JP3819560B2 - Method for producing halogenated phenylpropionic acid compound - Google Patents

Method for producing halogenated phenylpropionic acid compound Download PDF

Info

Publication number
JP3819560B2
JP3819560B2 JP26220497A JP26220497A JP3819560B2 JP 3819560 B2 JP3819560 B2 JP 3819560B2 JP 26220497 A JP26220497 A JP 26220497A JP 26220497 A JP26220497 A JP 26220497A JP 3819560 B2 JP3819560 B2 JP 3819560B2
Authority
JP
Japan
Prior art keywords
acid compound
halogenated
catalytic reduction
phenylpropionic acid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26220497A
Other languages
Japanese (ja)
Other versions
JPH11100348A (en
Inventor
守時 廣谷
憲治 齋藤
徳郎 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP26220497A priority Critical patent/JP3819560B2/en
Publication of JPH11100348A publication Critical patent/JPH11100348A/en
Application granted granted Critical
Publication of JP3819560B2 publication Critical patent/JP3819560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン化フェニルプロピオン酸化合物の製造方法に関する。さらに詳しくは、副甲状腺機能亢進症に対して非常に有効な治療薬の重要中間体であるハロゲン化フェニルプロピオン酸化合物の製造方法に関する。
【0002】
【従来の技術】
従来、ハロゲン化桂皮酸化合物の接触還元には、パラジウムまたは白金を成分とする触媒が用いられている。しかし、それらの触媒を用いてハロゲン化桂皮酸化合物の接触還元を行なうと、脱ハロゲン体が2.5〜15%の生成率で生成してしまい、効率よくハロゲン化フェニルプロピオン酸化合物を得ることができない。
【0003】
【発明が解決しようとする課題】
本発明は、前記従来技術に鑑みてなされたものであり、効率よく、簡便かつ工業的に有利にハロゲン化フェニルプロピオン酸化合物を製造する方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明の要旨は、
(1) 一般式(I):
【0005】
【化3】

Figure 0003819560
【0006】
(式中、Xはハロゲン原子、Rは水素原子、メチル基、エチル基またはイソプロピル基を示す)で表されるハロゲン化桂皮酸化合物を、触媒としてルテニウムの存在下で接触還元させることを特徴とする一般式(II):
【0007】
【化4】
Figure 0003819560
【0008】
(式中、XおよびRは前記と同じ)で表されるハロゲン化フェニルプロピオン酸化合物の製造方法、
(2) 一般式(I)で表されるハロゲン化桂皮酸化合物を低級アルコール中または低級アルコールと水との混合溶媒中で接触還元させる前記(1)記載のハロゲン化フェニルプロピオン酸化合物の製造方法、ならびに
(3) 一般式(I)で表されるハロゲン化桂皮酸化合物を反応温度20〜30℃の範囲で接触還元させる前記(1)または(2)記載のハロゲン化フェニルプロピオン酸化合物の製造方法、に関する。
【0009】
【発明の実施の形態】
本発明のハロゲン化フェニルプロピオン酸化合物の製造方法によれば、前記したように、一般式(I):
【0010】
【化5】
Figure 0003819560
【0011】
(式中、Xはハロゲン原子、Rは水素原子、メチル基、エチル基またはイソプロピル基を示す)で表されるハロゲン化桂皮酸化合物を、触媒としてルテニウムの存在下で接触還元させることにより、一般式(II):
【0012】
【化6】
Figure 0003819560
【0013】
(式中、XおよびRは前記と同じ)で表されるハロゲン化フェニルプロピオン酸化合物が得られる。
【0014】
一般式(I)で表されるハロゲン化桂皮酸化合物において、Xはハロゲン原子、Rは水素原子、メチル基、エチル基またはイソプロピル基を示す。
【0015】
前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
【0016】
前記一般式(I)で表されるハロゲン化桂皮酸化合物の具体例としては、例えば、o−クロロ桂皮酸、o−クロロ桂皮酸メチル等が挙げられる。
【0017】
前記一般式(I)で表されるハロゲン化桂皮酸化合物の接触還元は、前記したように、触媒としてルテニウムの存在下で行なわれるが、溶媒中で行なわれることが好ましく、例えば、以下の方法にしたがって行なうことができる。
【0018】
すなわち、前記一般式(I)で表されるハロゲン化桂皮酸化合物に溶媒を添加し、触媒としてルテニウムの存在下で、水素雰囲気下でかかる溶液を振とうもしくは攪拌することにより、または、水素ガスを溶液に吹き込むことにより、溶液中に水素を溶解させることができる。
【0019】
触媒として用いられるルテニウムは、例えば、一般に、炭素、アルミナ等の触媒化学で一般に知られている担体にルテニウムを担持させた担持体、酸化ルテニウム等として用いることができる。
【0020】
前記ルテニウムの使用量は、一般式(I)で表されるハロゲン化桂皮酸化合物100重量部に対して、0.125〜0.5重量部程度であることが好ましい。
【0021】
前記溶媒としては、例えば、メタノール、エタノール、2−プロパノール等の炭素数1〜5の低級アルコールの1種または2種以上、それと水との混合溶媒等が挙げられる。これらのなかでは、2−プロパノールと水との混合溶媒およびメタノールが好ましい。なお、低級アルコールと水との混合比は、低級アルコール100重量部に対して、水が0〜50重量部程度であることが好ましい。
【0022】
前記溶媒の使用量は、特に限定されないが、例えば、低級アルコールを使用する場合、その使用量は、一般式(I)で表されるハロゲン化桂皮酸化合物100重量部に対して600〜800重量部程度であることが好ましく、低級アルコールと水との混合溶媒を使用する場合、その使用量は、一般式(I)で表されるハロゲン化桂皮酸化合物100重量部に対して800〜1000重量部程度であることが好ましい。
【0023】
また、接触還元の際には、例えば、触媒の被毒を抑えるために、活性炭等を適宜使用してもよい。
【0024】
接触還元の際の反応温度は、反応速度の観点から、10℃以上、好ましくは20℃以上であることが望ましく、脱ハロゲン体の生成を抑制するという観点から、60℃以下、好ましくは30℃以下であることが望ましい。
【0025】
反応時間は、触媒の使用量等の条件によって異なるので一慨には決定することができないが、接触還元が終了する程度の時間であればよく、通常、8〜20時間程度であればよい。また、水素雰囲気下でハロゲン化桂皮酸化合物を溶媒に溶解させた溶液を振とうもしくは攪拌する場合には、水素ガスの圧力が3〜18kgf/cm2 程度であればよい。
【0026】
接触還元の終了は、例えば、原料および生成物をエステル化した後に、ガスクロマトグラフィーを用いて転化率を調べることによって確認することができる。
【0027】
反応終了後は、例えば、晶析、濾過、濃縮、洗浄、抽出などの通常の分離操作により、得られた一般式(II)で表されるハロゲン化フェニルプロピオン酸化合物を単離することができる。
【0028】
以上説明した本発明の製造方法によれば、副生するフェニルプロピオン酸、その誘導体等の脱ハロゲン体の生成率が、通常、約0.5%以下と非常に微量となるため、効率よく一般式(II)で表されるハロゲン化フェニルプロピオン酸化合物を得ることができる。なお、脱ハロゲン体の生成率は、高速液体クロマトグラフィー(HPLC)を用いて測定することができる。
【0029】
【実施例】
以下、実施例により本発明をさらに詳しく説明するが、本発明はかかる実施例によりなんら限定されるものではない。
【0030】
実施例1
1リットル容のテフロンビーカーに、メタノール240g、o−クロロ桂皮酸30g、5%ルテニウム炭素(50%含水)6gおよび粉末活性炭1.2gを仕込み、攪拌しながら約25℃で接触還元を行なった。接触還元は、水素ガスを3〜5kgf/cm2 で圧入しながら8時間行なった。接触還元終了後、触媒を濾過し、洗浄して、濾液と洗液をあわせた後、8%水酸化ナトリウム水溶液120gを加えて55℃で30分間攪拌した。メタノール225gを常圧留去した後、10%塩酸120gを20〜30℃で滴下した。0〜5℃で1時間攪拌した後、結晶を濾過し、10%メタノール水溶液10gで洗浄して、乾燥させることにより、o−クロロフェニルプロピオン酸28gを得た(収率93%、HPLC純度99.8%、脱クロロ体0.2%、転化率99.8%)。
【0031】
実施例2
1リットル容のテフロンビーカーに、メタノール240g、o−クロロ桂皮酸30g、5%ルテニウム炭素(50%含水)1.5gおよび粉末活性炭2.4gを仕込み、攪拌しながら約25〜29℃で接触還元を行なった。接触還元は、水素ガスを17〜18kgf/cm2 で圧入しながら8時間行なった。接触還元終了後、触媒を濾過し、洗浄して、濾液と洗液をあわせた後、8%水酸化ナトリウム水溶液120gを加えて55℃で30分間攪拌した。メタノール225gを常圧留去した後、10%塩酸120gを20〜30℃で滴下した。0〜5℃で1時間攪拌した後、結晶を濾過し、10%メタノール水溶液10gで洗浄して、乾燥させることにより、o−クロロフェニルプロピオン酸27gを得た(収率90%、HPLC純度99.8%、脱クロロ体0.1%、転化率98.7%)。
【0032】
実施例3
1リットル容のテフロンビーカーに、2−プロパノール216g、水24g、o−クロロ桂皮酸30g、5%ルテニウム炭素(50%含水)1.5gおよび粉末活性炭2.4gを仕込み、攪拌しながら約25〜29℃で接触還元を行なった。接触還元は、水素ガスを16〜18kgf/cm2 で圧入しながら15時間行なった。接触還元終了後、触媒を濾過し、洗浄して、濾液と洗液をあわせた後、8%水酸化ナトリウム水溶液120gを加えて55℃で30分間攪拌した。2−プロパノール200gを常圧留去した後、10%塩酸120gを20〜30℃で滴下した。0〜5℃で1時間攪拌した後、結晶を濾過し、10%メタノール水溶液10gで洗浄して、乾燥させることにより、o−クロロフェニルプロピオン酸28gを得た(収率93%、HPLC純度99.8%、脱クロロ体0.2%、転化率99.8%)。
【0033】
実施例4
200ml容のテフロンビーカーに、メタノール60g、o−クロロ桂皮酸メチル10g、5%ルテニウム炭素(50%含水)0.5gおよび粉末活性炭0.2gを仕込み、攪拌しながら約20℃で接触還元を行なった。接触還元は、水素ガスを3〜5kgf/cm2 で圧入しながら8時間行なった。接触還元終了後、触媒を濾過し、洗浄して、濾液と洗液をあわせた後、14%水酸化ナトリウム水溶液20gを加えて80℃で加水分解し、メタノールを減圧留去した。10%塩酸29gおよびトルエン54gを加えて抽出した後、溶媒を減圧濃縮で留去し、o−クロロフェニルプロピオン酸8.5gを得た(収率85%、HPLC純度99.8%、脱クロロ体0.2%、転化率98.0%)。
【0034】
比較例1
1リットル容のテフロンビーカーに、メタノール240g、o−クロロ桂皮酸30g、5%M型パラジウム炭素(50%含水)1.5gおよび粉末活性炭1.2gを仕込み、攪拌しながら約27〜32℃で接触還元を行なった。接触還元は、水素ガスを3〜4kgf/cm2 で圧入しながら15分間行なった。接触還元終了後、触媒を濾過し、洗浄して、濾液と洗液をあわせた後、8%水酸化ナトリウム水溶液120gを加えて55℃で30分間攪拌した。メタノール225gを常圧留去した後、10%塩酸120gを20〜30℃で滴下した。0〜5℃で1時間攪拌した後、結晶を濾過し、10%メタノール水溶液10gで洗浄して、乾燥させることにより、o−クロロフェニルプロピオン酸28gを得た(収率93%、HPLC純度92.0%、脱クロロ体8.0%、転化率100%)。
【0035】
比較例2
300ml容の四つ口フラスコに、2−プロパノール90g、水10g、o−クロロ桂皮酸10g、5%白金炭素(50%含水)0.5gおよび粉末活性炭0.5gを仕込み、攪拌しながら約40℃で接触還元を行なった。接触還元は、水素ガスを常圧で圧入しながら6時間行なった。接触還元終了後、触媒を濾過し、洗浄して、濾液と洗液をあわせた後、8%水酸化ナトリウム水溶液40gを加えて55℃で30分間攪拌した。2−プロパノール85gを常圧留去した後、10%塩酸40gを20〜30℃で滴下した。0〜5℃で1時間攪拌した後、結晶を濾過し、10%メタノール水溶液10gで洗浄して、乾燥させることにより、o−クロロフェニルプロピオン酸27gを得た(収率90%、HPLC純度87.9%、脱クロロ体12.1%、転化率99.5%)。
【0036】
比較例3
1リットル容のテフロンビーカーに、メタノール240g、o−クロロ桂皮酸30g、5%M型パラジウム炭素(50%含水)6gおよび粉末活性炭1.2gを仕込み、攪拌しながら約30℃で接触還元を行なった。接触還元は、水素ガスを3〜5kgf/cm2 で圧入しながら8時間行なった。接触還元終了後、触媒を濾過し、洗浄して、濾液と洗液をあわせた後、8%水酸化ナトリウム水溶液120gを加えて55℃で30分間攪拌した。メタノール225gを常圧留去した後、10%塩酸120gを20〜30℃で滴下した。0〜5℃で1時間攪拌した後、結晶を濾過し、10%メタノール水溶液10gで洗浄して、乾燥させることにより、o−クロロフェニルプロピオン酸の脱クロロ体であるフェニルプロピオン酸22gを得た(収率91%、HPLC純度99%)。
【0037】
以上の結果より、触媒として、パラジウム炭素および白金炭素を使用した比較例1〜3と対比して、実施例1〜4では、ルテニウム炭素を使用しているため、副生成物である脱ハロゲン体の生成率が非常に低く、効率よく、簡便かつ工業的に有利にハロゲン化フェニルプロピオン酸化合物を得ることができることがわかる。
【0038】
【発明の効果】
本発明の製造方法によれば、ハロゲン化桂皮酸化合物を接触還元させる際の触媒として、ルテニウムを触媒として用いることにより、効率よく、簡便かつ工業的に有利にハロゲン化フェニルプロピオン酸を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a halogenated phenylpropionic acid compound. More specifically, the present invention relates to a method for producing a halogenated phenylpropionic acid compound, which is an important intermediate of a therapeutic agent that is very effective for hyperparathyroidism.
[0002]
[Prior art]
Conventionally, a catalyst containing palladium or platinum as a component has been used for the catalytic reduction of a halogenated cinnamic acid compound. However, when catalytic reduction of halogenated cinnamic acid compounds is carried out using these catalysts, dehalogenated products are produced at a production rate of 2.5 to 15%, and a halogenated phenylpropionic acid compound can be obtained efficiently. I can't.
[0003]
[Problems to be solved by the invention]
This invention is made | formed in view of the said prior art, and it aims at providing the method of manufacturing a halogenated phenylpropionic acid compound efficiently, simply and industrially advantageously.
[0004]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) General formula (I):
[0005]
[Chemical 3]
Figure 0003819560
[0006]
(Wherein X represents a halogen atom, R represents a hydrogen atom, a methyl group, an ethyl group, or an isopropyl group), and is characterized by catalytically reducing a halogenated cinnamic acid compound in the presence of ruthenium as a catalyst. General formula (II):
[0007]
[Formula 4]
Figure 0003819560
[0008]
(Wherein X and R are as defined above), a method for producing a halogenated phenylpropionic acid compound,
(2) The method for producing a halogenated phenylpropionic acid compound according to (1), wherein the halogenated cinnamic acid compound represented by the general formula (I) is catalytically reduced in a lower alcohol or a mixed solvent of a lower alcohol and water. And (3) producing the halogenated phenylpropionic acid compound according to (1) or (2) above, wherein the halogenated cinnamic acid compound represented by the general formula (I) is catalytically reduced at a reaction temperature in the range of 20 to 30 ° C. Method.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the method for producing a halogenated phenylpropionic acid compound of the present invention, as described above, the general formula (I):
[0010]
[Chemical formula 5]
Figure 0003819560
[0011]
(Wherein X represents a halogen atom, R represents a hydrogen atom, a methyl group, an ethyl group, or an isopropyl group), by catalytically reducing a halogenated cinnamic acid compound in the presence of ruthenium as a catalyst, Formula (II):
[0012]
[Chemical 6]
Figure 0003819560
[0013]
A halogenated phenylpropionic acid compound represented by the formula (wherein X and R are as defined above) is obtained.
[0014]
In the halogenated cinnamic acid compound represented by the general formula (I), X represents a halogen atom, and R represents a hydrogen atom, a methyl group, an ethyl group or an isopropyl group.
[0015]
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
[0016]
Specific examples of the halogenated cinnamic acid compound represented by the general formula (I) include o-chlorocinnamic acid and o-chlorocinnamic acid methyl.
[0017]
As described above, the catalytic reduction of the halogenated cinnamic acid compound represented by the general formula (I) is performed in the presence of ruthenium as a catalyst, but it is preferably performed in a solvent. Can be done according to
[0018]
That is, a solvent is added to the halogenated cinnamic acid compound represented by the general formula (I), and the solution is shaken or stirred in a hydrogen atmosphere in the presence of ruthenium as a catalyst, or hydrogen gas Can be dissolved in the solution.
[0019]
Ruthenium used as a catalyst can be used, for example, as a support in which ruthenium is supported on a carrier generally known in catalytic chemistry such as carbon and alumina, ruthenium oxide and the like.
[0020]
The amount of ruthenium used is preferably about 0.125 to 0.5 parts by weight with respect to 100 parts by weight of the halogenated cinnamic acid compound represented by the general formula (I).
[0021]
Examples of the solvent include one kind or two or more kinds of lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol, 2-propanol, and a mixed solvent thereof with water. Among these, a mixed solvent of 2-propanol and water and methanol are preferable. In addition, it is preferable that the mixing ratio of a lower alcohol and water is about 0-50 weight part of water with respect to 100 weight part of lower alcohol.
[0022]
The amount of the solvent used is not particularly limited. For example, when a lower alcohol is used, the amount used is 600 to 800 weights with respect to 100 parts by weight of the halogenated cinnamic acid compound represented by the general formula (I). When a mixed solvent of lower alcohol and water is used, the amount used is 800 to 1000 weights with respect to 100 weight parts of the halogenated cinnamic acid compound represented by the general formula (I). It is preferable that it is about a part.
[0023]
In the catalytic reduction, for example, activated carbon or the like may be used as appropriate in order to suppress poisoning of the catalyst.
[0024]
The reaction temperature during the catalytic reduction is preferably 10 ° C. or higher, preferably 20 ° C. or higher from the viewpoint of reaction rate, and 60 ° C. or lower, preferably 30 ° C. from the viewpoint of suppressing the formation of dehalogenated products. The following is desirable.
[0025]
Since the reaction time varies depending on conditions such as the amount of catalyst used, it cannot be determined at a glance. However, it may be a time to the extent that the catalytic reduction is completed, and usually about 8 to 20 hours. In addition, when a solution obtained by dissolving a halogenated cinnamic acid compound in a solvent is shaken or stirred under a hydrogen atmosphere, the hydrogen gas pressure may be about 3 to 18 kgf / cm 2 .
[0026]
The completion of the catalytic reduction can be confirmed, for example, by examining the conversion using gas chromatography after esterifying the raw material and the product.
[0027]
After completion of the reaction, for example, the obtained halogenated phenylpropionic acid compound represented by the general formula (II) can be isolated by ordinary separation operations such as crystallization, filtration, concentration, washing, and extraction. .
[0028]
According to the production method of the present invention described above, the production rate of dehalogenated products such as by-produced phenylpropionic acid and its derivatives is usually very small, about 0.5% or less. A halogenated phenylpropionic acid compound represented by the formula (II) can be obtained. In addition, the production | generation rate of a dehalogenation body can be measured using a high performance liquid chromatography (HPLC).
[0029]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by this Example.
[0030]
Example 1
A 1-liter Teflon beaker was charged with 240 g of methanol, 30 g of o-chlorocinnamic acid, 6 g of 5% ruthenium carbon (containing 50% water) and 1.2 g of powdered activated carbon, and catalytic reduction was performed at about 25 ° C. with stirring. The catalytic reduction was carried out for 8 hours while injecting hydrogen gas at 3 to 5 kgf / cm 2 . After completion of the catalytic reduction, the catalyst was filtered and washed, and the filtrate and the washing solution were combined. Then, 120 g of 8% aqueous sodium hydroxide solution was added, and the mixture was stirred at 55 ° C. for 30 minutes. After 225 g of methanol was distilled off at normal pressure, 120 g of 10% hydrochloric acid was added dropwise at 20 to 30 ° C. After stirring at 0 to 5 ° C. for 1 hour, the crystals were filtered, washed with 10 g of a 10% aqueous methanol solution and dried to obtain 28 g of o-chlorophenylpropionic acid (yield 93%, HPLC purity 99. 8%, dechlorinated product 0.2%, conversion 99.8%).
[0031]
Example 2
A 1 liter Teflon beaker is charged with 240 g of methanol, 30 g of o-chlorocinnamic acid, 1.5 g of 5% ruthenium carbon (containing 50% water) and 2.4 g of powdered activated carbon, and catalytic reduction at about 25-29 ° C. with stirring. Was done. The catalytic reduction was performed for 8 hours while injecting hydrogen gas at 17 to 18 kgf / cm 2 . After completion of the catalytic reduction, the catalyst was filtered and washed, and the filtrate and the washing solution were combined. Then, 120 g of 8% aqueous sodium hydroxide solution was added, and the mixture was stirred at 55 ° C. for 30 minutes. After 225 g of methanol was distilled off at normal pressure, 120 g of 10% hydrochloric acid was added dropwise at 20 to 30 ° C. After stirring at 0 to 5 ° C. for 1 hour, the crystals were filtered, washed with 10 g of a 10% aqueous methanol solution and dried to obtain 27 g of o-chlorophenylpropionic acid (yield 90%, HPLC purity 99. 8%, dechlorinated product 0.1%, conversion 98.7%).
[0032]
Example 3
A 1-liter Teflon beaker is charged with 216 g of 2-propanol, 24 g of water, 30 g of o-chlorocinnamic acid, 1.5 g of 5% ruthenium carbon (containing 50% water) and 2.4 g of powdered activated carbon, and is stirred for about 25 to 25%. Catalytic reduction was performed at 29 ° C. The catalytic reduction was performed for 15 hours while injecting hydrogen gas at 16 to 18 kgf / cm 2 . After completion of the catalytic reduction, the catalyst was filtered and washed, and the filtrate and the washing solution were combined. Then, 120 g of 8% aqueous sodium hydroxide solution was added, and the mixture was stirred at 55 ° C. for 30 minutes. After 200 g of 2-propanol was distilled off at normal pressure, 120 g of 10% hydrochloric acid was added dropwise at 20 to 30 ° C. After stirring at 0 to 5 ° C. for 1 hour, the crystals were filtered, washed with 10 g of a 10% aqueous methanol solution and dried to obtain 28 g of o-chlorophenylpropionic acid (yield 93%, HPLC purity 99. 8%, dechlorinated product 0.2%, conversion 99.8%).
[0033]
Example 4
A 200 ml Teflon beaker is charged with 60 g of methanol, 10 g of methyl o-chlorocinnamate, 0.5 g of 5% ruthenium carbon (containing 50% water) and 0.2 g of powdered activated carbon, and catalytic reduction is performed at about 20 ° C. with stirring. It was. The catalytic reduction was carried out for 8 hours while injecting hydrogen gas at 3 to 5 kgf / cm 2 . After completion of the catalytic reduction, the catalyst was filtered and washed, and the filtrate and the washing solution were combined. Then, 20 g of a 14% aqueous sodium hydroxide solution was added and hydrolyzed at 80 ° C., and methanol was distilled off under reduced pressure. After extraction by adding 29 g of 10% hydrochloric acid and 54 g of toluene, the solvent was distilled off by concentration under reduced pressure to obtain 8.5 g of o-chlorophenylpropionic acid (yield 85%, HPLC purity 99.8%, dechloroform). 0.2%, conversion 98.0%).
[0034]
Comparative Example 1
A 1 liter Teflon beaker is charged with 240 g of methanol, 30 g of o-chlorocinnamic acid, 1.5 g of 5% M-type palladium carbon (containing 50% water) and 1.2 g of powdered activated carbon at about 27 to 32 ° C. with stirring. Catalytic reduction was performed. The catalytic reduction was performed for 15 minutes while injecting hydrogen gas at 3 to 4 kgf / cm 2 . After completion of the catalytic reduction, the catalyst was filtered and washed, and the filtrate and the washing solution were combined. Then, 120 g of 8% aqueous sodium hydroxide solution was added, and the mixture was stirred at 55 ° C. for 30 minutes. After 225 g of methanol was distilled off at normal pressure, 120 g of 10% hydrochloric acid was added dropwise at 20 to 30 ° C. After stirring at 0-5 ° C. for 1 hour, the crystals were filtered, washed with 10 g of a 10% aqueous methanol solution and dried to obtain 28 g of o-chlorophenylpropionic acid (yield 93%, HPLC purity 92. 0%, dechlorinated product 8.0%, conversion rate 100%).
[0035]
Comparative Example 2
A 300 ml four-necked flask was charged with 90 g of 2-propanol, 10 g of water, 10 g of o-chlorocinnamic acid, 0.5 g of 5% platinum carbon (containing 50% water) and 0.5 g of powdered activated carbon, and stirred for about 40 Catalytic reduction was performed at ° C. The catalytic reduction was performed for 6 hours while injecting hydrogen gas at normal pressure. After completion of the catalytic reduction, the catalyst was filtered and washed, and the filtrate and the washing solution were combined. Then, 40 g of an 8% aqueous sodium hydroxide solution was added, and the mixture was stirred at 55 ° C. for 30 minutes. After 85 g of 2-propanol was distilled off at normal pressure, 40 g of 10% hydrochloric acid was added dropwise at 20 to 30 ° C. After stirring at 0 to 5 ° C. for 1 hour, the crystals were filtered, washed with 10 g of 10% aqueous methanol and dried to obtain 27 g of o-chlorophenylpropionic acid (yield 90%, HPLC purity 87. 9%, dechlorinated product 12.1%, conversion 99.5%).
[0036]
Comparative Example 3
A 1 liter Teflon beaker is charged with 240 g of methanol, 30 g of o-chlorocinnamic acid, 6 g of 5% M-type palladium carbon (containing 50% water) and 1.2 g of powdered activated carbon, and catalytic reduction is performed at about 30 ° C. with stirring. It was. The catalytic reduction was carried out for 8 hours while injecting hydrogen gas at 3 to 5 kgf / cm 2 . After completion of the catalytic reduction, the catalyst was filtered and washed, and the filtrate and the washing solution were combined. Then, 120 g of 8% aqueous sodium hydroxide solution was added, and the mixture was stirred at 55 ° C. for 30 minutes. After 225 g of methanol was distilled off at normal pressure, 120 g of 10% hydrochloric acid was added dropwise at 20 to 30 ° C. After stirring at 0 to 5 ° C. for 1 hour, the crystals were filtered, washed with 10 g of a 10% aqueous methanol solution and dried to obtain 22 g of phenylpropionic acid which is a dechloro form of o-chlorophenylpropionic acid ( (Yield 91%, HPLC purity 99%).
[0037]
From the above results, as compared with Comparative Examples 1 to 3 using palladium carbon and platinum carbon as catalysts, in Examples 1 to 4, ruthenium carbon is used, and therefore, a dehalogenated product that is a by-product. It can be seen that a halogenated phenylpropionic acid compound can be obtained efficiently, conveniently, and industrially advantageously.
[0038]
【The invention's effect】
According to the production method of the present invention, by using ruthenium as a catalyst for catalytic reduction of a halogenated cinnamic acid compound, a halogenated phenylpropionic acid can be produced efficiently, conveniently and industrially advantageously. Can do.

Claims (3)

一般式(I):
Figure 0003819560
(式中、Xはハロゲン原子、Rは水素原子、メチル基、エチル基またはイソプロピル基を示す)で表されるハロゲン化桂皮酸化合物を、触媒としてルテニウムの存在下で接触還元させることを特徴とする一般式(II):
Figure 0003819560
(式中、XおよびRは前記と同じ)で表されるハロゲン化フェニルプロピオン酸化合物の製造方法。
Formula (I):
Figure 0003819560
(Wherein X represents a halogen atom, R represents a hydrogen atom, a methyl group, an ethyl group, or an isopropyl group), and is characterized by catalytically reducing a halogenated cinnamic acid compound in the presence of ruthenium as a catalyst. General formula (II):
Figure 0003819560
(Wherein X and R are as defined above), and a method for producing a halogenated phenylpropionic acid compound.
一般式(I)で表されるハロゲン化桂皮酸化合物を低級アルコール中または低級アルコールと水との混合溶媒中で接触還元させる請求項1記載のハロゲン化フェニルプロピオン酸化合物の製造方法。The method for producing a halogenated phenylpropionic acid compound according to claim 1, wherein the halogenated cinnamic acid compound represented by formula (I) is catalytically reduced in a lower alcohol or a mixed solvent of lower alcohol and water. 一般式(I)で表されるハロゲン化桂皮酸化合物を反応温度20〜30℃の範囲で接触還元させる請求項1または2記載のハロゲン化フェニルプロピオン酸化合物の製造方法。The method for producing a halogenated phenylpropionic acid compound according to claim 1 or 2, wherein the halogenated cinnamic acid compound represented by the general formula (I) is catalytically reduced at a reaction temperature in the range of 20 to 30 ° C.
JP26220497A 1997-09-26 1997-09-26 Method for producing halogenated phenylpropionic acid compound Expired - Fee Related JP3819560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26220497A JP3819560B2 (en) 1997-09-26 1997-09-26 Method for producing halogenated phenylpropionic acid compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26220497A JP3819560B2 (en) 1997-09-26 1997-09-26 Method for producing halogenated phenylpropionic acid compound

Publications (2)

Publication Number Publication Date
JPH11100348A JPH11100348A (en) 1999-04-13
JP3819560B2 true JP3819560B2 (en) 2006-09-13

Family

ID=17372531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26220497A Expired - Fee Related JP3819560B2 (en) 1997-09-26 1997-09-26 Method for producing halogenated phenylpropionic acid compound

Country Status (1)

Country Link
JP (1) JP3819560B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285494A (en) * 2008-07-02 2008-11-27 Ube Ind Ltd Production method of 5-halogenoindole

Also Published As

Publication number Publication date
JPH11100348A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
EP1153910B1 (en) Process for the preparation of (2r)-2-propyloctanoic acid
JPS636056B2 (en)
JPH1072401A (en) Production of 3-hydroxyproptonic acid or its salt
JP3819560B2 (en) Method for producing halogenated phenylpropionic acid compound
JP2573687B2 (en) Method for producing isopropyl alcohol
JPH08165256A (en) Production of 1,1,1,2,3,3-hexafluoropropane
JPH0987217A (en) Production of ethanol
JP5028731B2 (en) Method for producing halogenated alcohol
JPS6113461B2 (en)
JPH04149160A (en) Production of 1-amino-4-alkoxybenzene compounds
KR100286652B1 (en) Method for preparing chloroform and dichloromethane by hydrogenation of carbon tetrachloride in liquid
JP2001158754A (en) Method for producing tetrafluorobenzenedimethanol
JPH08151346A (en) Production of ketomalonic acid
JP4099630B2 (en) Method for producing perfluoroalkyl compound
JP5645494B2 (en) Method for producing amine body
CA1080725A (en) Process for producing phthalide
JP3218102B2 (en) Method for producing indole or indole derivative
JP2738042B2 (en) Method for producing 3,3-dichloro-1,1,1,2,2-pentafluoropropane
JPH10158227A (en) Production of n,n-dimethylformamide
JP2001288137A (en) Method for producing formic acid
JP3902121B2 (en) Method for producing 4,6-dimethylindole
JP4014287B2 (en) Method for producing 3-acyloxycyclohexene
JPH0597778A (en) Production of 2-aminoindane and its salts
JP2815636B2 (en) Process for producing 2-aminomethylpyrazines and / or 2-aminomethylpiperazines
JPH09234368A (en) Novel solid catalyst containing ruthenium and tin and preparation of aryl alkyl alcohol using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees