite n-(or i-)
Nitrite esters of lower aliphatic monohydric alcohols having 1 to 4 carbon atoms such as butyl and sec-butyl nitrite, nitrite esters of alicyclic alcohols such as cyclohexyl nitrite, benzyl nitrite, phenylethyl nitrite, etc. Preferred examples include nitrite esters of aralkyl alcohols, and nitrite esters of lower aliphatic monohydric alcohols having 1 to 4 carbon atoms are particularly preferred, with methyl nitrite and ethyl nitrite being the most preferred. .

【0009】また、この発明で用いられる固体触媒は、
パラジウム、白金、イリジウム、ルテニウム、ロジウム
等の白金族金属または該金属の化合物(第1触媒成分)
と、鉄、銅、ビスマス、コバルト、ニッケルおよび錫か
らなる群から選ばれた少なくとも1種類の金属の化合物
(第2触媒成分)と、バナジウム、モリブデンおよびタ
ングステンからなる群から選ばれた少なくとも1種類の
金属の化合物(第3触媒成分)とリン酸のアルカリ金属
塩又はアルカリ土類金属塩とを担体に担持したものであ
り、より好ましくは、前記白金族金属の化合物と、鉄、
銅、ビスマス、コバルト、ニッケルおよび錫からなる群
から選ばれた少なくとも1種類の金属の化合物と、バナ
ジウム、モリブデンおよびタングステンからなる群から
選ばれた少なくとも1種雷の金属の化合物とリン酸のア
ルカリ金属塩又はアルカリ土類金属塩とを担体に担持し
たものである。
[0009] Furthermore, the solid catalyst used in this invention is
Platinum group metals such as palladium, platinum, iridium, ruthenium, rhodium, etc. or compounds of these metals (first catalyst component)
and at least one metal compound (second catalyst component) selected from the group consisting of iron, copper, bismuth, cobalt, nickel, and tin, and at least one metal compound selected from the group consisting of vanadium, molybdenum, and tungsten. The metal compound (third catalyst component) and an alkali metal salt or alkaline earth metal salt of phosphoric acid are supported on a carrier, and more preferably, the platinum group metal compound and iron,
A compound of at least one metal selected from the group consisting of copper, bismuth, cobalt, nickel, and tin, a compound of at least one lightning metal selected from the group consisting of vanadium, molybdenum, and tungsten, and an alkali of phosphoric acid. A metal salt or an alkaline earth metal salt is supported on a carrier.

【0010】前記白金族金属の化合物としては、該金属
の塩化物、臭化物、沃化物、弗化物等のハロゲン化合物
、硝酸塩、硫酸塩、燐酸塩、酢酸塩、シュウ酸塩、安息
香酸塩などが好適に挙げられる。より具体的には、塩化
パラジウム、臭化パラジウム、沃化パラジウム、弗化パ
ラジウム、硝酸パラジウム、硫酸パラジウム、燐酸パラ
ジウム、酢酸パラジウム、シュウ酸パラジウム、安息香
酸パラジウム、塩化白金、塩化イリジウム、塩化ルテニ
ウム、沃化ルテニウム、塩化ロジウム、臭化ロジウム、
沃化ロジウム、硝酸ロジウム、硫酸ロジウム、酢酸ロジ
ウムなどが挙げられる。上記の中でも、パラジウム、ル
テニウムまたはロジウムのハロゲン化合物または硫酸塩
が特に好ましく、さらには、塩化パラジウムが最も好ま
しい。
Examples of the platinum group metal compounds include halogen compounds such as chlorides, bromides, iodides, and fluorides, nitrates, sulfates, phosphates, acetates, oxalates, and benzoates of the metals. Preferred examples include: More specifically, palladium chloride, palladium bromide, palladium iodide, palladium fluoride, palladium nitrate, palladium sulfate, palladium phosphate, palladium acetate, palladium oxalate, palladium benzoate, platinum chloride, iridium chloride, ruthenium chloride, Ruthenium iodide, rhodium chloride, rhodium bromide,
Examples include rhodium iodide, rhodium nitrate, rhodium sulfate, and rhodium acetate. Among the above, halogen compounds or sulfates of palladium, ruthenium or rhodium are particularly preferred, and palladium chloride is most preferred.

【0011】前記鉄、銅、ビスマス、コバルト、ニッケ
ル、錫等の金属の化合物としては、これら金属の塩化物
、臭化物、沃化物、弗化物等のハロゲン化合物、硝酸塩
、硫酸塩、燐酸塩、酢酸塩などが挙げられるが、中でも
前記のハロゲン化合物または硫酸塩が特に好適に挙げら
れる。また、前記バナジウム、モリブデン、タングステ
ン等の金属の化合物としては、これら金属の酸化物、金
属酸、金属酸塩、金属酸アンモニウムなどが挙げられる
が、中でも酸化バナジウム、酸化モリブデン、酸化タン
グステンのような酸化物、バナジン酸アンモニウム、モ
リブデン酸アンモニウム、タングステン酸アンモニウム
等の金属酸アンモニウムが好適に挙げられる。また、前
記リン酸のアルカリ金属閻魔他アルカリ土類金属塩とし
ては、リン酸リチウム、リン酸水素リチウム、リン酸二
水素表リチウム、リン酸ナトリウム、リン酸水素ナトリ
ウム、リン酸二水素ナトリウム、リン酸カリウム、リン
酸水素カリウム、リン酸二水素カリウム、リン酸ルビジ
ウム、リン酸水素ルビジウム、リン酢二水素ルビジウム
、リン酸セシウム、リン酸水素セシウム、リン酢二水素
セシウム、リン酸マグネシウム、リン酢水素マグネシウ
ム、リン酸二水素マグネシウム、リン酸カルシウム、リ
ン酸水素カルシウム、リン酸二水素カルシウム、リン酸
ストロンチウム、リン酸水素ストロンチウム、リン酸二
水素ストロンチウム、リン酸バリウム、リン酸水素バリ
ウム、リン酸二水素バリウムなどが好適に挙げられる。
[0011] Compounds of metals such as iron, copper, bismuth, cobalt, nickel, and tin include halogen compounds of these metals such as chlorides, bromides, iodides, and fluorides, nitrates, sulfates, phosphates, and acetic acid. Examples include salts, among which the above-mentioned halogen compounds and sulfates are particularly preferred. Compounds of metals such as vanadium, molybdenum, and tungsten include oxides, metal acids, metal salts, ammonium metal oxides, etc. of these metals, and among them, compounds such as vanadium oxide, molybdenum oxide, and tungsten oxide. Preferred examples include ammonium metal oxides such as ammonium vanadate, ammonium molybdate, and ammonium tungstate. In addition, the alkali metal salts and other alkaline earth metal salts of phosphoric acid include lithium phosphate, lithium hydrogen phosphate, lithium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, Potassium acid, potassium hydrogen phosphate, potassium dihydrogen phosphate, rubidium phosphate, rubidium hydrogen phosphate, rubidium dihydrogen phosphoric acid, cesium phosphate, cesium hydrogen phosphate, cesium dihydrogen phosphoric acid, magnesium phosphate, phosphoric acid Magnesium hydrogen phosphate, magnesium dihydrogen phosphate, calcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, strontium phosphate, strontium hydrogen phosphate, strontium dihydrogen phosphate, barium phosphate, barium hydrogen phosphate, dihydrogen phosphate Preferred examples include barium.

【0012】上述したような金属の化合物を担持する担
体としては、珪藻土、活性炭、シリコンカーバイド、チ
タニア、アルミナ、シリカアルミナなどが好適に挙げら
れるが、活性炭が最も好ましい。前記各触媒成分を担体
に担持する方法は、特別なものである必要はなく通常実
施される方法、すなわち、含浸法(浸漬吸着法)、混練
法、沈着法、蒸発乾固法、共沈法等でよいが、この発明
では、含浸法または蒸発乾固法により調製されることが
簡便であることからして望ましい。なお、上記の触媒成
分の担体への担持は、同時に行ってもまたは逐次に行っ
てもよい。
[0012] Preferred examples of the carrier supporting the above-described metal compound include diatomaceous earth, activated carbon, silicon carbide, titania, alumina, and silica alumina, and activated carbon is most preferred. The method for supporting each of the catalyst components on the carrier does not need to be a special method, and may be a commonly used method, such as an impregnation method (immersion adsorption method), a kneading method, a deposition method, an evaporation-drying method, or a coprecipitation method. However, in the present invention, preparation by an impregnation method or an evaporation to dryness method is preferred because it is simple. Note that the above catalyst components may be supported on the carrier simultaneously or sequentially.

【0013】そして、担体に担持する前記白金族全属ま
たはその化合物の担持量は、白金族金属の金属換算で担
体に対し、通常0.1〜10重量%、特には0.5〜2
重量%が好ましい。また、鉄、銅、ビスマス、コバルト
、ニッケル、錫等の金属の化合物の担持量は、これら金
属の量に換算して白金族金属に対して0.1〜50グラ
ム原子当量、好ましくは1〜10グラム原子当量である
ことが好ましい。また、前記リン酸のアルカリ金属塩又
はアルカリ土類金属塩の担持量は、これら金属の量に換
算して白金属・金属に対して0.1〜20グラム原子当
量、好ましくは0.5〜10グラム原子当量であること
が好ましい。さらに、バナジウム、モリブデン、タング
ステン等の金属の化合物の担持量は、これら金属の量に
換算して白金族金属に対して0.1〜20グラム原子当
量、好ましくは0.5〜5グラム原子当量であることが
好ましい。
[0013] The amount of all platinum group metals or their compounds supported on the carrier is usually 0.1 to 10% by weight, particularly 0.5 to 2% by weight, based on the carrier in terms of platinum group metal.
Weight percent is preferred. Further, the supported amount of metal compounds such as iron, copper, bismuth, cobalt, nickel, and tin is 0.1 to 50 gram atomic equivalents, preferably 1 to 50 gram atomic equivalents, relative to the platinum group metal, in terms of the amount of these metals. Preferably it is 10 gram atomic equivalents. Further, the supported amount of the alkali metal salt or alkaline earth metal salt of phosphoric acid is 0.1 to 20 gram atomic equivalents, preferably 0.5 to 20 g atomic equivalents relative to the white metal/metal in terms of the amount of these metals. Preferably it is 10 gram atomic equivalents. Further, the supported amount of metal compounds such as vanadium, molybdenum, and tungsten is 0.1 to 20 gram atomic equivalents, preferably 0.5 to 5 gram atomic equivalents, relative to the platinum group metal in terms of the amount of these metals. It is preferable that

【0014】この発明で使用する固体触媒は、前述した
ように、白金族金属またはその化合物に加えて、さらに
鉄、銅、ビスマス、コバルト、ニッケルおよび錫からな
る群から選ばれた少なくとも1種類の金属の化合物を担
体に担持させているが、この発明において、これら金属
の化合物は、助触媒的な役割を果たすものであり、これ
ら金属の化合物を上記の量で担体に担持することによっ
て、白金族金属またはその化合物単独担持の場合に比較
して、一酸化炭素と亜硝酸エステルとの反応速度が大幅
に向上するのである。そして、この発明で使用する固体
触媒は、さらにバナジウム、モリブデンおよびタングス
テンからなる群から選ばれた少なくとも1種類の金属の
化合物も第3触媒成分として担体に担持することを特徴
としているが、これら金属の化合物を上記の量で担体に
担持することによって、触媒の失活速度が大幅に小さく
なるのである。また、この発明で使用する固体触媒は、
さらにリン酸のアルカリ金属塩又はアルカリ土類金属塩
を第4触媒成分として担体に担持することを特徴として
いるが、これら化合物を上記の量で担体に担持すること
によって、触媒の失活速度が大幅に小さくなる。
As mentioned above, the solid catalyst used in the present invention contains at least one metal selected from the group consisting of iron, copper, bismuth, cobalt, nickel and tin, in addition to a platinum group metal or a compound thereof. Metal compounds are supported on the carrier. In this invention, these metal compounds play the role of promoters, and by supporting these metal compounds in the above amount on the carrier, platinum The reaction rate between carbon monoxide and nitrite ester is greatly improved compared to the case where the group metal or its compound is supported alone. The solid catalyst used in the present invention is further characterized in that a compound of at least one metal selected from the group consisting of vanadium, molybdenum, and tungsten is also supported on the carrier as a third catalyst component. By supporting the above-mentioned amount of the compound on the carrier, the deactivation rate of the catalyst can be significantly reduced. Furthermore, the solid catalyst used in this invention is
Furthermore, it is characterized in that an alkali metal salt or alkaline earth metal salt of phosphoric acid is supported on the carrier as a fourth catalyst component, and by supporting these compounds on the carrier in the above amount, the deactivation rate of the catalyst can be reduced. significantly smaller.

【0015】また、この発明では、上記の触媒は、粉末
、粒状のもの、もしくは成形体が使用されるが、そのサ
イズについては、特に限定されるものではなく、粉末の
場合は、通常用いられる20〜100μmのもの、そし
て粒状の場合は、4〜200メッシユ程度の通常用いら
れるものが好適である。また、成形体の場合は、通常数
mmのものが好適に用いられる。さらに、一酸化炭素と
亜硝酸エステルの接触反応は、非常に温和な条件下で行
えるのもこの発明の一つの特徴である。例えば、0〜2
00℃、好ましくは50〜140℃の温度で、常圧で行
われ得る。もちろん、加圧系でも問題なく行うことがで
き、1〜20kg/cm2Gの圧力および50〜140
℃の温度の範囲で実施することができる。
[0015] Further, in the present invention, the above-mentioned catalyst is used in the form of powder, granules, or molded bodies, but the size thereof is not particularly limited. It is preferable to have a particle size of 20 to 100 μm, and in the case of granules, a commonly used particle size of about 4 to 200 mesh. Moreover, in the case of a molded body, a molded body having a size of several mm is usually suitably used. Furthermore, one feature of the present invention is that the catalytic reaction between carbon monoxide and nitrite ester can be carried out under very mild conditions. For example, 0-2
It may be carried out at a temperature of 00°C, preferably 50-140°C, and normal pressure. Of course, it can be carried out without any problem even in a pressurized system, with a pressure of 1 to 20 kg/cm2G and a pressure of 50 to 140 kg/cm2.
It can be carried out at a temperature range of 0.degree.

【0016】ところで、前述したような原料の亜硝酸エ
ステルは、例えば、亜硝酸ソーダ水溶液の硝酸もしくは
硫酸分解により、一酸化窒素(NO)および二酸化窒素
(NO2)の混合ガスを発生させ、次いで、この混合ガ
ス中のNOの一部を分子状酸素で酸化してNO2と成し
て、NO/NO2=1/1(容量比)のNOxガスを得
、これにアルコールを接触させることにより、容易に合
成されるものであるが、この亜硝酸エステルの合成まで
を含めて考えると、前記一酸化炭素と亜硝酸エステルと
の接触反応は、2〜3kg/cm2G程度の若干の加圧
系の方が特に望ましい。前記一酸化炭素と亜硝酸エステ
ルとの反応の形式としては、気相で、バッチ式、連続式
の何れでも行うことができるが、連続式の方が工業的に
は有利である。また、触媒の反応系への存在形態として
は、固定床または流動床の何れの反応器を用いても実施
することができる。
By the way, the raw material nitrite ester as described above is produced by, for example, decomposing a sodium nitrite aqueous solution with nitric acid or sulfuric acid to generate a mixed gas of nitrogen monoxide (NO) and nitrogen dioxide (NO2), and then, A part of NO in this mixed gas is oxidized with molecular oxygen to form NO2 to obtain NOx gas with NO/NO2 = 1/1 (volume ratio), and by bringing alcohol into contact with this, it is easy to However, when considering the synthesis of this nitrite ester, the contact reaction between carbon monoxide and nitrite ester is performed in a slightly pressurized system of about 2 to 3 kg/cm2G. is particularly desirable. The reaction between the carbon monoxide and the nitrite ester can be carried out in a gas phase either batchwise or continuously, but the continuous method is industrially more advantageous. Furthermore, the catalyst can be present in the reaction system using either a fixed bed or fluidized bed reactor.

【0017】この発明では、原料ガスの一酸化炭素およ
び亜硝酸エステルは、窒素ガス等の不活性ガスで希釈し
て前記の反応器にフィードされることが望ましいが、そ
の組成としては、反応上からは特に限定されるものでは
ない。しかし、安全上の観点からすれば、前記亜硝酸エ
ステルの濃度は、20容量%以下、好ましくは5〜20
容量%であることが望ましい。それに伴い、一酸化炭素
の濃度は、5〜20容量%の範囲にするのが経済的に好
ましい。すなわち、工業的な製造プロセスを考えれば、
反応に供する一酸化炭素、亜硝酸エステル等のガスを循
環使用し、該循環ガスの一部を系外へパージすることが
好ましく、また、一酸化炭素のワンパスの転化率が20
〜30%程度であることからして、一酸化炭素の濃度を
20容量%より高くしてもロスが増えるだけであり、ま
た、5容量%より低くすると生産性が落ちるなどの問題
があるのである。しかし、この経済性を無視すれば、一
酸化炭素の濃度は、実際には80容量%までは可能であ
る。つまり、亜硝酸エステルを、前記不活性ガスの代わ
りに一酸化炭素で希釈した形でフィードすることも可能
なのである。
In the present invention, it is desirable that the raw material gases carbon monoxide and nitrite be diluted with an inert gas such as nitrogen gas before being fed to the reactor. It is not particularly limited. However, from a safety point of view, the concentration of the nitrite ester should be 20% by volume or less, preferably 5 to 20% by volume.
Preferably, it is % by volume. Accordingly, it is economically preferable for the concentration of carbon monoxide to be in the range of 5 to 20% by volume. In other words, considering the industrial manufacturing process,
It is preferable to circulate the gas such as carbon monoxide and nitrite ester used in the reaction and to purge a part of the circulating gas to the outside of the system.
Since the concentration of carbon monoxide is around 30%, increasing the concentration of carbon monoxide above 20% by volume will only increase loss, and lowering it below 5% by volume will cause problems such as decreased productivity. be. However, if this economy is ignored, the concentration of carbon monoxide can actually be up to 80% by volume. That is, it is also possible to feed the nitrite ester diluted with carbon monoxide instead of the inert gas.

【0018】従って、一酸化炭素と亜硝酸エステルの使
用の割合は、亜硝酸エステル1モルに対して、一酸化炭
素が、0.1〜10モル、好ましくは0.25〜1モル
の範囲であることが望ましい。また、この発明では、前
記反応器にフィードされる、一酸化炭素および亜硝酸エ
ステルを含有するガスの空間速度は、500〜2000
0hr−1の範囲、好ましくは2000〜15000h
r−1の範囲で行うことが望ましい。さらに、この発明
の製法では、前記の亜硝酸エステルは、反応に携わった
後、分解して一酸化窒素(NO)を発生するが、前記反
応器から導出される反応ガスから、このNOを回収し、
酸素および前記亜硝酸エステルに対応するアルコールと
反応させて、再度亜硝酸エステルに変換せしめ、循環使
用することが好ましい。
Therefore, the ratio of carbon monoxide and nitrite ester is such that carbon monoxide is used in a range of 0.1 to 10 mol, preferably 0.25 to 1 mol, per 1 mol of nitrite. It is desirable that there be. Further, in this invention, the space velocity of the gas containing carbon monoxide and nitrite ester, which is fed to the reactor, is 500 to 2000.
0hr-1 range, preferably 2000-15000h
It is desirable to carry out within the range of r-1. Furthermore, in the production method of the present invention, the nitrite ester decomposes and generates nitrogen monoxide (NO) after being involved in the reaction, and this NO is recovered from the reaction gas discharged from the reactor. death,
It is preferable to react with oxygen and an alcohol corresponding to the nitrite ester to convert it again into a nitrite ester, and to reuse the nitrite ester.

【0019】以上のようにして、反応器から目的生成物
の炭酸ジエステルの他に、シュウ酸ジエステル等の副生
物、未反応の一酸化炭素および亜硝酸エステル、一酸化
窒素、二酸化炭素、不活性ガスなどを含む反応ガスが導
出されるが、例えば、この反応ガスを冷却後、一酸化炭
素、亜硝酸エステル、一酸化窒素、二酸化炭素、不活性
ガス等の未凝縮ガスは、前述した如く、その一部をパー
ジしながら、再度反応器に循環せしめる一方、凝縮液か
ら例えば蒸留等の常法により炭酸ジエステルを分離精製
するのである。
As described above, in addition to the target product carbonate diester, byproducts such as oxalate diester, unreacted carbon monoxide and nitrite ester, nitrogen monoxide, carbon dioxide, and inert For example, after cooling this reaction gas, uncondensed gases such as carbon monoxide, nitrite, nitrogen monoxide, carbon dioxide, and inert gas are extracted, as described above. A portion of the condensate is purged and circulated to the reactor again, while the carbonic acid diester is separated and purified from the condensate by a conventional method such as distillation.

【0020】なお、原料の亜硝酸エステルは、前述した
ように、通常、アルコールと窒素酸化物を必要に応じて
分子状酸素の存在下に反応させて調製され、そのガス中
には亜硝酸エステルの他に、未反応のアルコール、窒素
酸化物(特に一酸化窒素)、場合によっては微量の水や
酸素が含まれている。この発明では、このような亜硝酸
エステル含有ガスを、亜硝酸エステル源として使用する
場合にも好結果が得られるのである。
As mentioned above, the raw material nitrite ester is usually prepared by reacting alcohol and nitrogen oxide in the presence of molecular oxygen if necessary, and the nitrite ester is contained in the gas. In addition, it contains unreacted alcohol, nitrogen oxides (particularly nitric oxide), and in some cases trace amounts of water and oxygen. In the present invention, good results can also be obtained when such a nitrite ester-containing gas is used as a nitrite ester source.

【0021】[0021]

【実施例】次に、実施例および比較例を挙げて、この発
明の方法を具体的に説明するが、これらは、この発明の
方法を何ら限定するものではない。なお、各実施例およ
び比較例における空時収量(STY)Y(g/l・hr
)は、一酸化炭素と亜硝酸エステルの接触反応時間をθ
(hr)、その間に生成した炭酸ジエステルの量をa(
g)、そして反応管への触媒の充填量をb(l)として
、次式により求めた。 Y=a/(b×θ) また、各実施例および比較例における活性低下係数Da
(hr−1)は、所定反応条件下で、反応初期(反応を
開始してから2時間経過後)の空時収量Y0(g/l・
hr)と反応を開始してからt時間終過後の空時収量Y
t(g/l・hr)との間で Yt=Y0・exp(−kt)    とおいて、kを
求めた後、Da=100×k      とした値であ
る。
[Examples] Next, the method of the present invention will be specifically explained with reference to Examples and Comparative Examples, but these are not intended to limit the method of the present invention in any way. In addition, the space-time yield (STY) Y (g/l・hr
) is the contact reaction time between carbon monoxide and nitrite ester, θ
(hr), and the amount of carbonic acid diester produced during that time is a(
g), and the amount of catalyst packed into the reaction tube was determined by the following formula as b(l). Y=a/(b×θ) In addition, the activity reduction coefficient Da in each example and comparative example
(hr-1) is the space-time yield Y0 (g/l·
space-time yield Y after t hours have passed since the start of the reaction with
After calculating k by setting Yt=Y0·exp(-kt) between Yt and t(g/l·hr), Da=100×k.

【0022】(実施例1) 〔触媒の製造〕塩化パラジウム(PdCl2)0.33
gおよび塩化第二銅(CuCl2・2H2O)0.64
1gおよびモリブデン酸アンモニウム〔(NH4)6M
o7O24・4H2O)0.679gおよびリン酢二水
素カリウム0.506gを25重量%アンモニア水70
mlに80〜90℃で加熱溶解させ、Pd、Cu、Mo
およびリン酸二水素カリウム含有溶液を調製した。他方
、0.5〜0.7mmの径の粒状活性炭(C)を25重
量%アンモニア水に浸漬させ、この中に前記のPd、C
u,Moおよびリン酸二水素カリウム含有溶液を加えて
1時間静置した。その後減圧下に80℃で水分を蒸発除
去し、さらに窒素雰囲気中、200℃で乾燥し、触媒を
製造した。得られた触媒の組成は、PdCl2−CuC
l2−(NH4)6Mo7O24−KH2PO4/C(
活性炭)であり、触媒中の金属化合物の担持量は、Pd
が金属として担体に対して1重量%、そして、Pd:C
u:Mo:K=1:2:2.1:2(原子比)であった
(Example 1) [Production of catalyst] Palladium chloride (PdCl2) 0.33
g and cupric chloride (CuCl2.2H2O) 0.64
1 g and ammonium molybdate [(NH4)6M
o7O24・4H2O) 0.679g and 0.506g of potassium phosphoric acid dihydrogen were added to 25% by weight ammonia water 70g
Pd, Cu, Mo
and a solution containing potassium dihydrogen phosphate was prepared. On the other hand, granular activated carbon (C) with a diameter of 0.5 to 0.7 mm is immersed in 25% by weight ammonia water, and the above-mentioned Pd, C
A solution containing u, Mo and potassium dihydrogen phosphate was added, and the mixture was allowed to stand for 1 hour. Thereafter, moisture was removed by evaporation at 80° C. under reduced pressure, and the mixture was further dried at 200° C. in a nitrogen atmosphere to produce a catalyst. The composition of the obtained catalyst was PdCl2-CuC
l2-(NH4)6Mo7O24-KH2PO4/C(
activated carbon), and the amount of metal compound supported in the catalyst is Pd
is 1% by weight of the support as metal, and Pd:C
u:Mo:K=1:2:2.1:2 (atomic ratio).

【0023】〔炭酸ジメチルの合成〕上記の触媒2.5
mlを内径20mmの気相反応管(外部ジャケット付)
に充填した後、この反応管を垂直に固定し、反応管ジャ
ケットに熱媒を循環させ、触媒層内温度が120℃にな
るように加熱制御した。この反応管の上部から、一酸化
窒素、酸素およびメタノールより合成した亜硝酸メチル
を含むガスと一酸化炭素との混合ガス、すなわち、亜硝
酸メチル;8容量%、一酸化炭素;8容量%、一酸化窒
素;3容量%、メタノール;10容量%および窒素;7
1容量%の組成からなる混合ガスを、8500hr−1
の空間速度(GHSV)で供給し、常圧下に反応させた
。次いで、この反応管を通過した反応生成物を、氷冷さ
れたメタノール中を通して補集した。得られた補集液を
ガスクロマトグラフィーによって分析した結果、反応開
始2時間後の炭酸ジメチルのSTYは515g/l・h
rであり、そして反応開始9時間後の炭酸ジメチルのS
TYは494g/l・hrであった。の結果、活性低下
係数Daが0.65hr−1であることが判った。
[Synthesis of dimethyl carbonate] Above catalyst 2.5
ml in a gas phase reaction tube with an inner diameter of 20 mm (with external jacket)
After filling the reaction tube, the reaction tube was fixed vertically, a heating medium was circulated through the reaction tube jacket, and heating was controlled so that the temperature inside the catalyst layer was 120°C. From the upper part of this reaction tube, a mixed gas of carbon monoxide and a gas containing methyl nitrite synthesized from nitrogen monoxide, oxygen and methanol is produced: methyl nitrite: 8% by volume, carbon monoxide: 8% by volume, Nitric oxide; 3% by volume, methanol; 10% by volume and nitrogen; 7
A mixed gas having a composition of 1% by volume was heated for 8500hr-1
The reaction was carried out under normal pressure. Next, the reaction product that passed through this reaction tube was collected by passing it through ice-cooled methanol. As a result of analyzing the obtained collected liquid by gas chromatography, the STY of dimethyl carbonate 2 hours after the start of the reaction was 515 g/l・h.
r, and the S of dimethyl carbonate 9 hours after the start of the reaction
TY was 494 g/l·hr. As a result, it was found that the activity reduction coefficient Da was 0.65 hr-1.

【0024】(比較例1) 〔触媒の製造〕塩化パラジウム(PdCl2)0.33
gおよび塩化第二銅(CuCl2・2H2O)0・64
g並びにモリブデン酸アンモニウム〔(NH4)6Mo
7O24・4H2O〕0.679gを25重量%アンモ
ニア水70mlに80〜90℃で加熱溶解させ、実施例
1と同様の方法で触媒を製造した。得られた触媒の組成
は、PdCl2−CuCl2−(NH4)6Mo7O2
4/C(活性炭)であり、触媒中の金属化合物の担持量
は、Pdが金属として担体に対して1重量%、そして、
Pd:Cu:Mo=1:2:2.1(原子比)であった
(Comparative Example 1) [Production of catalyst] Palladium chloride (PdCl2) 0.33
g and cupric chloride (CuCl2.2H2O) 0.64
g and ammonium molybdate [(NH4)6Mo
A catalyst was produced in the same manner as in Example 1 by heating and dissolving 0.679 g of 7O24.4H2O in 70 ml of 25% by weight aqueous ammonia at 80 to 90°C. The composition of the obtained catalyst is PdCl2-CuCl2-(NH4)6Mo7O2
4/C (activated carbon), and the amount of metal compound supported in the catalyst is 1% by weight of Pd as a metal relative to the carrier, and
Pd:Cu:Mo=1:2:2.1 (atomic ratio).

【0025】〔炭酸ジメチルの合成〕上記の触媒を用い
た以外は、実施例1と同様にして、炭酸ジメチルの合成
を行った。得られた補集液をガスクロマトグラフィーに
よって分析した結果、炭酸ジメチルのSTYは、反応開
始2時間後で402g/l・hr、そして反応開始7時
間後で381g/l・hrであった。従って、この場合
の活性低下係数Daは1.10hr−1であることが判
った。
[Synthesis of dimethyl carbonate] Dimethyl carbonate was synthesized in the same manner as in Example 1, except that the above catalyst was used. As a result of analyzing the obtained collection liquid by gas chromatography, the STY of dimethyl carbonate was 402 g/l·hr 2 hours after the start of the reaction, and 381 g/l·hr 7 hours after the start of the reaction. Therefore, it was found that the activity reduction coefficient Da in this case was 1.10 hr-1.

【0026】(実施例2〜12) 〔触媒の製造〕各実施例において、実施例1の方法に準
じて第1表に示す触媒組成および触媒成分の金属の原子
比を有する白金族金属化合物と、鉄、銅およびビスマス
の内から選ばれた少なくとも1種類の金属の化合物と、
バナジウム、モリブデンおよびタングステンの内から選
ばれた少なくとも1種類の金属の化合物とリン酸のアル
カリ金属塩又はアルカリ土類金属塩から選ばれた少なく
とも1種類の化合物とを担持した触媒を製造した。 〔炭酸ジメチルの合成〕各実施例において、上記の触媒
をそれぞれ用いたことのほかは、実施例1と同様の操作
で炭酸ジメチルの合成を行った。結果を第1表に示す。
(Examples 2 to 12) [Production of catalyst] In each example, a platinum group metal compound having the catalyst composition and the atomic ratio of the catalyst component metals shown in Table 1 was prepared according to the method of Example 1. , a compound of at least one metal selected from iron, copper and bismuth;
A catalyst supporting at least one metal compound selected from vanadium, molybdenum, and tungsten and at least one compound selected from alkali metal salts or alkaline earth metal salts of phosphoric acid was produced. [Synthesis of dimethyl carbonate] In each example, dimethyl carbonate was synthesized in the same manner as in Example 1, except that the above catalysts were used. The results are shown in Table 1.

【0027】(第1表)(Table 1)

【0028】(比較例2および7) 〔触媒の製造〕各比較において、実施例1の方法に準じ
て第1表に示す触媒組成および触媒成分の金属の原子比
を有する金族金属化合物と、鉄、銅およびビスマスの内
から選ばれた少なくとも1種類の金属の化合物と、バナ
ジウム、モリブデンおよびタングステンの内から選ばれ
た少なくとも1種留の金属の化合物とを担持した触媒を
製造した。 〔炭素ジメチルの合成〕各比較例において、上記の触媒
をそれぞれ用いたことのほかは、実施例1と同様の操作
で炭酸ジメチルの合成を行った。結果を第1表に示す。
(Comparative Examples 2 and 7) [Production of Catalyst] In each comparison, a metal compound having a catalyst composition and an atomic ratio of metals as catalyst components shown in Table 1 was prepared according to the method of Example 1, and A catalyst was produced in which a compound of at least one metal selected from iron, copper, and bismuth and a compound of at least one metal selected from vanadium, molybdenum, and tungsten were supported. [Synthesis of dimethyl carbonate] In each comparative example, dimethyl carbonate was synthesized in the same manner as in Example 1, except that the above catalysts were used. The results are shown in Table 1.

【0029】実施例13(炭酸ジメチルの合成)触媒層
内温度を120℃に代えて100℃にしたこと以外は実
施例1と同様な方法で、炭酸ジメチルの合成反応を行っ
た。反応開始2時間後の炭酸ジメチルのSTYは、27
0g/l・hrであった。また、活性低下係数Daは0
.08hr−1であった。
Example 13 (Synthesis of dimethyl carbonate) A synthesis reaction of dimethyl carbonate was carried out in the same manner as in Example 1 except that the temperature inside the catalyst layer was changed to 100°C instead of 120°C. The STY of dimethyl carbonate 2 hours after the start of the reaction is 27.
It was 0 g/l·hr. In addition, the activity reduction coefficient Da is 0
.. It was 08hr-1.

【0030】実施例14(炭酸ジメチルの合成)触媒層
内温度を120℃に代えて140℃にしたこと以外は実
施例1と同様な方法で、炭酸ジメチルの合成反応を行っ
た。反応開始2時間後の炭酸ジメチルのSTYは、67
5g/l・hrであった。また、活性低下係数Daは1
.7hr−1であった。
Example 14 (Synthesis of dimethyl carbonate) A synthesis reaction of dimethyl carbonate was carried out in the same manner as in Example 1 except that the temperature inside the catalyst layer was changed to 140°C instead of 120°C. The STY of dimethyl carbonate 2 hours after the start of the reaction was 67.
It was 5 g/l·hr. In addition, the activity reduction coefficient Da is 1
.. It was 7hr-1.

【0031】実施例15(炭酸ジエチルの合成)反応管
の上部から供給する混合ガスの成分として亜硝酸メチル
に代えて亜硝酸エチルを、そしてメタノールに代えてエ
タノールを用いたこと以外は実施例1と同様な方法で、
炭酸ジエチルの合成反応を行った。反応開始2時間後の
炭酸ジエチルのSTYは、467g/l・hrであった
。また、活性低下係数Daは0.76hr−1であった
Example 15 (Synthesis of diethyl carbonate) Example 1 except that ethyl nitrite was used instead of methyl nitrite and ethanol was used instead of methanol as components of the mixed gas supplied from the upper part of the reaction tube. In a similar way,
A synthesis reaction of diethyl carbonate was carried out. The STY of diethyl carbonate 2 hours after the start of the reaction was 467 g/l·hr. Moreover, the activity reduction coefficient Da was 0.76 hr-1.

【0032】実施例16(炭酸ジメチルの合成)実施例
1において調製された触媒5.0mlを反応管に充填し
たこと、および、反応管の上部から、亜硝酸メチル;9
容量%、一酸化炭素;9容量%、一酸化窒素;4容量%
、メタノール;3容量%および窒素;75容量%の組成
からなる混合ガスを4000hr−1の空間速度(GH
SV)で供給し、2.0kg/cm2の加圧下に反応さ
せたことのほかは、実施例1と同様な方法で炭酸ジメチ
ルの合成反応を行った。反応開始2時間後の炭酸ジメチ
ルのSTYは、480g/l・hrであり、そして反応
開始8時間後においても480g/l・hrであった。 従って、この反応時間中での触媒活姓の低下は認められ
なかった。
Example 16 (Synthesis of dimethyl carbonate) A reaction tube was filled with 5.0 ml of the catalyst prepared in Example 1, and methyl nitrite;
Volume %, carbon monoxide; 9 volume %, nitrogen monoxide; 4 volume %
, methanol: 3% by volume and nitrogen: 75% by volume at a space velocity (GH
The synthesis reaction of dimethyl carbonate was carried out in the same manner as in Example 1, except that the reaction was carried out under a pressure of 2.0 kg/cm2. The STY of dimethyl carbonate 2 hours after the start of the reaction was 480 g/l·hr, and it was also 480 g/l·hr 8 hours after the start of the reaction. Therefore, no decrease in catalyst activity was observed during this reaction time.

【0033】[0033]

【作用効果の説明】この発明の方法は、前述したように
、従来公知の、一酸化炭素と亜硝酸エステルとの気相接
触反応による炭酸ジエステルの製法が、その反応速度に
おいて十分満足の行くものではなく、また、炭酸ジエス
テルの選択率も低く、反応生成物からの炭酸ジエステル
の分離精製操作が煩雑となるという欠点があり、さらに
は、反応系における亜硝酸エステルの使用濃度範囲が爆
発限界を越えていることによって、操作上危険を伴うと
いう問題もあったのに対し、一酸化炭素と亜硝酸エステ
ルとを、白金族金属またはその化合物と、第2触媒成分
として、鉄、銅、ビスマス、コバルト、ニッケルおよび
錫からなる群から選ばれた少なくとも1種類の金属の化
合物と、第3触媒成分として、バナジウム、モリブデン
およびタングステンからなる群から選ばれた少なくとも
1種預の金属の化合物と第4触媒成分としてリン酸のア
ルカリ金属塩又はアルカリ土類金属塩から選ばれた少な
くとも1種類の化合物とを担体に担持した触媒の存在下
、低温・低圧の条件で気相反応させることによって、操
作に危険を伴うことなく、温和な条件下に、高選択率、
高収率、かつ、安定に炭酸ジエステルを製造する方法を
提供し得る効果を奏するものである。また、従来公知の
液相法に比べて、この発明の方法は気相で行えるため、
反応液からの触媒の分離の必要もなく、触媒からの金属
成分の溶出もないなど、反応液からの炭酸ジエステルの
分離精製が容易であり、工業的規模の生産において、高
い優位性を有する効果をも奏する。
[Description of Effects] As mentioned above, the method of the present invention is superior to the conventionally known method for producing carbonic acid diester by gas phase catalytic reaction between carbon monoxide and nitrite, which is sufficiently satisfactory in terms of reaction rate. Moreover, the selectivity of carbonic diester is low, and the separation and purification of carbonic diester from the reaction product is complicated.Furthermore, the concentration range of nitrite used in the reaction system exceeds the explosive limit. However, carbon monoxide and nitrite esters are combined with platinum group metals or their compounds, and iron, copper, bismuth, etc. as the second catalyst component. A compound of at least one metal selected from the group consisting of cobalt, nickel, and tin, a compound of at least one metal selected from the group consisting of vanadium, molybdenum, and tungsten, and a fourth catalyst component. By carrying out a gas phase reaction at low temperature and low pressure in the presence of a catalyst supported on a carrier with at least one compound selected from alkali metal salts or alkaline earth metal salts of phosphoric acid as a catalyst component, it is possible to High selectivity, without danger and under mild conditions.
This has the effect of providing a method for producing carbonic acid diester in a high yield and in a stable manner. Furthermore, compared to conventionally known liquid phase methods, the method of the present invention can be performed in a gas phase;
There is no need to separate the catalyst from the reaction solution, and there is no elution of metal components from the catalyst, making it easy to separate and purify carbonic acid diester from the reaction solution, which is highly advantageous in industrial scale production. Also plays.

【表1】[Table 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】白金族金属またはその化合物と、鉄、銅、
ビスマス、コバルト、ニッケルおよび錫からなる群から
選ばれた少なくとも1種類の金属の化合物と、バナジウ
ム、モリブデンおよびタングステンからなる群から選ば
れた少なくとも1種類の金属の化合物と、リン酸のアル
カリ金属塩又はアルカリ土類金属塩とを担体に担持した
固体触媒の存在下、一酸化担素と亜硝酸エステルとを気
相接触反応させることを特徴とする炭酸ジエステルの製
造法。
Claim 1: A platinum group metal or a compound thereof, iron, copper,
A compound of at least one metal selected from the group consisting of bismuth, cobalt, nickel, and tin, a compound of at least one metal selected from the group consisting of vanadium, molybdenum, and tungsten, and an alkali metal salt of phosphoric acid. Alternatively, a method for producing a carbonic acid diester, which comprises carrying out a vapor phase contact reaction between a monoxide carrier and a nitrite ester in the presence of a solid catalyst in which an alkaline earth metal salt is supported on a carrier.
JP3132376A 1991-03-26 1991-03-26 Production of carbonic acid diester Pending JPH04297445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3132376A JPH04297445A (en) 1991-03-26 1991-03-26 Production of carbonic acid diester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3132376A JPH04297445A (en) 1991-03-26 1991-03-26 Production of carbonic acid diester

Publications (1)

Publication Number Publication Date
JPH04297445A true JPH04297445A (en) 1992-10-21

Family

ID=15079932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3132376A Pending JPH04297445A (en) 1991-03-26 1991-03-26 Production of carbonic acid diester

Country Status (1)

Country Link
JP (1) JPH04297445A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067979C (en) * 1998-07-20 2001-07-04 中国科学院山西煤炭化学研究所 Method for producing dimethyl carbonate by direct synthesizing carbon dioxide and methanol
WO2005085224A1 (en) * 2004-03-04 2005-09-15 National Institute Of Advanced Industrial Science And Technology Process for production of cyclic carbonates
US9249082B2 (en) 2010-02-09 2016-02-02 King Abdulaziz City for Science and Technology (KACST) Synthesis of dimethyl carbonate from carbon dioxide and methanol
CN110479287A (en) * 2019-09-12 2019-11-22 西南石油大学 A kind of integral catalyzer for Synthesis of dimethyl carbonate and preparation method thereof, application method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067979C (en) * 1998-07-20 2001-07-04 中国科学院山西煤炭化学研究所 Method for producing dimethyl carbonate by direct synthesizing carbon dioxide and methanol
WO2005085224A1 (en) * 2004-03-04 2005-09-15 National Institute Of Advanced Industrial Science And Technology Process for production of cyclic carbonates
JP4858973B2 (en) * 2004-03-04 2012-01-18 独立行政法人産業技術総合研究所 Method for producing cyclic carbonates
US9249082B2 (en) 2010-02-09 2016-02-02 King Abdulaziz City for Science and Technology (KACST) Synthesis of dimethyl carbonate from carbon dioxide and methanol
CN110479287A (en) * 2019-09-12 2019-11-22 西南石油大学 A kind of integral catalyzer for Synthesis of dimethyl carbonate and preparation method thereof, application method

Similar Documents

Publication Publication Date Title
US5162563A (en) Process for preparing a diester of carboxylic acid
AU2000250690B2 (en) Process for the production of vinyl acetate
US5292916A (en) Method of producing carbonic acid diester
US6790983B1 (en) Integrated process for the production of vinyl acetate
AU2000249242A1 (en) Integrated process for the production of vinyl acetate
US5214184A (en) Method of producing carbonic acid diester
JPH04297445A (en) Production of carbonic acid diester
JP2757885B2 (en) Method for producing carbonic acid diester
JPH06239807A (en) Production of carbonate ester
JPH04297443A (en) Production of carbonic acid diester
JP2870738B2 (en) Method for producing carbonic acid diester
JPH03141243A (en) Production of carbonic acid diester
JPH04297444A (en) Production of carbonic acid diester
JP2709745B2 (en) Method for producing carbonic acid diester
JPH04139152A (en) Production of carbonate diester
JPH04290848A (en) Production of carbonic acid diester
JPH04139153A (en) Production of carbonate diester
JPH06192181A (en) Production of carbonic diester
KR100689647B1 (en) Integrated process for the production of vinyl acetate
JP2850859B2 (en) Method for producing carbonic diester and method for suppressing reduction in activity of catalyst component
JPH04290849A (en) Production of carbonic acid diester
JPH1072403A (en) Production of vinyl acetate
JPH0672966A (en) Production of carbonate diester
JPH08253442A (en) Production of carbonate
ZA200210060B (en) Process for the production of vinyl acetate.