WO2002026679A1 - Process for producing fluorinated alcohol - Google Patents

Process for producing fluorinated alcohol Download PDF

Info

Publication number
WO2002026679A1
WO2002026679A1 PCT/JP2001/008432 JP0108432W WO0226679A1 WO 2002026679 A1 WO2002026679 A1 WO 2002026679A1 JP 0108432 W JP0108432 W JP 0108432W WO 0226679 A1 WO0226679 A1 WO 0226679A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
atom
fluorine
reaction
Prior art date
Application number
PCT/JP2001/008432
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Okamoto
Takashi Okazoe
Kunio Watanabe
Hirokazu Takagi
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2002531066A priority Critical patent/JPWO2002026679A1/en
Priority to AU2001290289A priority patent/AU2001290289A1/en
Publication of WO2002026679A1 publication Critical patent/WO2002026679A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/54Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of compounds containing doubly bound oxygen atoms, e.g. esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a method for producing an industrially useful fluorinated alcohol. ⁇ Background technology>
  • Fluorinated alcohol compounds with a fluorocarbon alkyl group at the a-carbon have high acidity of alcohol hydrogen due to the electron-withdrawing property of the fluoroalkyl group, and have specific properties compared to the corresponding hydrocarbon alcohol.
  • the structure of fluorinated alcohols that can be produced by conventional methods is limited by the method of assembling the carbon skeleton of the alcohol. Depending on the structure, it could not be synthesized or required a multi-step reaction.
  • the fluorine-containing carboxylic acid Hara Id electrolytic fluorination (Electrochemical Fluor inat ion 0 hereinafter mounting serial and ECF method.) Or the like to synthesize in
  • the yield is low, and particularly, it is difficult to produce a compound having an etheric oxygen atom by the ECF method, and it is economically disadvantageous.
  • the present invention as a result of examining various causes of the problems of the conventional method, first, when a substrate having a low molecular weight when performing a fluorination reaction in a liquid phase, the boiling point of the substrate decreases, We focused on the reaction between fluorine and the substrate in the gas phase, and the decomposition reaction of the compound. Therefore, a compound having a carbon skeleton corresponding to the target compound is obtained at low cost, an arbitrary compound is ester-bonded to the compound, fluorinated, and then the ester bond is decomposed and reduced to obtain alcohols as raw materials.
  • the present inventors have found that a fluorinated alcohol having a corresponding structure can be obtained, and reached the present invention. Furthermore, they found an industrial continuous process by recycling the acylfluoride compound obtained from the decomposition reaction product of the ester bond.
  • the present invention provides the following compound (3) by reacting the following compound (1) with the following compound (2), and fluorinating the compound (3) in a liquid phase to give the following compound (4):
  • the following compound (5) and Z or the following compound (6) are obtained from the reaction product obtained by decomposing the ester bond of the compound (4), and then the compound (5) and / or the compound (6) is reduced.
  • the following compound (7) is obtained from compound (5) (however, the following compound (7a) when R BF is a fluorine atom), and the following compound (8) is obtained from compound (6).
  • Production of one or more fluorinated alcohols selected from compound (7), compound (7a), and compound (8) Provide a way.
  • R A and R AF are monovalent organic groups which may be the same or different, and when R A and R AF are different, R AF is a monovalent organic group in which R A is fluorinated .
  • R B is a hydrogen atom or a monovalent organic group
  • R BF when R B is a hydrogen atom is a fluorine atom R BF when R B is a monovalent organic group, be the same as R B a different one optionally may monovalent organic group, R BF when the R B and R BF are different monovalent organic group, a monovalent organic group R B is fluorinated.
  • R A and R B may be bonded to form a divalent organic group with one another, R AF and R BF of ⁇ case forms a divalent organic radical bonded to each other, R A It is well, formed from R AF and R BF when varies also have been different in same divalent organic group made form from R B, and divalent organic group formed from R AF and R BF and The divalent organic group is a group in which the divalent organic group formed from R A and R B is fluorinated.
  • R c and R CF are each a monovalent organic group which may be the same or different, and when R c and R CF are different, R CF is a monovalent organic group in which R c is fluorinated; In addition, at least one of R A , R B , and R c is a group having a fluorine atom.
  • X is a halogen atom.
  • the organic group in the present specification refers to a group that essentially requires a carbon atom, and may be a saturated group or an unsaturated group.
  • Examples of the atom that can be substituted with fluorine include a hydrogen atom bonded to carbon.
  • Examples of the atomic group that can be substituted with fluorine include a carbon-carbon unsaturated double bond and a carbon-carbon unsaturated triple bond.
  • fluorine is added to the carbon-carbon double bond by fluorination in a liquid phase to form a carbon-carbon single bond.
  • fluorine is added to the carbon-carbon triple bond by fluorination in a liquid phase to form a carbon-carbon single bond or a carbon-carbon double bond.
  • a bond is formed.
  • the monovalent organic group is preferably a monovalent hydrocarbon group, a heteroatom-containing monovalent hydrocarbon group, an octagenated monovalent hydrocarbon group, or a halogenated (heteroatom-containing monovalent hydrocarbon) group. These groups which are groups are particularly preferred.
  • the divalent organic group is preferably a divalent hydrocarbon group, a heteroatom-containing divalent hydrocarbon group, a halogenated divalent hydrocarbon group, or a halogenated (heteroatom-containing divalent hydrocarbon) group. These groups are particularly preferred.
  • the term “saturated group” refers to a group in which a carbon-carbon bond in the group is composed of only a single bond.
  • the organic group preferably has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms, from the viewpoint of solubility in the liquid phase used during the fluorination reaction.
  • the hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and is preferably an aliphatic hydrocarbon group. Further, a single bond, a double bond, or a triple bond may be present as a carbon-carbon bond in the aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group has a linear structure, a branched structure, a cyclic structure, or a partial cyclic structure. Structure.
  • halogen atom in the halogenated group a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, and a fluorine atom, a chlorine atom, or a bromine atom is preferable. Or a fluorine atom and a chlorine atom are preferable, and a fluorine atom is more preferable.
  • octagenation means that one or more hydrogen atoms have been replaced by halogen atoms.
  • Partial octupenization means that a part of hydrogen atoms has been replaced by haptic atoms. That is, a hydrogen atom is present in the partially halogenated group.
  • Perhalogenation means that all of the hydrogen atoms have been fluorinated. That is, there is no hydrogen atom in the perhalogenated group.
  • the terms halogenation, partial halogenation, and perhalogenation have the same meaning when a halogen atom is specified.
  • the number of halogen atoms present in the halogenated, halogenated, and bell-halogenated groups may be one or more.
  • Examples of the saturated monovalent hydrocarbon group include an alkyl group, and the structure may be any of a linear structure, a branched structure, a cyclic structure, and a partially cyclic structure.
  • Examples of the saturated divalent hydrocarbon group include an alkylene group, and the structure may be any of a linear structure, a branched structure, a ring structure, and a structure having a ring portion.
  • the alkyl group or the alkylene group preferably has 1 to 10 carbon atoms.
  • Examples of the alkyl group having a straight-chain structure include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • alkyl group having a branched structure examples include an isopropyl group, an isobutyl group, a sec monobutyl group, a tert-butyl group, and the like.
  • alkyl group having a ring structure examples include a cycloalkyl group, a bicycloalkyl group, a group having an alicyclic spiro structure, and a 3- to 6-membered cycloalkyl group is preferable, and a cyclopentyl group or a cycloalkyl group is preferred.
  • Xyl groups and the like examples include an isopropyl group, an isobutyl group, a sec monobutyl group, a tert-butyl group, and the like.
  • alkyl group having a ring structure examples include a cycloalkyl group, a bicycloalkyl group, a group having an alicyclic spiro structure, and a 3- to 6-membere
  • the alkyl group having a ring portion is substituted ( Examples include an alkyl group having a straight-chain or branched structure, or a group in which the ring group of the alkyl group is further substituted with an alkyl group having a straight-chain or branched structure.
  • a group in which at least one is substituted with a 3- to 6-membered cycloalkyl group is preferable, and a cyclopentylmethyl group, a cyclohexylethyl group, an ethylcyclohexylmethyl group, and the like are particularly preferable.
  • Examples of other groups include an alkyl group having an aromatic ring (eg, an aralkyl group such as a benzyl group and a phenethyl group) and an alkyl group having a heterocyclic ring (eg, a pyridylmethyl group, a furfuryl group, and the like).
  • an aromatic ring eg, an aralkyl group such as a benzyl group and a phenethyl group
  • an alkyl group having a heterocyclic ring eg, a pyridylmethyl group, a furfuryl group, and the like.
  • alkylene group examples include groups in which one hydrogen atom of the above-mentioned alkyl group is a bond, and a linear or branched alkylene group is preferable.
  • the saturated halogenated hydrocarbon group refers to a group in which one or more of the hydrogen atoms present in the above-mentioned saturated hydrocarbon group is replaced by a halogen atom. You don't have to.
  • the partially halogenated saturated hydrocarbon group refers to a group in which a part of the hydrogen atoms present in the above saturated hydrocarbon group has been replaced by halogen atoms. Hydrogen atoms are present in partially halogenated saturated hydrocarbon groups.
  • the bell-halogenated saturated hydrocarbon group refers to a group in which all of the hydrogen atoms present in the saturated hydrocarbon group have been replaced by hydrogen and hydrogen atoms. No hydrogen atom exists in the perhalogenated saturated hydrocarbon group.
  • the saturated halogenated hydrocarbon group may have a straight-chain structure or a branched structure, may have a ring structure or a structure having a ring portion, and preferably has 1 to 20 carbon atoms.
  • a monovalent group includes a fluoroalkyl group or a fluoro (partial alkyl) group
  • a divalent group includes a fluoroalkylene group or a fluoro (partial alkyl) group. Alkylene) group and the like.
  • the monovalent group includes a perfluoroalkyl group or a perfluoro (partially alkyl) group (that is, a group in which all the hydrogen atoms in the partial chloroalkyl group are fluorinated).
  • a divalent group Is a perfluoroalkylene group or a perfluoro (partial cycloalkylene) group
  • a perfluoro (partial fluoroalkyl) group is the same as a perfluoroalkyl group
  • a perfluoro (partial fluoroalkylene) group is the same as a perfluoroalkylene group.
  • a saturated heteroatom-saturated hydrocarbon group refers to a group consisting of a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom, a carbon atom, and a hydrogen atom.
  • the carbon number of the heteroatom-containing saturated hydrocarbon group is preferably from 1 to 20.
  • the heteroatom may be a heteroatom itself or a heteroatom formed by combining heteroatoms or heteroatoms with other atoms. It is preferable that the hetero atom and the hetero atom group are not changed by a decomposition reaction of an ester bond (for example, a thermal decomposition reaction).
  • heteroatom-containing saturated hydrocarbon group examples include a group in which a divalent heteroatom or a divalent heteroatom group is inserted between carbon and carbon atoms of the saturated hydrocarbon group, or a carbon atom in the saturated hydrocarbon group.
  • a group in which a heteroatom is bonded to an atom or a group in which a divalent heteroatom or a divalent heteroatom group is bonded to a carbon atom at the bonding terminal of the saturated hydrocarbon group is preferable.
  • an etheric oxygen atom-containing group is particularly preferred from the viewpoint of the usefulness of the compound.
  • the monovalent group is preferably an alkyl group containing an etheric oxygen atom (for example, an alkoxyalkyl group).
  • an alkylene group containing an etheric oxygen atom (for example, a polyoxyalkylene group) is preferable.
  • Examples of the monovalent aliphatic hydrocarbon group having a ring portion in which an etheric oxygen atom is inserted between one carbon atom of carbon include, for example, an alkyl group having a dioxolane skeleton.
  • alkoxyalkyl group a group in which one of the hydrogen atoms present in the alkyl group is substituted with an alkoxy group is preferable.
  • the alkoxy group preferably has 1 to 10 carbon atoms.
  • Examples of the alkoxyalkyl group include an ethoxymethyl group, an 11-propoxyethyl group, a 2-propoxyethyl group, and the like.
  • the saturated halogenated (hetero atom-containing hydrocarbon) group is preferably a saturated fluoro (hetero atom-containing hydrocarbon) group or a saturated fluoro (partial chroma (hetero atom-containing hydrocarbon)) group.
  • the number of carbon atoms in the halogenated (heteroatom-containing saturated hydrocarbon) group is :! ⁇ 20 is preferred.
  • a saturated perhalogenated (heteroatom-containing hydrocarbon) group may have a linear or branched structure and may be a saturated perfluorinated (heteroatom-containing hydrocarbon) group or a saturated perfluorinated (partial chloroform) group. Mouth (heteroatom containing hydrocarbon)) groups are preferred.
  • a perfluoro (hetero atom-containing alkyl) group or a perfluoro (partial port (hetero atom-containing alkyl)) group is preferable, and a perfluoro (alkoxyl) group or a perfluoro (partial port (alkoxyl)) group is particularly preferable.
  • the divalent group is preferably a group in which one of the halogen atoms in a perhalogenated (heteroatom-containing monovalent saturated hydrocarbon) group is a bond, and a perfluoro (polyoxyalkylene) group is preferred. preferable.
  • R A and R B are preferably a group containing a hydrogen atom from the viewpoint of availability, and a saturated group having a hydrogen atom is more preferable for the intended reaction. It can be carried out efficiently and is also preferable from the viewpoint of usefulness of the intended fluorinated alcohol.
  • RG is preferably a group containing a fluorine atom, since a continuous reaction can be carried out by reusing the compound produced by the production method of the present invention. The hydrogen atom in R B versa preferred.
  • RA is a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, — It is preferably a monovalent saturated hydrocarbon group containing a telluric oxygen atom or a partially octalogenated (monovalent saturated hydrocarbon containing a etheric oxygen atom) group, and R B is a hydrogen atom or a monovalent. It is preferably a saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, or a partially halogenated (monovalent saturated hydrocarbon containing an etheric oxygen atom) group.
  • R A is an alkyl group, a partial alkyl group, an alkoxyalkyl group, or a partial alkyl (alkoxyalkyl) group
  • R B is a hydrogen atom, an alkyl group, a partial alkyl group, an alkoxyalkyl group, or a partial alkyl group
  • R AF is a group in which all of the hydrogen atoms present in R A are substituted with fluorine atoms
  • R BF is a group in which all of the hydrogen atoms present in R A are a fluorine atom or RB. It is preferably a group substituted by a fluorine atom.
  • R A and R B may also be linked R A and R B each other to form a divalent organic group, in the case of that the bivalent saturated hydrocarbon group, a partially halogenated bivalent saturated hydrocarbon group, ether property
  • An oxygen atom-containing divalent saturated hydrocarbon group or a partially halogenated (etheric oxygen atom-containing divalent saturated hydrocarbon) group is preferred.
  • an alkylene group, a partially branched alkylene group, an alkyleneoxyalkylene group, or a partially saturated hydrocarbon group is preferred.
  • it is a mouth (alkyleneoxyalkylene) group.
  • Re is a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partial halogenation (a monovalent saturated hydrocarbon containing an etheric oxygen atom) It is preferable that all of the hydrogen atoms present in the group selected from the groups are substituted with fluorine atoms, in which case R CF is the same group as R c .
  • Compound (1) is a compound that is easily available or can be easily synthesized by a known method. Specific examples of the compound (1) include the following compounds. However, in the following, Cy represents a cyclohexyl group. (CH 3 ) 2 CHOH,
  • the compound (1) is reacted with the compound (2).
  • the compound (2) is preferably a compound in which X is a fluorine atom in that it can react in a continuous process described below.
  • the structure of R e in compound (2) is preferably adjusted in relation to the structure of R A in compound (1) so that compound (3) is easily dissolved in the liquid phase during fluorination.
  • Specific examples of the compound (2) include the following compounds. CF 3 CF 2 C ⁇ F,
  • the compound (2) a commercially available product may be used, or the compound (6) which is a product in the production method of the present invention, or the compound (5) when R BF is a fluorine atom may be used.
  • R A as the compound (1) that the structure of the R B may use a variety of different structures is one of the advantages. That is, by performing the reaction of the present invention using the compound (1) having R A and R B corresponding to R A F and R BF of the desired fluorinated alcohol, it is difficult to obtain by the conventional method.
  • Compound (7) can be produced.
  • the reaction between the compound (1) and the compound (2) may be carried out in the presence of a solvent (hereinafter, referred to as a solvent 1), but is carried out in the absence of the solvent 1.
  • a solvent hereinafter, referred to as a solvent 1
  • the amount of the solvent 1 used is preferably 50 to 500% by mass based on the total amount of the compound (1) and the compound (2).
  • an acid represented by HX is generated.
  • a compound in which X is a fluorine atom is used as the compound (2)
  • HF is generated. Therefore, an alkali metal fluoride (such as sodium fluoride) or a trialkylamine is present in the reaction system as a HF scavenger. May be.
  • HF scavengers are particularly preferred when compound (1) or compound (2) is acid labile. When no HF scavenger is used, it is preferable to discharge HF out of the reaction system by accompanying the HF with a nitrogen stream.
  • the alkali metal fluoride is used, the amount is preferably 1 to 10 times the mol of the compound (2).
  • the reaction temperature of the reaction between the compound (1) and the compound (2) is preferably 15 ° ⁇ : or higher, more preferably +100 or lower, or lower than the boiling point of the solvent.
  • the reaction time of the reaction is appropriately determined according to the supply rate and supply amount of the compound. It can be changed as needed.
  • the reaction pressure gauge pressure, the same applies hereinafter is preferably normal pressure to 2 MPa.
  • R A and R B in the compound (3) is the same as the base in the compound (1), and R c in the compound (3) is a base the same group in the compound (2).
  • the fluorine content of the compound (3) is preferably at least 30% by mass, particularly preferably from 30 to 86% by mass, particularly preferably from 30 to 76% by mass. If the fluorine content is too low, the solubility in the liquid phase will be extremely low, and the reaction system of the fluorination reaction will be uneven, and compound (3) will not be able to be fed into the reaction system well. There's a problem.
  • the upper limit of the fluorine content is not limited, but if it is too high, the production cost of compound (3) is high and it is not economical.
  • the molecular weight of the compound (3) is preferably from 200 to 1,000 in that an undesirable fluorination reaction in the gas phase can be prevented and the fluorination reaction in the liquid phase can be carried out smoothly.
  • the compound (3) is likely to evaporate, so that a decomposition reaction may occur in the gas phase during the fluorination reaction in the liquid phase. On the other hand, if the molecular weight is too large, purification of compound (3) may be difficult.
  • Specific examples of the compound (3) include the following compounds.
  • the crude product containing the compound (3) produced by the reaction of the compound (1) with the compound (2) may be purified according to the purpose, and may be used in the next reaction or the like as it is in high purity. From the viewpoint of safely carrying out the fluorination reaction in the next step, it is preferable to purify the crude product, and it is particularly desirable to remove the compound (1) from the crude product.
  • a method for purifying the crude product containing the compound (3) a method for distilling the crude product as it is, a method for treating the crude product with diluted alkaline water or the like, and a method for separating the crude product into an appropriate organic solvent And then distillation, silica gel column chromatography, and the like.
  • compound (3) is reacted with fluorine in a liquid phase to obtain compound (4).
  • the fluorination reaction in the present invention refers to a reaction in which at least one fluorine atom is bonded in the molecule of the compound (3).
  • AF is a group corresponding to R A
  • R BF is a group corresponding to R B
  • R CF is a group corresponding to R c .
  • the fluorination in the liquid phase is preferably performed by a method of introducing fluorine gas into the liquid phase containing the compound (3).
  • the fluorine gas may be used as it is or may be a fluorine gas diluted with an inert gas.
  • an inert gas nitrogen gas and helium gas are preferable, and nitrogen gas is particularly preferable for economic reasons.
  • the amount of fluorine gas in the nitrogen gas is not particularly limited, and is preferably 10 V o 1% or more from the viewpoint of efficiency, and particularly preferably 20 V o 1% or more.
  • the liquid phase it is preferable to use a solvent capable of dissolving fluorine (F 2 ) (hereinafter referred to as solvent 2).
  • the solvent 2 is preferably a solvent that does not contain a C—H bond and essentially has a C—F bond, and is further selected from perfluoroalkanes or a chlorine atom, a nitrogen atom, and an oxygen atom.
  • An organic solvent obtained by perfluorinating a known organic solvent having at least one kind of atom in the structure is preferable.
  • a compound capable of dissolving fluorine
  • a solvent having high solubility of (3) particularly preferably a solvent capable of dissolving 1% by mass or more of compound (3), particularly preferably a solvent capable of dissolving 5% by mass or more.
  • the solvent 2 include perfluoroalkanes (FC-72, etc.), perfluoro alcohols (FC-75, FC-77, etc.), perfluoropolyethers (trade name) : Krytox, Fonpurin, Galden, Demnum, etc.), Fluorocarbons (R-113, trade name: CFC), Fluoropolyethers, Perfluoroalkylamines (for example, Perflu And an inert fluid (trade name: Florinert).
  • one or more of the compound (4), the compound (5) and the compound (6) having a function as a solvent can be used.
  • compound (4), fluorine-containing ketone (5) or compound (6) is used as a solvent, there is an advantage that post-treatment after the reaction is facilitated.
  • the amount of the solvent 2 is preferably at least 5 times the mass of the compound (3), particularly preferably 10 to 100 times the mass.
  • the fluorination reaction is preferably performed in a batch system or a continuous system. In each case, it is preferable to perform the fluorination method 1 or the fluorination method 2 described below. In particular, from the viewpoint of the reaction yield and the selectivity, it is preferable to carry out the fluorination method 2.
  • the fluorine gas may be a fluorine gas diluted with an inert gas such as a nitrogen gas, regardless of whether the method is performed in a batch mode or in a continuous mode.
  • [Fluorination method 2] Charge solvent 2 into a reactor and start stirring. Then, the compound (3) and fluorine gas are continuously and simultaneously supplied at a predetermined molar ratio to the liquid phase in the reactor at a predetermined reaction temperature and reaction pressure.
  • the compound (3) When supplying the compound (3) in the fluorination method 2, the compound (3) may or may not be diluted with the solvent 2, but since the selectivity is improved and the amount of by-products is suppressed, the compound diluted with the solvent 2 is used. It is preferable to supply (3).
  • the amount of solvent 2 is preferably at least 5 times, more preferably at least 10 times, the mass of compound (3). Is preferred.
  • the reaction is carried out in a state where the amount of fluorine is always in excess with respect to the hydrogen atoms in compound (3). It is preferable to use fluorine so as to be at least 1.5 times equivalent (ie, at least 1.5 times mol) from the viewpoint of selectivity. It is preferable that the amount of fluorine is always maintained in an excessive amount from the start to the end of the reaction.
  • the reaction temperature of the fluorination reaction is usually preferably not less than 160 and not more than the boiling point of the compound (3). From the viewpoint of reaction yield, selectivity, and ease of industrial implementation, the reaction temperature is preferably ⁇ 50 to ⁇ 10. 100 ° C is particularly preferred, and 120 ° C to 150 ° C is particularly preferred. Fluorine
  • the reaction pressure of the chemical reaction is not particularly limited, and 0 to 2 MPa is particularly preferable from the viewpoint of reaction yield, selectivity, and ease of industrial implementation.
  • the C—H bond-containing compound is an organic compound other than the compound (3), particularly preferably an aromatic hydrocarbon, particularly preferably benzene, toluene and the like.
  • the amount of the C—H bond-containing compound to be added is preferably 0.1 to 10 mol%, more preferably 0.1 to 5 mol%, based on the hydrogen atoms in compound (3).
  • the C—H bond-containing compound is preferably added in a state where fluorine gas is present in the reaction system. Further, when a C—H bond-containing compound is added, it is preferable to pressurize the reaction system.
  • the pressure at the time of pressurization is preferably 0.01 to 5 MPa.
  • Compound (4) is produced by the fluorination reaction of compound (3).
  • R A when R A is a group having no atom or atomic group that can be substituted by fluorine, or when R A is not fluorinated, R AF is the same group as R A.
  • R A has an atom or an atomic group that can be substituted by fluorine, and when fluorinated, R AF is a different group from R A.
  • R B when R A is a group having no atom or atomic group that can be substituted by fluorine, or when R A is not fluorinated, R AF is the same group as R A.
  • R A has an atom or an atomic group that can be substituted by fluorine, and when fluorinated, R AF is a different group from R A.
  • R AF and R BF in the compound (4) is a hydrogen atom in R A and R B is its Each is preferably a fluorinated group.
  • R AF and R BF are bonded to each other to form a divalent saturated hydrocarbon group, a partially halogenated divalent saturated hydrocarbon group, a divalent saturated hydrocarbon group containing an etheric oxygen atom, or a partially halogenated (etheric (Oxygen atom-containing divalent saturated hydrocarbon)
  • etheric (Oxygen atom-containing divalent saturated hydrocarbon) It is preferable to form a group in which all of the hydrogen atoms in the group are substituted with fluorine atoms, and particularly, an alkylene group, a partial cycloalkylene group, an alkyleneoxyalkylene group, or It is preferable that all the hydrogen atoms present in the partially halogenated (alkyleneoxyalkylene) group are substituted with fluorine atoms.
  • R eF is a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partially halogenated (monovalent saturated hydrocarbon group containing an etheric oxygen atom). It is preferable that all of the hydrogen atoms present in the group selected from the group consisting of hydrogen) are substituted with fluorine atoms.
  • Cy F in the following formula represents a perfluorocyclohexyl group.
  • HF is by-produced.
  • the HF scavenger the same one as described above is used, and NaF is preferable.
  • the amount of the HF scavenger coexisting in the reaction system is preferably 1 to 20 times, and more preferably 1 to 5 times the molar amount of the total hydrogen atoms present in the compound (3).
  • a cooler preferably maintained at 10 to room temperature, particularly preferably maintained at about 20 ° C.
  • b) NaF Pellet packed bed and
  • cooler preferably maintained between 78 ° C and 10 ° C, preferably — maintained between 30 ° C and 0 ° C
  • a liquid return line for returning the aggregated liquid from the cooler in (c) to the reactor may be provided.
  • the crude product containing the compound (4) obtained by the fluorination reaction may be used as it is in the next step, or may be purified to high purity. Examples of the purification method include a method of distilling the crude product as it is under normal pressure or reduced pressure.
  • ester bond of the compound (4) is further decomposed.
  • the reaction for decomposing the ester bond of compound (4) is preferably carried out by decomposing the ester bond by heating, or by decomposing the ester bond in the presence of a nucleophile or an electrophile. preferable.
  • thermal decomposition When the ester bond is decomposed by heating (hereinafter referred to as thermal decomposition), it is preferable to select the type of reaction depending on the boiling point of the compound (4) and its stability.
  • thermally decomposing the easily vaporizable compound (4) a vapor phase pyrolysis method of continuously decomposing in the gas phase and condensing and recovering the outlet gas containing the product may be employed.
  • the reaction temperature of the gas phase pyrolysis method is preferably from 50 to 350 ° C, particularly preferably from 50 to 300 ° C, particularly preferably from 150 to 250 ° C.
  • an inert gas not directly involved in the reaction may be allowed to coexist in the reaction system.
  • the inert gas include nitrogen gas and carbon dioxide gas.
  • the inert gas is preferably added in an amount of about 0.1 to 50 V o 1% based on the compound (4). If the amount of inert gas added is large, the amount of product recovered may decrease.
  • the residence time is preferably about 0.1 second to 10 minutes on an empty tower basis.
  • the reaction pressure is not particularly limited.
  • the compound (4) is a high boiling point compound, the reaction is preferably performed under reduced pressure.
  • the compound (4) is a low-boiling compound, it is preferable to carry out the reaction under pressure because decomposition of the product is suppressed and the reaction rate is increased.
  • reaction tube When performing a gas phase reaction using a tubular reactor, fill the reaction tube with glass, an alkali metal salt, or an alkaline earth metal salt to promote the reaction and fix it.
  • the reaction is preferably carried out in a bed or in a fluidized bed.
  • alkali metal salt or alkaline earth metal salt carbonate or fluoride is preferable.
  • the glass include common soda glass, and glass beads having a fluidity in the form of beads are particularly preferable.
  • Alkali metal salts include sodium carbonate, sodium fluoride, potassium fluoride, potassium carbonate, or lithium carbonate.
  • Examples of the alkaline earth metal salt include calcium carbonate, calcium fluoride, magnesium carbonate and the like.
  • alkali metal salts are preferable, alkali metal fluorides are particularly preferable, and potassium fluoride is particularly preferable.
  • the use of potassium fluoride is particularly preferred in that the yield of the decomposition reaction is high, the reaction can be carried out even at a low reaction temperature, and the reaction can be carried out efficiently even with a small amount of potassium fluoride.
  • the alkali metal salt may be supported on a carrier or used. Carriers include activated carbon, activated alumina, zirconia, or salts of different types of alkali metals. Further, when the reaction tube is filled with glass, an alkali metal salt, or an alkaline earth metal salt and reacted in a fluidized bed, glass beads or light ash of sodium carbonate is used. It is particularly preferable to use one having a particle size of about 100 to 250 m.
  • the gas phase reaction is preferably carried out in the presence of an inert gas which is not directly involved in the thermal decomposition reaction for the purpose of promoting the vaporization of the compound (4).
  • the inert gas include nitrogen gas, carbon dioxide gas, helium gas, and argon gas.
  • the amount of the inert gas is preferably about 0.01 to 50 vo 1% based on the compound (4). If the amount of the inert gas is too large, the amount of the recovered product may be low, which is not preferable.
  • compound (4) is a compound that is difficult to vaporize, it is preferable to employ a liquid phase pyrolysis method in which the liquid (4) is heated in a liquid state in the reactor.
  • the reaction pressure in this case is not limited.
  • the product of the ester bond decomposition reaction has a lower boiling point than compound (4). From this point, it is preferable to carry out the reaction while distilling using a reactor equipped with a distillation column, and to carry out the reaction by vaporizing and continuously extracting the product. Alternatively, a method may be used in which the products are collectively extracted from the reactor after the completion of the heating.
  • the reaction temperature in this liquid phase pyrolysis method is preferably from 50 to 300, particularly preferably from 100 to 250.
  • the thermal decomposition may be performed without a solvent or in the presence of a solvent (hereinafter, referred to as a solvent 3). It is preferable from the viewpoint of suppressing by-products.
  • Solvent 3 is not particularly limited as long as it does not react with compound (4) and is compatible with compound (4) and does not react with compound (5) and compound (6) to be formed. .
  • the solvent 3 include an inert solvent such as perfluorotrialkylamine, and a chlorotrifluoroethylene oligomer (for example, trade name: CFC) having a high boiling point among the fluorocarbons such as chlorofluorocarbons. I like it.
  • the amount of the solvent 3 is preferably from 10 to 1000% by mass based on the compound (4).
  • the ester bond of the compound (4) is decomposed by a method of reacting with a nucleophile or an electrophile in a liquid phase, the reaction can be carried out without a solvent, even in the absence of a solvent. ) May be performed, and it is preferable to perform without solvent from the viewpoint of volumetric efficiency and suppression of by-products.
  • the solvent 4 is preferably the same as the solvent 3.
  • F— is preferable, and F— derived from alkali metal fluoride is particularly preferable.
  • alkali metal fluorides NaF, NaHF 2 , KF, and CsF are preferred. Of these, NaF is preferred in terms of economy, and KF is particularly preferred in terms of reactivity.
  • F— nucleophilically adds to the carbonyl group present in the ester bond of compound (4), and R AF R BF CF 0_ is eliminated. As a result, acid fluoride [compound (6)] is generated.
  • the nucleophile used at the beginning of the reaction may be a catalytic amount or may be used in excess. That is, the amount of the nucleophile such as F_ is preferably from 1 to 500 mol%, particularly preferably from 10 to 100 mol%, particularly preferably from 5 to 50 mol%, based on the compound (4).
  • the reaction temperature is preferably from -30 to the boiling point of the solvent or the compound (4), and particularly preferably from 20 ° C to 250 ° C. This method is also preferably carried out in a reactive distillation mode.
  • reaction product of the ester decomposition reaction of compound (4) contains compound (6) together with compound (5) under ordinary conditions.
  • Specific examples of the compound (5) include the following compounds.
  • compound (6) is a compound in which R c in compound (2) is R GF and X is a fluorine atom.
  • R c in compound (2) is R GF
  • X is a fluorine atom.
  • Specific examples of the compound (6) include the compounds exemplified in the compound (2).
  • the compound (6) is preferably reused as the compound (2) to be reacted with the compound (1), and the compound (5) can be continuously produced by reusing the compound (2). That is, the compound (1) is reacted with the compound (2) to give a compound (3), the compound (3) is fluorinated in a liquid phase to give a compound (4), and then an ester bond of the compound (4).
  • the compound (6) is obtained from the reaction product obtained by decomposing the compound (6), and a part or all of the compound (6) is used again as the compound (2) to react with the compound (1), whereby the compound (5) can be continuously obtained. Can be manufactured.
  • the compound (6) and Z or the compound (5) are obtained from the product of the ester decomposition reaction, and are reduced.
  • Compound (6) alone, compound (5) alone, or a mixture of compound (6) and compound (5) may be isolated from the product of the esterification reaction. These can be appropriately changed depending on the desired form of the fluorinated alcohol.
  • R BF is a fluorine atom
  • RA F and RC if F is the same structure, since it becomes the same compound as the compound (5) with the compound (6), the product compound ( Only 5) (or only compound (6)), which has the advantage of eliminating the need for product separation.
  • compound (7) is formed from compound (5).
  • compound (7a) is formed from compound (5) in which R BF is a fluorine atom.
  • Compound (8) is formed from compound (6).
  • R AF and R BF in compound (7) and compound (7a) have the same meanings as those in compound (5), and R GF in compound (8) has the same meaning as in compound (6).
  • the fluorinated alcohol in the present invention refers to one or more compounds selected from compound (7), compound (7a), and compound (8).
  • the reduction reaction is preferably performed by ordinary hydrogen reduction, and particularly preferably performed using hydrogen in the presence of a metal-supported catalyst.
  • a metal-supported catalyst Preferably, 0.5 to 5% by weight of the metal in the catalyst is supported on the support, particularly preferably 1 to 3% by weight.
  • the amount of hydrogen relative to the compound to be reduced is preferably not less than the stoichiometric amount, more preferably 1.2 to 10 times, particularly preferably 1.5 to 5 times, the reaction activity and catalyst. It is preferable in terms of durability and product recovery.
  • the metal-supported catalyst is preferably a catalyst in which palladium or a group 8-10 element containing palladium as a main component is supported on a carrier.
  • Group 8 to 10 elements other than palladium include iron, cobalt, nickel, Ru, Rh, Ir, and Pt, and these are preferably added alone or in combination of two or more. 8 to:
  • the addition amount of the group I0 element is preferably 0.01 to 50 parts by weight based on 100 parts by weight of palladium.
  • the metal-supported catalyst is preferably a metal catalyst (hereinafter, referred to as a specific metal catalyst) essentially including an element selected from Groups 8 to 10 and a Group 11 element.
  • a metal catalyst hereinafter, referred to as a specific metal catalyst
  • Examples of Group 8 to 10 elements include the same elements as described above, and Pd, Rh, Ir, and Pt are particularly preferable.
  • the Group 11 element is selected from Cu, Ag and Au, with Au being particularly preferred.
  • Group 11 elements are 8-1 It has the effect of highly dispersing and stabilizing the element component selected from Group 0 in the catalyst.
  • the amount of the group 11 element contained in the specific metal catalyst with respect to the group 8 to 10 element is preferably 0.01 to 90% by mass from the viewpoint of the effect of increasing the dispersion and stabilization of the group 11 element. More preferably, it is from 0.1 to 50% by mass, particularly preferably from 0.1 to 30% by mass.
  • the metal catalyst is preferably a catalyst in which the above-mentioned metal component is supported on activated carbon.
  • a group 8-10 element and a group 11 element are supported on the support.
  • the catalyst is a modified catalyst.
  • the carrier for example, activated carbon, aluminum, zirconia, and the like are suitable, and activated carbon is particularly preferable.
  • the activated carbon those prepared from raw materials such as wood, charcoal, fruit ash, coconut husk, peat, lignite, or coal can be used. Vegetable raw materials are preferable to mineral raw materials, and coconut husk activated carbon is particularly suitable.
  • Yashigara activated carbon is considered to be superior in activity and durability because it has a larger surface area, less impurities such as silica, and higher acid resistance than other activated carbons.
  • the ash content of the activated carbon is preferably from 0.01 to 20% by mass.
  • the amount of the group 8 to 10 element to be supported on the carrier is preferably from 0.01 to 5% by mass, more preferably from 0.01 to 10% by mass, in view of the reduction ability and economy of the catalyst. Particularly preferably, 0.5 to 5% by mass It is.
  • the shape of the carrier is preferably formed from about 2 to 5 mm in length of molded coal, about 4 to 50 mesh of crushed coal, granular coal, or the like. Molded coal is particularly preferred.
  • the method for supporting the metal on the activated carbon is not particularly limited, and a conventional method, for example, supporting palladium chloride alone or together with a metal chloride of another group 8 to 10 element on a carrier, drying, and further drying this with hydrogen For example, a reduction method is used.
  • Activated carbon catalysts supporting Group 8 metals are durable and do not require long-term activation, but if activated, hydrogen reduction is carried out at 100-300 ° C, preferably 200-300 ° C. Is preferred.
  • Rh—Co—CuZ activated carbon (a catalyst in which Rh, Co, and Cu are supported on activated carbon; ), Rh-Co-AgZC, Rh-Co-Au / C, Pt_AuZC, Pd-Ni-CuZC, Pd-Ni-Ag / C, Pd-Ni-AuZC, Ru-Au / C, P d-Cu / A 1 2 0 3, P d-Ag / A 1 2 0 3, P d-Au / A 1 2 0 3, P d_P t- AuZA 1 2 ⁇ 3, P d-Rh -Au / A 1 2 0 3, Pd- I r one Au / A 1 2 0 3, Rh-Ag / A 1 2 0 3, Rh-Au / A 1 2 ⁇ 3, Rh-C o-Cu / A 1 2 0 3, Rh one
  • the amount of hydrogen is represented by the number of reaction moles for compound (5) and / or compound (6) to be reduced. It is preferably at least twice the molar amount of the above, and more preferably at least 3 to 8 times, in that the desired fluorinated alcohol can be obtained in a high yield.
  • the reaction pressure for the reduction reaction is preferably normal pressure or increased pressure, but may be reduced pressure. If the reaction temperature is too low, the reaction rate will be slow, and the product yield will be low.If the reaction temperature is too high, the deterioration of the catalyst will occur due to the formation of acidic compounds and an increase in the temperature of the catalyst layer. Is from 130 to 250 ° C, preferably from 150 to 200 ° C, at normal pressure. Furthermore, when a specific catalyst is used, the reaction can be carried out at a lower temperature, and the reaction temperature is preferably 30 to 450 ° C, more preferably 50 to 200 ° C, particularly preferably 70 to 150 ° C. is there.
  • the reaction is performed by a gas phase method
  • a reaction temperature and a pressure in which the raw material and the product continue to be gas in the reactor are preferable to use.
  • the contact time with the catalyst in the gas phase method is preferably 0.1 to 1000 seconds, particularly preferably 1 to 100 seconds, particularly preferably 4 to 60 seconds, and further preferably 5 to 20 seconds.
  • the reaction may be carried out while diluting with an inert gas such as nitrogen to control the excessive temperature rise.
  • a desired fluorinated alcohol can be produced using the raw material compound (1) which can be obtained at low cost.
  • specific examples of compound (7) include the following compounds.
  • Specific examples of the compound (8) include the following compounds.
  • the fluorinated alcohol obtained by the production method of the present invention has high acidity of alcoholic hydrogen due to the electron-withdrawing property of the fluorine-containing group, and has specific characteristics as compared with the corresponding hydrocarbon alcohol.
  • it is a good solvent for polyimides such as nylon which do not dissolve in ordinary organic solvents, and a good solvent for polar compounds such as ionic compounds.
  • the yield was determined from the peak area ratio of gas chromatography (GC) and NMR spectrum. Further, tetramethylsilane noted TM S, the CC 1 2 FCC 1 2 and scale one 113. The NMR spectrum data is shown as an apparent chemical shift range.
  • R-113 (312 g) was added to a 50 OmL nickel autoclave, stirred, and kept at 25 ° C.
  • a liquid return line was installed to return the condensed liquid from the cooler kept at 110 ° C to the autoclave. After blowing nitrogen gas for 1.0 hour, fluorine gas diluted to 20% with nitrogen gas is blown at a flow rate of 6.17 LZh for 1 hour
  • the pressure inside the reactor was kept at 0.15 MPa.
  • Example 11 the CF 3 CF 2 CF 2 OCF (CF 3 ) COOCH (CH 3 ) obtained in Example 11 was obtained.
  • fluorine gas was blown in at the same flow rate and the pressure inside the reactor was maintained at 0.15 MPa.
  • the same operation was repeated once.
  • the total amount of benzene injected was 0.219 g, and the total amount of R-113 injected was 21 mL. Furthermore, nitrogen gas was blown in for 1.5 hours to obtain the target substance from the reactor.
  • Example 1 CF 3 CF 2 CF 2 OCF (CF 3 ) COOCF (CF 3 ) 2 (5 g) obtained in 1-2 was charged into a 30-OmL flask equipped with a reflux condenser at 80 ° C. (0.06 g) was added thereto, and the generated gas was heated and stirred at 150 and collected in a glass trap cooled to 178 ° C. When the reaction proceeded and all the liquid in the flask disappeared, the reaction was terminated. The collected product (4.8 g) was obtained in a glass trap.
  • a catalyst (10 OmL) supporting 2 parts by weight of the metal components described in Examples 14A to 14D in Table 1 per 100 parts by weight of crushed coconut husk was added to Inconel 600, 1Z2 inches and 1 m long, respectively.
  • the reactor was filled with the reactor and heated from the outside and kept at 170.
  • HFA was introduced at a flow rate of 0.2 mol / h, and simultaneously, hydrogen was introduced at a flow rate of 1.6 mol / h to carry out the reaction.
  • (CF 3 ) 2 CHOH hereinafter referred to as HF IP
  • Example 11 The same reaction was carried out except that the isopropanol of Example 11 was changed to 240 g (4 mol) of propanol to obtain 1480 g of a crude liquid. As a result of GC, the yield of CF 3 CF 2 CF 2 OCF (CF 3 ) COOCH 2 CH 2 CH 3 was 99.5%.
  • Example 1 CF 3 CF 2 CF 2 OCF (CF 3 ) COOCH (CH 3 ) 2 obtained in Example 2 CF 3 CF 2 CF 2 OCF (CF 3 ) COOCH 2 CH 2 CH 3 (4.
  • the reaction was performed in the same manner except that the amount was changed to 99 g).
  • the yield of CF 3 CF 2 CF 2 OCF (CF 3 ) COO CF 2 CF 2 CF 3 was 91%.
  • the following reaction was carried out using CF 3 CF 2 COF obtained by repeating the above reaction.
  • a catalyst 100 mL supporting 2 parts by mass of the metal component described in Example 2-4A to Example 2-4C in Table 2 per 100 parts by mass of coconut husk pulverized coal was 1Z2 inches long.
  • CF 3 CF 2 CH 2 OH was obtained with the results shown in Table 2, respectively.
  • the obtained crude liquid was separated to obtain a lower layer.
  • the lower layer was further washed twice with water (50 mL), dried over magnesium sulfate, and filtered to obtain a crude liquid.
  • the crude solution was washed twice with water (5 OmL), dried over magnesium sulfate, filtered, and filtered (CH 3 ) 2 CHOCOCF (CF 3 ) OCF 2 CF (CF 3 ) ⁇ CF 2 CF 2 CF 3 ( 64.0 g, GC purity 98%.) was obtained.
  • CF 3 CF 2 CF 2 ⁇ CF (CF 3 ) CF 2 ⁇ CF (CF 3 ) COF 2534 g was added, circulated and stirred, Kept at 25.
  • a cooler maintained at 110 ° C was installed at the outlet of the autoclave gas. After blowing nitrogen gas for 2.0 hours, 50% diluted fluorine gas was blown at a flow rate of 41.97 LZh for 2 hours.
  • reaction crude liquid (2500 g) was added to the autoclave, circulated and stirred, and kept at 25 ° C. After blowing nitrogen gas for 2.0 hours, 50% diluted fluorine gas was blown at a flow rate of 41.97 L / h for 2 hours. Next, while injecting 50% diluted fluorine gas at the same flow rate, (CH 3 ) 2 CHOCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (1440 g) was injected over 24.0 hours, and nitrogen gas was blown for 2 hours. 4190 g of a crude reaction solution was obtained.
  • the target product was quantified by 19 F-NMR (internal standard: C 6 F 6 ).
  • the yield of (CF 3 ) 2 C FOCOCF (CF 3 ) CFCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 was 94 %Met.
  • An Inconel column (inner diameter 14 mm, length lm) was filled with a catalyst (10 to 20 mesh, 50 g) in which 10% by mass of KF was supported on NaF, and placed in a salt bath. Adjusted to 200 ° C.
  • the fluorinated ester mixture was fed to the reactor using a metering pump at 60 gZ hours for 2 hours.
  • a reflux condenser adjusted to a temperature of 20 ° C was installed to separate the gaseous sample and liquid sample, and the gaseous sample (23.2 g) was placed in a fluoroplastic collection container.
  • a liquid sample (96.5 g) was collected in a glass trap.
  • Palladium chloride, iridium chloride, and chloroauric acid were changed to Pd: Ir: Au-90: 1: 9 (converted mass ratio) in Preparation Example 1 for palladium chloride and copper sulfate.
  • Catalyst (Pd—Ir-Au / C catalyst) was obtained in the same manner as in Preparation Example 1 except that the drying temperature (55 (TC)) was changed to 500 ° C and the reduction temperature (250) was changed to 300. .
  • CF 3 COCF 3 was absorbed in water three times or more in mole and distilled to obtain an azeotropic mixture of CF 3 C (OH) 2 CF 3 -2H 20 (boiling point: 105 106 ° C.).
  • the catalyst prepared in Preparation Example 13 (10 g, Example 15 17) or 2% Pd Z activated carbon catalyst (Nippon Engelpachi) was placed in a pressure-stirred autoclave made of Hastelloy having a capacity of 2 L. (10 g, Comparative Example 5) and the above-prepared CF 3 C (OH) 2 CF 3 -2H 20 (1000 g) were charged, and the vessel was replaced with hydrogen.
  • the reaction was carried out at a reaction temperature shown in Table 4 by pressurizing to 5 MPa (gauge pressure). After reacting for 5 hours, the catalyst was separated from the reaction product by a filter, and the same reaction was repeated 10 times. The results after the tenth reaction are shown in the table below. (Table 6)
  • a fluorinated alcohol which has been difficult to produce for structural or reaction reasons, can be produced.
  • various fluorinated alcohols having various structures and meeting various needs can be produced in high yield.
  • two kinds of fluorinated alcohols having different structures or a fluorinated alcohol having a single structure can be obtained.
  • the fluorinated alcohol can be continuously produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for producing in high yield a fluorinated alcohol having any desired structure. The process comprises reacting RARBCHOH (1) with RCCOX (2) to form R?ARBCHOCORC¿ (3), fluorinating it in a liquid phase to form R?AFRBFCFOCORCF¿ (4), decomposing the fluorinated compound at the ester bond and obtaining RAFRBFCO (5) and RCFCOF (6) from the resultant reaction products, and then reducing the compound (5) and the compound (6) to obtain RAFRBFCHOH (7) or RAFCH2OH (7a) and RCFCH2OH (8), respectively. In the formulae, RA is a monovalent organic group; RAF is a monovalent organic group obtained through fluorination of RA, etc.; RB is hydrogen or a monovalent organic group; RBF is fluorine, a monovalent organic group obtained through fluorination of RB, etc.; R?C and RCF¿ may be the same or different and each is a monovalent organic group optionally fluorinated, etc.; and X is a halogen atom.

Description

明 細 書 フッ素化アルコールの製造方法  Description Method for producing fluorinated alcohol
<技術分野 > <Technical field>
本発明は、 工業的に有用なフッ素化アルコールの製造方法に関する。 <背景技術 >  The present invention relates to a method for producing an industrially useful fluorinated alcohol. <Background technology>
a -炭素にフルォ口アルキル基を持つフッ素化アルコール化合物は、 フルォロ アルキル基の電子吸引性によりアルコール水素の酸性度が高く、 対応する炭化水 素のアルコールに比べて特異的な特性を持つ。 例えば、 通常の有機溶剤には溶解 しないナイロンなどのポリイミドの良好な溶剤となるほか、 イオン性化合物など の極性化合物の良好な溶剤となることが知られている。  Fluorinated alcohol compounds with a fluorocarbon alkyl group at the a-carbon have high acidity of alcohol hydrogen due to the electron-withdrawing property of the fluoroalkyl group, and have specific properties compared to the corresponding hydrocarbon alcohol. For example, it is known to be a good solvent for polyimides such as nylon which do not dissolve in ordinary organic solvents, and a good solvent for polar compounds such as ionic compounds.
この特徴を生かした用途としては、 追記可能なコンパクトディスク (CD— R ) 製造に用いられる色素の溶剤が挙げられる。  Applications that take advantage of this feature include dye solvents used in the production of write-once compact discs (CD-R).
従来から知られているフッ素化アルコール合成法としては、 メタノールゃエタ ノールにテトラフルォロエチレン、 へキサフルォロプロピレンのようなフロロォ レフィンを付加させる方法 (特開昭 54— 154707号公報、 J ou rn a l o f F l uo r i ne Chemi s t ry, 28 (1985) 291) 、 特 定構造を持つフッ素含有カルボン酸ノ、ライドを還元する方法 (特公平 1 _ 257 29号公報、 特開平 6— 279337号公報) 、 2—クロロー 1, 1, 1一トリ フルォロェタンをカルボン酸塩存在下に加水分解する方法 (特開昭 58 -134 043号公報、 特開昭 58— 140031号公報) などがある。  As a conventionally known method for synthesizing a fluorinated alcohol, a method of adding a fluororefin such as tetrafluoroethylene or hexafluoropropylene to methanol / ethanol (Japanese Patent Application Laid-Open No. 54-154707, Journ alof Fl uorine Chemistry, 28 (1985) 291), a method for reducing fluorine-containing carboxylic acids having a specific structure and a ride (Japanese Patent Publication No. 1-25729, Japanese Unexamined Patent Publication No. 279337), a method of hydrolyzing 2-chloro-1,1,1 trifluoroethane in the presence of a carboxylate (JP-A-58-134040, JP-A-58-140031) and the like. .
しかし、 従来の方法で製造できるフッ素化アルコールの構造は、 アルコールの 炭素骨格を組み立てる方法で合成することから、 合成できる構造が限定され、 構 造によっては合成できないか、 多段階の反応を要する問題があった。 また、 フッ 素含有力ルポン酸ハライドを還元する方法では、 このフッ素含有カルボン酸ハラ イドを電解化学的フッ素化 (Electrochemical Fluor inat ion0 以下、 ECF法と記 載する。 ) 等で合成するために、 収率が低い問題があり、 特にエーテル性酸素原 子を有する化合物を E C F法で製造することは困難であり、 かつ経済的にも不利 である欠点があった。 However, the structure of fluorinated alcohols that can be produced by conventional methods is limited by the method of assembling the carbon skeleton of the alcohol. Depending on the structure, it could not be synthesized or required a multi-step reaction. In the method of reducing the fluorine-containing force Rupon acid halide, the fluorine-containing carboxylic acid Hara Id electrolytic fluorination (Electrochemical Fluor inat ion 0 hereinafter mounting serial and ECF method.) Or the like to synthesize in However, there is a problem that the yield is low, and particularly, it is difficult to produce a compound having an etheric oxygen atom by the ECF method, and it is economically disadvantageous.
' ぐ ぐ発明の開示 >  '' Disclosure of the invention>
本発明は、 従来方法が有する問題の原因を種々検討した結果、 まず、 液相でフ ッ素化反応を行うときの基質が低分子量である場合には、 該基質の沸点が低くな り、 気相でフッ素と基質との反応が起こり、 化合物の分解反応が起こることに着 目した。 そこで、 目的化合物に対応する炭素骨格を有する化合物を安価に入手し、 これに任意の化合物をエステル結合させ、 フッ素化し、 つぎにエステル結合を分 解し、 還元する方法により、 原料のアルコール類に対応する構造を有するフッ素 化アルコールが得られることを見いだし本発明に至った。 さらに、 エステル結合 の分解反応生成物から得られるァシルフルォリド化合物をリサイクルすることに よる工業的な連続プロセスを見いだした。  According to the present invention, as a result of examining various causes of the problems of the conventional method, first, when a substrate having a low molecular weight when performing a fluorination reaction in a liquid phase, the boiling point of the substrate decreases, We focused on the reaction between fluorine and the substrate in the gas phase, and the decomposition reaction of the compound. Therefore, a compound having a carbon skeleton corresponding to the target compound is obtained at low cost, an arbitrary compound is ester-bonded to the compound, fluorinated, and then the ester bond is decomposed and reduced to obtain alcohols as raw materials. The present inventors have found that a fluorinated alcohol having a corresponding structure can be obtained, and reached the present invention. Furthermore, they found an industrial continuous process by recycling the acylfluoride compound obtained from the decomposition reaction product of the ester bond.
すなわち本発明は、 下記化合物 (1 ) と下記化合物 (2 ) とを反応させて下記 化合物 (3 ) とし、 該化合物 (3 ) を液相中でフッ素化して下記化合物 (4 ) と し、 該化合物 (4 ) のエステル結合を分解した反応生成物から下記化合物 (5 ) および Zまたは下記化合物 (6 ) を得て、 つぎに該化合物 (5 ) および/または 化合物 (6 ) を還元することにより、 化合物 (5 ) からは下記化合物 (7 ) を ( ただし、 RBFがフッ素原子である場合には下記化合物 (7 a ) を) 、 化合物 ( 6 ) からは下記化合物 (8 ) を得ることを特徴とする、 化合物 (7 ) 、 化合物 ( 7 a) 、 および化合物 (8 ) から選ばれる 1種以上のフッ素化アルコールの製造 方法を提供する。 That is, the present invention provides the following compound (3) by reacting the following compound (1) with the following compound (2), and fluorinating the compound (3) in a liquid phase to give the following compound (4): The following compound (5) and Z or the following compound (6) are obtained from the reaction product obtained by decomposing the ester bond of the compound (4), and then the compound (5) and / or the compound (6) is reduced. The following compound (7) is obtained from compound (5) (however, the following compound (7a) when R BF is a fluorine atom), and the following compound (8) is obtained from compound (6). Production of one or more fluorinated alcohols selected from compound (7), compound (7a), and compound (8) Provide a way.
RARBCHOH (1) R A R B CHOH (1)
RcCOX (2) R c COX (2)
RA BCHOCORc (3) R AB CHOCOR c (3)
RAFRBF C F O C O RCF ( 4 ) RAF R BF CFOCOR CF (4)
RAFRBFCO (5) R AF R BF CO (5)
RCFCOF (6) R CF COF (6)
RAFRBF C H O H ( 7 ) RAF R BF CHOH ( 7 )
RAFCH2OH (7 a) R AF CH 2 OH (7a)
RCFCH2OH (8) R CF CH 2 OH (8)
ただし、 RAおよび RAFは、 同一でも異なっていてもよい 1価有機基であり、 RAと RAFとが異なる場合の RAFは、 RAがフッ素化された 1価有機基である。 However, R A and R AF are monovalent organic groups which may be the same or different, and when R A and R AF are different, R AF is a monovalent organic group in which R A is fluorinated .
RBは水素原子または 1価有機基であり、 RBが水素原子である場合の RBFは フッ素原子であり、 RBが 1価有機基である場合の RBFは、 RBと同一でも異な つていてもよい 1価有機基であり、 R Bと R B Fとが異なる 1価有機基である場合 の RBFは、 RBがフッ素化された 1価有機基である。 R B is a hydrogen atom or a monovalent organic group, R BF when R B is a hydrogen atom is a fluorine atom, R BF when R B is a monovalent organic group, be the same as R B a different one optionally may monovalent organic group, R BF when the R B and R BF are different monovalent organic group, a monovalent organic group R B is fluorinated.
または、 RAと RBは互いに結合して 2価有機基を形成していてもよく、 該場 合の RAFと RBFは互いに結合して 2価有機基を形成しており、 RAと RBから形 成される 2価有機基と、 RAFと RBFから形成される 2価有機基とは同一でも異 なっていてもよく、 異なる場合の RAFと RBFから形成される 2価有機基は、 RA と R Bから形成される 2価有機基がフッ素化された基である。 Or, R A and R B may be bonded to form a divalent organic group with one another, R AF and R BF of該場case forms a divalent organic radical bonded to each other, R A It is well, formed from R AF and R BF when varies also have been different in same divalent organic group made form from R B, and divalent organic group formed from R AF and R BF and The divalent organic group is a group in which the divalent organic group formed from R A and R B is fluorinated.
Rcおよび RCFは、 それぞれ同一でも異なっていてもよい 1価有機基であり、 Rcと RCFとが異なる場合の RCFは、 Rcがフッ素化された 1価有機基であり、 かつ、 RA、 RB、 および Rcの少なくとも 1つにはフッ素原子が存在する基であ る。 Xはハロゲン原子である。 ぐ発明を実施するための最良の形態 > R c and R CF are each a monovalent organic group which may be the same or different, and when R c and R CF are different, R CF is a monovalent organic group in which R c is fluorinated; In addition, at least one of R A , R B , and R c is a group having a fluorine atom. X is a halogen atom. BEST MODE FOR CARRYING OUT THE INVENTION>
本明細書における有機基とは、 炭素原子を必須とする基をいい、 飽和の基であ つても、 不飽和の基であってもよい。 フッ素で置換されうる原子としては、 炭素 に結合する水素原子が挙げられる。 フッ素で置換されうる原子団としては、 炭素 一炭素不飽和二重結合や炭素―炭素不飽和三重結合等が挙げられる。 たとえば、 有機基中に炭素一炭素二重結合が存在する場合には、 液相中でのフッ素化により 該炭素一炭素二重結合にフッ素が付加して炭素一炭素単結合が形成される。 また、 有機基中に炭素一炭素三重結合が存在する場合には、 液相中でのフッ素化により 該炭素一炭素三重結合にフッ素が付加して、 炭素一炭素単結合や炭素一炭素二重 結合が形成される。  The organic group in the present specification refers to a group that essentially requires a carbon atom, and may be a saturated group or an unsaturated group. Examples of the atom that can be substituted with fluorine include a hydrogen atom bonded to carbon. Examples of the atomic group that can be substituted with fluorine include a carbon-carbon unsaturated double bond and a carbon-carbon unsaturated triple bond. For example, when a carbon-carbon double bond is present in an organic group, fluorine is added to the carbon-carbon double bond by fluorination in a liquid phase to form a carbon-carbon single bond. When a carbon-carbon triple bond is present in an organic group, fluorine is added to the carbon-carbon triple bond by fluorination in a liquid phase to form a carbon-carbon single bond or a carbon-carbon double bond. A bond is formed.
1価有機基としては、 1価炭化水素基、 ヘテロ原子含有 1価炭化水素基、 八口 ゲン化 1価炭化水素基、 またはハロゲン化 (ヘテロ原子含有 1価炭化水素) 基が 好ましく、 飽和の基であるこれらの基が特に好ましい。 2価有機基としては、 2 価炭化水素基、 ヘテロ原子含有 2価炭化水素基、 ハロゲン化 2価炭化水素基、 ま たはハロゲン化 (ヘテロ原子含有 2価炭化水素) 基が好ましく、 飽和の基である これらの基が特に好ましい。 本明細書における飽和の基とは、 該基中の炭素一炭 素結合が単結合のみからなる基をいう。 有機基としては、 フッ素化反応時に用い る液相への溶解性の観点から、 その炭素数が 1〜2 0であるのが好ましく、 特に 炭素数が 1〜1 0であるのが好ましい。  The monovalent organic group is preferably a monovalent hydrocarbon group, a heteroatom-containing monovalent hydrocarbon group, an octagenated monovalent hydrocarbon group, or a halogenated (heteroatom-containing monovalent hydrocarbon) group. These groups which are groups are particularly preferred. The divalent organic group is preferably a divalent hydrocarbon group, a heteroatom-containing divalent hydrocarbon group, a halogenated divalent hydrocarbon group, or a halogenated (heteroatom-containing divalent hydrocarbon) group. These groups are particularly preferred. As used herein, the term “saturated group” refers to a group in which a carbon-carbon bond in the group is composed of only a single bond. The organic group preferably has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms, from the viewpoint of solubility in the liquid phase used during the fluorination reaction.
炭化水素基としては、 脂肪族炭化水素基であっても芳香族炭化水素基であって もよく、 脂肪族炭化水素基が好ましい。 また、 脂肪族炭化水素基中には、 炭素一 炭素結合として、 単結合、 二重結合、 または三重結合が存在していてもよい。 脂 肪族炭化水素基は、 直鎖構造、 分岐構造、 環構造、 または環構造を部分的に有す る構造が挙げられる。 The hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and is preferably an aliphatic hydrocarbon group. Further, a single bond, a double bond, or a triple bond may be present as a carbon-carbon bond in the aliphatic hydrocarbon group. The aliphatic hydrocarbon group has a linear structure, a branched structure, a cyclic structure, or a partial cyclic structure. Structure.
また、 ハロゲン化された基におけるハロゲン原子としては、 フッ素原子、 塩素 原子、 臭素原子、 またはヨウ素原子であり、 フッ素原子、 塩素原子、 または臭素 原子が好ましく、 とりわけ化合物の有用性の観点からフッ素原子、 またはフッ素 原子と塩素原子が好ましく、 さらにフッ素原子が好ましい。 本明細書において、 八口ゲン化とは水素原子の 1個以上がハロゲン原子に置換されたことをいう。 部 分八口ゲン化とは水素原子の一部がハ口ゲン原子に置換されたことをいう。 すな わち、 部分ハロゲン化基の基中には、 水素原子が存在する。 ペルハロゲン化とは 水素原子の全てがフッ素化されたことをいう。 すなわち、 ペルハロゲン化基の基 中には水素原子が存在しない。 ハロゲン化、 部分ハロゲン化、 ペルハロゲン化の 用語の意味は、 ハロゲン原子が特定された場合においても同様の意味を示す。 ノ、 ロゲン化基およびベルハロゲン化基中に存在するハロゲン原子は、 1種であって も 2種以上であってもよい。  Further, as the halogen atom in the halogenated group, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, and a fluorine atom, a chlorine atom, or a bromine atom is preferable. Or a fluorine atom and a chlorine atom are preferable, and a fluorine atom is more preferable. In the present specification, octagenation means that one or more hydrogen atoms have been replaced by halogen atoms. Partial octupenization means that a part of hydrogen atoms has been replaced by haptic atoms. That is, a hydrogen atom is present in the partially halogenated group. Perhalogenation means that all of the hydrogen atoms have been fluorinated. That is, there is no hydrogen atom in the perhalogenated group. The terms halogenation, partial halogenation, and perhalogenation have the same meaning when a halogen atom is specified. The number of halogen atoms present in the halogenated, halogenated, and bell-halogenated groups may be one or more.
飽和の 1価炭化水素基としては、 アルキル基が挙げられ、 その構造は、 直鎖構 造、 分岐構造、 環構造、 または部分的に環である構造のいずれであってもよい。 飽和の 2価炭化水素基としては、 アルキレン基が挙げられ、 その構造は、 直鎖構 造、 分岐構造、 環構造、 または環部分を有する構造、 のいずれであってもよい。 アルキル基またはアルキレン基の炭素数は 1〜1 0が好ましい。 直鎖構造であ るアルキル基としては、 メチル基、 ェチル基、 プロピル基、 ブチル基等が挙げら れる。 分岐構造であるアルキル基としては、 イソプロピル基、 イソブチル基、 s e c一ブチル基、 t e r t—プチル基等が挙げられる。 環構造であるアルキル基 としては、 たとえば、 シクロアルキル基、 ビシクロアルキル基、 脂環式スピロ構 造の基等が挙げられ、 3〜 6員環のシクロアルキル基が好ましく、 シクロペンチ ル基、 シクロへキシル基等が挙げられる。  Examples of the saturated monovalent hydrocarbon group include an alkyl group, and the structure may be any of a linear structure, a branched structure, a cyclic structure, and a partially cyclic structure. Examples of the saturated divalent hydrocarbon group include an alkylene group, and the structure may be any of a linear structure, a branched structure, a ring structure, and a structure having a ring portion. The alkyl group or the alkylene group preferably has 1 to 10 carbon atoms. Examples of the alkyl group having a straight-chain structure include a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the alkyl group having a branched structure include an isopropyl group, an isobutyl group, a sec monobutyl group, a tert-butyl group, and the like. Examples of the alkyl group having a ring structure include a cycloalkyl group, a bicycloalkyl group, a group having an alicyclic spiro structure, and a 3- to 6-membered cycloalkyl group is preferable, and a cyclopentyl group or a cycloalkyl group is preferred. Xyl groups and the like.
環部分を有するアルキル基としては、 上記環構造のアルキル基で置換された ( 直鎖構造または分岐構造の) アルキル基、 または該アルキル基の環基部分がさら に (直鎖構造または分岐構造の) アルキル基で置換された基が挙げられ、 アルキ ル基の水素原子の 1個以上が 3〜 6員環のシクロアルキル基で置換された基が好 ましく、 シクロペンチルメチル基、 シクロへキチルェチル基、 ェチルシクロへキ シルメチル基等が特に好ましい。 他の基としては、 芳香環を有するアルキル基 ( たとえば、 ベンジル基、 フエネチル基等のァラルキル基) 、 複素環を有するアル キル基 (たとえば、 ピリジルメチル基、 フルフリル基等) が挙げられる。 As the alkyl group having a ring portion, the alkyl group having the above-mentioned ring structure is substituted ( Examples include an alkyl group having a straight-chain or branched structure, or a group in which the ring group of the alkyl group is further substituted with an alkyl group having a straight-chain or branched structure. A group in which at least one is substituted with a 3- to 6-membered cycloalkyl group is preferable, and a cyclopentylmethyl group, a cyclohexylethyl group, an ethylcyclohexylmethyl group, and the like are particularly preferable. Examples of other groups include an alkyl group having an aromatic ring (eg, an aralkyl group such as a benzyl group and a phenethyl group) and an alkyl group having a heterocyclic ring (eg, a pyridylmethyl group, a furfuryl group, and the like).
また、 アルキレン基としては、 上記アルキル基の水素原子の 1個が結合手とな つた基が挙げられ、 直鎖または分岐構造のアルキレン基が好ましい。  Examples of the alkylene group include groups in which one hydrogen atom of the above-mentioned alkyl group is a bond, and a linear or branched alkylene group is preferable.
飽和のハロゲン化炭化水素基とは、 上記飽和炭化水素基中に存在する水素原子 の 1個以上がハロゲン原子によって置換された基をいい、 該基中には水素原子が 存在していても存在しなくてもよい。 部分ハロゲン化飽和炭化水素基とは、 上記 飽和炭化水素基中に存在する水素原子の一部がハロゲン原子によって置換された 基をいう。 部分ハロゲン化飽和炭化水素基中には、 水素原子が存在する。 ベルハ ロゲン化飽和炭化水素基とは、 飽和炭化水素基中に存在する水素原子の全てがノ、 ロゲン原子によつて置換された基をいう。 ペルハロゲン化飽和炭化水素基中には 水素原子は存在しない。  The saturated halogenated hydrocarbon group refers to a group in which one or more of the hydrogen atoms present in the above-mentioned saturated hydrocarbon group is replaced by a halogen atom. You don't have to. The partially halogenated saturated hydrocarbon group refers to a group in which a part of the hydrogen atoms present in the above saturated hydrocarbon group has been replaced by halogen atoms. Hydrogen atoms are present in partially halogenated saturated hydrocarbon groups. The bell-halogenated saturated hydrocarbon group refers to a group in which all of the hydrogen atoms present in the saturated hydrocarbon group have been replaced by hydrogen and hydrogen atoms. No hydrogen atom exists in the perhalogenated saturated hydrocarbon group.
飽和のハロゲン化炭化水素基は、 直鎖構造であっても分岐構造であってもよく、 環構造でも、 環部分を有する構造であってもよく、 炭素数は 1〜2 0が好ましい。 飽和のハロゲン化炭化水素基のうち 1価の基としては、 フルォロアルキル基また はフルォロ (部分クロ口アルキル) 基等が挙げられ、 2価の基としては、 フルォ 口アルキレン基またはフルォロ (部分クロ口アルキレン) 基等が挙げられる。 飽和のペルハロゲン化炭化水素基のうち 1価の基としては、 ペルフルォロアル キル基またはペルフルォロ (部分クロ口アルキル) 基 (すなわち、 部分クロロア ルキル基中の水素原子の全てがフッ素化された基) が好ましい。 2価の基として は、 ペルフルォロアルキレン基またはペルフルォロ (部分クロ口アルキレン) 基The saturated halogenated hydrocarbon group may have a straight-chain structure or a branched structure, may have a ring structure or a structure having a ring portion, and preferably has 1 to 20 carbon atoms. Among the saturated halogenated hydrocarbon groups, a monovalent group includes a fluoroalkyl group or a fluoro (partial alkyl) group, and a divalent group includes a fluoroalkylene group or a fluoro (partial alkyl) group. Alkylene) group and the like. Among the saturated perhalogenated hydrocarbon groups, the monovalent group includes a perfluoroalkyl group or a perfluoro (partially alkyl) group (that is, a group in which all the hydrogen atoms in the partial chloroalkyl group are fluorinated). preferable. As a divalent group Is a perfluoroalkylene group or a perfluoro (partial cycloalkylene) group
(すなわち、 部分クロ口アルレン基中の水素原子の全てがフッ素化された基) が 好ましい。 また、 ペルフルォロ (部分フルォロアルキル) 基は、 ペルフルォロア ルキル基と同じであり、 ペルフルォロ (部分フルォロアルキレン) 基は、 ペルフ ルォロアルキレン基と同じである。 (Ie, a group in which all of the hydrogen atoms in the partial cycloarlene group are fluorinated) are preferred. Further, a perfluoro (partial fluoroalkyl) group is the same as a perfluoroalkyl group, and a perfluoro (partial fluoroalkylene) group is the same as a perfluoroalkylene group.
飽和のへテロ原子飽和炭化水素基とは、 酸素原子、 窒素原子、 または硫黄原子 等のへテロ原子と、 炭素原子と、 水素原子とからなる基をいう。 ヘテロ原子含有 飽和炭化水素基の炭素数は 1〜2 0が好ましい。 ヘテロ原子としては、 ヘテロ原 子そのものであっても、 ヘテロ原子同士またはへテロ原子と他の原子が結合して ヘテロ原子団となっていてもよい。 ヘテロ原子およびへテロ原子団は、 エステル 結合の分解反応 (たとえば熱分解反応) によって変化しないものが好ましい。 ヘテロ原子としては、 エーテル性酸素原子 (C一〇一 Cの O) 、 =0、 ≡N等 が挙げられ、 エーテル性酸素原子が特に好ましい。 ヘテロ原子含有飽和炭化水素 基としては、 前記飽和炭化水素基の炭素一炭素原子間に 2価へテロ原子または 2 価へテロ原子団が揷入された基、 または前記飽和炭化水素基中の炭素原子にへテ 口原子が結合した基、 または前記飽和炭化水素基の結合末端の炭素原子に 2価へ テロ原子または 2価へテロ原子団が結合した基が好ましい。  A saturated heteroatom-saturated hydrocarbon group refers to a group consisting of a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom, a carbon atom, and a hydrogen atom. The carbon number of the heteroatom-containing saturated hydrocarbon group is preferably from 1 to 20. The heteroatom may be a heteroatom itself or a heteroatom formed by combining heteroatoms or heteroatoms with other atoms. It is preferable that the hetero atom and the hetero atom group are not changed by a decomposition reaction of an ester bond (for example, a thermal decomposition reaction). Examples of the hetero atom include an etheric oxygen atom (C—O of C), = 0, and ≡N. An etheric oxygen atom is particularly preferred. Examples of the heteroatom-containing saturated hydrocarbon group include a group in which a divalent heteroatom or a divalent heteroatom group is inserted between carbon and carbon atoms of the saturated hydrocarbon group, or a carbon atom in the saturated hydrocarbon group. A group in which a heteroatom is bonded to an atom or a group in which a divalent heteroatom or a divalent heteroatom group is bonded to a carbon atom at the bonding terminal of the saturated hydrocarbon group is preferable.
ヘテロ原子含有基としては、 化合物の有用性の点からエーテル性酸素原子含有 基が'特に好ましい。 特に入手しやすさ、 製造しやすさ、 および生成物の有用性の 点から、 1価の基としてはエーテル性酸素原子を含むアルキル基 (たとえば、 ァ ルコキシアルキル基等。 ) が好ましく、 2価の基としてはエーテル性酸素原子を 含むアルキレン基 (たとえば、 ポリオキシアルキレン基) が好ましい。 また、 炭 素一炭素原子間にエーテル性酸素原子が挿入された環部分を有する 1価脂肪族炭 化水素基としては、 たとえば、 ジォキソラン骨格を有するアルキル基等が挙げら れる。 アルコキシアルキル基としては、 前記アルキル基中に存在する水素原子の 1個 がアルコキシ基に置換された基が好ましい。 該アルコキシ基の炭素数は 1〜1 0 が好ましい。 アルコキシアルキル基としては、 エトキシメチル基、 1一プロポキ シェチル基、 2—プロポキシェチル基等が挙げられる。 As the hetero atom-containing group, an etheric oxygen atom-containing group is particularly preferred from the viewpoint of the usefulness of the compound. In particular, from the viewpoints of availability, ease of production, and usefulness of the product, the monovalent group is preferably an alkyl group containing an etheric oxygen atom (for example, an alkoxyalkyl group). As the valent group, an alkylene group containing an etheric oxygen atom (for example, a polyoxyalkylene group) is preferable. Examples of the monovalent aliphatic hydrocarbon group having a ring portion in which an etheric oxygen atom is inserted between one carbon atom of carbon include, for example, an alkyl group having a dioxolane skeleton. As the alkoxyalkyl group, a group in which one of the hydrogen atoms present in the alkyl group is substituted with an alkoxy group is preferable. The alkoxy group preferably has 1 to 10 carbon atoms. Examples of the alkoxyalkyl group include an ethoxymethyl group, an 11-propoxyethyl group, a 2-propoxyethyl group, and the like.
飽和のハロゲン化 (ヘテロ原子含有炭化水素) 基としては、 飽和のフルォロ ( ヘテロ原子含有炭化水素) 基または飽和のフルォロ (部分クロ口 (ヘテロ原子含 有炭化水素) ) 基が好ましい。 ハロゲン化 (ヘテロ原子含有飽和炭化水素) 基の 炭素数は:!〜 2 0が好ましい。  The saturated halogenated (hetero atom-containing hydrocarbon) group is preferably a saturated fluoro (hetero atom-containing hydrocarbon) group or a saturated fluoro (partial chroma (hetero atom-containing hydrocarbon)) group. The number of carbon atoms in the halogenated (heteroatom-containing saturated hydrocarbon) group is :! ~ 20 is preferred.
飽和のペルハロゲン化 (ヘテロ原子含有炭化水素) 基は、 直鎖構造であっても 分岐構造であってもよく、 飽和のペルフルォロ (ヘテロ原子含有炭化水素) 基ま たは飽和のペルフルォロ (部分クロ口 (ヘテロ原子含有炭化水素) ) 基が好まし い。 1価の基としてはペルフルォロ (ヘテロ原子含有アルキル) 基またはペルフ ルォロ (部分クロ口 (ヘテロ原子含有アルキル) ) 基が好ましく、 ペルフルォロ (アルコキシル) 基またはペルフルォロ (部分クロ口 (アルコキシル) ) 基が特 に好ましく、 2価の基としては、 ペルハロゲン化 (ヘテロ原子含有 1価飽和炭化 水素) 基中のハロゲン原子の 1個が結合手となった基であり、 ペルフルォロ (ポ リオキシアルキレン) 基が好ましい。  A saturated perhalogenated (heteroatom-containing hydrocarbon) group may have a linear or branched structure and may be a saturated perfluorinated (heteroatom-containing hydrocarbon) group or a saturated perfluorinated (partial chloroform) group. Mouth (heteroatom containing hydrocarbon)) groups are preferred. As the monovalent group, a perfluoro (hetero atom-containing alkyl) group or a perfluoro (partial port (hetero atom-containing alkyl)) group is preferable, and a perfluoro (alkoxyl) group or a perfluoro (partial port (alkoxyl)) group is particularly preferable. The divalent group is preferably a group in which one of the halogen atoms in a perhalogenated (heteroatom-containing monovalent saturated hydrocarbon) group is a bond, and a perfluoro (polyoxyalkylene) group is preferred. preferable.
これらの基の例としては、 後述する具体的な化合物中に具体的に示される。 化合物 (1 ) は入手しやすさの点から、 RAおよび RBが水素原子を含有する 基であることが好ましく、 さらに水素原子を有する飽和の基であるのが、 目的と する反応を収率よく実施でき、 目的とするフッ素化アルコールの有用性の点から も好ましい。 R Gは本発明の製造方法で製造した化合物を再利用して連続反応を 実施できることから、 フッ素原子を含有する基であることが好ましい。 また、 R Bにおいては水素原子もまた同様に好ましい。 Examples of these groups are specifically shown in the specific compounds described below. In the compound (1), R A and R B are preferably a group containing a hydrogen atom from the viewpoint of availability, and a saturated group having a hydrogen atom is more preferable for the intended reaction. It can be carried out efficiently and is also preferable from the viewpoint of usefulness of the intended fluorinated alcohol. RG is preferably a group containing a fluorine atom, since a continuous reaction can be carried out by reusing the compound produced by the production method of the present invention. The hydrogen atom in R B versa preferred.
RAとしては、 1価飽和炭化水素基、 部分ハロゲン化 1価飽和炭化水素基、 ェ —テル性酸素原子含有 1価飽和炭化水素基、 または部分八ロゲン化 (ェ一テル性 酸素原子含有 1価飽和炭化水素) 基であるのが好ましく、 RBとしては、 水素原 子、 1価飽和炭化水素基、 部分ハロゲン化 1価飽和炭化水素基、 エーテル性酸素 原子含有 1価飽和炭化水素基、 または部分ハロゲン化 (エーテル性酸素原子含有 1価飽和炭化水素) 基であるのが好ましい。 特に RAがアルキル基、 部分クロ口 アルキル基、 アルコキシアルキル基、 または部分クロ口 (アルコキシアルキル) 基であり、 RBが水素原子、 アルキル基、 部分クロ口アルキル基、 アルコキシァ ルキル基、 または部分クロ口 (アルコキシアルキル) 基であり、 RAFが RAに存 在する水素原子の全てがフッ素原子に置換された基であり、 R B Fがフッ素原子、 または R Bに存在する水素原子の全てがフッ素原子に置換された基であるのが好 ましい。 RA is a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, — It is preferably a monovalent saturated hydrocarbon group containing a telluric oxygen atom or a partially octalogenated (monovalent saturated hydrocarbon containing a etheric oxygen atom) group, and R B is a hydrogen atom or a monovalent. It is preferably a saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, or a partially halogenated (monovalent saturated hydrocarbon containing an etheric oxygen atom) group. In particular, R A is an alkyl group, a partial alkyl group, an alkoxyalkyl group, or a partial alkyl (alkoxyalkyl) group, and R B is a hydrogen atom, an alkyl group, a partial alkyl group, an alkoxyalkyl group, or a partial alkyl group. R AF is a group in which all of the hydrogen atoms present in R A are substituted with fluorine atoms, and R BF is a group in which all of the hydrogen atoms present in R A are a fluorine atom or RB. It is preferably a group substituted by a fluorine atom.
また、 RAおよび R Bが互いに連結して 2価有機基を形成していてもよく、 そ の場合には、 2価飽和炭化水素基、 部分ハロゲン化 2価飽和炭化水素基、 エーテ ル性酸素原子含有 2価飽和炭化水素基、 または部分ハロゲン化 (エーテル性酸素 原子含有 2価飽和炭化水素) 基が好ましく、 特にアルキレン基、 部分クロ口アル キレン基、 アルキレンォキシアルキレン基、 または部分クロ口 (アルキレンォキ シアルキレン) 基であるのが好ましい。 Also, may also be linked R A and R B each other to form a divalent organic group, in the case of that the bivalent saturated hydrocarbon group, a partially halogenated bivalent saturated hydrocarbon group, ether property An oxygen atom-containing divalent saturated hydrocarbon group or a partially halogenated (etheric oxygen atom-containing divalent saturated hydrocarbon) group is preferred. In particular, an alkylene group, a partially branched alkylene group, an alkyleneoxyalkylene group, or a partially saturated hydrocarbon group is preferred. Preferably, it is a mouth (alkyleneoxyalkylene) group.
R eは、 1価飽和炭化水素基、 部分ハロゲン化 1価飽和炭化水素基、 エーテル 性酸素原子含有 1価飽和炭化水素基、 および部分ハロゲン化 (エーテル性酸素原 子含有 1価飽和炭化水素) 基から選ばれる基の基中に存在する水素原子の全てが フッ素原子に置換された基であるのが好ましく、 その場合の R C Fは Rcと同一の 基である。 Re is a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partial halogenation (a monovalent saturated hydrocarbon containing an etheric oxygen atom) It is preferable that all of the hydrogen atoms present in the group selected from the groups are substituted with fluorine atoms, in which case R CF is the same group as R c .
化合物 (1 ) は、 容易に入手可能であるか、 または公知の方法により容易に合 成できる化合物である。 化合物 (1 ) の具体例としては、 下記化合物が挙げられ る。 ただし、 以下において C yはシクロへキシル基を示す。 (CH3) 2CHOH、 Compound (1) is a compound that is easily available or can be easily synthesized by a known method. Specific examples of the compound (1) include the following compounds. However, in the following, Cy represents a cyclohexyl group. (CH 3 ) 2 CHOH,
CH3CH2CH (CH3) OH、 CH 3 CH 2 CH (CH 3 ) OH,
CH2 = CHCH (CH3) OH、 CH 2 = CHCH (CH 3 ) OH,
CH3 (CH2) 2CH (CH3) OH、 CH 3 (CH 2 ) 2 CH (CH 3 ) OH,
CH2C 1 CHC 1 CH2CH (CH3) OH、 CH 2 C 1 CHC 1 CH 2 CH (CH 3 ) OH,
CH2C 1 CHC 1 (CH2) 2OH、 CH 2 C 1 CHC 1 (CH 2 ) 2 OH,
CF2C 1 CFC 1 CH2CH (CH3) OH、 CF 2 C 1 CFC 1 CH 2 CH (CH 3 ) OH,
CF2C 1 CFC 1 (CH2) 2OH、 CF 2 C 1 CFC 1 (CH 2 ) 2 OH,
Cy〇H、  Cy〇H,
CH3CH2OH、 CH 3 CH 2 OH,
CH3 (CH2) 2OH、 CH 3 (CH 2 ) 2 OH,
CH3 (CH2) 3OH、 CH 3 (CH 2 ) 3 OH,
CH2 = CHCH2OH、
Figure imgf000012_0001
CH 2 = CHCH 2 OH,
Figure imgf000012_0001
本発明においては、 化合物 (1) と化合物 (2) とを反応させる。 化合物 (2 ) は、 後述する連続プロセスで反応を行いうる点から Xがフッ素原子である化合 物が好ましい。 化合物 (2) 中の Reの構造は、 フッ素化時に化合物 (3) が液 相中に溶解しやすいように、 化合物 (1) 中の RAの構造と関係させながら調節 するのが好ましい。 化合物 (2) の具体例としては、 下記化合物が挙げられる。 CF3CF2C〇F、 In the present invention, the compound (1) is reacted with the compound (2). The compound (2) is preferably a compound in which X is a fluorine atom in that it can react in a continuous process described below. The structure of R e in compound (2) is preferably adjusted in relation to the structure of R A in compound (1) so that compound (3) is easily dissolved in the liquid phase during fluorination. Specific examples of the compound (2) include the following compounds. CF 3 CF 2 C〇F,
CF3CF2CF2OCF (CF3) COF、 CF 3 CF 2 CF 2 OCF (CF 3 ) COF,
CF3CF2CF2〇CF (CF3) CF2OCF (CF3) COF。 CF 3 CF 2 CF 2 〇CF (CF 3 ) CF 2 OCF (CF 3 ) COF.
化合物 (2) は、 市販品を用いてもよく、 本発明の製造方法における生成物で ある化合物 (6) や、 RBFがフッ素原子である場合の化合物 (5) を用いても よい。 本発明においては、 化合物 (1) として RA、 RBの構造が異なる種々の構造 を用いうることが利点の一つである。 すなわち目的のフッ素化アルコールの RA Fおよび RBFにそれぞれ対応する RAおよび RBを有する化合物 (1) を用いて、 本発明の反応を行うことにより、 従来の方法では入手が困難であった化合物 (7 ) を製造できる。 従来の方法では入手が困難であった化合物 (7) としては、 ( RAF) (RBF) CH—部分の構造や RAF—部分の構造が複雑であるフッ素化ァ ルコールや、 気相フッ素化反応で製造すると多種類の副生成物が生じる低分子量 のフッ素化アルコ一ルが挙げられる。 As the compound (2), a commercially available product may be used, or the compound (6) which is a product in the production method of the present invention, or the compound (5) when R BF is a fluorine atom may be used. In the present invention, R A as the compound (1), that the structure of the R B may use a variety of different structures is one of the advantages. That is, by performing the reaction of the present invention using the compound (1) having R A and R B corresponding to R A F and R BF of the desired fluorinated alcohol, it is difficult to obtain by the conventional method. Compound (7) can be produced. In the compound (7) which was difficult to obtain a conventional method, (R AF) (R BF) CH- moiety and R AF in the - structure of fluorine Kaa alcohol or a complex partial, vapor phase fluorination Low-molecular-weight fluorinated alcohols that produce various types of by-products when produced by a fluorination reaction.
本発明においては、 化合物 (1) と化合物 (2) との反応は、 溶媒 (以下、 溶 媒 1という。 ) の存在下に実施してもよいが、 溶媒 1の不存在下に実施するのが 容積効率の点から好ましい。 溶媒 1を用いる場合には、 ジクロロメタン、 クロ口 ホルム、 卜リエチルァミン、 またはトリェチルァミンとテトラヒドロフランとの 混合溶媒が好ましい。 溶媒 1の使用量は、 化合物 (1) と化合物 (2) の総量に 対して 50〜500質量%とするのが好ましい。  In the present invention, the reaction between the compound (1) and the compound (2) may be carried out in the presence of a solvent (hereinafter, referred to as a solvent 1), but is carried out in the absence of the solvent 1. Is preferred from the viewpoint of volumetric efficiency. When the solvent 1 is used, dichloromethane, chloroform, triethylamine, or a mixed solvent of triethylamine and tetrahydrofuran is preferable. The amount of the solvent 1 used is preferably 50 to 500% by mass based on the total amount of the compound (1) and the compound (2).
また、 化合物 (1) と化合物 (2) との反応では、 HXで表される酸が発生す る。 化合物 (2) として、 Xがフッ素原子である化合物を用いた場合には HFが 発生するため、 HFの捕捉剤としてアルカリ金属フッ化物 (フッ化ナトリウム等 ) やトリアルキルアミンを反応系中に存在させてもよい。 HFの捕捉剤は、 化合 物 (1) または化合物 (2) が酸に不安定である場合には使用するのが特に好ま しい。 また、 HFの捕捉剤を使用しない場合には、 HFを窒素気流に同伴させて 反応系外に排出するのが好ましい。 アルカリ金属フッ化物を用いる場合の量は化 合物 (2) に対して 1〜10倍モルとするのが好ましい。  Further, in the reaction between compound (1) and compound (2), an acid represented by HX is generated. When a compound in which X is a fluorine atom is used as the compound (2), HF is generated. Therefore, an alkali metal fluoride (such as sodium fluoride) or a trialkylamine is present in the reaction system as a HF scavenger. May be. HF scavengers are particularly preferred when compound (1) or compound (2) is acid labile. When no HF scavenger is used, it is preferable to discharge HF out of the reaction system by accompanying the HF with a nitrogen stream. When the alkali metal fluoride is used, the amount is preferably 1 to 10 times the mol of the compound (2).
化合物 (1) と化合物 (2) との反応における反応温度は、 通常の場合、 一 5 οτ:以上であるのが好ましく、 +100 以下または溶媒の沸点温度以下である のが好ましい。 また、 該反応の反応時間は化合物の供給速度と供給量に応じて適 宜変更されうる。 反応圧力 (ゲージ圧、 以下同様。 ) は常圧〜 2MPaが好まし レ^ In general, the reaction temperature of the reaction between the compound (1) and the compound (2) is preferably 15 ° τ: or higher, more preferably +100 or lower, or lower than the boiling point of the solvent. The reaction time of the reaction is appropriately determined according to the supply rate and supply amount of the compound. It can be changed as needed. The reaction pressure (gauge pressure, the same applies hereinafter) is preferably normal pressure to 2 MPa.
化合物 (1) と化合物 (2) との反応では、 化合物 (3) が生成する。 化合物 (3) 中の RAおよび RBは化合物 (1) における該基と同一であり、 化合物 ( 3) 中の Rcは化合物 (2) における該基と同一の基である。 The reaction of compound (1) with compound (2) produces compound (3). R A and R B in the compound (3) is the same as the base in the compound (1), and R c in the compound (3) is a base the same group in the compound (2).
化合物 (3) のフッ素含有量は、 30質量%以上が好ましく、 30〜86質量 %であるのが特に好ましく、 とりわけ 30〜76質量%であるのが好ましい。 フ ッ素含有量が少なすぎると液相中への溶解性が極端に低くなり、 フッ素化反応の 反応系が不均一になる問題や、 化合物 (3) をうまく反応系中フィードすること ができない問題がある。 また、 フッ素含有量の上限は限定されないが、 あまりに 高すぎるものは、 化合物 (3) の製造価格が高く経済的ではない問題がある。 さらに、 化合物 (3) の分子量は 200〜1000であるのが、 気相中での好 ましくないフッ素化反応を防止し、 液相中でのフッ素化反応を円滑に行いうる点 で好ましい。 分子量が小さすぎると化合物 (3) が気化しやすくなるため、 液相 でのフッ素化反応時に気相中で分解反応が起こるおそれがある。 一方、 分子量が 大きすぎると化合物 (3) の精製が困難になるおそれがある。  The fluorine content of the compound (3) is preferably at least 30% by mass, particularly preferably from 30 to 86% by mass, particularly preferably from 30 to 76% by mass. If the fluorine content is too low, the solubility in the liquid phase will be extremely low, and the reaction system of the fluorination reaction will be uneven, and compound (3) will not be able to be fed into the reaction system well. There's a problem. The upper limit of the fluorine content is not limited, but if it is too high, the production cost of compound (3) is high and it is not economical. Further, the molecular weight of the compound (3) is preferably from 200 to 1,000 in that an undesirable fluorination reaction in the gas phase can be prevented and the fluorination reaction in the liquid phase can be carried out smoothly. If the molecular weight is too small, the compound (3) is likely to evaporate, so that a decomposition reaction may occur in the gas phase during the fluorination reaction in the liquid phase. On the other hand, if the molecular weight is too large, purification of compound (3) may be difficult.
化合物 (3) の具体例としては、 下記化合物が挙げられる。  Specific examples of the compound (3) include the following compounds.
CF3 (CF2) 2OCF (CF3) COOCH (CH3) 2CF 3 (CF 2 ) 2 OCF (CF 3 ) COOCH (CH 3 ) 2 ,
CF3 (CF2) 2OCF (CF3) COOCH (CH3) CH2CHC 1 CH2C 1、 CF 3 (CF 2 ) 2 OCF (CF 3 ) COOCH (CH 3 ) CH 2 CHC 1 CH 2 C 1,
CF3 (CF2) 2OCF (CF3) COOCH (CH3) CH2CH3CF 3 (CF 2 ) 2 OCF (CF 3 ) COOCH (CH 3 ) CH 2 CH 3 ,
CF3 (CF2) 2OCF (CF3) COOCH (CH3) (CH2) 2CH3、 CF3 (CF2) 2〇CF (CF3) CO〇Cy、 CF 3 (CF 2 ) 2 OCF (CF 3 ) COOCH (CH 3 ) (CH 2 ) 2 CH 3 , CF 3 (CF 2 ) 2 〇CF (CF 3 ) CO〇Cy,
CF3 (CF2) 2OCF (CF3) COOCH (CH3) CH2CFC 1 CF2C 1、 CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) COOCH (CH3)CF 3 (CF 2 ) 2 OCF (CF 3 ) COOCH (CH 3 ) CH 2 CFC 1 CF 2 C 1, CF 3 (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOCH (CH 3 )
2ゝ 2 ゝ
CF3 (CF2) 2〇CF (CF3) COOCH2CH3CF 3 (CF 2 ) 2 〇CF (CF 3 ) COOCH 2 CH 3 ,
CF3 (CF2) 2OCF (CF3) C〇OCH2CH2CHC 1 CH2C 1、CF 3 (CF 2 ) 2 OCF (CF 3 ) C〇OCH 2 CH 2 CHC 1 CH 2 C 1,
CF3 (CF2) 2OCF (CF3) COO (CH2) 2CH3CF 3 (CF 2 ) 2 OCF (CF 3 ) COO (CH 2 ) 2 CH 3 ,
CF3 (CF2) 2OCF (CF3) COO (CH2) 3CH3CF 3 (CF 2 ) 2 OCF (CF 3 ) COO (CH 2 ) 3 CH 3 ,
CF3 (CF2) 2OCF (CF3) COO (CH2) 2CFC 1 CF2C 1、CF 3 (CF 2 ) 2 OCF (CF 3 ) COO (CH 2 ) 2 CFC 1 CF 2 C 1,
CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) COOCH2CH3
Figure imgf000015_0001
CF 3 (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOCH 2 CH 3 .
Figure imgf000015_0001
化合物 (1) と化合物 (2) との反応で生成した化合物 (3) を含む粗生成物 は、 目的に応じて精製を行い高純度のものとしても、 そのまま、 つぎの反応等に 用いてもよいが、 次の工程におけるフッ素化反応を安全に行う観点から、 粗生成 物は精製するのが好ましく、 特に粗生成物中から化合物 (1) を除くのが望まし い。 化合物 (3) を含む粗生成物を精製する方法としては、 粗生成物をそのまま 蒸留する方法、 粗生成物を希アルカリ水などで処理して分液する方法、 粗生成物 を適当な有機溶媒で抽出した後に蒸留する方法、 シリカゲルカラムクロマトダラ フィ等が挙げられる。  The crude product containing the compound (3) produced by the reaction of the compound (1) with the compound (2) may be purified according to the purpose, and may be used in the next reaction or the like as it is in high purity. From the viewpoint of safely carrying out the fluorination reaction in the next step, it is preferable to purify the crude product, and it is particularly desirable to remove the compound (1) from the crude product. As a method for purifying the crude product containing the compound (3), a method for distilling the crude product as it is, a method for treating the crude product with diluted alkaline water or the like, and a method for separating the crude product into an appropriate organic solvent And then distillation, silica gel column chromatography, and the like.
次に本発明においては、 化合物 (3) を液相中でフッ素と反応させて化合物 ( 4) を得る。 本発明でいうフッ素化反応とは、 化合物 (3) の分子中に少なくと もフッ素原子が 1原子結合する反応をいう。  Next, in the present invention, compound (3) is reacted with fluorine in a liquid phase to obtain compound (4). The fluorination reaction in the present invention refers to a reaction in which at least one fluorine atom is bonded in the molecule of the compound (3).
化合物 (4) 中の: AFは RAに対応する基、 RBFは RBに対応する基であり、 RCFは Rcに対応する基である。 フッ素化反応の前後でこれらの基の炭素原子の 並び方は変化せず、 化合物 (3) に対応する炭素骨格を有する化合物 (4) が得 られる。 ただし、 化合物 (3) 中に炭素一炭素不飽和結合がある場合には、 上述 のように該不飽和結合の 1個以上にフッ素原子が付加して結合状態が変化しうる c 本発明において、 液相中でのフッ素化は、 フッ素ガスを化合物 (3 ) を含む液 相中に導入する方法によるのが好ましい。 フッ素ガスは、 そのままを用いても、 不活性ガスで希釈されたフッ素ガスを用いてもよい。 不活性ガスとしては、 窒素 ガス、 ヘリウムガスが好ましく、 経済的な理由から窒素ガスが特に好ましい。 窒 素ガス中のフッ素ガス量は特に限定されず、 1 0 V o 1 %以上とするのが効率の 点で好ましく、 2 0 v o 1 %以上とするのが特に好ましい。 In compound (4): AF is a group corresponding to R A , R BF is a group corresponding to R B , and R CF is a group corresponding to R c . Before and after the fluorination reaction, the arrangement of the carbon atoms of these groups does not change, and a compound (4) having a carbon skeleton corresponding to the compound (3) is obtained. However, when in the compound (3) is carbon one-carbon unsaturated bond, the bonding state 1 or more to be added fluorine atoms unsaturated bonds as mentioned above may change c In the present invention, the fluorination in the liquid phase is preferably performed by a method of introducing fluorine gas into the liquid phase containing the compound (3). The fluorine gas may be used as it is or may be a fluorine gas diluted with an inert gas. As the inert gas, nitrogen gas and helium gas are preferable, and nitrogen gas is particularly preferable for economic reasons. The amount of fluorine gas in the nitrogen gas is not particularly limited, and is preferably 10 V o 1% or more from the viewpoint of efficiency, and particularly preferably 20 V o 1% or more.
液相としてはフッ素 (F 2) を溶解し得る溶媒 (以下、 溶媒 2という) を用い るのが好ましい。 該溶媒 2としては、 C一 H結合を含まず C一 F結合を必須とす る溶媒が好ましく、 さらに、 ペルフルォロアルカン類、 または、 塩素原子、 窒素 原子、 および酸素原子から選ばれる 1種以上の原子を構造中に有する公知の有機 溶剤をペルフルォロ化した有機溶剤が好ましい。 さらに溶媒 2としては、 化合物As the liquid phase, it is preferable to use a solvent capable of dissolving fluorine (F 2 ) (hereinafter referred to as solvent 2). The solvent 2 is preferably a solvent that does not contain a C—H bond and essentially has a C—F bond, and is further selected from perfluoroalkanes or a chlorine atom, a nitrogen atom, and an oxygen atom. An organic solvent obtained by perfluorinating a known organic solvent having at least one kind of atom in the structure is preferable. Further, as the solvent 2, a compound
( 3 ) の溶解性が高い溶媒を用いるのが好ましく、 特に化合物 (3 ) を 1質量% 以上溶解しうる溶媒、 特には 5質量%以上溶解しうる溶媒を用いるのが好ましい。 溶媒 2の例としては、 ペルフルォロアルカン類 (F C—7 2等) 、 ペルフルォ ロェ一テル類 (F C— 7 5、 F C— 7 7等) 、 ペルフルォロポリエ一テル類 (商 品名:クライトツクス、 フォンプリン、 ガルデン、 デムナム等。 ) 、 クロ口フル ォロカーボン類 (R— 1 1 3、 商品名:フロンループ等) 、 クロ口フルォロポリ エーテル類、 ペルフルォロアルキルアミン (たとえば、 ペルフルォロトリアルキ ルァミン等) 、 不活性流体 (商品名:フロリナート) 等が挙げられる。 It is preferable to use a solvent having high solubility of (3), particularly preferably a solvent capable of dissolving 1% by mass or more of compound (3), particularly preferably a solvent capable of dissolving 5% by mass or more. Examples of the solvent 2 include perfluoroalkanes (FC-72, etc.), perfluoro alcohols (FC-75, FC-77, etc.), perfluoropolyethers (trade name) : Krytox, Fonpurin, Galden, Demnum, etc.), Fluorocarbons (R-113, trade name: CFC), Fluoropolyethers, Perfluoroalkylamines (for example, Perflu And an inert fluid (trade name: Florinert).
また、 溶媒 2として、 溶媒としての機能を有する化合物 (4 ) 、 化合物 (5 ) および化合物 (6 ) の 1種以上を用いることができる。 特に化合物 (4 ) 、 含フ ッ素ケトン (5 ) または化合物 (6 ) を溶媒として用いた場合には反応後の後処 理が容易になる利点がある。  Further, as the solvent 2, one or more of the compound (4), the compound (5) and the compound (6) having a function as a solvent can be used. In particular, when compound (4), fluorine-containing ketone (5) or compound (6) is used as a solvent, there is an advantage that post-treatment after the reaction is facilitated.
溶媒 2の量は、 化合物 (3 ) に対して、 5倍質量以上が好ましく、 特に 1 0〜 1 0 0倍質量が好ましい。 フッ素化反応は、 バッチ方式または連続方式で実施するのが好ましく、 いずれ の場合も、 下記フッ素化法 1またはフッ素化法 2で実施するのが好ましい。 特に, 反応収率と選択率の点から、 フッ素化法 2で実施するのが好ましい。 またフッ素 ガスは、 バッチ方式で実施する場合においても、 連続方式で実施する場合におい ても、 窒素ガス等の不活性ガスで希釈したフッ素ガスを使用してもよい。 The amount of the solvent 2 is preferably at least 5 times the mass of the compound (3), particularly preferably 10 to 100 times the mass. The fluorination reaction is preferably performed in a batch system or a continuous system. In each case, it is preferable to perform the fluorination method 1 or the fluorination method 2 described below. In particular, from the viewpoint of the reaction yield and the selectivity, it is preferable to carry out the fluorination method 2. In addition, the fluorine gas may be a fluorine gas diluted with an inert gas such as a nitrogen gas, regardless of whether the method is performed in a batch mode or in a continuous mode.
[フッ素化法 1 ] 反応器に、 化合物 (3 ) と溶媒 2とを仕込み、 撹拌を開始す る。 つぎに、 所定の反応温度と反応圧力下で、 フッ素ガスを反応器中の液相に連 続的に供給しながら反応させる方法。  [Fluorination method 1] Compound (3) and solvent 2 are charged into a reactor, and stirring is started. Next, the reaction is carried out while continuously supplying fluorine gas to the liquid phase in the reactor at a predetermined reaction temperature and reaction pressure.
[フッ素化法 2 ] 反応器に溶媒 2を仕込み、 撹拌を開始する。 つぎに所定の反 応温度と反応圧力下で、 化合物 (3 ) とフッ素ガスとを反応器中の液相に所定の モル比で連続的かつ同時に供給する方法。  [Fluorination method 2] Charge solvent 2 into a reactor and start stirring. Then, the compound (3) and fluorine gas are continuously and simultaneously supplied at a predetermined molar ratio to the liquid phase in the reactor at a predetermined reaction temperature and reaction pressure.
フッ素化法 2において化合物 (3 ) を供給する際には、 溶媒 2で希釈してもし なくてもよいが、 選択率を向上させ、 副生成物量を抑制させることから、 溶媒 2 で希釈した化合物 (3 ) を供給することが好ましい。 また、 フッ素化法 2におい て化合物 (3 ) を溶媒で希釈する際には、 化合物 (3 ) に対する溶媒 2の量を 5 倍質量以上とするのが好ましく、 特に 1 0倍質量以上とするのが好ましい。  When supplying the compound (3) in the fluorination method 2, the compound (3) may or may not be diluted with the solvent 2, but since the selectivity is improved and the amount of by-products is suppressed, the compound diluted with the solvent 2 is used. It is preferable to supply (3). When diluting compound (3) with a solvent in fluorination method 2, the amount of solvent 2 is preferably at least 5 times, more preferably at least 10 times, the mass of compound (3). Is preferred.
フッ素化反応においては、 バッチ方式で反応を実施する場合にも、 連続方式で 実施する場合にも、 化合物 (3 ) 中の水素原子に対して、 フッ素の量が常に過剰 当量となる状態で反応を行うのが好ましく、 特に 1 . 5倍当量以上 (すなわち、 1 . 5倍モル以上) になるようにフッ素を使用するのが選択率の点から好ましい。 また、 フッ素量は反応の開始時点から終了時点まで常に過剰量を維持し続けるの が好ましい。  Regarding the fluorination reaction, whether the reaction is carried out in a batch mode or in a continuous mode, the reaction is carried out in a state where the amount of fluorine is always in excess with respect to the hydrogen atoms in compound (3). It is preferable to use fluorine so as to be at least 1.5 times equivalent (ie, at least 1.5 times mol) from the viewpoint of selectivity. It is preferable that the amount of fluorine is always maintained in an excessive amount from the start to the end of the reaction.
フッ素化反応の反応温度は、 通常は一 6 0で以上かつ化合物 (3 ) の沸点以下 が好ましく、 反応収率、 選択率、 および工業的実施のしゃすさの点から— 5 0で 〜十 1 0 0 °Cが特に好ましく、 一 2 0 °C〜十 5 0 °Cがとりわけ好ましい。 フッ素 化反応の反応圧力は特に限定されず、 0〜2MPaが、 反応収率、 選択率、 工業 的な実施のしゃすさの観点から特に好ましい。 The reaction temperature of the fluorination reaction is usually preferably not less than 160 and not more than the boiling point of the compound (3). From the viewpoint of reaction yield, selectivity, and ease of industrial implementation, the reaction temperature is preferably −50 to −10. 100 ° C is particularly preferred, and 120 ° C to 150 ° C is particularly preferred. Fluorine The reaction pressure of the chemical reaction is not particularly limited, and 0 to 2 MPa is particularly preferable from the viewpoint of reaction yield, selectivity, and ease of industrial implementation.
さらに、 フッ素化反応を効率的に進行させるためには、 反応系中に C一 H結合 含有化合物を添加する、 または、 紫外線照射を行う、 のが好ましい。 これにより- 反応系中に存在する化合物 (3) を効率的にフッ素化でき、 反応率を飛躍的に向 上させうる。  Furthermore, in order to allow the fluorination reaction to proceed efficiently, it is preferable to add a C—H bond-containing compound to the reaction system or to perform ultraviolet irradiation. Thereby, the compound (3) present in the reaction system can be efficiently fluorinated, and the reaction rate can be drastically improved.
C一 H結合含有化合物としては、 化合物 (3) 以外の有機化合物であり、 特に 芳香族炭化水素が好ましく、 とりわけベンゼン、 トルエン等が好ましい。 該 C一 H結合含有化合物の添加量は、 化合物 (3) 中の水素原子に対して 0. 1〜10 モル%であるのが好ましく、 特に 0. 1〜5モル%であるのが好ましい。  The C—H bond-containing compound is an organic compound other than the compound (3), particularly preferably an aromatic hydrocarbon, particularly preferably benzene, toluene and the like. The amount of the C—H bond-containing compound to be added is preferably 0.1 to 10 mol%, more preferably 0.1 to 5 mol%, based on the hydrogen atoms in compound (3).
C— H結合含有化合物は、 反応系中にフッ素ガスが存在する状態で添加するの が好ましい。 さらに、 C一 H結合含有化合物を加えた場合には、 反応系を加圧す るのが好ましい。 加圧時の圧力としては、 0. 01〜5MP aが好ましい。  The C—H bond-containing compound is preferably added in a state where fluorine gas is present in the reaction system. Further, when a C—H bond-containing compound is added, it is preferable to pressurize the reaction system. The pressure at the time of pressurization is preferably 0.01 to 5 MPa.
化合物 (3) のフッ素化反応では化合物 (4) が生成する。  Compound (4) is produced by the fluorination reaction of compound (3).
化合物 (4) 中、 RAがフッ素に置換されうる原子または原子団を有していな い基である場合、 または RAがフッ素化されなかった場合の RAFは RAと同一の 基であり、 RAがフッ素に置換されうる原子または原子団を有しており、 フッ素 化された場合には RAFは RAとは異なる基である。 RB、 RBF、 Rc、 RCFにお いても同様である。 In the compound (4), when R A is a group having no atom or atomic group that can be substituted by fluorine, or when R A is not fluorinated, R AF is the same group as R A. R A has an atom or an atomic group that can be substituted by fluorine, and when fluorinated, R AF is a different group from R A. The same applies to R B , R BF , R c , and R CF.
化合物 (3) は、 RAおよび RBは水素含有基である化合物が入手しやすいこ とから、 化合物 (4) 中の RAFおよび RBFは、 R Aおよび RB中の水素原子がそ れぞれフッ素化された基であるのが好ましい。 さらに、 化合物 (4) は化合物 ( 3) がペルフルォロ化された化合物であるのが好ましいことから、 化合物 (4) 中の RAFおよび RBFはそれぞれ RAおよび RB中に含まれる水素原子の全てがフ ッ素化された基であるのが特に好ましい。 すなわち、 RAFおよび RBFは、 それぞれ、 1価飽和炭化水素基、 部分ハロゲ ン化 1価飽和炭化水素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 または 部分ハロゲン化 (エーテル性酸素原子含有 1価飽和炭化水素) 基中に存在する水 素原子の全てがフッ素原子に置換された基であるのが好ましく (ただし、 RBF においては、 フッ素原子も好ましい) 、 アルキル基、 部分クロ口アルキル基、 ァ ルコキシアルキル基、 または部分ハロゲン化 (アルコキシアルキル) 基中に存在 する水素原子の全てがフッ素原子に置換された基が特に好ましい (ただし、 RB Fにおいては、 フッ素原子も特に好ましい) 。 Compound (3) from the R A and R B are obtained compounds are hydrogen containing group Yasuiko, R AF and R BF in the compound (4) is a hydrogen atom in R A and R B is its Each is preferably a fluorinated group. Further, the compound (4) compound (3) from that preferably a compound which is Perufuruoro of compound (4) in each R AF and R BF of hydrogen atoms contained in R A and R B of It is particularly preferred that all are fluorinated groups. That is, R AF and R BF are a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, or a partially halogenated (etheric oxygen atom, respectively). (Contained monovalent saturated hydrocarbon) It is preferable that all hydrogen atoms present in the group are substituted with fluorine atoms (however, in RBF , a fluorine atom is also preferable), an alkyl group, alkyl group, § Turkey alkoxyalkyl group or a partially halogenated (alkoxyalkyl) all of the hydrogen atoms present in the group are substituted by fluorine atoms are particularly preferable (provided that, in the R B F, especially also fluorine atom Preferred).
または、 RAFと RBFは、 互いに結合して 2価飽和炭化水素基、 部分ハロゲン 化 2価飽和炭化水素基、 エーテル性酸素原子含有 2価飽和炭化水素基、 または部 分ハロゲン化 (エーテル性酸素原子含有 2価飽和炭化水素) 基中の水素原子の全 てがフッ素原子に置換された基を形成するのが好ましく、 特に、 アルキレン基、 部分クロ口アルキレン基、 アルキレンォキシアルキレン基、 または部分ハロゲン 化 (アルキレンォキシアルキレン) 基に存在する水素原子の全てがフッ素原子に 置換された基であるのが好ましい。 Alternatively, R AF and R BF are bonded to each other to form a divalent saturated hydrocarbon group, a partially halogenated divalent saturated hydrocarbon group, a divalent saturated hydrocarbon group containing an etheric oxygen atom, or a partially halogenated (etheric (Oxygen atom-containing divalent saturated hydrocarbon) It is preferable to form a group in which all of the hydrogen atoms in the group are substituted with fluorine atoms, and particularly, an alkylene group, a partial cycloalkylene group, an alkyleneoxyalkylene group, or It is preferable that all the hydrogen atoms present in the partially halogenated (alkyleneoxyalkylene) group are substituted with fluorine atoms.
ReFは、 1価飽和炭化水素基、 部分ハロゲン化 1価飽和炭化水素基、 ェ一テ ル性酸素原子含有 1価飽和炭化水素基、 および部分ハロゲン化 (エーテル性酸素 原子含有 1価飽和炭化水素) 基から選ばれる基の基中に存在する水素原子の全て がフッ素原子に置換された基であるのが好ましい。 R eF is a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partially halogenated (monovalent saturated hydrocarbon group containing an etheric oxygen atom). It is preferable that all of the hydrogen atoms present in the group selected from the group consisting of hydrogen) are substituted with fluorine atoms.
化合物 (4) の具体例としては、 つぎの化合物が挙げられる。 ただし、 下式中 の CyFは、 ペルフルォロシクロへキシル基を示す。 Specific examples of the compound (4) include the following compounds. Here, Cy F in the following formula represents a perfluorocyclohexyl group.
CF3 (CF2) 2OCF (CF3) COOCF (CF3) 2CF 3 (CF 2 ) 2 OCF (CF 3 ) COOCF (CF 3 ) 2 ,
CF3 (CF2) 2OCF (CF3) COOCF (CF3) CF2CFC 1 CF2C 1、 CF 3 (CF 2 ) 2 OCF (CF 3 ) COOCF (CF 3 ) CF 2 CFC 1 CF 2 C 1,
CF3 (CF2) 2〇CF (CF3) COOCF (CF3) CF2CF3、 CF3 (CF2) 2OCF (CF3) COOCF (CF3) (CF2) 2CF3CF 3 (CF 2 ) 2 〇CF (CF 3 ) COOCF (CF 3 ) CF 2 CF 3 , CF 3 (CF 2 ) 2 OCF (CF 3 ) COOCF (CF 3 ) (CF 2 ) 2 CF 3 ,
CF3 (CF2) 2OCF (CF3) COOCyF CF 3 (CF 2 ) 2 OCF (CF 3 ) COOCy F
CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) COOCF (CF3)CF 3 (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOCF (CF 3 )
2ゝ 2 ゝ
CF3 (CF2) 2〇CF (CF3) COOCF2CF3CF 3 (CF 2 ) 2 〇CF (CF 3 ) COOCF 2 CF 3 ,
CF3 (CF2) 2OCF (CF3) COO (CF2) 2CFC 1 CF2C 1、CF 3 (CF 2 ) 2 OCF (CF 3 ) COO (CF 2 ) 2 CFC 1 CF 2 C 1,
CF3 (CF2) 2OCF (CF3) COO (CF2) 2CF3CF 3 (CF 2 ) 2 OCF (CF 3 ) COO (CF 2 ) 2 CF 3 ,
CF3 (CF2) 2OCF (CF3) COO (CF2) 3CF3CF 3 (CF 2 ) 2 OCF (CF 3 ) COO (CF 2 ) 3 CF 3 ,
CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) COOCF2CF3
Figure imgf000020_0001
CF 3 (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOCF 2 CF 3 ,
Figure imgf000020_0001
フッ素化反応において、 水素原子をフッ素原子に置換する反応がおきた場合に は、 HFが副生する。 副生した HFを除去するには、 反応系中に HFの捕捉剤を 共存させる、 または反応器ガス出口で HF捕捉剤と出口ガスを接触させるのが好 ましい。 該 HF捕捉剤としては、 前述のものと同様のものが用いられ、 NaFが 好ましい。  In the case of a reaction in which a hydrogen atom is replaced with a fluorine atom in a fluorination reaction, HF is by-produced. To remove by-product HF, it is preferable to coexist with an HF scavenger in the reaction system or to contact the HF scavenger with the outlet gas at the reactor gas outlet. As the HF scavenger, the same one as described above is used, and NaF is preferable.
反応系中に HF捕捉剤を共存させる場合の量は、 化合物 (3) 中に存在する全 水素原子量に対して 1〜20倍モルが好ましく、 1〜5倍モルが好ましい。 反応 器ガス出口に HF捕捉剤をおく場合には、 (a) 冷却器 (10で〜室温に保持す るのが好ましく、 特には約 20°Cに保持するのが好ましい。 ) (b) NaFペレ ット充填層、 および (c) 冷却器 (一 78°C〜十 10°Cに保持するのが好ましく、 — 30°C〜0°Cに保持するのが好ましい) を (a) — (b) 一 (c) の順に直列 に設置するのが好ましい。 なお、 (c) の冷却器からは凝集した液を反応器に戻 すための液体返送ラインを設置してもよい。 フッ素化反応で得た化合物 (4 ) を含む粗生成物は、 そのまま次の工程に用い てもよく、 精製して高純度のものにしてもよい。 精製方法としては、 粗生成物を そのまま常圧または減圧下に蒸留する方法等が挙げられる。 The amount of the HF scavenger coexisting in the reaction system is preferably 1 to 20 times, and more preferably 1 to 5 times the molar amount of the total hydrogen atoms present in the compound (3). When an HF scavenger is placed at the reactor gas outlet, (a) a cooler (preferably maintained at 10 to room temperature, particularly preferably maintained at about 20 ° C.) (b) NaF Pellet packed bed, and (c) cooler (preferably maintained between 78 ° C and 10 ° C, preferably — maintained between 30 ° C and 0 ° C) with (a) — ( b) It is preferable to install them in series in the order of (c). In addition, a liquid return line for returning the aggregated liquid from the cooler in (c) to the reactor may be provided. The crude product containing the compound (4) obtained by the fluorination reaction may be used as it is in the next step, or may be purified to high purity. Examples of the purification method include a method of distilling the crude product as it is under normal pressure or reduced pressure.
本発明においては、 さらに化合物 (4 ) のエステル結合を分解する。  In the present invention, the ester bond of the compound (4) is further decomposed.
化合物 (4 ) のエステル結合を分解する反応は、 加熱することによりエステル 結合を分解する、 または、 求核剤の存在もしくは求電子剤の存在下にエステル結 合を分解することにより実施するのが好ましい。  The reaction for decomposing the ester bond of compound (4) is preferably carried out by decomposing the ester bond by heating, or by decomposing the ester bond in the presence of a nucleophile or an electrophile. preferable.
加熱することによりエステル結合を分解する場合 (以下、 熱分解という) 、 化 合物 (4 ) の沸点とその安定性により反応の形式を選択するのが好ましい。 たと えば、 気化しやすい化合物 ( 4 ) を熱分解する場合には、 気相で連続的に分解さ せて、 生成物を含む出口ガスを凝縮、 回収する気相熱分解法を採用しうる。  When the ester bond is decomposed by heating (hereinafter referred to as thermal decomposition), it is preferable to select the type of reaction depending on the boiling point of the compound (4) and its stability. For example, in the case of thermally decomposing the easily vaporizable compound (4), a vapor phase pyrolysis method of continuously decomposing in the gas phase and condensing and recovering the outlet gas containing the product may be employed.
気相熱分解法の反応温度は 5 0〜 3 5 0 °Cが好ましく、 5 0〜 3 0 0 °Cが特に 好ましく、 とりわけ 1 5 0〜 2 5 0 °Cが好ましい。 また、 反応には直接は関与し ない不活性ガスを反応系中に共存させてもよい。 不活性ガスとしては、 窒素ガス、 二酸化炭素ガス等が挙げられる。 不活性ガスは化合物 (4 ) に対して 0 1〜 5 0 V o 1 %程度を添加するのが好ましい。 不活性ガスの添加量が多いと、 生成 物回収量が低減することがある。  The reaction temperature of the gas phase pyrolysis method is preferably from 50 to 350 ° C, particularly preferably from 50 to 300 ° C, particularly preferably from 150 to 250 ° C. In addition, an inert gas not directly involved in the reaction may be allowed to coexist in the reaction system. Examples of the inert gas include nitrogen gas and carbon dioxide gas. The inert gas is preferably added in an amount of about 0.1 to 50 V o 1% based on the compound (4). If the amount of inert gas added is large, the amount of product recovered may decrease.
また気相熱分解法においては、 管型反応器を用いるのが好ましい。 管型反応器 を用いる場合の滞留時間は、 空塔基準で 0 . 1秒〜 1 0分程度が好ましい。 反応 圧力は特に限定されない。 また、 化合物 (4 ) が高沸点化合物の場合には、 減圧 下で反応を実施するのが好ましい。 特に化合物 (4 ) が低沸点化合物である場合 には、 生成物の分解が抑制され、 かつ反応率が高くなることから、 加圧下で反応 を実施するのが好ましい。  In the gas phase pyrolysis method, it is preferable to use a tubular reactor. When a tubular reactor is used, the residence time is preferably about 0.1 second to 10 minutes on an empty tower basis. The reaction pressure is not particularly limited. When the compound (4) is a high boiling point compound, the reaction is preferably performed under reduced pressure. In particular, when the compound (4) is a low-boiling compound, it is preferable to carry out the reaction under pressure because decomposition of the product is suppressed and the reaction rate is increased.
管型反応器を用いて気相反応を行う場合には、 反応を促進させる目的で、 反応 管中にガラス、 アルカリ金属の塩、 またはアルカリ土類金属の塩を充填し、 固定 床または流動床で反応させるのが好ましい。 When performing a gas phase reaction using a tubular reactor, fill the reaction tube with glass, an alkali metal salt, or an alkaline earth metal salt to promote the reaction and fix it. The reaction is preferably carried out in a bed or in a fluidized bed.
アルカリ金属の塩またはアルカリ土類金属の塩としては、 炭酸塩またはフッ化 物が好ましい。 ガラスとしては、 一般的なソーダガラスが挙げられ、 特にビーズ 状にして流動性を上げたガラスビーズが好ましい。 アルカリ金属の塩としては、 炭酸ナトリウム、 フッ化ナトリウム、 フッ化カリウム、 炭酸カリウム、 または炭 酸リチウムが挙げられる。 アルカリ土類金属の塩としては、 炭酸カルシウム、 フ ッ化カルシウムまたは炭酸マグネシウム等が挙げられる。  As the alkali metal salt or alkaline earth metal salt, carbonate or fluoride is preferable. Examples of the glass include common soda glass, and glass beads having a fluidity in the form of beads are particularly preferable. Alkali metal salts include sodium carbonate, sodium fluoride, potassium fluoride, potassium carbonate, or lithium carbonate. Examples of the alkaline earth metal salt include calcium carbonate, calcium fluoride, magnesium carbonate and the like.
これらのうち、 アルカリ金属の塩が好ましく、 特にアルカリ金属フッ化物が好 ましく、 とりわけフッ化カリウムが好ましい。 フッ化カリウムを用いると、 分解 反応の収率が高く、 低い反応温度でも反応が実施でき、 フッ化カリウム量が少量 であっても効率的に反応を実施できる等の点において特に好ましい。 アルカリ金 属の塩は、 担体に担持させてものを用いてもよい。 担体としては、 活性炭、 活性 アルミナ、 ジルコニァ、 または異なる種類のアルカリ金属の塩が挙げられる。 さ らに、 反応管中にガラス、 アルカリ金属の塩、 またはアルカリ土類金属の塩を充 填させて、 流動床で反応させる場合には、 ガラスビーズや、 炭酸ナトリウムの軽 灰等であって、 粒径が 1 0 0〜2 5 0 m程度であるものを用いのるのが特に好 ましい。  Of these, alkali metal salts are preferable, alkali metal fluorides are particularly preferable, and potassium fluoride is particularly preferable. The use of potassium fluoride is particularly preferred in that the yield of the decomposition reaction is high, the reaction can be carried out even at a low reaction temperature, and the reaction can be carried out efficiently even with a small amount of potassium fluoride. The alkali metal salt may be supported on a carrier or used. Carriers include activated carbon, activated alumina, zirconia, or salts of different types of alkali metals. Further, when the reaction tube is filled with glass, an alkali metal salt, or an alkaline earth metal salt and reacted in a fluidized bed, glass beads or light ash of sodium carbonate is used. It is particularly preferable to use one having a particle size of about 100 to 250 m.
気相反応は、 化合物 (4 ) の気化を促進する目的で、 熱分解反応には直接は関 与しない不活性ガスの存在下で実施するのが好ましい。 不活性ガスとしては、 窒 素ガス、 二酸化炭素ガス、 ヘリウムガス、 アルゴンガス等が挙げられる。 不活性 ガス量は化合物 (4 ) に対して 0 . 0 1〜5 0 v o 1 %程度が好ましい。 不活性 ガス量が多すぎると、 生成物の回収量が低くなるおそれがあり好ましくない。 一方、 化合物 (4 ) が気化しにくい化合物である場合には、 反応器内で液のま ま加熱する液相熱分解法を採用するのが好ましい。 この場合の反応圧力は限定さ れない。 通常の場合、 エステル結合分解反応の生成物は、 化合物 (4 ) より低沸 点であることから、 蒸留塔が付いた反応装置を用いて、 蒸留しながら反応を行い、 生成物を気化させて連続的に抜き出す形式により反応を行うのが好ましい。 また 加熱終了後に反応器中から一括して生成物を抜き出す方法であってもよい。 この 液相熱分解法の反応温度は 50〜 300 が好ましく、 特に 100〜 250でが 好ましい。 The gas phase reaction is preferably carried out in the presence of an inert gas which is not directly involved in the thermal decomposition reaction for the purpose of promoting the vaporization of the compound (4). Examples of the inert gas include nitrogen gas, carbon dioxide gas, helium gas, and argon gas. The amount of the inert gas is preferably about 0.01 to 50 vo 1% based on the compound (4). If the amount of the inert gas is too large, the amount of the recovered product may be low, which is not preferable. On the other hand, when compound (4) is a compound that is difficult to vaporize, it is preferable to employ a liquid phase pyrolysis method in which the liquid (4) is heated in a liquid state in the reactor. The reaction pressure in this case is not limited. In general, the product of the ester bond decomposition reaction has a lower boiling point than compound (4). From this point, it is preferable to carry out the reaction while distilling using a reactor equipped with a distillation column, and to carry out the reaction by vaporizing and continuously extracting the product. Alternatively, a method may be used in which the products are collectively extracted from the reactor after the completion of the heating. The reaction temperature in this liquid phase pyrolysis method is preferably from 50 to 300, particularly preferably from 100 to 250.
液相熱分解法で熱分解を行う場合には、 無溶媒で行っても、 溶媒 (以下、 溶媒 3という。 ) の存在下に行ってもよいが、 無溶媒で行なうのが、 容積効率や副生 物抑制の観点から好ましい。 溶媒 3としては、 化合物 (4) と反応せず、 かつ化 合物 (4) と相溶性のあるもので、 生成する化合物 (5) および化合物 (6) と 反応しないものであれば特に限定されない。 また、 溶媒 3としては、 化合物 (5 ) の精製時、 または後述する化合物 (6) の精製時に分離しやすいものを選定す るのが好ましい。 溶媒 3の具体例としては、 ペルフルォロトリアルキルァミンな どの不活性溶媒、 クロ口フルォロカーボン類等のなかでも高沸点であるクロロト リフルォロェチレンオリゴマー (たとえば、 商品名:フロンループ) 、 が好まし い。 また、 溶媒 3の量は化合物 (4) に対して 10〜1000質量%が好ましい。 また、 化合物 (4) のエステル結合の分解を液相中で求核剤または求電子剤と 反応させる方法で行う場合、 該反応は、 無溶媒で行っても、 溶媒 (以下、 溶媒 4 という。 ) の存在下に行ってもよく、 無溶媒で行なうのが、 容積効率や副生物抑 制の観点から好ましい。 溶媒 4としては、 溶媒 3と同一のものがよい。 求核剤と しては F—が好ましく、 特にアルカリ金属のフッ化物由来の F—が好ましい。 ァ ルカリ金属のフッ化物としては、 NaF、 NaHF2、 KF、 C s Fがよく、 こ れらのうち経済性の面からは N a Fが、 反応性の面からは KFが、 特に好ましレ^ 求核剤 (たとえば F一) を用いる場合には、 化合物 (4) のエステル結合中に 存在するカルポニル基に F—が求核的に付加し、 RAF RBF C F 0_が脱離すると ともに酸フルオリド [化合物 (6) ] が生成する。 RAFRBFCFO—からはさら に F_が脱離してケトン [化合物 (5) ] が生成する。 ただし、 熱分解反応の条 件によっては、 化合物 (6) がさらに分解して他の化合物 (たとえば、 後述する 不飽和化合物) が生成することもある。 脱離した F—は別の化合物 (4) 分子と 同様に反応する。 したがって、 反応の最初に用いる求核剤は触媒量であってもよ く、 過剰に用いてもよい。 すなわち F_等の求核剤の量は化合物 (4) に対して 1〜500モル%が好ましく、 10〜100モル%が特に好ましく、 とりわけ 5 〜50モル%が好ましぃ。 反応温度は、 _ 30 〜溶媒または化合物 (4) の沸 点までの間が好ましく、 一 20°C〜250°Cがとくに好ましい。 この方法も、 反 応蒸留形式で実施するのが好ましい。 When performing the thermal decomposition by the liquid phase pyrolysis method, the thermal decomposition may be performed without a solvent or in the presence of a solvent (hereinafter, referred to as a solvent 3). It is preferable from the viewpoint of suppressing by-products. Solvent 3 is not particularly limited as long as it does not react with compound (4) and is compatible with compound (4) and does not react with compound (5) and compound (6) to be formed. . As the solvent 3, it is preferable to select a solvent that is easily separated at the time of purifying the compound (5) or at the time of purifying the compound (6) described later. Specific examples of the solvent 3 include an inert solvent such as perfluorotrialkylamine, and a chlorotrifluoroethylene oligomer (for example, trade name: CFC) having a high boiling point among the fluorocarbons such as chlorofluorocarbons. I like it. The amount of the solvent 3 is preferably from 10 to 1000% by mass based on the compound (4). When the ester bond of the compound (4) is decomposed by a method of reacting with a nucleophile or an electrophile in a liquid phase, the reaction can be carried out without a solvent, even in the absence of a solvent. ) May be performed, and it is preferable to perform without solvent from the viewpoint of volumetric efficiency and suppression of by-products. The solvent 4 is preferably the same as the solvent 3. As the nucleophile, F— is preferable, and F— derived from alkali metal fluoride is particularly preferable. As alkali metal fluorides, NaF, NaHF 2 , KF, and CsF are preferred. Of these, NaF is preferred in terms of economy, and KF is particularly preferred in terms of reactivity. When using a nucleophile (eg, F-I), F— nucleophilically adds to the carbonyl group present in the ester bond of compound (4), and R AF R BF CF 0_ is eliminated. As a result, acid fluoride [compound (6)] is generated. R AF R BF CFO Then, F_ is eliminated to form a ketone [compound (5)]. However, depending on the conditions of the thermal decomposition reaction, compound (6) may be further decomposed to produce another compound (for example, an unsaturated compound described later). The eliminated F— reacts in the same way as another compound (4) molecule. Therefore, the nucleophile used at the beginning of the reaction may be a catalytic amount or may be used in excess. That is, the amount of the nucleophile such as F_ is preferably from 1 to 500 mol%, particularly preferably from 10 to 100 mol%, particularly preferably from 5 to 50 mol%, based on the compound (4). The reaction temperature is preferably from -30 to the boiling point of the solvent or the compound (4), and particularly preferably from 20 ° C to 250 ° C. This method is also preferably carried out in a reactive distillation mode.
化合物 (4) のエステル分解反応の反応生成物中には、 通常の条件では化合物 (5) とともに、 化合物 (6) が含まれる。  The reaction product of the ester decomposition reaction of compound (4) contains compound (6) together with compound (5) under ordinary conditions.
化合物 (5) の具体例としては、 つぎの化合物が挙げられる。  Specific examples of the compound (5) include the following compounds.
(CF3) 2CO、 (CF 3 ) 2 CO,
CF3CF2COCF3, CF 3 CF 2 COCF 3 ,
CF3 (CF2) 2COCF3CF 3 (CF 2 ) 2 COCF 3 ,
CF2C 1 CFC 1 CF2COCF3CF 2 C 1 CFC 1 CF 2 COCF 3 ,
CF3C〇F、 CF 3 C〇F,
CF3CF2C〇F、 CF 3 CF 2 C〇F,
CF3 (CF2) 2COF、 CF 3 (CF 2 ) 2 COF,
CF2C 1 CFC 1 CF2COF、 CF 2 C 1 CFC 1 CF 2 COF,
Figure imgf000025_0001
Figure imgf000025_0001
一方、 化合物 (6) は化合物 (2) における Rcが RGFでありかつ Xがフッ素 原子である化合物である。 化合物 (6) の具体例としては、 化合物 (2) におい て例示した化合物が挙げられる。 On the other hand, compound (6) is a compound in which R c in compound (2) is R GF and X is a fluorine atom. Specific examples of the compound (6) include the compounds exemplified in the compound (2).
化合物 (6) は化合物 (1) と反応させる化合物 (2) として再利用するのが 好ましく、 化合物 (2) を再利用することにより、 化合物 (5) を連続製造でき る。 すなわち、 化合物 (1) と化合物 (2) を反応させて化合物 (3) とし、 該 化合物 (3) を液相中でフッ素化して化合物 (4) とし、 つぎに該化合物 (4) のエステル結合を分解した反応生成物から化合物 (6) を得て、 該化合物 (6) の一部または全部を再び化合物 (1) と反応させる化合物 (2) として用いるこ とにより、 化合物 (5) を連続製造できる。  The compound (6) is preferably reused as the compound (2) to be reacted with the compound (1), and the compound (5) can be continuously produced by reusing the compound (2). That is, the compound (1) is reacted with the compound (2) to give a compound (3), the compound (3) is fluorinated in a liquid phase to give a compound (4), and then an ester bond of the compound (4) The compound (6) is obtained from the reaction product obtained by decomposing the compound (6), and a part or all of the compound (6) is used again as the compound (2) to react with the compound (1), whereby the compound (5) can be continuously obtained. Can be manufactured.
本発明においては、 エステル分解反応の生成物から化合物 (6) および Zまた は化合物 (5) を得て、 これを還元する。 エステル分解反応の生成物からは、 化 合物 (6) のみを単離しても、 化合物 (5) のみを単離しても、 化合物 (6) お よび化合物 (5) の混合物を分離してもよく、 これらは目的とするフッ素化アル コールの形態に応じて適宜変更されうる。 ここで、 RBFがフッ素原子であり、 かつ RAFと RC;Fが同一構造である場合には、 化合物 (5) と化合物 (6) とは 同一化合物となることから、 生成物は化合物 (5) のみ (または化合物 (6) の み) となり、 生成物の分離の手間を省略できる利点がある。 還元反応では、 化合物 (5) からは化合物 (7) が生成する。 ただし、 RBF がフッ素原子である化合物 (5) からは化合物 (7 a) が生成する。 また化合物 (6) からは化合物 (8) が生成する。 化合物 (7) および化合物 (7 a) にお ける RAFおよび RBFは、 化合物 (5) における該基と同じ意味を、 化合物 (8 ) における RGFは化合物 (6) における意味と同じ意味を示す。 本発明におけ るフッ素化アルコールとは、 化合物 (7) 、 化合物 (7 a) 、 および化合物 (8 ) から選ばれる 1種以上の化合物をいう。 In the present invention, the compound (6) and Z or the compound (5) are obtained from the product of the ester decomposition reaction, and are reduced. Compound (6) alone, compound (5) alone, or a mixture of compound (6) and compound (5) may be isolated from the product of the esterification reaction. These can be appropriately changed depending on the desired form of the fluorinated alcohol. Here, R BF is a fluorine atom, and RA F and RC; if F is the same structure, since it becomes the same compound as the compound (5) with the compound (6), the product compound ( Only 5) (or only compound (6)), which has the advantage of eliminating the need for product separation. In the reduction reaction, compound (7) is formed from compound (5). However, compound (7a) is formed from compound (5) in which R BF is a fluorine atom. Compound (8) is formed from compound (6). R AF and R BF in compound (7) and compound (7a) have the same meanings as those in compound (5), and R GF in compound (8) has the same meaning as in compound (6). Show. The fluorinated alcohol in the present invention refers to one or more compounds selected from compound (7), compound (7a), and compound (8).
還元反応は、 通常の水素還元により実施するのが好ましく、 金属担持触媒の存 在下で水素を用いて還元反応を実施するのが特に好ましい。 触媒中の金属は、 担 体に対して 0. 5〜 5重量%を担持させるのが好ましく、 特に好ましくは 1〜3 重量%である。 還元される化合物に対する水素量は化学量論量以上であるのが好 ましく、 より好ましくは 1. 2〜10倍モル、 特に好ましくは 1. 5〜5倍モル にするのが反応活性、 触媒耐久性、 生成物回収の点で好ましい。  The reduction reaction is preferably performed by ordinary hydrogen reduction, and particularly preferably performed using hydrogen in the presence of a metal-supported catalyst. Preferably, 0.5 to 5% by weight of the metal in the catalyst is supported on the support, particularly preferably 1 to 3% by weight. The amount of hydrogen relative to the compound to be reduced is preferably not less than the stoichiometric amount, more preferably 1.2 to 10 times, particularly preferably 1.5 to 5 times, the reaction activity and catalyst. It is preferable in terms of durability and product recovery.
さらに、 金属担持触媒は、 パラジウムまたはパラジウムを主成分とする 8〜1 0属元素を担体に担持した触媒であるのが好ましい。 パラジウム以外の 8〜10 族元素としては、 鉄、 コバルト、 ニッケル、 Ru、 Rh、 I r、 P tがあり、 こ れらは単独でまたは 2種以上でパラジウムに添加するのが好ましい。 8〜: I 0族 元素の添加量としては、 パラジウム 100重量部に対して 0. 01〜50重量部 が好ましい。  Further, the metal-supported catalyst is preferably a catalyst in which palladium or a group 8-10 element containing palladium as a main component is supported on a carrier. Group 8 to 10 elements other than palladium include iron, cobalt, nickel, Ru, Rh, Ir, and Pt, and these are preferably added alone or in combination of two or more. 8 to: The addition amount of the group I0 element is preferably 0.01 to 50 parts by weight based on 100 parts by weight of palladium.
また触媒の活性や耐久性を向上させるために、 8〜10族元素以外の金属成分 をさらに添加して使用することもできる。 該金属担持触媒としては、 8〜10族 から選ばれる元素と、 11族元素とを必須とする金属触媒 (以下、 特定の金属触 媒と記す。 ) であるのが好ましい。 8〜10族元素としては、 前記と同様の元素 が挙げられ、 特に Pd、 Rh、 I r、 P tが好ましい。 11族元素としては、 C u、 Agおよび Auから選択され、 特に Auが好ましい。 11族元素は、 8〜1 0族から選ばれる元素成分を触媒中に高分散化させる効果や、 安定化させる効果 を有する。 8〜1 0族から選ばれる元素成分を高分散化、 安定化させると、 (d ) 活性点の数と活性が増加して触媒の還元能が向上するため、 1 5 0 °C以下の低 い反応温度でも還元反応が進行し、 高い収率と長期の触媒寿命でハロゲン化アル コールを得ることができる。 また、 (e ) 金属微粒子の凝集 (シン夕リング) が 抑制されるため、 耐熱性が向上し、 触媒層温度が上昇しても触媒失活が起こりに くい。 さらに (ί ) 触媒表面が常に高い還元状態に保たれるため、 被毒物質であ る塩化水素、 フッ化水素等の酸性化合物が、 触媒表面へ吸着するのを抑制し、 高 い収率と長期の触媒寿命で還元反応を実施できる。 また、 還元前に基質を精製す るための複雑な工程が不要となる、 等の利点がある。 Further, in order to improve the activity and durability of the catalyst, a metal component other than the group 8 to 10 element can be further used. The metal-supported catalyst is preferably a metal catalyst (hereinafter, referred to as a specific metal catalyst) essentially including an element selected from Groups 8 to 10 and a Group 11 element. Examples of Group 8 to 10 elements include the same elements as described above, and Pd, Rh, Ir, and Pt are particularly preferable. The Group 11 element is selected from Cu, Ag and Au, with Au being particularly preferred. Group 11 elements are 8-1 It has the effect of highly dispersing and stabilizing the element component selected from Group 0 in the catalyst. When the element components selected from the group 8 to 10 are highly dispersed and stabilized, (d) the number of active sites and the activity are increased, and the reducing ability of the catalyst is improved. The reduction reaction proceeds even at low reaction temperatures, and halogenated alcohols can be obtained with high yield and long catalyst life. (E) Since the aggregation (synthesis ring) of the metal fine particles is suppressed, the heat resistance is improved, and the catalyst is hardly deactivated even when the temperature of the catalyst layer increases. (Ii) Since the catalyst surface is always kept in a highly reduced state, it prevents acidic compounds such as hydrogen chloride and hydrogen fluoride, which are poisonous substances, from adsorbing on the catalyst surface, thereby achieving high yield. The reduction reaction can be performed with a long catalyst life. In addition, there is an advantage that a complicated process for purifying the substrate before reduction is not required.
特定の金属触媒中に含まれる 1 1族元素の 8〜1 0族元素に対する量は、 1 1 族元素を高分散化、 安定化させる効果の点で 0 . 0 1〜 9 0質量%が好ましく、 より好ましくは 0 . 0 1〜5 0質量%、 特に好ましくは、 0 . 1〜3 0質量%で ある。  The amount of the group 11 element contained in the specific metal catalyst with respect to the group 8 to 10 element is preferably 0.01 to 90% by mass from the viewpoint of the effect of increasing the dispersion and stabilization of the group 11 element. More preferably, it is from 0.1 to 50% by mass, particularly preferably from 0.1 to 30% by mass.
さらに金属触媒は、 上記金属成分を活性炭に担持させた触媒であるのが好まし レ^ たとえば、 特定の金属触媒においては、 8〜1 0族元素と 1 1族元素とが担 体上に担持された触媒であるのが好ましい。 担体としては、 例えば、 活性炭、 ァ ルミナ、 ジルコニァ等が好適であり、 特に活性炭が好ましい。 活性炭は、 木材、 木炭、 果実ガラ、 ヤシガラ、 泥炭、 亜炭、 または石炭などの原料から調製したも のを使用でき、 鉱物質原料よりも植物質原料が好ましく、 特にヤシガラ活性炭が 最適である。 ヤシガラ活性炭は、 他の活性炭に比べて表面積が大きく、 シリカ等 の不純物が少なく、 耐酸性が高いため、 活性と耐久性に優れると考えられる。 ま た、 活性炭の灰分は 0 . 0 1〜2 0質量%が好ましい。 8〜1 0族元素の、 担体 に対する担持量は、 触媒の還元能と経済性の点で 0 . 0 1〜5り質量%が好まし く、 より好ましくは 0 . 0 1〜1 0質量%、 特に好ましくは、 0 . 5〜5質量% である。 Further, the metal catalyst is preferably a catalyst in which the above-mentioned metal component is supported on activated carbon. For example, in a specific metal catalyst, a group 8-10 element and a group 11 element are supported on the support. Preferably, the catalyst is a modified catalyst. As the carrier, for example, activated carbon, aluminum, zirconia, and the like are suitable, and activated carbon is particularly preferable. As the activated carbon, those prepared from raw materials such as wood, charcoal, fruit ash, coconut husk, peat, lignite, or coal can be used. Vegetable raw materials are preferable to mineral raw materials, and coconut husk activated carbon is particularly suitable. Yashigara activated carbon is considered to be superior in activity and durability because it has a larger surface area, less impurities such as silica, and higher acid resistance than other activated carbons. The ash content of the activated carbon is preferably from 0.01 to 20% by mass. The amount of the group 8 to 10 element to be supported on the carrier is preferably from 0.01 to 5% by mass, more preferably from 0.01 to 10% by mass, in view of the reduction ability and economy of the catalyst. Particularly preferably, 0.5 to 5% by mass It is.
また、 担体の形状は、 長さ約 2〜 5mm程度の成形炭、 約 4〜50メッシュ程 度の破砕炭、 粒状炭等の形状を採用するのが好ましく、 4〜20メッシュ程度の 破砕炭または成形炭が特に好ましい。 活性炭に金属を担持させる方法は特に限定 はなく、 通常の方法、 例えば塩化パラジウムを単独もしくは他の 8〜10族元素 の金属塩化物と共に、 担体に担持させた後、 乾燥し、 さらにこれを水素で還元す る方法などが採用される。 8族金属を担持した活性炭触媒は耐久性が高く長時間 活性化を必要としないが、 活性化を実施する場合は、 100〜300°C、 好まし くは 200〜 300°Cで水素還元するのが好ましい。  Also, the shape of the carrier is preferably formed from about 2 to 5 mm in length of molded coal, about 4 to 50 mesh of crushed coal, granular coal, or the like. Molded coal is particularly preferred. The method for supporting the metal on the activated carbon is not particularly limited, and a conventional method, for example, supporting palladium chloride alone or together with a metal chloride of another group 8 to 10 element on a carrier, drying, and further drying this with hydrogen For example, a reduction method is used. Activated carbon catalysts supporting Group 8 metals are durable and do not require long-term activation, but if activated, hydrogen reduction is carried out at 100-300 ° C, preferably 200-300 ° C. Is preferred.
本発明における金属触媒の具体例としては、 後述する実施例に記載する触媒の 他、 Rh— Co— CuZ活性炭 (C) (Rhと Coと Cuとを活性炭に坦持させ た触媒、 以下同様の意味である。 ) 、 Rh— Co— AgZC、 Rh-Co-Au /C、 P t_AuZC、 Pd-N i一 CuZC、 Pd—N i— Ag/C、 P d - N i— AuZC、 Ru-Au/C, P d-Cu/A 1203, P d-Ag/A 120 3、 P d-Au/A 1203, P d_P t— AuZA 123、 P d-Rh-Au/A 1203、 Pd— I r一 Au/A 1203、 Rh-Ag/A 1203, Rh-Au/A 123、 Rh-C o-Cu/A 1203, Rh一 C o一 Ag/A 1203、 Rh— Co一 Au/Al 203、 P t -Au/A 1203, P d-N i -Cu/A 1203> Pd-N i一 Ag/Al 203、 Pd-N i -Au/A 1203, Ru-Au/A 1203, Pd — Cu/Z r〇2、 Pd— Ag/Z r02、 Pd— AuZZ r〇2、 Pd— P t— A uZZ r02、 P d-Rh-Au/Z r 02, P d— I r— AuZZ r 02、 Rh— Ag/Z r02、 Rh-Au/Z r 02, R h— C o— C uZZ r 02、 Rh— Co 一 Ag/Z r02、 Rh— C o— Au/Z r〇2、 P t— Au/Z r〇2、 Pd-N i一 Cu/Z r02、 Pd_N i— AgZZ r 02、 P d— N卜 Au/Z r 02、 Ru-Au/Z r02等が挙げられる。 特定の金属触媒は、 還元反応を長時間実施しても、 ほとんど失活することなく- 繰り返し使用でき、 耐久性にすぐれた触媒である。 さらに、 特定の触媒の使用に より、 受酸剤等を使用しなくても、 優れた反応成績が維持されうる。 Specific examples of the metal catalyst in the present invention include, in addition to the catalysts described in Examples described later, Rh—Co—CuZ activated carbon (C) (a catalyst in which Rh, Co, and Cu are supported on activated carbon; ), Rh-Co-AgZC, Rh-Co-Au / C, Pt_AuZC, Pd-Ni-CuZC, Pd-Ni-Ag / C, Pd-Ni-AuZC, Ru-Au / C, P d-Cu / A 1 2 0 3, P d-Ag / A 1 2 0 3, P d-Au / A 1 2 0 3, P d_P t- AuZA 1 2 〇 3, P d-Rh -Au / A 1 2 0 3, Pd- I r one Au / A 1 2 0 3, Rh-Ag / A 1 2 0 3, Rh-Au / A 1 2 〇 3, Rh-C o-Cu / A 1 2 0 3, Rh one C o one Ag / A 1 2 0 3, Rh- Co one Au / Al 2 0 3, P t -Au / A 1 2 0 3, P dN i -Cu / A 1 2 0 3> Pd-N i one Ag / Al 2 0 3, Pd -N i -Au / A 1 2 0 3, Ru-Au / A 1 2 0 3, Pd - Cu / Z R_〇 2, Pd-Ag / Z r0 2, Pd- AuZZ R_〇 2, Pd- P t- A uZZ r0 2, P d-Rh-Au / Z r 0 2, P d- I r- AuZZ r 0 2, Rh- Ag / Z r0 2, Rh-Au / Z r 0 2, R h- C o- C uZZ r 0 2, Rh- Co one Ag / Z r0 2, Rh- C o- Au / Z R_〇 2, P t Au / Z R_〇 2, Pd-N i one Cu / Z r0 2, Pd_N i- AgZZ r 0 2, P d- N Bok Au / Z r 0 2, Ru -Au / Z r0 2 , and the like. Certain metal catalysts are highly durable catalysts that can be used repeatedly with little deactivation even after a long reduction reaction. Further, by using a specific catalyst, excellent reaction results can be maintained without using an acid acceptor or the like.
また、 化合物 (5) および Zまたは化合物 (6) の還元に水素を用いる場合の 水素量は、 還元される化合物 (5) および/または化合物 (6) に対する反応モ ル数を、 化学量論量の 2倍モル以上とするのが好ましく、 さらに好ましくは 3〜 8倍とすることが、 高い収率で目的とするフッ素化アルコールが得られる点で好 ましい。  In addition, when hydrogen is used for the reduction of compound (5) and Z or compound (6), the amount of hydrogen is represented by the number of reaction moles for compound (5) and / or compound (6) to be reduced. It is preferably at least twice the molar amount of the above, and more preferably at least 3 to 8 times, in that the desired fluorinated alcohol can be obtained in a high yield.
還元反応の反応圧力は、 常圧、 または加圧が好ましいが、 減圧であってもよい。 また、 反応温度は、 低すぎると反応速度が遅くなり、 生成物の収率が低くなり、 高すぎると酸性化合物の生成や触媒層温度の上昇にともなう触媒劣化が起こるた め、 還元反応の温度は常圧において 130〜250°C、 好ましくは 150〜 20 0°Cである。 さらに特定の触媒を用いた場合には、 より低い温度で反応が実施で き、 反応温度は 30〜450°Cが好ましく、 より好ましくは 50~200°C、 特 に好ましくは 70〜150でである。  The reaction pressure for the reduction reaction is preferably normal pressure or increased pressure, but may be reduced pressure. If the reaction temperature is too low, the reaction rate will be slow, and the product yield will be low.If the reaction temperature is too high, the deterioration of the catalyst will occur due to the formation of acidic compounds and an increase in the temperature of the catalyst layer. Is from 130 to 250 ° C, preferably from 150 to 200 ° C, at normal pressure. Furthermore, when a specific catalyst is used, the reaction can be carried out at a lower temperature, and the reaction temperature is preferably 30 to 450 ° C, more preferably 50 to 200 ° C, particularly preferably 70 to 150 ° C. is there.
また、 気相法で反応を行う場合には、 原料と生成物が反応器内で気体であり続 ける反応温度と圧力を用いるのが好ましい。 また、 気相法における触媒に対する 接触時間は、 0. 1〜 1000秒が好ましく、 特に 1〜 100秒が好ましく、 と りわけ 4〜 60秒が好ましく、 さらに 5〜 20秒が好ましい。 過剰の温度上昇を 制御するために、 反応を窒素などの不活性ガスで希釈しながら実施してもよい。 本発明の製造方法によれば、 安価に入手が可能な原料化合物 (1) を用いて、 所望のフッ素化アルコールを製造できる。 本発明の製造方法により得られるフッ 素化アルコールのうち、 化合物 (7) の具体例としては、 下記化合物が挙げられ る。  When the reaction is performed by a gas phase method, it is preferable to use a reaction temperature and a pressure in which the raw material and the product continue to be gas in the reactor. Further, the contact time with the catalyst in the gas phase method is preferably 0.1 to 1000 seconds, particularly preferably 1 to 100 seconds, particularly preferably 4 to 60 seconds, and further preferably 5 to 20 seconds. The reaction may be carried out while diluting with an inert gas such as nitrogen to control the excessive temperature rise. According to the production method of the present invention, a desired fluorinated alcohol can be produced using the raw material compound (1) which can be obtained at low cost. Among the fluorinated alcohols obtained by the production method of the present invention, specific examples of compound (7) include the following compounds.
(CF3) 2CHOH、 CF3CF (CF3) CH〇H、 (CF 3 ) 2 CHOH, CF 3 CF (CF 3 ) CH〇H,
CF3CF2CF (CF3) CHOH、 CF 3 CF 2 CF (CF 3 ) CHOH,
CF C 1 CFC 1 CF (CF3) CHOH、CF C 1 CFC 1 CF (CF 3 ) CHOH,
Figure imgf000030_0001
Figure imgf000030_0001
特に化合物 (7 a) の具体例としては、 下記化合物が挙げられる。  Particularly, specific examples of the compound (7a) include the following compounds.
CF3CH2OH、 CF 3 CH 2 OH,
CF3CF2CH2OH、 CF 3 CF 2 CH 2 OH,
CF3CF2CF2CH2OH、 CF 3 CF 2 CF 2 CH 2 OH,
CF2C 1 CFC 1 CF2CH2OH。 CF 2 C 1 CFC 1 CF 2 CH 2 OH.
化合物 (8) の具体例としては、 下記化合物が挙げられる。  Specific examples of the compound (8) include the following compounds.
CF3CF2CH2OH、 CF 3 CF 2 CH 2 OH,
CF3CF2CF2OCF (CF3) CH2OH、 CF 3 CF 2 CF 2 OCF (CF 3 ) CH 2 OH,
CF3CF2CF2〇CF (CF3) CF2OCF (CF3) C'H2〇H。 CF 3 CF 2 CF 2 〇CF (CF 3 ) CF 2 OCF (CF 3 ) C'H 2 〇H.
本発明の製造方法により得られるフッ素化アルコールは、 フッ素含有基の電子 吸引性によりアルコール性水素の酸性度が高く、 対応する炭化水素のアルコール に比べて特異的な特性を持つ。 例えば、 通常の有機溶剤には溶解しないナイロン などのポリイミドの良好な溶剤となるほか、 イオン性化合物などの極性化合物の 良好な溶剤となる。 <実施例 > The fluorinated alcohol obtained by the production method of the present invention has high acidity of alcoholic hydrogen due to the electron-withdrawing property of the fluorine-containing group, and has specific characteristics as compared with the corresponding hydrocarbon alcohol. For example, it is a good solvent for polyimides such as nylon which do not dissolve in ordinary organic solvents, and a good solvent for polar compounds such as ionic compounds. <Example>
以下に本発明を実施例を挙げて具体的に説明するが、 これらによって本発明は 限定されない。 なお、 以下においてガスクロマトグラフィ (GC) および NMR スペクトルのピーク面積比より収率を求めた。 また、 テトラメチルシランを TM S、 CC 12FCC 1 2を尺一 113と記した。 また、 NMRスペクトルデー 夕は、 みかけの化学シフト範囲として示した。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In the following, the yield was determined from the peak area ratio of gas chromatography (GC) and NMR spectrum. Further, tetramethylsilane noted TM S, the CC 1 2 FCC 1 2 and scale one 113. The NMR spectrum data is shown as an apparent chemical shift range.
[例 1] [Example 1]
く例 1 _1 :エステル化工程 > Example 1 _1: Esterification process>
25 nCに冷却した還流器を備えた 2リットルのハステロイ— C 22製ォ一トク レーブにイソプロパノール (240 g、 4モル) を仕込み、 反応器を 40°Cに加 熱した後に CF3CF2CF2〇CF (CF3) COF (1328 g、 4モル) を 反応熱による温度上昇が 10°C以下になるように連続的に反応器内に導入し、 反 応を行った。 全ての CF3CF2CF2OCF (CF3) COFを添加した後、 温 度を 50°Cに上昇させて 2時間反応を行った。 反応終了後室温まで冷却し、 反応 によって副生した HFを窒素ガスの導入によってパージ除去した後に、 粗液 (1 480 g) を得た。 GCの結果、 CF3CF2CF2〇CF (CF3) COOCH (CH3) 2の収率は 99. 5%であった。 ぐ例 1一 2 :フッ素化工程 > A 2-liter Hastelloy-C22 autoclave equipped with a reflux condenser cooled to 25 nC was charged with isopropanol (240 g, 4 mol), and after heating the reactor to 40 ° C, CF 3 CF 2 Reaction was performed by continuously introducing CF 2 〇CF (CF 3 ) COF (1328 g, 4 mol) into the reactor so that the temperature rise due to the heat of reaction was 10 ° C or less. After all the CF 3 CF 2 CF 2 OCF (CF 3 ) COF was added, the temperature was raised to 50 ° C. and the reaction was performed for 2 hours. After the completion of the reaction, the mixture was cooled to room temperature, and HF by-produced by the reaction was purged by introducing nitrogen gas to obtain a crude liquid (1480 g). As a result of GC, the yield of CF 3 CF 2 CF 2 〇CF (CF 3 ) COOCH (CH 3 ) 2 was 99.5%. Example 11: Fluorination process>
50 OmLのニッケル製オートクレーブに、 R— 113 (312 g) を加えて 攪拌し、 25°Cに保った。 オートクレープガス出口には、 一 15°Cに保持した冷 却器を設置した。 なお、 一 10°Cに保持した冷却器からは凝集した液をオートク レーブに戻すための液体返送ラインを設置した。 窒素ガスを 1. 0時間吹き込ん だ後、 窒素ガスで 20%に希釈したフッ素ガスを流速 6. 17LZhで 1時間吹 き込み、 反応器内圧力を 0. 1 5MP aに保持した。 次に、 フッ素ガスを同じ流 速で吹き込み、 反応器内圧力を 0. 1 5MP aに保持しながら、 例 1一 1で得た CF3CF2CF2OCF (CF3) COOCH (CH3) 2 (4. 99 g) を R_ 1 13 (100 g) に溶解した溶液を 5. 3時間かけて注入した後、 フッ素ガス を同じ流速で吹き込み、 反応器内圧力を 0. 15MP aに保持しながら、 ベンゼ ン濃度が 0. 01 gZmLである R_ 113溶液を 25^から 40°Cにまで昇温 しながら 9mL注入し、 オートクレープのベンゼン注入口を閉め、 0. 5時間攪 拌を続けた。 次に、 フッ素ガスを同じ流速で吹き込みながら、 反応器内圧力を 0. 15MP a、 反応器内温度を 40°Cに保ち、 上記のベンゼン溶液を 6 mL注入し、 ォ一トクレーブのベンゼン注入口を閉め、 0. 5時間攪拌を続けた。 R-113 (312 g) was added to a 50 OmL nickel autoclave, stirred, and kept at 25 ° C. A cooler kept at 15 ° C was installed at the autoclave gas outlet. In addition, a liquid return line was installed to return the condensed liquid from the cooler kept at 110 ° C to the autoclave. After blowing nitrogen gas for 1.0 hour, fluorine gas diluted to 20% with nitrogen gas is blown at a flow rate of 6.17 LZh for 1 hour The pressure inside the reactor was kept at 0.15 MPa. Next, while blowing the fluorine gas at the same flow rate and maintaining the pressure in the reactor at 0.1 MPa, the CF 3 CF 2 CF 2 OCF (CF 3 ) COOCH (CH 3 ) obtained in Example 11 was obtained. After injecting a solution of 2 (4.99 g) in R_113 (100 g) over 5.3 hours, fluorine gas was blown in at the same flow rate and the pressure inside the reactor was maintained at 0.15 MPa. 9 mL of the R_113 solution with a benzene concentration of 0.01 gZmL while increasing the temperature from 25 ^ to 40 ° C, closed the benzene inlet of the autoclave, and continued stirring for 0.5 hours. . Next, while injecting fluorine gas at the same flow rate, maintain the pressure inside the reactor at 0.15 MPa, the temperature inside the reactor at 40 ° C, and inject 6 mL of the above benzene solution into the autoclave. Was closed and stirring was continued for 0.5 hour.
さらに、 同様の操作を 1回繰り返した。 ベンゼンの注入総量は 0. 219 g、 R— 1 13の注入総量は 21 mLであった。 さらに、 窒素ガスを 1. 5時間吹き 込んで、 反応器内から目的物を得た。  The same operation was repeated once. The total amount of benzene injected was 0.219 g, and the total amount of R-113 injected was 21 mL. Furthermore, nitrogen gas was blown in for 1.5 hours to obtain the target substance from the reactor.
目的物を19 F— NMRで定量したところ、 CF3CF2CF2OCF (CF3) COOCF (CF3) 2および CF3CF2CF2OCF (CF3) COOCH (C F3) 2の収率はそれぞれ 48. 1%および 19. 1%であった。 Was quantified the desired product 19 F- NMR, CF 3 CF 2 CF 2 OCF (CF 3) COOCF (CF 3) 2 and CF 3 CF 2 CF 2 OCF ( CF 3) COOCH (CF 3) 2 yield Were 48.1% and 19.1%, respectively.
CF3CF2CF2〇CF (CF3) COOCF (CF3) 2 : 19F - NMR (3 76. 0MHz、 溶媒: CDC 13、 基準: CFC I 3) δ (p pm) : -79. 4 (3F) 、 -79. 6 (3F) 、 -79. 9 (I F) , -82. 1 (3F) 、 -82. 2 (3 F) 、 一 87. 7 (I F) , 一 130. 4 (2F) 、 — 132. 1 (1 F) 、 一 143. 4 (1 F) 。 CF 3 CF 2 CF 2 〇_CF (CF 3) COOCF (CF 3 ) 2: 19 F - NMR (3 76. 0MHz, solvent: CDC 1 3, reference: CFC I 3) δ (p pm): -79. 4 (3F), -79.6 (3F), -79.9 (IF), -82.1 (3F), -82.2 (3F), 1 87.7 (IF), 1 130.4 (2F), — 132.1 (1F), one 143.4 (1F).
CF3CF2CF2OCF (CF3) COOCH (CF3) 219F-NMR (3 76. 0 MHz、 溶媒 ·· CDC 13、 基準: CFC 13) δ (p m) : -74. 0 (3 F) 、 -74. 1 (3 F) 、 -79. 9 (I F) 、 -82. 3 (3 F) 、 -82. 5 (3 F) 、 -87. 7 (I F) , — 130. 4 (2 F) 、 一 132. 6 (1 F:) 。 — NMR (399. 0 MH z、 溶媒: CD C 13、 基準: TM S) δ (ppm) : 5. 80 (m, 1 H) ぐ例 1一 3 :エステル結合の分角军反応工程 > CF 3 CF 2 CF 2 OCF ( CF 3) COOCH (CF 3) 2: 19 F-NMR (3 76. 0 MHz, solvent · · CDC 1 3, reference: CFC 1 3) δ (pm ): -74. 0 (3 F), -74. 1 (3 F), -79. 9 (IF), -82. 3 (3 F), -82. 5 (3 F), -87. 7 (IF), — 130. 4 (2 F), one 132. 6 (1F :). - NMR (399. 0 MH z, solvent: CD C 1 3, reference: TM S) δ (ppm) : 5. 80 (m, 1 H) ingredients Example 1 one 3: ester bonds minute angular Army reaction step>
例 1一 2で得た CF3CF2CF2OCF (CF3) COOCF (CF3) 2 (5 g) を 80°Cの還流器をつけた 30 OmLのフラスコ内に仕込み、 フッ化力リウ ム (0. 06 g) を加えて 150でで加熱攪拌しながら生成するガスを一 78 °C に冷却したガラストラップ中に回収した。 反応が進行しフラスコ内の液体が全て 消失したところで反応を終了した。 ガラストラップ中に回収物 (4. 8 g) を得 た。 Example 1 CF 3 CF 2 CF 2 OCF (CF 3 ) COOCF (CF 3 ) 2 (5 g) obtained in 1-2 was charged into a 30-OmL flask equipped with a reflux condenser at 80 ° C. (0.06 g) was added thereto, and the generated gas was heated and stirred at 150 and collected in a glass trap cooled to 178 ° C. When the reaction proceeded and all the liquid in the flask disappeared, the reaction was terminated. The collected product (4.8 g) was obtained in a glass trap.
GCの結果、 (CF3) 2CO (以下、 HFAと記す。 ) と CF3CF2CF20 CF (CF3) COFとがそれぞれ 1 : 1 (モル比) で生成していることがわか つた。 As a result of GC, it can be seen that (CF 3 ) 2 CO (hereinafter, referred to as HFA) and CF 3 CF 2 CF 20 CF (CF 3 ) COF were formed at a molar ratio of 1: 1. I got it.
<例 1一 4 A〜D:還元工程) <Examples 1-4 A-D: reduction process)
上記反応を繰り返すことによって得られた (CF3) 2 COを用いて、 下記の 反応を行った。 The following reaction was carried out using (CF 3 ) 2 CO obtained by repeating the above reaction.
ヤシガラ破砕炭 100重量部に対して表 1の例 1一 4 A〜Dに記載する金属成 分 2重量部を担持させた触媒 (10 OmL) を、 それぞれ 1Z2インチ、 長さ 1 mのインコネル 600製の反応管に充填し、 これを外部から加熱して 170 に 保った。 この中に、 0. 2モル/ hの流速で HF Aを導入し、 同時に水素を 1. 6モル/ hの流速で導入して反応を行つた。 反応器の出口ガスを G Cで分析した 結果 (CF3) 2CHOH (以下、 HF I Pと記す。 ) がそれぞれ表 1に示す成 績で生成していた。 (表 1) A catalyst (10 OmL) supporting 2 parts by weight of the metal components described in Examples 14A to 14D in Table 1 per 100 parts by weight of crushed coconut husk was added to Inconel 600, 1Z2 inches and 1 m long, respectively. The reactor was filled with the reactor and heated from the outside and kept at 170. Into this, HFA was introduced at a flow rate of 0.2 mol / h, and simultaneously, hydrogen was introduced at a flow rate of 1.6 mol / h to carry out the reaction. As a result of analyzing the outlet gas of the reactor by GC, (CF 3 ) 2 CHOH (hereinafter referred to as HF IP) was produced with the results shown in Table 1, respectively. (table 1)
Figure imgf000034_0001
Figure imgf000034_0001
[例 2] [Example 2]
<例 2— .1 :エステル化工程 >  <Example 2—.1: Esterification step>
例 1一 1のイソプロパノールをプロパノール 240 g (4モル) に変更して同 様に反応を行い、 粗液 1480 gを得た。 GCの結果、 CF3CF2CF2OCF (CF3) COOCH2CH2CH3の収率は 99. 5%であった。 Example 11 The same reaction was carried out except that the isopropanol of Example 11 was changed to 240 g (4 mol) of propanol to obtain 1480 g of a crude liquid. As a result of GC, the yield of CF 3 CF 2 CF 2 OCF (CF 3 ) COOCH 2 CH 2 CH 3 was 99.5%.
<例 2— 2 :フッ素化工程 > <Example 2-2: fluorination process>
例 1一 2における CF3CF2CF2OCF (CF3) COOCH (CH3) 2を 例 2— 1で得た CF3CF2CF2OCF (CF3) COOCH2CH2CH3 (4. 99 g) に変更して同様に反応を行った。 生成物を19 F— NMRで定量したと ころ、 CF3CF2CF2OCF (CF3) C OO C F 2 C F 2 C F 3の収率は 91 % であった。 Example 1 CF 3 CF 2 CF 2 OCF (CF 3 ) COOCH (CH 3 ) 2 obtained in Example 2 CF 3 CF 2 CF 2 OCF (CF 3 ) COOCH 2 CH 2 CH 3 (4. The reaction was performed in the same manner except that the amount was changed to 99 g). When the product was quantified by 19 F-NMR, the yield of CF 3 CF 2 CF 2 OCF (CF 3 ) COO CF 2 CF 2 CF 3 was 91%.
<例 2— 3 :エステル結合の分解反応工程 > <Example 2-3: Decomposition reaction step of ester bond>
例 1— 3における CF3CF2CF2OCF (CF3) COOCF (CF3) 2を 例 2— 2で得た CF3CF2CF2OCF (CF3) COOCF2CF2CF3 (5 g ) に変更して同様の反応を行った。 GCの結果、 CF3CF2COFと CF3CF 2CF2OCF (CF3) C〇Fとがそれぞれ 1 (モル比) で生成している とがわかった。 CF 3 CF 2 CF 2 OCF (CF 3 ) COOCF (CF 3 ) 2 obtained in Example 1-3 CF 3 CF 2 CF 2 OCF (CF 3 ) COOCF 2 CF 2 CF 3 (5 g) obtained in Example 2-2 ) And the same reaction was carried out. GC results, CF 3 CF 2 COF and CF 3 CF It was found that 2 CF 2 OCF (CF 3 ) C〇F was formed at a molar ratio of 1 respectively.
<例 2— 4 A〜 C:還元工程〉 <Example 2-4 A-C: Reduction process>
上記反応を繰り返すことによって得られた C F 3 C F 2 C O Fを用いて、 下記 の反応を行った。 ヤシガラ粉砕炭 100質量部に対して表 2の例 2— 4 A〜例 2 _ 4 Cに記載する金属成分 2質量部を担持させた触媒 (l O OmL) を、 それぞ れ 1Z2インチ、 長さ lmのインコネル 600製の反応管に充填し、 これを外部 から加熱して 170°Cに保ったものの中に 0. 2モルノ hの流速で CF3CF2 COFを導入し、 同時に水素を 1. 6モル の流速で導入して反応を行った。 反応器の出口ガスを G Cで分析した結果 C F 3 C F 2 C H 2 O Hがそれぞれ表 2に 示す成績で得られていた。 The following reaction was carried out using CF 3 CF 2 COF obtained by repeating the above reaction. A catalyst (100 mL) supporting 2 parts by mass of the metal component described in Example 2-4A to Example 2-4C in Table 2 per 100 parts by mass of coconut husk pulverized coal was 1Z2 inches long. Into a reaction tube made of Inconel 600, and heating it from the outside to keep it at 170 ° C, introducing CF 3 CF 2 COF at a flow rate of 0.2 molnoh, The reaction was carried out by introducing at a flow rate of 6 mol. As a result of analyzing the outlet gas of the reactor by GC, CF 3 CF 2 CH 2 OH was obtained with the results shown in Table 2, respectively.
(表 2)  (Table 2)
Figure imgf000035_0001
Figure imgf000035_0001
[例 3] [Example 3]
<例3— 1>エステル化工程  <Example 3-1> Esterification step
(CH3) 2CHOH (7. 0 g) をフラスコに入れ、 窒素ガスをバブリングさ せながら撹拌した。 FCOCF (CF3) 〇CF2CF (CF3) OCF2CF2C F3 (61. 0 g) を内温を 25〜30でに保ちながら 30分かけて滴下した。 滴下終了後、 室温で 1時間撹拌し、 飽和炭酸水素ナトリウム水 (50mL) を内 温 15°C以下で加えた。 (CH 3 ) 2 CHOH (7.0 g) was charged into the flask, and the mixture was stirred while bubbling nitrogen gas through. FCOCF (CF 3 ) 〇CF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (61.0 g) was added dropwise over 30 minutes while maintaining the internal temperature at 25 to 30. After the addition, the mixture was stirred at room temperature for 1 hour, and saturated aqueous sodium hydrogen carbonate (50 mL) was added. The temperature was below 15 ° C.
得られた粗液を分液し、 下層として得た。 さらに下層を水 (50mL) で 2回 洗浄し、 硫酸マグネシウムで乾燥した後、 ろ過し、 粗液を得た。 該粗液を水 (5 OmL) で 2回洗浄し、 硫酸マグネシウムで乾燥した後、 ろ過し、 (CH3) 2 CHOCOCF (CF3) OCF2CF (CF3) 〇CF2CF2CF3 (64. 0 g、 GC純度 98 %。 ) を得た。 The obtained crude liquid was separated to obtain a lower layer. The lower layer was further washed twice with water (50 mL), dried over magnesium sulfate, and filtered to obtain a crude liquid. The crude solution was washed twice with water (5 OmL), dried over magnesium sulfate, filtered, and filtered (CH 3 ) 2 CHOCOCF (CF 3 ) OCF 2 CF (CF 3 ) 〇CF 2 CF 2 CF 3 ( 64.0 g, GC purity 98%.) Was obtained.
<例 3— 2 :フッ素化工程 > <Example 3-2: fluorination process>
外部循環管式反応器を有する 300 OmLのニッケル製オートクレープに、 C F3CF2CF2〇CF (CF3) CF2〇CF (CF3) COF (2534 g) を 加えて循環および撹拌し、 25でに保った。 ォ一トクレーブガス出口には一 10 °Cに保持した冷却器を設置した。 窒素ガスを 2. 0時間吹き込んだ後、 50%希 釈フッ素ガスを、 流速 41. 97 LZhで 2時間吹き込んだ。 つぎに、 50%希 釈フッ素ガスを同じ流速で吹き込みながら、 例 3—1で得た (CH3) 2CHO C〇CF (CF3) OCF2CF (CF3) OCF2CF2CF3 (1440 g) を 24. 0時間かけて注入した。 反応粗液を 1700 g抜き出した。 To a 300 OmL nickel autoclave having an external circulation tube reactor, CF 3 CF 2 CF 2 〇CF (CF 3 ) CF 2 〇CF (CF 3 ) COF (2534 g) was added, circulated and stirred, Kept at 25. At the outlet of the autoclave gas, a cooler maintained at 110 ° C was installed. After blowing nitrogen gas for 2.0 hours, 50% diluted fluorine gas was blown at a flow rate of 41.97 LZh for 2 hours. Next, while blowing 50% diluted fluorine gas at the same flow rate, (CH 3 ) 2 CHO C〇CF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (obtained in Example 3-1) 1440 g) was injected over 24.0 hours. 1700 g of the reaction crude liquid was extracted.
つぎに、 50%希釈フッ素ガスを同じ流速で吹き込みながら、 (CH3) 2C HOCOCF (CF3) OCF2CF (CF3) OCF2CF2CF3 (1440 g ) を 24. 0時間かけて注入した。 反応粗液 (1700 g) を抜き出した。 同様 の操作を、 5回繰り返し、 窒素ガスを 2時間吹き込んだ。 オートクレープから反 応粗液 (2850 g) を得た。 Then, while blowing 50% diluted fluorine gas at the same flow rate, (CH 3 ) 2 C HOCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (1440 g) was added over 24.0 hours. Injected. The reaction crude liquid (1700 g) was extracted. The same operation was repeated five times, and nitrogen gas was blown for 2 hours. The reaction crude liquid (2850 g) was obtained from the autoclave.
つぎに、 反応粗液 (2500 g) を上記オートクレープに加えて循環および撹 拌し、 25 °Cに保つた。 窒素ガスを 2. 0時間吹き込んだ後、 50 %希釈フッ素 ガスを、 流速 41. 97 L/hで 2時間吹き込んだ。 つぎに、 50%希釈フッ素 ガスを同じ流速で吹き込みながら、 (CH3) 2CHOCOCF (CF3) OCF 2CF (CF3) OCF2CF2CF3 (1440 g) を 24. 0時間かけて注入し、 窒素ガスを 2時間吹き込んだ。 反応粗液を 4190 g得た。 Next, the reaction crude liquid (2500 g) was added to the autoclave, circulated and stirred, and kept at 25 ° C. After blowing nitrogen gas for 2.0 hours, 50% diluted fluorine gas was blown at a flow rate of 41.97 L / h for 2 hours. Next, while injecting 50% diluted fluorine gas at the same flow rate, (CH 3 ) 2 CHOCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (1440 g) was injected over 24.0 hours, and nitrogen gas was blown for 2 hours. 4190 g of a crude reaction solution was obtained.
目的物を19 F— NMRで定量 (内部標準: C6F6) したところ (CF3) 2C FOCOCF (CF3) 〇CF2CF (CF3) O C F 2 C F 2 C F 3の収率は 94 %であった。 The target product was quantified by 19 F-NMR (internal standard: C 6 F 6 ). The yield of (CF 3 ) 2 C FOCOCF (CF 3 ) CFCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 was 94 %Met.
19F— NMR (376. 0MHz、 溶媒 CDC 13、 基準: CFC 13) <5 ( ppm) : -78. 5〜― 80. 0 (7 F) , —80. 7 (3 F) , -81. 9 〜― 82. 8 (8 F) , 一 84. 8〜― 86. 3 (I F) , —130. 2 (2 F ) , -132. 2 (I F) , -143. 1 (I F) , 一 145. 4 (1 F) 。 ぐ例 3— 3 A:エステル結合の分解工程 > 19 F- NMR (376. 0MHz, solvent CDC 1 3, reference: CFC 1 3) <5 ( ppm):.. -78 5~- 80. 0 (7 F), -80 7 (3 F), - 81.9 to 82.8 (8 F), 18.4 to 86.3 (IF), --130.2 (2 F), -132.2 (IF), -143.1 (IF) , One 145.4 (1 F). Example 3—3 A: Ester Bond Decomposition Step>
(CF3) 2CFOCOCF (CF3) OCF2CF (CF3) 〇CF2CF2CF 3と (CF3) 2CH〇COCF (CF3) OCF2CF (CF3) 〇CF2CF2C F3との 8 : 2 (質量比) の混合物 (以下、 該混合物をフッ素化エステル混合物 と記す。 10. 0 g。 ) を 0. 03 gの KF粉末と共にフラスコに仕込み、 激し く撹拌を行いながらオイルパス中で 120°Cで 10時間加熱した。 フラスコ上部 には 20 °Cに温度調節した還流器およびフッ素樹脂製捕集用容器を直列に設置し た。 (CF 3 ) 2 CFOCOCF (CF 3 ) OCF 2 CF (CF 3 ) 〇CF 2 CF 2 CF 3 and (CF 3 ) 2 CH〇COCF (CF 3 ) OCF 2 CF (CF 3 ) 〇CF 2 CF 2 CF A mixture of 3 and 8: 2 (mass ratio) (hereinafter, this mixture is referred to as a fluorinated ester mixture, 10.0 g.) Was charged into a flask together with 0.03 g of KF powder, and the mixture was vigorously stirred. While heating in an oil path at 120 ° C for 10 hours. At the top of the flask, a reflux condenser controlled at 20 ° C and a fluororesin collecting container were installed in series.
冷却後液状サンプル (7. 9 g) とガス状サンプル (1. 9 g) を回収した。 それぞれ GC— MSにより分析した結果、 ガス状サンプルは H F Aが主生成物で あり、 液状サンプルは FCOCF (CF3) OCF2CF (CF3) OCF2CF2 CF3が主生成物であることを確認した。 :《 の収率は95. 2%であった。 また、 液状サンプルからは、 FCOCF (CF3) OCF2CF (CF3) OCF 2CF2CF3 (5. 9 g) を得た。 <例 3 3B> After cooling, a liquid sample (7.9 g) and a gaseous sample (1.9 g) were recovered. The analysis by GC-MS revealed that the gaseous sample was mainly HFA and the liquid sample was FCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3. confirmed. : The yield of was 95.2%. Further, FCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (5.9 g) was obtained from the liquid sample. <Example 3 3B>
インコネル製カラム (内径 14mm、 長さ lm) に、 10質量%のKFをNa Fに担持した触媒 (10〜20メッシュ、 50 g) を充填して塩浴内に設置し、 塩浴内温を 200°Cに調節した。 この反応器に、 フッ素化エステル混合物を、 定 量ポンプを用いて 60 gZ時間で 2時間フィードした。 反応器出口には一 20°C に温度調節した還流器を設置して、 ガス状サンプルと液状サンプルに分離し、 ガ ス状サンプル (23. 2 g) をフッ素樹脂製捕集用容器に、 液状サンプル (96. 5 g) をガラストラップに回収した。 両サンプルをそれぞれ GC— MSにより分 析した結果、 ガス状サンプルは HF Aが主生成物であり、 液状サンプルは F CO CF (CF3) 〇CF2CF (CF3) OCF2CF2CF 3が主生成物であること を確認した。 11 八の収率は97. 1%であった。 また、 液状サンプルから FC OCF (CF3) OCF2CF (CF3) OCF2CF2CF3 (69. 8 g) を得 た。 ぐ例 3— 4 :還元工程〉 An Inconel column (inner diameter 14 mm, length lm) was filled with a catalyst (10 to 20 mesh, 50 g) in which 10% by mass of KF was supported on NaF, and placed in a salt bath. Adjusted to 200 ° C. The fluorinated ester mixture was fed to the reactor using a metering pump at 60 gZ hours for 2 hours. At the reactor outlet, a reflux condenser adjusted to a temperature of 20 ° C was installed to separate the gaseous sample and liquid sample, and the gaseous sample (23.2 g) was placed in a fluoroplastic collection container. A liquid sample (96.5 g) was collected in a glass trap. Result of both samples were analyzed respectively by GC-MS, gas sample is HF A main product, the liquid sample F CO CF (CF 3) 〇_CF 2 CF (CF 3) OCF 2 CF 2 CF 3 Was confirmed to be the main product. The yield of 118 was 97.1%. In addition, FC OCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (69.8 g) was obtained from the liquid sample. Example 3-4: Reduction process>
<触媒の調製例 1 >  <Preparation example 1 of catalyst>
ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸させた。 これに塩化パ ラジウムと硫酸銅を Pdと C Uの質量比換算で 9 : 1の割合で溶解した水溶液を 活性炭の質量に対する金属成分の全質量が 0. 5 %となる量まで少しずつ滴下し てイオン成分を活性炭に吸着させた。 さらに純水を用いて洗浄した後、 150°C で 5時間乾燥した。 次に窒素中 550でで 4時間乾燥した後、 水素を導入し、 5 時間、 25 O に保持して還元して、 触媒 (Pd— CuZC触媒) を得た。  Coconut shell activated carbon was immersed in pure water to impregnate the water into the pores. An aqueous solution in which palladium chloride and copper sulfate were dissolved at a ratio of 9: 1 in terms of the mass ratio of Pd and CU was added dropwise little by little until the total mass of the metal component with respect to the mass of activated carbon became 0.5%. The ionic components were adsorbed on activated carbon. After further washing with pure water, it was dried at 150 ° C for 5 hours. Next, after drying at 550 in nitrogen for 4 hours, hydrogen was introduced, and reduced at 25 O for 5 hours to obtain a catalyst (Pd-CuZC catalyst).
<触媒の調製例 2 > '  <Catalyst Preparation Example 2> ''
調製例 1における塩化パラジウムと硫酸銅を、 硫酸パラジウムと硫酸銀を P d : Ag=9 : 1 (換算質量比) に変更すること以外は調整例 1と同様に行い、 触 媒 (Pd— AgZC触媒) を得た。 The procedure was the same as in Preparation Example 1, except that palladium chloride and copper sulfate in Preparation Example 1 were changed, and that palladium sulfate and silver sulfate were changed to Pd: Ag = 9: 1 (converted mass ratio). A medium (Pd—AgZC catalyst) was obtained.
<触媒の調製例 3 >  <Preparation example 3 of catalyst>
調製例 1における塩化パラジウムと硫酸銅を、 塩化パラジウムと塩化金酸を P d : Au-9 : 1 (換算質量比) に変更し、 調製例 1における乾燥温度 550°C を 500 に変更すること以外は調整例 1と同様に行い、 触媒 (Pd— Au/C 触媒) を得た。  Change the palladium chloride and copper sulfate in Preparation Example 1 to Pd: Au-9: 1 (converted mass ratio) for palladium chloride and chloroauric acid, and change the drying temperature 550 ° C in Preparation Example 1 to 500. A catalyst (Pd—Au / C catalyst) was obtained in the same manner as in Preparation Example 1 except for the above.
<触媒の調製例 4 >  <Preparation example 4 of catalyst>
調製例 1における塩化パラジウムと硫酸銅を、 塩化パラジウム、 塩化白金酸、 および、 塩化金酸を Pd : P t : Au=90 : 2 : 8 (換算質量比) に変更し、 調製例 1における乾燥温度 550°Cを 500°Cに変更すること以外は調整例 1と 同様に行い、 触媒 (Pd— P t— AuZC触媒) を得た。  The palladium chloride and copper sulfate in Preparation Example 1 were changed to Pd: Pt: Au = 90: 2: 8 (converted mass ratio) for palladium chloride, chloroplatinic acid, and chloroauric acid, and dried in Preparation Example 1. A catalyst (Pd-Pt-AuZC catalyst) was obtained in the same manner as in Preparation Example 1, except that the temperature was changed from 550 ° C to 500 ° C.
<触媒の調製例 5 >  <Preparation example 5 of catalyst>
調製例 1における塩化パラジウムと硫酸銅を、 塩化パラジウム、 塩化ロジウム, および、 塩化金酸を Pd: Rh: Au=90 : 1 : 9 (換算質量比) に変更し、 調製例 1における乾燥温度 .550 を 500でに変更すること以外は調整例 1と 同様に行い、 触媒 (Pd— Rh— AuZC触媒) を得た。  The palladium chloride and copper sulfate in Preparation Example 1 were changed to palladium chloride, rhodium chloride, and chloroauric acid to Pd: Rh: Au = 90: 1: 9 (converted mass ratio), and the drying temperature in Preparation Example 1 was changed. A catalyst (Pd—Rh—AuZC catalyst) was obtained in the same manner as in Preparation Example 1 except that 550 was changed to 500.
<触媒の調製例 6 >  <Preparation example 6 of catalyst>
調製例 1における塩ィ匕パラジウムと硫酸銅を、 塩化パラジウム、 塩化イリジゥ ム、 および、 塩化金酸を Pd: I r : Au-90 : 1 : 9 (換算質量比) に変更 し、 調製例 1における乾燥温度 (55 (TC) を 500°Cに、 還元温度 (250 ) を 300 に変更すること以外は調整例 1と同様に行い、 触媒 (Pd— I r一 Au/C触媒) を得た。  Palladium chloride, iridium chloride, and chloroauric acid were changed to Pd: Ir: Au-90: 1: 9 (converted mass ratio) in Preparation Example 1 for palladium chloride and copper sulfate. Catalyst (Pd—Ir-Au / C catalyst) was obtained in the same manner as in Preparation Example 1 except that the drying temperature (55 (TC)) was changed to 500 ° C and the reduction temperature (250) was changed to 300. .
<触媒の調製例 7 >  <Preparation example 7 of catalyst>
調製例 1における塩化パラジウムと硫酸銅を、 硫酸ロジウムと硫酸銀を Rh : Ag=9 : 1 (換算質量比) に変更し、 調製例 1における還元温度 (250°C) を 300°Cに変更すること以外は調整例 1と同様に行い、 触媒 (Rh— Ag/C 触媒) を得た。 The palladium chloride and copper sulfate in Preparation Example 1 were changed to rhodium sulfate and silver sulfate to Rh: Ag = 9: 1 (converted mass ratio), and the reduction temperature in Preparation Example 1 (250 ° C) The catalyst (Rh-Ag / C catalyst) was obtained in the same manner as in Preparation Example 1 except that the temperature was changed to 300 ° C.
ぐ触媒の調製例 8 >  Preparation Example 8
調製例 1における塩化パラジウムと硫酸銅を、 塩化ロジウムと塩化金酸を Rh : Au= 9 : 1 (換算質量比) に変更し、 調製例 1における還元温度 (250°C ) を 300°Cに変更すること以外は調整例 1と同様に行い、 触媒 (Rh— AuZ C触媒) を得た。  The palladium chloride and copper sulfate in Preparation Example 1 were changed to rhodium chloride and chloroauric acid with Rh: Au = 9: 1 (converted mass ratio), and the reduction temperature (250 ° C) in Preparation Example 1 was changed to 300 ° C. A catalyst (Rh—AuZC catalyst) was obtained in the same manner as in Preparation Example 1 except for the change.
<例 3— 4— 1〜例 3— 4 _ 8 >  <Example 3—4—1 to Example 3—4_8>
調製例 1〜 8において調製した触媒 100 m 1を、 それぞれ内径 16 mm、 長 さ lmのインコネル 600製反応管に充填してオイルバスで加熱し、 これに水素 と HFAを導入して、 表 1に示す反応条件で還元反応を行った。 100時間反応 後の結果を下表に示す。 100 ml of the catalyst prepared in Preparation Examples 1 to 8 was filled into a reaction tube made of Inconel 600 having an inner diameter of 16 mm and a length of lm, heated in an oil bath, and hydrogen and HFA were introduced therein. The reduction reaction was performed under the reaction conditions shown in The results after the reaction for 100 hours are shown in the table below.
(表 3) (Table 3)
Figure imgf000041_0001
Figure imgf000041_0001
[例 3— 4— 9〜例 3— 4一 11 ]  [Example 3—4—9 to Example 3—4—11]
調製例 1〜 3において調製した触媒 100 m 1を、 それぞれ内径 16 mm、 長 さ lmのインコネル 600製反応管に充填してオイルパスで加熱し、 これに水素 と 1, 3—ジクロロー 1, 1, 3, 3—テトラフルォ Qアセトンを導入して下表 に示す反応条件で還元反応を行った。 100時間反応後の結果を下表に示す。 (表 4 ) 100 ml of the catalyst prepared in Preparation Examples 1 to 3 was charged into an Inconel 600 reaction tube having an inner diameter of 16 mm and a length of lm, and heated with an oil path, and hydrogen and 1,3-dichloro-1,1 were added thereto. The reduction reaction was carried out under the reaction conditions shown in the table below by introducing 3,3,3-tetrafluoro Q acetone. The results after 100 hours of reaction are shown in the table below. (Table 4)
Figure imgf000042_0001
Figure imgf000042_0001
[例 3— 4一 1 2〜例 3— 4一 1 4 ]  [Example 3—4-1 1 2 to Example 3—4 1 1 4]
調製例 1〜 3において調製した触媒 1 0 0 m 1を、 それぞれ内径 1 6 mm、 長 さ l mのインコネル 6 0 0製反応管に充填してオイルバスで加熱し、 これに水素 とクロ口ペン夕フルォロアセトンを導入して下表に示す反応条件で還元反応を行 つた。 1 0 0時間反応後の結果を下表に示す。 100 ml of the catalyst prepared in Preparation Examples 1 to 3 was filled into a reaction tube made of Inconel 600 having an inner diameter of 16 mm and a length of lm, and heated in an oil bath. In the evening, fluoroacetone was introduced to carry out a reduction reaction under the reaction conditions shown in the table below. The results after the reaction for 100 hours are shown in the table below.
41 41
(表 5) (Table 5)
Figure imgf000043_0001
Figure imgf000043_0001
[例 3— 4一 i 5〜例 3— 4— 17]  [Example 3—4—i 5 to Example 3—4—17]
C F3C O C F3を 3倍モル以上の水に吸収させ、 これを蒸留することで C F3C (OH) 2CF3- 2H20の共沸混合物 (沸点: 105 106°C) を得た。 次に、 2 Lの容量を有するハステロィ製の加圧撹拌式オートクレープ中に、 調 製例 1 3において調製した触媒 (10 g、 実施例 15 17) または 2%Pd Z活性炭触媒 (日本エンゲル八ルド社製) (10 g、 比較例 5) と、 上記調製し た CF3C (OH) 2CF3- 2H20 (1000 g) をそれぞれ仕込み、 水素で容 器内を置換した後、 0. 5MP a (ゲージ圧) に加圧して、 表 4に示す反応温度 で反応を行った。 5時間反応させた後に触媒を、 フィルターによって反応物と濾 別し、 同様の反応を 10回繰り返した。 10回目の反応終了後の結果を下表に示 す。 (表 6 ) CF 3 COCF 3 was absorbed in water three times or more in mole and distilled to obtain an azeotropic mixture of CF 3 C (OH) 2 CF 3 -2H 20 (boiling point: 105 106 ° C.). Next, the catalyst prepared in Preparation Example 13 (10 g, Example 15 17) or 2% Pd Z activated carbon catalyst (Nippon Engelpachi) was placed in a pressure-stirred autoclave made of Hastelloy having a capacity of 2 L. (10 g, Comparative Example 5) and the above-prepared CF 3 C (OH) 2 CF 3 -2H 20 (1000 g) were charged, and the vessel was replaced with hydrogen. The reaction was carried out at a reaction temperature shown in Table 4 by pressurizing to 5 MPa (gauge pressure). After reacting for 5 hours, the catalyst was separated from the reaction product by a filter, and the same reaction was repeated 10 times. The results after the tenth reaction are shown in the table below. (Table 6)
Figure imgf000044_0001
ぐ産業上の利用の可能性 >
Figure imgf000044_0001
Industrial potential>
本発明によれば、 構造上または反応上の理由で製造困難であったフッ素化アル コールを製造できる。 また、 任意な構造をとり得る安価な原料を出発物質として、 多様な構造を有し、 多様なニーズに応えうる種々のフッ素化アルコールを、 高い 収率で製造できる。 また、 原料の構造を選択することにより、 異なる構造の二種 のフッ素化アルコールを得ることも、 単一構造のフッ素化アルコールを得ること もできる。 また、 原料の構造を選択することにより、 フッ素化アルコールを連続 製造できる。  According to the present invention, a fluorinated alcohol, which has been difficult to produce for structural or reaction reasons, can be produced. In addition, starting from an inexpensive raw material that can take any structure, various fluorinated alcohols having various structures and meeting various needs can be produced in high yield. Further, by selecting the structure of the raw material, two kinds of fluorinated alcohols having different structures or a fluorinated alcohol having a single structure can be obtained. Further, by selecting the structure of the raw material, the fluorinated alcohol can be continuously produced.
さらに還元反応に特定の触媒を使用した場合には、 受酸剤を使用することなく、 長期に安定な還元反応を収率よく実施できる。  Furthermore, when a specific catalyst is used for the reduction reaction, a stable long-term reduction reaction can be performed with a high yield without using an acid acceptor.

Claims

請求の範囲 The scope of the claims
1. 下記化合物 (1) と下記化合物 (2) とを反応させて下記化合物 (3) と し、 該化合物 (3) を液相中でフッ素化して下記化合物 (4) とし、 該化合物 ( 4) のエステル結合を分解した反応生成物から下記化合物 (5) および/または 下記化合物 (6) を得て、 つぎに該化合物 (5) および Zまたは化合物 (6) を 還元することにより、 化合物 (5) からは下記化合物 (7) を (ただし、 RBF がフッ素原子である場合には下記化合物 (7 a) を) 、 化合物 (6) からは下記 化合物 (8) を得ることを特徴とする、 化合物 (7) 、 化合物 (7 a) 、 および 化合物 (8) から選ばれる 1種以上のフッ素化アルコールの製造方法。 1. The following compound (1) is reacted with the following compound (2) to give the following compound (3). The compound (3) is fluorinated in a liquid phase to give the following compound (4). )), The following compound (5) and / or the following compound (6) is obtained from the reaction product obtained by decomposing the ester bond, and then the compound (5) and Z or the compound (6) are reduced to obtain the compound ( The following compound (7) is obtained from 5) (however, the following compound (7a) when R BF is a fluorine atom), and the following compound (8) is obtained from compound (6). A method for producing one or more fluorinated alcohols selected from the group consisting of: compound (7), compound (7a), and compound (8).
RARBCHOH (1) R A R B CHOH (1)
RcCOX (2) R c COX (2)
RARBCHOCORc (3) R A R B CHOCOR c (3)
RAFRBFC FOCQRCF (4) R AF R BF C FOC Q R CF (4)
RAFRBFCQ (5) RAF R BF C Q (5)
RCFCOF (6) R CF COF (6)
RAFRBFCH〇H (7) R AF R BF CH〇H (7)
RAFCH2OH (7 a) R AF CH 2 OH (7a)
RCFCH2OH (8) R CF CH 2 OH (8)
ただし、 RAおよび RAFは、 同一でも異なっていてもよい 1価有機基であり、 RAと RAFとが異なる場合の RAFは、 RAがフッ素化された 1価有機基である。 However, R A and R AF are monovalent organic groups which may be the same or different, and when R A and R AF are different, R AF is a monovalent organic group in which R A is fluorinated .
RBは水素原子または 1価有機基であり、 RBが水素原子である場合の RBFは フッ素原子であり、 RBが 1価有機基である場合の RBFは、 RBと同一でも異な つていてもよい 1価有機基であり、 RBと RBFとが異なる 1価有機基である場合 の RBFは、 RBがフッ素化された 1価有機基である。 R B is a hydrogen atom or a monovalent organic group, R BF when R B is a hydrogen atom is a fluorine atom, R BF when R B is a monovalent organic group, be the same as R B a different one optionally may monovalent organic group, R BF when the R B and R BF are different monovalent organic group, a monovalent organic group R B is fluorinated.
または、 RAと RBは互いに結合して 2価有機基を形成していてもよく、 該場 合の RAFと RBFは互いに結合して 2価有機基を形成しており、 RAと RBから形 成される 2価有機基と、 RAFと RBFから形成される 2価有機基とは同一でも異 なっていてもよく、 異なる場合の RAFと RBFから形成される 2価有機基は、 RA と RBから形成される 2価有機基がフッ素化された基である。 Alternatively, R A and R B may be bonded to each other to form a divalent organic group. R AF and R BF combine with each other to form a divalent organic group, and a divalent organic group formed from R A and R B and a divalent organic group formed from R AF and R BF The divalent organic group formed from R AF and R BF in the different case may be the same as or different from the divalent organic group formed from R A and R B. is there.
RGおよび RGFは、 それぞれ同一でも異なっていてもよい 1価有機基であり、 Rcと RCFとが異なる場合の RCFは、 RGがフッ素化された 1価有機基であり、 かつ、 RA、 RB、 および Rcの少なくとも 1つにはフッ素原子が存在する基であ る。 R G and R GF are each a monovalent organic group which may be the same or different, and when R c and R CF are different, R CF is a monovalent organic group in which R G is fluorinated; In addition, at least one of R A , R B , and R c is a group having a fluorine atom.
Xはハロゲン原子である。  X is a halogen atom.
2. RAが 1価飽和炭化水素基、 部分ハロゲン化 1価飽和炭化水素基、 エーテ ル性酸素原子含有 1価飽和炭化水素基、 または部分ハロゲン化 (エーテル性酸素 原子含有 1価飽和炭化水素) 基であり、 RAFが RAに存在する水素原子の全てが フッ素原子に置換された基であり、 RBが水素原子、 1価飽和炭化水素基、 部分 ハロゲン化 1価飽和炭化水素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 または部分ハロゲン化 (エーテル性酸素原子含有 1価飽和炭化水素) 基であり、 RBFがフッ素原子、 または RBに存在する水素原子の全てがフッ素原子に置換さ れた基であり、 または、 RAと RBが互いに結合して 2価飽和炭化水素基、 部分 ハ口ゲン化 2価飽和炭化水素基、 エーテル性酸素原子含有 2価飽和炭化水素基、 または部分ハロゲン化 (エーテル性酸素原子含有 2価飽和炭化水素) 基を形成し, RAFと RBFが RAと RBから形成される基中の水素原子の全てがフッ素原子に置 換された基であり、 Rcおよび ReFが同一であって、 1価飽和炭化水素基、 部分 ハロゲン化 1価飽和炭化水素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 および部分ハロゲン化 (エーテル性酸素原子含有 1価飽和炭化水素) 基から選ば れる基の基中に存在する水素原子の全てがフッ素原子に置換された基である請求 項 1に記載の製造方法。 2. RA is a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, or a partially halogenated (monovalent saturated hydrocarbon containing an etheric oxygen atom) R AF is a group in which all of the hydrogen atoms present in R A are substituted with fluorine atoms, and R B is a hydrogen atom, a monovalent saturated hydrocarbon group, or a partially halogenated monovalent saturated hydrocarbon group. , an ether oxygen atom-containing monovalent saturated hydrocarbon group or a partially halogenated (etheric oxygen atom-containing monovalent saturated hydrocarbon) group, all of the hydrogen atoms R BF is present in a fluorine atom or R B, is It is a group substituted by a fluorine atom, or R A and R B are bonded to each other to form a divalent saturated hydrocarbon group, a partially vaccinated divalent saturated hydrocarbon group, and a divalent saturated containing an etheric oxygen atom. Hydrocarbon group or partially halogenated (d To form a ether oxygen atom-containing bivalent saturated hydrocarbon) group, a R AF and R BF are all hydrogen atoms in the group formed by R A and R B is substitution by a fluorine atom group, R c and R eF are the same and a monovalent saturated hydrocarbon group, a partially halogenated monovalent saturated hydrocarbon group, containing an etheric oxygen atom, a monovalent saturated hydrocarbon group, and a partially halogenated (containing an etheric oxygen atom) A monovalent saturated hydrocarbon) wherein all of the hydrogen atoms present in the group selected from the group are substituted with fluorine atoms. Item 1. The production method according to Item 1.
3. RAがアルキル基、 部分クロ口アルキル基、 アルコキシアルキル基、 また は部分クロ口 (アルコキシアルキル) 基であり、 RAFが RAに存在する水素原子 の全てがフッ素原子に置換された基であり、 3. R A is an alkyl group, a partial alkyl group, an alkoxyalkyl group, or a partial alkyl group (alkoxyalkyl) group, and R AF is such that all of the hydrogen atoms present in R A have been replaced with fluorine atoms. Group,
RBが水素原子、 アルキル基、 部分クロ口アルキル基、 アルコキシアルキル基、 または部分クロ口 (アルコキシアルキル) 基であり、 RBFがフッ素原子、 また は R Bに存在する水素原子の全てがフッ素原子に置換された基であり、 R B is a hydrogen atom, an alkyl group, a partial alkyl group, an alkoxyalkyl group, or a partial alkyl (alkoxyalkyl) group, and R BF is a fluorine atom, or all of the hydrogen atoms present in R B are fluorine. A group substituted by an atom,
または、 RAと RBが互いに結合してアルキレン基、 部分クロ口アルキレン基、 アルキレンォキシアルキレン基、 または部分クロ口 (アルキレンォキシアルキレ ン) 基を形成し、 RAFと RBFが互いに結合して RAと RBから形成される基中の 水素原子の全てがフッ素原子に置換された基であり、 Or, R A and R B combine with each other to form an alkylene group, a partially cycloalkylene group, an alkyleneoxyalkylene group, or a partially cycloalkylene (alkyleneoxyalkylene) group, and R AF and R BF are All hydrogen atoms in the group formed from R A and R B which are bonded to each other are substituted with fluorine atoms,
Rcおよび RGFが同一であって、 アルキル基、 部分クロ口アルキル基、 アルコ キシアルキル基、 および部分クロ口 (アルコキシアルキル) 基から選ばれる基の 基中に存在する水素原子の全てがフッ素原子に置換された基である請求項 1に記 載の製造方法。 R c and R GF are the same, and all of the hydrogen atoms present in the group selected from the group consisting of an alkyl group, a partial alkyl group, an alkoxyalkyl group and a partial alkyl group (alkoxyalkyl) are fluorine atoms. 2. The production method according to claim 1, which is a group substituted with:
4. 化合物 (3) 中のフッ素含量が 30質量%以上である請求項 1〜3のいず れかに記載の製造方法。 4. The production method according to any one of claims 1 to 3, wherein the fluorine content in the compound (3) is 30% by mass or more.
5. 化合物 (3) 中のフッ素含量が 30質量%〜70質量%である請求項 1〜 4のいずれかに記載の製造方法。 5. The production method according to claim 1, wherein the fluorine content in the compound (3) is 30% by mass to 70% by mass.
6. 化合物 (3) の分子量が 200〜1000である請求項 1〜5のいずれか に記載の製造方法。 6. The production method according to any one of claims 1 to 5, wherein the molecular weight of the compound (3) is from 200 to 1,000.
7. RBFがフッ素原子であり、 かつ RAFと RCFが同一構造である請求項 1〜 6のいずれかに記載の製造方法。 7. The production method according to claim 1, wherein R BF is a fluorine atom, and R AF and R CF have the same structure.
8. 化合物 (2) として、 生成した化合物 (6) を用いる請求項 1〜 7のいず れかに記載の製造方法。 8. The production method according to any one of claims 1 to 7, wherein the produced compound (6) is used as the compound (2).
9. Xがフッ素原子である請求項 1〜 8のいずれかに記載の製造方法。 9. The production method according to any one of claims 1 to 8, wherein X is a fluorine atom.
10. 液相中でのフッ素化を、 化合物 (3) を含む液相中にフッ素ガスを導入 することにより実施する請求項 1〜 9のいずれかに記載の製造方法。 10. The production method according to any one of claims 1 to 9, wherein the fluorination in the liquid phase is performed by introducing fluorine gas into the liquid phase containing the compound (3).
11. 還元を、 金属担持触媒存在下に水素と反応させることにより行う請求項 1〜 10のいずれかに記載の製造方法。 11. The production method according to claim 1, wherein the reduction is carried out by reacting with hydrogen in the presence of a metal-supported catalyst.
12. 金属担持触媒が、 8〜 10族元素から選ばれる少なくとも 1種の元素と、 1 1族元素の少なくとも 1種を必須とする触媒である請求項 11に記載の製造方 法。 12. The production method according to claim 11, wherein the metal-supported catalyst is a catalyst which essentially requires at least one element selected from Group 8 to Group 10 elements and at least one Group 11 element.
13. 化合物 (5) および/または化合物 (6) を、 8〜10族元素から選ば れる少なくとも 1種の元素と、 11族元素の少なくとも 1種を必須とする触媒の 存在下に還元することにより、 化合物 (5) からは下記化合物 (7) を (ただし、13. Reduction of compound (5) and / or compound (6) in the presence of at least one element selected from the group 8 to 10 elements and at least one group 11 element catalyst From compound (5), the following compound (7) (provided that
RBFがフッ素原子である場合には下記化合物 (7 a) を) 、 化合物 (6) から は下記化合物 (8) を得ることを特徴とする、 化合物 (7) 、 化合物 (7 a) 、 および化合物 (8) から選ばれる 1種以上のフッ素化アルコールの製造方法。 When R BF is a fluorine atom, the following compound (7a)) is obtained, and from compound (6), the following compound (8) is obtained. Compound (7), compound (7a), and A method for producing one or more fluorinated alcohols selected from compound (8).
RAFRBF C O ( 5 ) RCFCOF (6) RAF R BF CO (5) R CF COF (6)
RAFRBF C H OH ( ? ) RAF R BF CH OH (?)
RAFCH2OH (7 a) R AF CH 2 OH (7a)
RCFCH2OH (8) R CF CH 2 OH (8)
ただし、 RAFは 1価有機基であり、 RBFはフッ素原子または 1価有機基であ り、 または、 RAFと RBFは互いに結合して 2価有機基を形成していてもよい。 RCFは、 1価有機基である。 ただし、 RAF、 RBF、 および RCFの少なくとも 1 つはフッ素原子が存在する基である。 However, R AF is a monovalent organic group, R BF is a fluorine atom or a monovalent organic group, or R AF and R BF may combine with each other to form a divalent organic group. R CF is a monovalent organic group. However, at least one of R AF , R BF , and R CF is a group having a fluorine atom.
14. 受酸剤を用いずに反応を行う請求項 13に記載の製造方法。 14. The production method according to claim 13, wherein the reaction is performed without using an acid acceptor.
15. 還元に用いる水素を、 化学量論量の 2倍モル以上とする請求項 1〜14 のいずれかに記載の製造方法。 15. The production method according to any one of claims 1 to 14, wherein the hydrogen used for the reduction is at least twice the stoichiometric mole.
PCT/JP2001/008432 2000-09-27 2001-09-27 Process for producing fluorinated alcohol WO2002026679A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002531066A JPWO2002026679A1 (en) 2000-09-27 2001-09-27 Method for producing fluorinated alcohol
AU2001290289A AU2001290289A1 (en) 2000-09-27 2001-09-27 Process for producing fluorinated alcohol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000295139 2000-09-27
JP2000-295139 2000-09-27

Publications (1)

Publication Number Publication Date
WO2002026679A1 true WO2002026679A1 (en) 2002-04-04

Family

ID=18777611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008432 WO2002026679A1 (en) 2000-09-27 2001-09-27 Process for producing fluorinated alcohol

Country Status (3)

Country Link
JP (1) JPWO2002026679A1 (en)
AU (1) AU2001290289A1 (en)
WO (1) WO2002026679A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586626B2 (en) 1999-03-23 2003-07-01 Asahi Glass Company, Limited Process for producing a fluorine-containing compound by liquid phase fluorination
US6956138B2 (en) 2000-07-11 2005-10-18 Asahi Glass Company, Limited Method for producing a fluorine-containing compound
US7524995B1 (en) 2008-06-12 2009-04-28 E.I. Du Pont De Nemours And Company Continuous process to produce hexafluoroisopropanol
JP6237862B1 (en) * 2016-11-16 2017-11-29 セントラル硝子株式会社 Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether (sevoflurane)
CN112745194A (en) * 2020-12-31 2021-05-04 山东华夏神舟新材料有限公司 Process for continuously producing hexafluoroisopropanol by using hexafluoropropylene oxide as raw material
CN116162016A (en) * 2023-01-09 2023-05-26 山东重山光电材料股份有限公司 Preparation method of high-purity pentafluoropentanol

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900372A (en) * 1974-09-16 1975-08-19 Phillips Petroleum Co Recycle of acyl fluoride and electrochemical fluorination of esters
JPS5888330A (en) * 1981-11-24 1983-05-26 Asahi Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoro-2-propanol
JPS61268639A (en) * 1985-05-24 1986-11-28 Asahi Glass Co Ltd Production of fluorinated alcohol
EP0557167A1 (en) * 1992-02-12 1993-08-25 Minnesota Mining And Manufacturing Company Preparation of fluorinated functional compounds
JPH06184025A (en) * 1992-12-21 1994-07-05 Central Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
JPH083086A (en) * 1994-06-15 1996-01-09 Idemitsu Petrochem Co Ltd Production of fluorinated alcohol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900372A (en) * 1974-09-16 1975-08-19 Phillips Petroleum Co Recycle of acyl fluoride and electrochemical fluorination of esters
JPS5888330A (en) * 1981-11-24 1983-05-26 Asahi Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoro-2-propanol
JPS61268639A (en) * 1985-05-24 1986-11-28 Asahi Glass Co Ltd Production of fluorinated alcohol
EP0557167A1 (en) * 1992-02-12 1993-08-25 Minnesota Mining And Manufacturing Company Preparation of fluorinated functional compounds
JPH06184025A (en) * 1992-12-21 1994-07-05 Central Glass Co Ltd Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
JPH083086A (en) * 1994-06-15 1996-01-09 Idemitsu Petrochem Co Ltd Production of fluorinated alcohol

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586626B2 (en) 1999-03-23 2003-07-01 Asahi Glass Company, Limited Process for producing a fluorine-containing compound by liquid phase fluorination
US6951957B2 (en) 1999-03-23 2005-10-04 Asahi Glass Company, Limited Process for producing a fluorine-containing compound by liquid phase fluorination
US7083705B2 (en) 1999-03-23 2006-08-01 Asahi Glass Company, Limited Process for producing a fluorine-containing compound by liquid phase fluorination
US6956138B2 (en) 2000-07-11 2005-10-18 Asahi Glass Company, Limited Method for producing a fluorine-containing compound
US7524995B1 (en) 2008-06-12 2009-04-28 E.I. Du Pont De Nemours And Company Continuous process to produce hexafluoroisopropanol
JP6237862B1 (en) * 2016-11-16 2017-11-29 セントラル硝子株式会社 Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether (sevoflurane)
CN112745194A (en) * 2020-12-31 2021-05-04 山东华夏神舟新材料有限公司 Process for continuously producing hexafluoroisopropanol by using hexafluoropropylene oxide as raw material
CN116162016A (en) * 2023-01-09 2023-05-26 山东重山光电材料股份有限公司 Preparation method of high-purity pentafluoropentanol

Also Published As

Publication number Publication date
JPWO2002026679A1 (en) 2004-02-05
AU2001290289A1 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US7083705B2 (en) Process for producing a fluorine-containing compound by liquid phase fluorination
JP3042703B2 (en) Direct fluorination method for producing perfluorinated organic materials
JP4934939B2 (en) Method for producing fluorine-containing ketone
US20050192456A1 (en) Method for producing a fluorinated ester compound
US20050261516A1 (en) Process for producing a fluorinated ester, a fluorinated acyl fluoride and a fluorinated vinyl ether
WO2015029839A1 (en) Method for producing fluorinated compound
JP4019940B2 (en) Method for producing fluorine-containing sulfonyl fluoride compound
WO2002026679A1 (en) Process for producing fluorinated alcohol
KR100758163B1 (en) Processes for the preparation of fluorinated acyl fluorides and fluorinated vinyl ethers
JPWO2002026689A1 (en) Method for producing fluorine-containing polyvalent carbonyl compound
JP4126542B2 (en) Method for producing decomposition reaction product of fluorine-containing ester compound
WO2002026682A1 (en) Process for producing fluorinated vinyl ethers
WO2002066452A1 (en) Processes for producing fluorinated cyclic ethers and use thereof
JPWO2002026687A1 (en) Method for producing perfluoro compound and its derivative
WO2004094365A1 (en) Method for producing fluorine-containing sulfonyl fluoride compound
JP2005002014A (en) Method for preparing perfluorocyclic lactone derivative and mixture containing perfluorocyclic lactone

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase