JPH0125729B2 - - Google Patents

Info

Publication number
JPH0125729B2
JPH0125729B2 JP60110196A JP11019685A JPH0125729B2 JP H0125729 B2 JPH0125729 B2 JP H0125729B2 JP 60110196 A JP60110196 A JP 60110196A JP 11019685 A JP11019685 A JP 11019685A JP H0125729 B2 JPH0125729 B2 JP H0125729B2
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
catalyst
activated carbon
fluorinated alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60110196A
Other languages
Japanese (ja)
Other versions
JPS61268639A (en
Inventor
Takeshi Morimoto
Shinsuke Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60110196A priority Critical patent/JPS61268639A/en
Publication of JPS61268639A publication Critical patent/JPS61268639A/en
Publication of JPH0125729B2 publication Critical patent/JPH0125729B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、フツ素化アルコールの製造方法に関
するものである。 [従来の技術] 作動媒体や医農薬あるいはその他各種の中間体
として用いられる。トリフルオロエタノールや、
ペンタフルオロプロパノール等のフツ素化アルコ
ールの製造方法としては、従来から幾つかの方法
が知られている。例えば、ペンタフルオロプロパ
ノールの製法としては、テトラフルオロエチレン
とアルカリ(土類)金属フルオライドとの反応物
にホルムアルデヒドを反応させ、金属アルコレー
トとし、これを加水分解して得る方法が知られて
いる(USP3415894)。 又、トリフルオロエタノールの製法としては2
−クロロ−1,1,1トリフルオロエタン(フロ
ン133a)をΥ−ブチルラクトン中でカルボン酸
塩の存在下に加水分解する方法(特開昭58−
134043、特開昭58−140031)や非プロトン性溶媒
中でアルカリ金属塩と反応させてエステルとし、
ついで苛性アルカルで加水分解する方法(特開昭
59−13742)、さらにはエチレングリコールなどの
高級アルコール中で酢酸カリウムの存在下に加水
分解する方法(USP2868846)が知られている。
2−クロロ−1,1,1−トリフルオロエタンを
原料とするこれらの製法は基本的に回転式の反応
であり、大規模製造時のスケールアツプ上の利点
があまり期待できない。一方、トリフルオロ酢酸
もしくはその誘導体を触媒の存在下に還元してト
リフルオロエタノールを得る方法も知られてい
る。トリフルオロ酢酸の還元方法としてはロジウ
ム触媒などを用いる方法(J.Org.Chem443268
(1979)、USP4273947、USP4396784)が知られ
ている他、無水トリフルオロ酢酸の還元方法とし
てUSP4255594さらにはトリフルオロ酢酸エステ
ルの還元方法としてUSP3314987、USP4072726、
EP36939が開示されている。またトリフルオロ酢
酸クロライドの還元によるトリフルオロエタノー
ルの製造法としてはUSP3970710、USP2982789
が知られている。 [発明の解決しようとする問題点] 前述の従来例のうちUSP2982789号明細書によ
れば、トリフルオロ酢酸クロライドをPd担持活
性炭触媒を用いて水素還元し、トリフルオロアセ
トアルデヒドとし、次いでこれを銅一酸化クロム
触媒を用いて水素還元し、トリフルオロエタノー
ルとする方法が記載されている。同明細書第4欄
15〜23行目の記載によれば、トリフルオロ酢酸ク
ロライドをPd担持活性炭触媒を用いて水素還元
し、トリフルオロアルデヒドを得る、脱塩素化工
程において、トリフルオロ酢酸クロライド1モル
に対する水素の反応モル数は、反応理論量では1
モルであるが、この水素の反応モル数を1.5モル
以上、言い換えれば反応理論量の1.5倍以上とな
ることは好ましくないとされている。又、同明細
書第4欄9〜14行目には、銅一酸化クロム触媒の
存在下に、トリフルオロ酢酸クロライドと水素の
反応により直接トリフルオロエタノールを得る方
法は、副反応が起つたり、大部分の酸クロライド
が未反応に終る結果となると記載されている。 本発明者等の研究によれば、前記米国明細書の
教示にもかかわらず、酸ハロゲン化物と水素との
反応により次式に従つてフツ素化アルコールを好
収率で得るこたができるという興味深い知見をえ
得た。 RfCOX+2H2→RfCH2OH+HX (RfはC1〜C3のC原子やH原子を含んでも
よいフルオロアルキル基、XはF,C又はBr
原子を示す。) 前記米国明細書の教示に従い、Pd担持活性炭
触媒の存在下、水準の反応モル数を反応理論量の
1.5倍以下として酸ハロゲン化物と反応させたと
ころ、フツ素化アルコールの生成も認められた
が、充分な収率では得られず、又、フツ素化アル
コールやハロゲン化水素等の反応生成物の付着に
よる触媒の被毒が観察され、触媒の長期活性維持
も困難であつた。本発明者等は、水素雰囲気中に
おいては、触媒上に反応生成物が付着しにくいの
ではないかとの予測のもとに、前記米国明細書の
教示とは逆に、水素を反応理論量の2倍以上で反
応させ、水素雰囲気を形成させながら反応させた
ところ、驚くべきことに、好収率でフツ素化アル
コールが得られるとともに、触媒の長期活性維持
も可能となつた。 [問題点を解決するための手段] 本発明は、前述の新規な知見に基づいてなされ
たものであり、下記一般式()で表わされるフ
ルオロアルキル基を含有する酸ハロゲン化物と水
素とを反応せしめ、下記一般式()で表わされ
るフツ素化アルコールを得る方法において、酸ハ
ロゲン化物に対する水素の反応モル数を反応理論
量の2倍以上とし、かつパラジウム担持活性炭触
媒の存在下に反応せしめることを特徴とするフツ
素化アルコールの製造方法に関するものである。 RfCOX ……() (RfはC1〜C3のC原子やH原子を含んでい
てもよいフルオロアルキル基、XはF,C又は
Br原子を示す。) RfCH2OH ……() (Rfは前記と同じフルオロアルキル基) 本発明に用いるパラジウム触媒の調整法は特に
限定はなく、通常の方法。例えば塩化パラジウム
を担体に担持させた後乾燥し、さらにこれを水素
で還元する方法などが採用される。パラジウムの
担持量としては0.5wt%以上であれば工業触媒と
して使用可能であるが、5wt%以上では触媒コス
トが高くなるので、0.5〜5wt%が好ましく、特に
1〜3wt%が好ましい。 また担体に用いる活性炭は木材、木炭、果実ガ
ラ、ヤシガラ、泥炭、亜炭、石炭などの原料から
調整したもの、いずれも使用し得るが、鉱物質の
原料よりも植物質の原料が好ましく、特にヤシガ
ラ活性炭が最適である。ヤシガラ活性炭は、他の
活性炭に比べ表面積が大きく、シリカ等の不純物
が少なく、さらに耐塩酸性にすぐれているため、
活性が高く、耐久性にすぐれていると考えられ
る。担体の形状は、約2〜5mm程度の成型炭、約
4〜50メツシユ程度の破砕炭、粒状炭等各種の形
状を採用し得るが4〜20メツシユ前後の破砕炭、
成型炭が好ましい。 本発明において、酸ハロゲン化物と水素との反
応モル比は特に重要であり、酸ハロゲン化物に対
する水素の反応モル数を反応理論量の2倍以上、
好ましくは3〜5倍とすることにより、好収率で
フツ素化アルコールを得ることができる。その理
由とするところは、必ずしも明らかではないが、
多量の水素が稀釈剤の役割を果し、必要以上な反
応温度の上昇を防ぎ、副反応を抑制するととも
に、触媒反応を充分な水素雰囲気中で実施するこ
とにより、反応生成物が触媒上に付着堆積するこ
とを防ぎ、触媒活性を維持できるためと考えられ
る。 反応温度は常圧において130〜250℃、好ましく
は150〜200℃であればよく、これ以下の温度では
フツ素化アルコールの収率が低く、またこれ以上
の温度では触媒への熱負荷が大きくなり、性能低
下をまねいたり、熱分解等の副反応が起りやすく
なるので好ましくない。反応圧力は特に限定され
ずに実施可能であり、通常常圧または自圧で充分
に進行する。触媒に対する接触時間は通常4〜60
秒、好ましくは8〜40秒の範囲から選定すればよ
い。また反応は過剰の温度上昇をさらに抑制する
ためにチツソガス等の不活性ガスで稀釈して実施
してもよい。本発明のパラジウム担持活性炭触媒
は、耐久性が高く、長期間活性化を必要としない
が、活性化を実施する場合には、100〜300℃、好
ましくは200〜300℃で水素還元するとよい。 本発明方法により製造し得るフツ素化アルコー
ルとしては、酸ハロゲン化物の水素還元物として
種々挙げ得るが、下記化合物を好適に例示し得
る。 CF3CH2OH,CHF2CH2OH,CF2CICH2OH,
CH2FCH2OH,C2F5CH2OH,CF3CH2CH2OH,
C3F7CH2OH,HCF2CF2CH2CH2OH。 [実施例] 実施例 1 0.5wt%のパラジウムを4〜8メツシユ破砕ヤ
シガラ活性炭に担持した触媒250mlを内径1イン
チ、長さ1mのインコネル600製の反応管に充填
し、これを外部より加熱して170℃に一定に保つ
た塩浴炉にいれた。この反応器にトリフルオロ酢
酸クロライドを0.5mol/hr、水素を4mol/hrの
流速で導入して反応を行つた。1日後、反応器出
口ガスをガスクロマトグラフで分析した。トリフ
ルオロ酢酸クロライド反応率100%、トリフルオ
ロエタノール選択率99.5%の結果を得た。 実施例 2 2wt%パラジウム担持破砕ヤシガラ活性炭触媒
(4〜8メツシユ)を用いた他は実施例1と同じ
条件で反応を行ない触媒の耐久性を調べた結果を
下記表−1に示す。あわせて5wt%パラジウム担
持アルミナ触媒の同一条件下での性能を比較して
表−1に示す。なお性能はトリフルオロエタノー
ルの収率[%]で代表して示す。
[Industrial Field of Application] The present invention relates to a method for producing fluorinated alcohol. [Prior Art] It is used as a working medium, medicines and agrochemicals, and various other intermediates. trifluoroethanol,
Several methods are conventionally known for producing fluorinated alcohols such as pentafluoropropanol. For example, a known method for producing pentafluoropropanol is to react a reaction product of tetrafluoroethylene and an alkali (earth) metal fluoride with formaldehyde to obtain a metal alcoholate, which is then hydrolyzed ( USP3415894). In addition, the method for producing trifluoroethanol is 2.
- A method for hydrolyzing chloro-1,1,1 trifluoroethane (Freon 133a) in Υ-butyllactone in the presence of a carboxylic acid salt (Japanese Patent Application Laid-open No. 1986-
134043, JP 58-140031) or by reacting with an alkali metal salt in an aprotic solvent to form an ester,
A method of hydrolyzing with caustic alkal (JP-A-Sho)
59-13742), and a method of hydrolysis in higher alcohols such as ethylene glycol in the presence of potassium acetate (USP 2868846) is known.
These production methods using 2-chloro-1,1,1-trifluoroethane as a raw material are basically rotary reactions, and are not expected to offer much advantage in terms of scale-up during large-scale production. On the other hand, a method for obtaining trifluoroethanol by reducing trifluoroacetic acid or its derivative in the presence of a catalyst is also known. As a method for reducing trifluoroacetic acid, a method using a rhodium catalyst etc. (J.Org.Chem443268
(1979), USP 4273947, USP 4396784), USP 4255594 is a method for reducing trifluoroacetic anhydride, and USP 3314987, USP 4072726 is a method for reducing trifluoroacetic ester.
EP36939 is disclosed. Additionally, USP3970710 and USP2982789 describe methods for producing trifluoroethanol by reducing trifluoroacetic acid chloride.
It has been known. [Problems to be Solved by the Invention] Among the above-mentioned conventional examples, according to USP No. 2,982,789, trifluoroacetic acid chloride is hydrogen-reduced using a Pd-supported activated carbon catalyst to form trifluoroacetaldehyde, and then this is converted into trifluoroacetaldehyde. A method of reducing hydrogen to trifluoroethanol using a chromium oxide catalyst is described. Column 4 of the same specification
According to the description in lines 15 to 23, in the dechlorination step in which trifluoroacetic acid chloride is hydrogen-reduced using a Pd-supported activated carbon catalyst to obtain trifluoroaldehyde, the reaction mole of hydrogen per mole of trifluoroacetic acid chloride is The number is 1 in the theoretical amount of reaction.
However, it is said that it is not preferable for the number of moles of hydrogen to react to be 1.5 moles or more, in other words, to be 1.5 times or more the theoretical amount of reaction. Furthermore, in column 4, lines 9 to 14 of the same specification, it is stated that the method of directly obtaining trifluoroethanol by the reaction of trifluoroacetic acid chloride and hydrogen in the presence of a copper chromium monoxide catalyst may cause side reactions. , it is stated that most of the acid chloride ends up unreacted. According to the research of the present inventors, despite the teachings of the above-mentioned US specification, fluorinated alcohols can be obtained in good yield by the reaction of acid halides and hydrogen according to the following formula. I gained some interesting knowledge. RfCOX+2H 2 →RfCH 2 OH+HX (Rf is a fluoroalkyl group that may contain C 1 to C 3 C atoms or H atoms, X is F, C or Br
Indicates an atom. ) According to the teaching of the above-mentioned US specification, in the presence of a Pd-supported activated carbon catalyst, the number of reaction moles at the level was reduced to the theoretical reaction amount.
When reacting with an acid halide at a concentration of 1.5 times or less, the formation of fluorinated alcohol was observed, but it was not obtained in sufficient yield, and the reaction products such as fluorinated alcohol and hydrogen halide were Poisoning of the catalyst due to adhesion was observed, and it was difficult to maintain long-term activity of the catalyst. The present inventors predicted that reaction products would be difficult to adhere to the catalyst in a hydrogen atmosphere, and contrary to the teaching of the above-mentioned US specification, hydrogen was added to the stoichiometric amount of the reaction. Surprisingly, when the reaction was carried out at twice the volume or more while forming a hydrogen atmosphere, it was possible to obtain a fluorinated alcohol in a good yield and to maintain the activity of the catalyst for a long period of time. [Means for Solving the Problems] The present invention has been made based on the above-mentioned novel findings, and involves reacting an acid halide containing a fluoroalkyl group represented by the following general formula () with hydrogen. In a method for obtaining a fluorinated alcohol represented by the following general formula (), the number of moles of hydrogen reacted with the acid halide is at least twice the theoretical reaction amount, and the reaction is carried out in the presence of a palladium-supported activated carbon catalyst. The present invention relates to a method for producing a fluorinated alcohol characterized by the following. RfCOX ... () (Rf is a fluoroalkyl group which may contain C 1 to C 3 C atoms or H atoms, X is F, C or
Indicates a Br atom. ) RfCH 2 OH ... () (Rf is the same fluoroalkyl group as above) The method for preparing the palladium catalyst used in the present invention is not particularly limited and may be a normal method. For example, a method may be employed in which palladium chloride is supported on a carrier, dried, and further reduced with hydrogen. If the supported amount of palladium is 0.5 wt% or more, it can be used as an industrial catalyst, but if it is 5 wt% or more, the cost of the catalyst increases, so 0.5 to 5 wt% is preferable, and 1 to 3 wt% is particularly preferable. The activated carbon used for the carrier may be prepared from materials such as wood, charcoal, fruit shells, coconut shells, peat, lignite, and coal.Although any activated carbon may be used, vegetable materials are preferable to mineral materials, especially coconut shells. Activated carbon is best. Coconut shell activated carbon has a larger surface area than other activated carbons, contains fewer impurities such as silica, and has excellent hydrochloric acid resistance.
It is considered to be highly active and durable. The shape of the carrier can be various shapes such as briquette coal of about 2 to 5 mm, crushed coal of about 4 to 50 meshes, granulated coal, etc., but crushed coal of about 4 to 20 meshes,
Molded coal is preferred. In the present invention, the reaction molar ratio of acid halide and hydrogen is particularly important, and the number of reaction moles of hydrogen to acid halide is at least twice the theoretical reaction amount,
By preferably increasing the amount by 3 to 5 times, fluorinated alcohol can be obtained with a good yield. The reason for this is not necessarily clear, but
A large amount of hydrogen plays the role of a diluent, prevents the reaction temperature from rising more than necessary, suppresses side reactions, and performs the catalytic reaction in a sufficient hydrogen atmosphere, so that the reaction products are not deposited on the catalyst. This is thought to be because it prevents adhesion and deposition and maintains catalytic activity. The reaction temperature may be 130 to 250°C, preferably 150 to 200°C at normal pressure; temperatures below this will result in a low yield of fluorinated alcohol, and temperatures above this will place a large heat load on the catalyst. This is not preferable because it may lead to performance deterioration or side reactions such as thermal decomposition may occur more easily. The reaction pressure can be carried out without particular limitation, and the reaction usually proceeds satisfactorily at normal pressure or autogenous pressure. The contact time for the catalyst is usually 4 to 60
It may be selected from a range of seconds, preferably from 8 to 40 seconds. In addition, the reaction may be carried out by diluting with an inert gas such as chiso gas in order to further suppress excessive temperature rise. The palladium-supported activated carbon catalyst of the present invention has high durability and does not require long-term activation, but when activated, hydrogen reduction is preferably carried out at 100 to 300°C, preferably 200 to 300°C. As the fluorinated alcohol that can be produced by the method of the present invention, various hydrogen reduction products of acid halides can be mentioned, and the following compounds can be suitably exemplified. CF 3 CH 2 OH, CHF 2 CH 2 OH, CF 2 CICH 2 OH,
CH 2 FCH 2 OH, C 2 F 5 CH 2 OH, CF 3 CH 2 CH 2 OH,
C3F7CH2OH , HCF2CF2CH2CH2OH . _ _ _ [Example] Example 1 250 ml of a catalyst in which 0.5 wt% of palladium was supported on 4 to 8 meshes of crushed coconut shell activated carbon was filled into a reaction tube made of Inconel 600 with an inner diameter of 1 inch and a length of 1 m, and this was heated from the outside. The mixture was then placed in a salt bath furnace maintained at a constant temperature of 170°C. A reaction was carried out by introducing trifluoroacetic acid chloride into this reactor at a flow rate of 0.5 mol/hr and hydrogen at a flow rate of 4 mol/hr. One day later, the reactor outlet gas was analyzed using a gas chromatograph. A trifluoroacetic acid chloride reaction rate of 100% and a trifluoroethanol selectivity of 99.5% were obtained. Example 2 The reaction was carried out under the same conditions as in Example 1, except that a 2wt% palladium-supported crushed coconut shell activated carbon catalyst (4 to 8 meshes) was used, and the durability of the catalyst was investigated. The results are shown in Table 1 below. Table 1 also shows a comparison of the performance of 5wt% palladium-supported alumina catalysts under the same conditions. The performance is represented by the trifluoroethanol yield [%].

【表】 比較例 1〜4 他の貴金属軽触媒の性能を実施例1と同じ条件
で比較検討した結果を表−2に示す。
[Table] Comparative Examples 1 to 4 Table 2 shows the results of a comparative study of the performance of other noble metal light catalysts under the same conditions as in Example 1.

【表】 比較例 5 実施例2と同じ2wt%パラジウム担持破砕ヤシ
ガラ活性炭触媒を用い、トリフルオロ酢酸クロラ
イドの流速を1.5mol/hr、水素の流速を
3.0mol/hrにした他は実施例1と同じ条件下で
連続して反応を行ない、性能の経時変化を調べ
た。結果を表−3に示す。
[Table] Comparative Example 5 Using the same 2wt% palladium-supported crushed coconut shell activated carbon catalyst as in Example 2, the flow rate of trifluoroacetic acid chloride was 1.5 mol/hr, and the flow rate of hydrogen was 1.5 mol/hr.
The reaction was carried out continuously under the same conditions as in Example 1 except that the reaction rate was changed to 3.0 mol/hr, and the change in performance over time was investigated. The results are shown in Table-3.

【表】 実施例 3〜6 2wt%Pd担持活性炭触媒(10〜20メツシユ)60
cmを内径1cm、長さ1mのインコネル600製のU
字型反応器に充填し、塩浴に浸して外部より加熱
しつつ180℃に保持した、これに酸ハロゲン化物
を30ミリモル/時、水素を180ミリモル/時の流
速で流し、連続的に反応を行つた。反応器出口ガ
スをガスクロマトグラフで分析し、性能および触
媒の耐久性を調べた。結果を下表に示す。なお性
能は対応するアルコールの収率[%]で示した。
[Table] Examples 3 to 6 2wt% Pd supported activated carbon catalyst (10 to 20 meshes) 60
cm is a U made of Inconel 600 with an inner diameter of 1 cm and a length of 1 m.
The reactor was filled into a shaped reactor, immersed in a salt bath, heated from the outside, and maintained at 180°C.Acid halide was flowed through this at a flow rate of 30 mmol/hour and hydrogen at a flow rate of 180 mmol/hour, resulting in a continuous reaction. I went to The reactor outlet gas was analyzed by gas chromatography to examine the performance and durability of the catalyst. The results are shown in the table below. The performance was expressed as the yield [%] of the corresponding alcohol.

【表】【table】

【表】 [発明の効果] 本発明において、パラジウム担持活性炭触媒を
用い、かつ酸ハロゲン化物に対する水素の反応モ
ル数を反応理論量の2倍以上とすることにより、
他の貴金属触媒又は、他の担体を用いた場合に比
べ、触媒の耐久性及びフツ素化アルコールの収率
が極めて良好である。反応は、酸ハロゲン化物の
水素還元により一段階で目的のフツ素化アルコー
ルを得ることができ、又、パラジウム担持活性炭
触媒は、同時に生成するHC,HF等の酸の影
響によりハロゲン化物を形成することが少なく、
賦活も容易に実施できる。
[Table] [Effects of the Invention] In the present invention, by using a palladium-supported activated carbon catalyst and making the number of moles of hydrogen reacted with the acid halide at least twice the theoretical reaction amount,
The durability of the catalyst and the yield of fluorinated alcohol are extremely good compared to cases where other noble metal catalysts or other carriers are used. In the reaction, the desired fluorinated alcohol can be obtained in one step by hydrogen reduction of the acid halide, and the palladium-supported activated carbon catalyst forms halides under the influence of the simultaneously generated acids such as HC and HF. There are few things,
Activation can also be carried out easily.

Claims (1)

【特許請求の範囲】 1 下記一般式()で表わされるフルオロアル
キル基を含有する酸ハロゲン化物と水素とを反応
せしめ、下記一般式()で表わされるフツ素化
アルコールを得る方法において、酸ハロゲン化物
に対する水素の反応モル数を反応理論量の2倍以
上とし、かつパラジウム担持活性炭触媒の存在下
に反応せしめることを特徴とするフツ素化アルコ
ールの製造方法。 RfCOX ……() (RfはC1〜C3のC原子やH原子を含んでも
よいフルオロアルキル基。XはF,C又はBr
原子を示す。) RfCH2OH ……() (Rfは前記と同じフルオロアルキル基)
[Scope of Claims] 1. A method for obtaining a fluorinated alcohol represented by the following general formula () by reacting an acid halide containing a fluoroalkyl group represented by the following general formula () with hydrogen. A method for producing a fluorinated alcohol, characterized in that the number of moles of hydrogen reacted with respect to the compound is at least twice the theoretical reaction amount, and the reaction is carried out in the presence of a palladium-supported activated carbon catalyst. RfCOX...() (Rf is a fluoroalkyl group which may contain a C 1 to C 3 C atom or a H atom. X is F, C or Br
Indicates an atom. ) RfCH 2 OH ……() (Rf is the same fluoroalkyl group as above)
JP60110196A 1985-05-24 1985-05-24 Production of fluorinated alcohol Granted JPS61268639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60110196A JPS61268639A (en) 1985-05-24 1985-05-24 Production of fluorinated alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110196A JPS61268639A (en) 1985-05-24 1985-05-24 Production of fluorinated alcohol

Publications (2)

Publication Number Publication Date
JPS61268639A JPS61268639A (en) 1986-11-28
JPH0125729B2 true JPH0125729B2 (en) 1989-05-19

Family

ID=14529481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110196A Granted JPS61268639A (en) 1985-05-24 1985-05-24 Production of fluorinated alcohol

Country Status (1)

Country Link
JP (1) JPS61268639A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664430B1 (en) * 1999-05-12 2003-12-16 Daikin Industries, Ltd. Catalysts for the preparation of fluorinated alcohols and process for the preparation of fluorinated alcohols
AU2001290289A1 (en) * 2000-09-27 2002-04-08 Asahi Glass Company, Limited Process for producing fluorinated alcohol
FR2894958B1 (en) * 2005-12-19 2008-04-18 Rhodia Recherches & Tech PROCESS FOR THE PREPARATION OF DIFLUOROETHANOL
EP2554534B1 (en) * 2010-03-29 2015-06-10 Central Glass Company, Limited Method for producing difluoroacetyl chloride
CN114149302B (en) * 2021-12-30 2022-12-09 湖北孚诺林新材料有限公司 Preparation method of 2,2,3,3,3-pentafluoropropanol

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970710A (en) * 1975-04-09 1976-07-20 Abbott Laboratories Process for making trifluoroethanol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970710A (en) * 1975-04-09 1976-07-20 Abbott Laboratories Process for making trifluoroethanol

Also Published As

Publication number Publication date
JPS61268639A (en) 1986-11-28

Similar Documents

Publication Publication Date Title
US3689533A (en) Production of carboxylic acids and esters
US4886905A (en) Preparation of ethyl acetate
US4337351A (en) Preparation of ethylidene diacetate
JPS5942661B2 (en) Musuisakusan no Seihou
JPH0125729B2 (en)
US4126752A (en) Homologation of methanol with a carbon monoxide-water mixture
CN101277917B (en) Method for producing 3,3,3-trifluoropropionaldehyde
JP2523753B2 (en) Method for producing 2,3-dichloropyridine
JP5028731B2 (en) Method for producing halogenated alcohol
US5648568A (en) Method for producing a hydrofluorocarbon
JP2757885B2 (en) Method for producing carbonic acid diester
BE897893A (en) PREPARATION OF CARBOXYLIC ACIDS
US4311854A (en) Process for the production of di-n-propyl-acetic acid
CA1050045A (en) Process for preparing vinyl esters of carboxylic acids
JP2537638B2 (en) Bromperfluoroethyl hypofluorite and its production method
CN111433181B (en) Synthesis of bicyclo [2.2.2] octane derivatives
EP0366177A1 (en) Improved process for preparing di-alkyl carbonates
KR960003797B1 (en) Process for preparing aceticacid by methanol carbonylation
BE897876A (en) PREPARATION OF CARBOXYLIC ACID ANHYDRIDES
EP0056994B1 (en) Process for preparation of oxalic acid diesters
JP2548590B2 (en) Method for selective oxidative carbonylation of conjugated dienes
JPS6240345B2 (en)
US5602288A (en) Catalytic process for producing CF3 CH2 F
JP2870738B2 (en) Method for producing carbonic acid diester
EP0632001B1 (en) Method for producing a hydrofluorocarbon