JPS6113461B2 - - Google Patents

Info

Publication number
JPS6113461B2
JPS6113461B2 JP52082315A JP8231577A JPS6113461B2 JP S6113461 B2 JPS6113461 B2 JP S6113461B2 JP 52082315 A JP52082315 A JP 52082315A JP 8231577 A JP8231577 A JP 8231577A JP S6113461 B2 JPS6113461 B2 JP S6113461B2
Authority
JP
Japan
Prior art keywords
reaction
mol
aminomethyl
cyclohexane
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52082315A
Other languages
Japanese (ja)
Other versions
JPS5416452A (en
Inventor
Kenichiro Kida
Kokichi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP8231577A priority Critical patent/JPS5416452A/en
Publication of JPS5416452A publication Critical patent/JPS5416452A/en
Publication of JPS6113461B2 publication Critical patent/JPS6113461B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、ビス(アミノメチル)シクロヘキサ
ンの新規な製造方法に関する。さらに詳しくは、
キシリレンジアミンを、ルテニウム触媒、カリウ
ム、ナトリウムまたはバリウム水酸化物および反
応系に対し6〜40重量%の水の存在下、接触還元
することを特徴とするビス(アミノメチル)シク
ロヘキサンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing bis(aminomethyl)cyclohexane. For more details,
A method for producing bis(aminomethyl)cyclohexane, which comprises catalytically reducing xylylene diamine in the presence of a ruthenium catalyst, potassium, sodium or barium hydroxide, and 6 to 40% by weight of water relative to the reaction system. .

ビス(アミノメチル)シクロヘキサンは、たと
えば、ポリアミドの原料として、またキシリレン
ジイソシアネートの原料として、工業的に重要な
化合物である。
Bis(aminomethyl)cyclohexane is an industrially important compound, for example, as a raw material for polyamide and as a raw material for xylylene diisocyanate.

このビス(アミノメチル)シクロヘキサンは、
キシリレンジアミンの接触還元によつて得ること
ができるが、これまでに知られているキシリレン
ジアミンの接触還元には次のようなものがある。
This bis(aminomethyl)cyclohexane is
It can be obtained by catalytic reduction of xylylene diamine, and the following are known catalytic reductions of xylylene diamine.

(1) キシリレンジアミンをアシル化した後、ルテ
ニウムあるいは白金属触媒の存在下に接触還元
する方法(特公昭40−13860号)、 (2) 水性溶媒または有機酸を含有する水性溶媒を
用い、酸化ロジウム触媒の存在下に接触還元す
る方法(特公昭42−26783号)、 (3) ルテニウム触媒を用い、無溶媒または有機溶
媒の存在下、150℃前後の温度で、液相で接触
還元する方法(特開昭50−126638号)、 (4) ルテニウム触媒を用い、液体アンモニアの存
在下、接触還元する方法(特公昭51−7659号) しかし、前記(1)の方法は、アシル化工程、脱ア
シル化工程(加水分解工程)、エーテル抽出工程
などが必要であり、工業的製造法としては煩雑に
すぎる。
(1) A method in which xylylenediamine is acylated and then catalytically reduced in the presence of a ruthenium or platinum metal catalyst (Japanese Patent Publication No. 13860/1973); (2) using an aqueous solvent or an aqueous solvent containing an organic acid; A method of catalytic reduction in the presence of a rhodium oxide catalyst (Japanese Patent Publication No. 42-26783), (3) Catalytic reduction in the liquid phase using a ruthenium catalyst in the absence of a solvent or in the presence of an organic solvent at a temperature of around 150°C. (4) A method of catalytic reduction using a ruthenium catalyst in the presence of liquid ammonia (Japanese Patent Publication No. 51-7659) However, method (1) above does not involve the acylation step. , a deacylation step (hydrolysis step), an ether extraction step, etc., and are too complicated for industrial production.

(2)の方法において、水性溶媒を使用する場合は
収率が低く、有機酸含有水性溶媒を使用する場合
も接触還元後アルカリを添加してアミンを遊離さ
せてから蒸留する必要があるので操作が煩雑であ
り、収率も必ずしも満足しうるものではない。
In method (2), when an aqueous solvent is used, the yield is low, and when an organic acid-containing aqueous solvent is used, it is necessary to add an alkali after catalytic reduction to liberate the amine before distillation. is complicated, and the yield is not always satisfactory.

(3)の方法では、無溶媒または、たとえばパラジ
オキサンなどの溶媒を用いるが、反応温度が150
℃前後と、かなり高温であるため副生物が多量生
成し、目的物の収率は低下する。
In method (3), no solvent or a solvent such as paradioxane is used, but the reaction temperature is 150°C.
Since the temperature is quite high, around ℃, a large amount of by-products are generated and the yield of the target product is reduced.

(4)の方法では、液体アンモニアを使用するので
その取り扱いが不便であり、また目的物の収率も
充分満足しうるものではない。
Method (4) uses liquid ammonia, which is inconvenient to handle, and the yield of the target product is not fully satisfactory.

また、上記方法を含め、水性媒体を用いる接触
還元は一般に多量の副生物が生成するので、ビス
(アミノメチル)シクロヘキサンの工業的製法と
して適した方法ではないと考えられていた。
In addition, catalytic reduction using an aqueous medium, including the above-mentioned method, generally produces a large amount of by-products, and therefore was not considered to be a suitable method for industrially producing bis(aminomethyl)cyclohexane.

本発明者らは、この様な従来法の欠点を克服す
べく鋭意研究を重ねた結果、ルテニウム触媒、ア
ルカリおよび特定量の水の存在下に接触還元する
と反応速度が著しく高められ、反応時間が短縮さ
れるとともに意外にも副生物の生成が少なく、極
めて高い反応収率で目的物が得られることを知見
した。本発明はこの新知見を基にして完成された
ものである。
As a result of extensive research to overcome these drawbacks of conventional methods, the present inventors found that catalytic reduction in the presence of a ruthenium catalyst, an alkali, and a specific amount of water significantly increases the reaction rate and reduces the reaction time. It was found that the reaction time was shortened, and unexpectedly few by-products were produced, and the desired product could be obtained with an extremely high reaction yield. The present invention was completed based on this new knowledge.

すなわち、本発明は、キシリレンジアミンをル
テニウム触媒、カリウム、ナトリウムまたはバリ
ウムの水酸化物および反応系に対し6〜40重量%
の水の存在下、接触還元することを特徴とするビ
ス(アミノメチル)シクロヘキサンの製造方法で
ある。
That is, in the present invention, xylylene diamine is added in an amount of 6 to 40% by weight based on the ruthenium catalyst, potassium, sodium or barium hydroxide, and the reaction system.
This is a method for producing bis(aminomethyl)cyclohexane, which is characterized by carrying out catalytic reduction in the presence of water.

本発明の原料物質であるキシリレンジアミンに
は、オルト、メタ、パラの3種の異性体が存在す
るが、それらの単独または混合物のいずれも本発
明の原料物質とすることができる。しかしなが
ら、本発明はメタおよびパラ体の還元に好適であ
る。
Xylylene diamine, which is the raw material of the present invention, has three isomers, ortho, meta, and para, and any of these isomers alone or in a mixture can be used as the raw material of the present invention. However, the present invention is suitable for the reduction of meta and para bodies.

本発明において使用される水の量は、反応系す
なわち全反応混合物に対し6〜40重量%であり、
特に好ましくは8〜20重量%である。水の量が多
すぎるとアミノメチルメチルシクロヘキサン、メ
チルベンジルアミンなどの低沸点の副生物の生成
が増加する傾向にあり、またアルカリ性物質添加
による副反応抑制効果が充分に発揮されない場合
がある。一方、水の量が少なすぎると、反応速度
が低下し、収率も低下する。
The amount of water used in the present invention is 6 to 40% by weight based on the reaction system, that is, the total reaction mixture,
Particularly preferred is 8 to 20% by weight. If the amount of water is too large, the production of low-boiling point by-products such as aminomethylmethylcyclohexane and methylbenzylamine tends to increase, and the effect of suppressing side reactions by adding an alkaline substance may not be sufficiently exerted. On the other hand, if the amount of water is too small, the reaction rate will decrease and the yield will also decrease.

水は単独で使用してもよいが、他の有機溶媒と
の混合物の形で使用してもよい。使用しうる有機
溶媒としては、親水性有機溶媒が好適である。た
とえばエタノール、イソプロピルアルコール、ノ
ルマルプロピルアルコール、ノルマルブチルアル
コール、イソブチルアルコール、ターシアリーブ
チルアルコール、シクロヘキサノール、メチルシ
クロヘキサノール等のアルコール類が用いられ
る。
Water may be used alone or in the form of a mixture with other organic solvents. Hydrophilic organic solvents are suitable as organic solvents that can be used. For example, alcohols such as ethanol, isopropyl alcohol, normal propyl alcohol, normal butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, cyclohexanol, and methylcyclohexanol are used.

本発明において使用されるルテニウム触媒に
は、金属ルテニウム、酸化ルテニウム、水酸化ル
テニウムなどが包含される。これらの触媒は、た
とえばカーボン、アルミナ、硅藻土などに担持し
た形で使用するのが好ましい。触媒の使用量は、
触媒の種類、形体、原料、温度、水素供給量等に
より異なるが、たとえばルテニウムカーボン(ル
テニウム5重量%担持)の場合、原料キシリレン
ジアミンに対し、好ましくは、0.1〜8.0重量%
(ルテニウムとして0.005〜0.4重量%)、工業的に
より好ましくは0.5〜2.5重量%(ルテニウムとし
て0.025〜0.125重量%)である。
The ruthenium catalyst used in the present invention includes metal ruthenium, ruthenium oxide, ruthenium hydroxide, and the like. These catalysts are preferably used in the form of being supported on carbon, alumina, diatomaceous earth, or the like. The amount of catalyst used is
Although it varies depending on the type, shape, raw material, temperature, hydrogen supply amount, etc. of the catalyst, for example, in the case of ruthenium carbon (supporting 5% by weight of ruthenium), it is preferably 0.1 to 8.0% by weight based on the raw material xylylene diamine.
(0.005 to 0.4% by weight as ruthenium), industrially more preferably 0.5 to 2.5% by weight (0.025 to 0.125% by weight as ruthenium).

本発明においては、カリウム、ナトリウム、バ
リウムの水酸化物が用いられるが、炭酸カリ、炭
酸ナトリウムなど水と接触して水酸化物に変る物
質を用いることもできる。しかし、目的物の収
率、価格などの点から、水酸化ナトリウム、水酸
化カリウムが便宜に使用しうる。
In the present invention, hydroxides of potassium, sodium, and barium are used, but it is also possible to use substances that change into hydroxides upon contact with water, such as potassium carbonate and sodium carbonate. However, from the viewpoint of yield of the target product, price, etc., sodium hydroxide and potassium hydroxide can be conveniently used.

カリウム、ナトリウム、バリウムの水酸化物の
使用量は、キシリレンジアミンに対して0.7〜17
モル%程度が好ましく、特に1.5〜10モル%程度
がよい。これらアルカリ性物質の使用量があまり
少なすぎると、副生物質生成が充分に抑制できな
い場合があり、また使用量を増していつても一定
量のところで副反応抑制効果は限界に達するの
で、それ以上の使用は無駄となる。
The amount of potassium, sodium, and barium hydroxide used is 0.7 to 17% relative to xylylene diamine.
The amount is preferably about mol%, particularly about 1.5 to 10 mol%. If the amount of these alkaline substances used is too small, by-product formation may not be suppressed sufficiently, and even if the amount used is increased, the effect of suppressing side reactions will reach its limit at a certain amount, so further use may not be possible. Use is wasted.

反応に使用する水素圧は、5Kg/cm2以上、工業
的には、50−150Kg/cm2程度が望ましい。反応温度
は、50〜150℃、好ましくは80〜130℃である。反
応混合物からの目的物の単離は、過後、低真空
で水、溶媒を留去し、つづいて高真空で蒸留する
ことによつて行なうことができる。
The hydrogen pressure used in the reaction is preferably 5 Kg/cm 2 or higher, and industrially about 50-150 Kg/cm 2 . The reaction temperature is 50-150°C, preferably 80-130°C. Isolation of the target product from the reaction mixture can be carried out by distilling off water and the solvent under low vacuum, followed by distillation under high vacuum.

本発明によれば、比較的温和な条件下でも、反
応速度が速く、副生物の生成が少なく、且つ高収
率でキシリレンジアミンをビス(アミノメチル)
シクロヘキサンに還元することができるので、本
発明は工業的に極めて有利なものである。
According to the present invention, even under relatively mild conditions, the reaction rate is high, the production of by-products is small, and xylylenediamine can be converted to bis(aminomethyl) in high yield.
The present invention is industrially extremely advantageous because it can be reduced to cyclohexane.

以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 300mlオートクレーブにメタキシリレンジアミ
ン(以下m−X.D.A.という。)50g、H2O10ml、
NaCH1.25gおよびルテニウムカーボン(ルテニ
ウム5%担持)1.2gを仕込み、反応水素圧120±
5Kg/cm2、反応温度110℃、撹拌数上下80回/分で
40分間反応させた。反応後、触媒を除去し、反応
液をガスクロで分析したところ収率は、1.3ビス
(アミノメチル)シクロヘキサン98.1モル%、1
−アミノメチル−3−メチルシクロヘキサン0.85
モル%、3−メチルベンジルアミンが0.61モル%
であつた。最終的に蒸留によつて得られた1・3
−ビス(アミノメチル)シクロヘキサンの収率
は、出発原料のm−X.D.A.に対して95.7モル%で
あつた。
Example 1 In a 300ml autoclave, 50g of metaxylylene diamine (hereinafter referred to as m-XDA), 10ml of H 2 O,
1.25g of NaCH and 1.2g of ruthenium carbon (5% ruthenium supported) were charged, and the reaction hydrogen pressure was 120±.
5Kg/cm 2 , reaction temperature 110℃, stirring number up and down 80 times/min.
The reaction was allowed to proceed for 40 minutes. After the reaction, the catalyst was removed and the reaction solution was analyzed by gas chromatography, and the yield was 98.1 mol% of 1.3bis(aminomethyl)cyclohexane, 1.
-aminomethyl-3-methylcyclohexane 0.85
mol%, 3-methylbenzylamine 0.61 mol%
It was hot. 1.3 finally obtained by distillation
The yield of -bis(aminomethyl)cyclohexane was 95.7 mol% based on the starting material m-XDA.

比較例 1 実施例1において、水とアルカリを使用しない
以外は同様の仕込、反応条件で60分間反応した
後、反応液をガスクロで分析した結果、1・3−
ビス(アミノメチル)シクロヘキサンの収率は10
%以下であつた。
Comparative Example 1 After reacting for 60 minutes under the same preparation and reaction conditions as in Example 1 except that water and alkali were not used, the reaction solution was analyzed by gas chromatography, and the result was 1.3-
The yield of bis(aminomethyl)cyclohexane is 10
% or less.

比較例 2 実施例1において、アルカリを使用しない以外
は同様の仕込反応条件で40分間反応させた結果、
反応液のガスクロ分析での収率は1・3−ビス
(アミノメチル)シクロヘキサン87.8モル%、1
−アミノメチル−3−メチルシクロヘキサン7.56
モル%、3−メチルベンジルアミン1.62モル%で
あつた。また蒸留後の収率は対X.D.A.基準84.7モ
ル%であつた。
Comparative Example 2 As a result of reacting for 40 minutes under the same charging reaction conditions as in Example 1 except that no alkali was used,
Gas chromatography analysis of the reaction solution showed that the yield was 87.8 mol% of 1,3-bis(aminomethyl)cyclohexane, 1
-aminomethyl-3-methylcyclohexane7.56
The amount of 3-methylbenzylamine was 1.62 mol%. The yield after distillation was 84.7 mol% based on XDA.

比較例 3 実施例1において、水を使用しない以外は同様
の仕込反応条件で反応させたところ比較例1と同
様、反応の進行が極めて遅く60分後の水素吸収量
は、理論水素吸収量の15%に過ぎず、更に反応を
続け180分後に反応液をガスクロで分析した結
果、1・3−ビス(アミノメチル)シクロヘキサ
ンの収率は23.7%であつた。
Comparative Example 3 In Example 1, the reaction was carried out under the same charging reaction conditions except that water was not used. As in Comparative Example 1, the reaction proceeded very slowly and the amount of hydrogen absorbed after 60 minutes was less than the theoretical amount of hydrogen absorbed. The yield of 1,3-bis(aminomethyl)cyclohexane was 23.7% as a result of further reaction and gas chromatography analysis of the reaction solution after 180 minutes.

実施例 2 実施例1で使用したオートクレーブにm−X.
D.A.40g、ノルマルプロピルアルコール15ml、
H2O5ml、NaOH0.6gおよびルテニウムカーボン
(ルテニウム5%担持)2gを仕込み、実施例1
と同様の条件で水素化したところ、反応は30分で
完結した。反応後、触媒を除去し、反応液につい
てガスクロで分析したところ収率は、1・3−ビ
ス(アミノメチル)シクロヘキサン97.7モル%、
1−アミノメチル−3−メチルシクロヘキサン
0.85モル%、3−メチルベンジルアミン0.93モル
%であつた。蒸留によつて得られた1・3−ビス
(アミノメチル)シクロヘキサンの収率は、出発
原料のm−X.D.A.に対し94.2モル%であつた。
Example 2 In the autoclave used in Example 1, m-X.
DA40g, normal propyl alcohol 15ml,
Example 1
When hydrogenation was carried out under the same conditions as above, the reaction was completed in 30 minutes. After the reaction, the catalyst was removed and the reaction solution was analyzed by gas chromatography, and the yield was 97.7 mol% of 1,3-bis(aminomethyl)cyclohexane.
1-Aminomethyl-3-methylcyclohexane
0.85 mol%, and 3-methylbenzylamine 0.93 mol%. The yield of 1,3-bis(aminomethyl)cyclohexane obtained by distillation was 94.2 mol% based on the starting material m-XDA.

比較例 4 実施例2で溶媒として、ノルマルプロピルアル
コール40ml使用し、水とアルカリ物質を使用せず
にその他は同様な仕込、反応条件で反応させた。
反応完結迄に160分間を要し、反応後の反応液の
ガスクロ分析での収率は、1・3−ビス(アミノ
メチル)シクロヘキサン76.0モル%、1−アミノ
メチル−3−メチルシクロヘキサン5.50モル%、
3−メチルベンジルアミン8.66モル%で高沸点副
生物が2%程度認められた。また、蒸留後の収率
は対原料73.3モル%であつた。
Comparative Example 4 The reaction was carried out under the same preparation and reaction conditions as in Example 2, except that 40 ml of n-propyl alcohol was used as the solvent, and water and alkaline substances were not used.
The reaction took 160 minutes to complete, and the yield in gas chromatography of the reaction solution after the reaction was 76.0 mol% of 1,3-bis(aminomethyl)cyclohexane and 5.50 mol% of 1-aminomethyl-3-methylcyclohexane. ,
At 8.66 mol% of 3-methylbenzylamine, about 2% of high-boiling by-products were observed. Further, the yield after distillation was 73.3 mol% based on the raw material.

実施例 3 実施例1におけるm−X.D.A.に替えて、パラ
キシリレンジアミン50g使用すること以外は実施
例1と同様な仕込、反応条件で反応させた。反応
後、触媒を除去し、反応液についてガスクロで分
析した結果、1・4−ビス(アミノメチル)シク
ロヘキサン96.4モル%、1−アミノメチル−3−
メチルシクロヘキサン1.54モル%、4−メチルベ
ンジルアミンが0.87モル%であつた。
Example 3 A reaction was carried out under the same preparation and reaction conditions as in Example 1, except that 50 g of paraxylylenediamine was used in place of m-XDA in Example 1. After the reaction, the catalyst was removed and the reaction solution was analyzed by gas chromatography. As a result, 96.4 mol% of 1,4-bis(aminomethyl)cyclohexane, 1-aminomethyl-3-
Methylcyclohexane was 1.54 mol%, and 4-methylbenzylamine was 0.87 mol%.

実施例 4 300mlオートクレーブに、m−XDA50g、
H2O10ml、Ba(OH)2・8H2O8.5g(3.7モル%)
およびルテニウムカーボン(ルテニウム5%担
持)1.25gを仕込み、水素圧120±5Kg/cm2、反応
温度110℃、撹拌数上下80回/分で60分間反応さ
せた。反応後触媒を除去し、反応液をガスクロで
分析したところ、1・3−ビス(アミノメチル)
シクロヘキサン95.0モル%、1−アミノメチル−
3−メチルシクロヘキサン2.5モル%、4−メチ
ルベンジルアミン2.0モル%であつた。
Example 4 50 g of m-XDA in a 300 ml autoclave,
H 2 O 10ml, Ba(OH) 2・8H 2 O 8.5g (3.7 mol%)
and 1.25 g of ruthenium carbon (5% ruthenium supported) were charged, and the mixture was reacted for 60 minutes at a hydrogen pressure of 120±5 Kg/cm 2 , a reaction temperature of 110° C., and a stirring rate of 80 times/min. After the reaction, the catalyst was removed and the reaction solution was analyzed by gas chromatography, and it was found that 1,3-bis(aminomethyl)
Cyclohexane 95.0 mol%, 1-aminomethyl-
The contents were 2.5 mol% of 3-methylcyclohexane and 2.0 mol% of 4-methylbenzylamine.

実施例 5 300mlのオートクレーブに、m−XDA50g、
H2O10ml、KOH1.7g(4.1モル%)およびルテニ
ウムカーボン(ルテニウム5%担持)1.25gを仕
込み、水素圧120±5Kg/cm2、反応温度110℃で45
分間反応させた。反応後触媒を除去し、反応液を
ガスクロで分析したところ、1・3−ビス(アミ
ノメチル)シクロヘキサン96.8モル%、1−アミ
ノメチル−3−メチルシクロヘキサン1.5モル
%、4−メチルベンジルアミン0.9モル%であつ
た。
Example 5 In a 300ml autoclave, m-XDA50g,
10 ml of H 2 O, 1.7 g (4.1 mol%) of KOH, and 1.25 g of ruthenium carbon (5% ruthenium supported) were charged, hydrogen pressure was 120 ± 5 Kg/cm 2 , and reaction temperature was 110°C.
Allowed to react for minutes. After the reaction, the catalyst was removed and the reaction solution was analyzed by gas chromatography, which revealed 96.8 mol% of 1,3-bis(aminomethyl)cyclohexane, 1.5 mol% of 1-aminomethyl-3-methylcyclohexane, and 0.9 mol of 4-methylbenzylamine. It was %.

Claims (1)

【特許請求の範囲】[Claims] 1 キシリレンジアミンを、ルテニウム触媒、カ
リウム、ナトリウムまたはバリウムの水酸化物お
よび反応系に対し6〜40重量%の水の存在下に、
接触還元することを特徴とするビス(アミノメチ
ル)シクロヘキサンの製造方法。
1 xylylene diamine in the presence of a ruthenium catalyst, potassium, sodium or barium hydroxide, and 6 to 40% water by weight based on the reaction system,
A method for producing bis(aminomethyl)cyclohexane characterized by catalytic reduction.
JP8231577A 1977-07-08 1977-07-08 Preparation of dis(amnomethyl) cyclohexane Granted JPS5416452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8231577A JPS5416452A (en) 1977-07-08 1977-07-08 Preparation of dis(amnomethyl) cyclohexane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8231577A JPS5416452A (en) 1977-07-08 1977-07-08 Preparation of dis(amnomethyl) cyclohexane

Publications (2)

Publication Number Publication Date
JPS5416452A JPS5416452A (en) 1979-02-07
JPS6113461B2 true JPS6113461B2 (en) 1986-04-14

Family

ID=13771127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8231577A Granted JPS5416452A (en) 1977-07-08 1977-07-08 Preparation of dis(amnomethyl) cyclohexane

Country Status (1)

Country Link
JP (1) JPS5416452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703213A2 (en) 1994-09-21 1996-03-27 Mitsubishi Gas Chemical Company, Inc. Process for producing bis(aminomethyl)cyclohexane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181680A (en) * 1979-02-01 1980-01-01 Suntech, Inc. Hydrogenation of aromatic amines
JPS6417878A (en) * 1987-07-14 1989-01-20 Agency Ind Science Techn Production of electrode for accelerating heat transmission condensation
US5017603A (en) * 1990-03-21 1991-05-21 Merck & Co., Inc. Xanthomegnin, a known compound, is an antiparasitic agent
JPH06279368A (en) * 1991-10-23 1994-10-04 Mitsubishi Gas Chem Co Inc Production of bisaminomethylcyclohexane
US5550294A (en) * 1992-02-05 1996-08-27 Olin Corporation Method of increasing hydrogenation rate of aromatic amines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703213A2 (en) 1994-09-21 1996-03-27 Mitsubishi Gas Chemical Company, Inc. Process for producing bis(aminomethyl)cyclohexane
US5741928A (en) * 1994-09-21 1998-04-21 Mitsubishi Gas Chemical Company, Inc. Process for producing bis (aminomethyl) cyclohexane

Also Published As

Publication number Publication date
JPS5416452A (en) 1979-02-07

Similar Documents

Publication Publication Date Title
JPH0112745B2 (en)
JPS638929B2 (en)
JPS6113461B2 (en)
US6020517A (en) Process for production of benzonitrile and benzyl alcohol
US4221740A (en) Process for the preparation of serinol (1,3-dihydroxy-2-aminopropane)
US5463103A (en) Process for producing 1,4-dicyano-2-butene
GB1593803A (en) Method of producing furfuryl alcohol
US6509504B1 (en) Method for the production of serinol
JP4692700B2 (en) Process for producing aromatic cyanoaminomethyl
JP2001158754A (en) Method for producing tetrafluorobenzenedimethanol
US3657365A (en) Process for the manufacture of methyl or ethyl chloride from methyl or ethyl acetate
JP2811065B2 (en) Method for producing benzylamine
US5777170A (en) Process for the preparation of a naphthylbutanone
JP4099630B2 (en) Method for producing perfluoroalkyl compound
JP3971875B2 (en) Process for producing trans-4- (4'-oxocyclohexyl) cyclohexanols
US4113741A (en) Method of preparing phthalide
KR100193156B1 (en) Method for producing diphenylamine or its nuclear-substituted derivatives
JP3930194B2 (en) Method for producing high-purity alkylcyclohexanol alkylene oxide adduct
JP3819560B2 (en) Method for producing halogenated phenylpropionic acid compound
JP4147809B2 (en) Method for producing halogenated aromatic methylamines
JPH0816101B2 (en) Process for producing 3,5-dichloropyridine
JP3218102B2 (en) Method for producing indole or indole derivative
US6362372B2 (en) Process for producing trifluoromethylbenzylamines
JPH0568455B2 (en)
JP3177350B2 (en) Method for producing dinonyldiphenylamine