JP5130957B2 - Platinum fixed carbon catalyst for catalytic hydrogenation of aliphatic ketones and process for producing aliphatic secondary alcohols from aliphatic ketones using the same - Google Patents

Platinum fixed carbon catalyst for catalytic hydrogenation of aliphatic ketones and process for producing aliphatic secondary alcohols from aliphatic ketones using the same Download PDF

Info

Publication number
JP5130957B2
JP5130957B2 JP2008052677A JP2008052677A JP5130957B2 JP 5130957 B2 JP5130957 B2 JP 5130957B2 JP 2008052677 A JP2008052677 A JP 2008052677A JP 2008052677 A JP2008052677 A JP 2008052677A JP 5130957 B2 JP5130957 B2 JP 5130957B2
Authority
JP
Japan
Prior art keywords
aliphatic
platinum
catalyst
carbon
secondary alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008052677A
Other languages
Japanese (ja)
Other versions
JP2009207976A (en
Inventor
弘尚 佐治木
智弘 前川
泰也 門口
佑太 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2008052677A priority Critical patent/JP5130957B2/en
Publication of JP2009207976A publication Critical patent/JP2009207976A/en
Application granted granted Critical
Publication of JP5130957B2 publication Critical patent/JP5130957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、脂肪族ケトンの接触水素化による脂肪族第2級アルコールの製造に有用な白金固定炭素触媒、及び該触媒を使用して常圧下、水素存在下で脂肪族ケトンの接触水素化による脂肪族第2級アルコールを製造する方法に関する。   The present invention relates to a platinum-fixed carbon catalyst useful for the production of aliphatic secondary alcohols by catalytic hydrogenation of aliphatic ketones, and catalytic hydrogenation of aliphatic ketones in the presence of hydrogen at atmospheric pressure using the catalyst. The present invention relates to a method for producing an aliphatic secondary alcohol.

水素の存在下で触媒を用いた脂肪族ケトンの接触水素化による脂肪族第2級アルコールの製造方法は知られている。例えば、90 kgf/cm2の圧力の水素の存在下でルテニウム炭素触媒を用いてアセトンを接触水素化してイソプロピルアルコールを製造した例(特許文献1)、3.5〜7 kgf/cm2の圧力の水素の存在下でパラジウム炭素触媒を用いてヘキサフルオロアセトンを接触水素化して1,1,1−3,3,3−ヘキサフルオロ−2−プロパノールを製造した例(特許文献2)などが知られている。これらの例では、加圧した水素を存在させなければならないという不利がある。 A process for producing an aliphatic secondary alcohol by catalytic hydrogenation of an aliphatic ketone using a catalyst in the presence of hydrogen is known. For example, an example of producing isopropyl alcohol by catalytic hydrogenation of acetone using a ruthenium carbon catalyst in the presence of hydrogen at a pressure of 90 kgf / cm 2 (Patent Document 1), hydrogen at a pressure of 3.5 to 7 kgf / cm 2 Is known in which 1,1,1-3,3,3-hexafluoro-2-propanol is produced by catalytic hydrogenation of hexafluoroacetone using a palladium-carbon catalyst in the presence of water (Patent Document 2) Yes. In these examples, there is the disadvantage that pressurized hydrogen must be present.

また、常圧の水素存在下で触媒を用いた脂肪族ケトンの接触水素化による脂肪族第2級アルコールの製造方法が知られている。例えば、常圧の水素の存在下でスポンジニッケル触媒を用いて脂肪族ケトンを接触水素化して脂肪族第2級アルコールを製造した例(非特許文献1)などが知られている。この例では、自然発火性のスポンジニッケルを使用しなければならず取り扱いに危険性を伴う他、0.72 g(10 mmol)の2-ブタノンに対して0.5 g (反応基に対して69重量%)の触媒金属を用いる必要があり、触媒の使用量が多い、という不利を有している。   Also known is a method for producing an aliphatic secondary alcohol by catalytic hydrogenation of an aliphatic ketone using a catalyst in the presence of hydrogen at normal pressure. For example, an example in which an aliphatic secondary alcohol is produced by catalytic hydrogenation of an aliphatic ketone using a sponge nickel catalyst in the presence of atmospheric pressure (Non-Patent Document 1) is known. In this example, spontaneously ignitable sponge nickel must be used, which is dangerous to handle and 0.5 g for 0.72 g (10 mmol) of 2-butanone (69% by weight based on reactive groups) Therefore, there is a disadvantage that a large amount of catalyst is used.

また、常圧の水素存在下で白金触媒を用いた接触水素化による脂肪族第2級アルコールの製造方法が知られている。例えば、常圧の水素の存在下で酸化白金(アダムス)触媒を用いて脂肪族ケトンを接触水素化して脂肪族第2級アルコールを製造した例(非特許文献2)などが知られている。この例では、反応系に塩酸を加える必要があり、その腐食性のためにステンレスなどの金属製の反応容器を使用できない他、基質重量の5重量%の触媒金属を用いる必要があり前記のスポンジニッケルほどではないにしても触媒の使用量が多い、という欠点を有している。   Also known is a method for producing an aliphatic secondary alcohol by catalytic hydrogenation using a platinum catalyst in the presence of hydrogen at normal pressure. For example, an example in which an aliphatic secondary alcohol is produced by catalytic hydrogenation of an aliphatic ketone using a platinum oxide (Adams) catalyst in the presence of hydrogen at normal pressure is known (Non-Patent Document 2). In this example, it is necessary to add hydrochloric acid to the reaction system, and due to its corrosiveness, it is not possible to use a reaction vessel made of metal such as stainless steel, and it is necessary to use a catalyst metal of 5% by weight of the substrate weight. Although it is not as good as nickel, it has the disadvantage that the amount of catalyst used is large.

また、常圧の水素存在下で反応系に塩酸などの腐食性物質を添加することなく白金触媒を用いた接触水素化による脂肪族第2級アルコールの製造方法が知られている。例えば、常圧の水素の存在下で酸化白金(アダムス)触媒を用いてアセト酢酸エチルを接触水素化して2-ヒドロキシ酪酸エチルを製造した例(非特許文献3)などが知られている。この例では、適用できる基質がカルボニル基の水素化を受けやすいアセト酢酸エチルなどのベータケトエステルに限られ、カルボニル基をただ一つ有する脂肪族ケトンを接触水素化して第2級アルコールを製造する方法としては適用できないという不利がある。   There is also known a method for producing an aliphatic secondary alcohol by catalytic hydrogenation using a platinum catalyst without adding a corrosive substance such as hydrochloric acid to the reaction system in the presence of hydrogen at normal pressure. For example, an example in which ethyl 2-hydroxybutyrate is produced by catalytic hydrogenation of ethyl acetoacetate using a platinum oxide (Adams) catalyst in the presence of hydrogen at normal pressure is known (Non-patent Document 3). In this example, the applicable substrate is limited to a beta keto ester such as ethyl acetoacetate that is susceptible to hydrogenation of a carbonyl group, and a secondary alcohol is produced by catalytic hydrogenation of an aliphatic ketone having only one carbonyl group. As a disadvantage, it is not applicable.

特開平2−279643Japanese Patent Laid-Open No. 2-279634 特公昭61−25694Shoko 61-25694 S. Nishimura, “Handbook of Heterogeneous Catalytic Hydrogenation for Organic Syntheses”, p.186 (2001) John Wiley & Sons Inc.S. Nishimura, “Handbook of Heterogeneous Catalytic Hydrogenation for Organic Syntheses”, p.186 (2001) John Wiley & Sons Inc. S. Nishimura, “Handbook of Heterogeneous Catalytic Hydrogenation for Organic Syntheses”, p.189 (2001) John Wiley & Sons Inc.S. Nishimura, “Handbook of Heterogeneous Catalytic Hydrogenation for Organic Syntheses”, p.189 (2001) John Wiley & Sons Inc. P. Rylander, “Catalytic Hydrogenation in Organic Syntheses”, p.86 (1979) Academic PressP. Rylander, “Catalytic Hydrogenation in Organic Syntheses”, p.86 (1979) Academic Press

そこで、常圧下、水素存在下で塩酸などの腐食性物質やスポンジニッケルなどの危険物質を用いることなく、少ない触媒金属の使用量にて、カルボニル基をただ一つ有する脂肪族ケトンを接触水素化して脂肪族第2級アルコールを製造する方法の開発が望まれていた。   Therefore, catalytic hydrogenation of aliphatic ketones with only one carbonyl group is carried out with a small amount of catalytic metal used under normal pressure and in the presence of hydrogen, without using corrosive substances such as hydrochloric acid or dangerous substances such as sponge nickel. Thus, development of a method for producing an aliphatic secondary alcohol has been desired.

そこで、本発明は、常圧下水素の存在下で、塩酸などの腐食性物質やスポンジニッケルなどの危険物質を用いることなく、少ない触媒金属の使用量にて、カルボニル基をただ一つ有する脂肪族ケトンを接触水素化することによる脂肪族第2級アルコールの製造方法を提供することを目的とする。   Therefore, the present invention provides an aliphatic group having only one carbonyl group in the presence of hydrogen under normal pressure and without using a corrosive substance such as hydrochloric acid or a dangerous substance such as sponge nickel and using a small amount of catalytic metal. An object of the present invention is to provide a method for producing an aliphatic secondary alcohol by catalytic hydrogenation of a ketone.

本発明者らは、常圧下、水素の存在下での脂肪族ケトンの接触水素化による脂肪族第2級アルコールの製造について鋭意検討した結果、本発明を完成するに至った。   As a result of intensive studies on the production of aliphatic secondary alcohols by catalytic hydrogenation of aliphatic ketones under normal pressure and in the presence of hydrogen, the present inventors have completed the present invention.

即ち、本発明は、炭素粒子と、該炭素粒子に固定された白金とを有してなる触媒にして、前記白金の該触媒中の含有率が7重量%以上である、カルボニル基をただ一つ有する脂肪族ケトンの接触水素化により脂肪族第2級アルコールに転換する反応に用いられる白金固定炭素触媒を提供する。   That is, the present invention provides a catalyst comprising carbon particles and platinum fixed to the carbon particles, and has only a carbonyl group in which the platinum content in the catalyst is 7% by weight or more. The platinum-fixed carbon catalyst used in the reaction to convert to an aliphatic secondary alcohol by catalytic hydrogenation of an aliphatic ketone having the same is provided.

本発明は、第二に、カルボニル基をただ一つ有する脂肪族ケトンの該カルボニル基を水素化して脂肪族第2級アルコールを製造する方法であって、
前記の脂肪族ケトンを触媒の存在下において、常圧下、水素と湿式で接触させること、
前記触媒として、炭素粒子と、該炭素粒子に固定された白金とを有してなる触媒にして、該白金の該触媒中の含有率が7重量%以上であるものを用いること、
を特徴とする上記脂肪族第2級アルコールの製造方法を提供する。
Second, the present invention is a method for producing an aliphatic secondary alcohol by hydrogenating the carbonyl group of an aliphatic ketone having only one carbonyl group,
Contacting the aliphatic ketone with hydrogen in the presence of a catalyst under normal pressure and wet;
As the catalyst, a catalyst comprising carbon particles and platinum fixed to the carbon particles, wherein the platinum content in the catalyst is 7% by weight or more,
A method for producing the above-mentioned aliphatic secondary alcohol is provided.

本発明の脂肪族ケトン接触水素化用白金固定炭素触媒を用いる脂肪族第2級アルコールの製造方法によれば、常圧下、水素存在下で、少ない触媒金属の使用量にて、カルボニル基をただ一つ有する脂肪族ケトンを接触水素化して、高収率にて脂肪族第2級アルコールを製造することができる。この方法においては、塩酸などの腐食性物質やスポンジニッケルなどの危険物質を用いる必要がない。   According to the method for producing an aliphatic secondary alcohol using the platinum-fixed carbon catalyst for catalytic hydrogenation of aliphatic ketones of the present invention, a carbonyl group is merely used in a small amount of catalytic metal in the presence of hydrogen under normal pressure. An aliphatic secondary alcohol can be produced in high yield by catalytic hydrogenation of one aliphatic ketone. In this method, it is not necessary to use corrosive substances such as hydrochloric acid or dangerous substances such as sponge nickel.

以下、本発明について更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

<白金固定炭素触媒>
本発明において用いられる白金固定炭素触媒は、白金含有率が7重量%以上、好ましくは7〜50重量%、より好ましくは8〜20重量%となるように白金を炭素粒子に固定したものである。
<Platinum fixed carbon catalyst>
The platinum-fixed carbon catalyst used in the present invention is obtained by fixing platinum to carbon particles so that the platinum content is 7% by weight or more, preferably 7 to 50% by weight, more preferably 8 to 20% by weight. .

−担体−
前記炭素粒子は、前記白金の担体であり、その特に好適な例をしては活性炭が挙げられる。
-Carrier-
The carbon particles are the platinum carrier, and a particularly suitable example is activated carbon.

炭素粒子の比表面積は特に制限するものではないが、700〜2000 m2/gが好ましく、900〜1500 m2/gが特に好ましい。比表面積はBET法で測定した値である。 Is not particularly limited specific surface area of the carbon particles is preferably 700-2000 m 2 / g, particularly preferably 900~1500 m 2 / g. The specific surface area is a value measured by the BET method.

また、炭素粒子の形状は特に制限するものではないが、粉末状または顆粒状が好適であり、粉末状が特に好適である。   In addition, the shape of the carbon particles is not particularly limited, but a powder form or a granular form is preferable, and a powder form is particularly preferable.

−触媒の調製方法(炭素粒子への白金の固定)−
炭素粒子への白金の固定は、該炭素粒子担体に白金を含む溶液を接触させることにより行うことができる。
-Catalyst preparation method (Platinum fixation on carbon particles)-
The platinum can be fixed to the carbon particles by bringing the carbon particle carrier into contact with a solution containing platinum.

具体的には、本発明で用いる白金固定炭素触媒は、例えば、白金化合物を溶媒に溶解し、当該溶液中に炭素担体を投入し、白金化合物を該炭素担体に吸着または含浸することにより行う。白金化合物がヘキサクロロ白金(IV)酸など水溶性の場合には水を溶媒として用いることができる。また、白金化合物が水溶性で、中和によって水酸化物などとして固定できる場合には中和処理を実施してもよい。このような例としては、ヘキサヒドロキソ白金(IV)酸のアルカリ性溶液を塩酸で中和する例、テトラクロロ白金(II)酸を水酸化ナトリムで中和する例などが挙げられる。白金化合物が、ビス(2,4−ペンタンジオナト)白金(II)など非水溶性の場合には、当該白金化合物を溶解する有機溶媒を用いて炭素担体に吸着または含浸することができる。白金を吸着または含浸などの方法で担体に固定した触媒は、必要に応じて還元処理を実施してもよい。湿式で還元する場合には、メタノール、ホルムアルデヒド、蟻酸などの還元剤のほか、ガス状水素を用いることができる。乾式で還元する場合にはガス状水素を用いて行うが、水素ガスを窒素等の不活性ガスで希釈して使用することも可能である。こうして、白金が炭素担体に固定された白金固定炭素触媒が得られる。   Specifically, the platinum-fixed carbon catalyst used in the present invention is performed, for example, by dissolving a platinum compound in a solvent, putting a carbon carrier into the solution, and adsorbing or impregnating the platinum compound on the carbon carrier. When the platinum compound is water-soluble such as hexachloroplatinic (IV) acid, water can be used as a solvent. Further, when the platinum compound is water-soluble and can be fixed as a hydroxide by neutralization, a neutralization treatment may be performed. Examples include neutralizing an alkaline solution of hexahydroxoplatinum (IV) acid with hydrochloric acid, and neutralizing tetrachloroplatinum (II) acid with sodium hydroxide. When the platinum compound is water-insoluble such as bis (2,4-pentanedionato) platinum (II), it can be adsorbed or impregnated on the carbon support using an organic solvent that dissolves the platinum compound. The catalyst in which platinum is fixed to the support by a method such as adsorption or impregnation may be subjected to a reduction treatment as necessary. In the case of reduction in a wet manner, gaseous hydrogen can be used in addition to a reducing agent such as methanol, formaldehyde, formic acid or the like. When the reduction is performed in a dry manner, gaseous hydrogen is used, but it is also possible to dilute the hydrogen gas with an inert gas such as nitrogen. In this way, a platinum fixed carbon catalyst in which platinum is fixed to the carbon support is obtained.

触媒調製に用いる溶媒は、白金の化合物を溶解するものであれば特に制限されないが、水溶性の白金化合物を用いる場合には水が好ましく、非水溶性で有機溶媒に可溶な白金化合物の場合には、エタノール、アセトン、クロロホルム等の有機溶媒であって該白金化合物を溶解するものが好適である。   The solvent used for the catalyst preparation is not particularly limited as long as it dissolves a platinum compound, but water is preferable when a water-soluble platinum compound is used. In the case of a platinum compound that is water-insoluble and soluble in an organic solvent. For this, an organic solvent such as ethanol, acetone or chloroform which dissolves the platinum compound is suitable.

上記の白金化合物としては、触媒調製工程に使用する溶媒に可溶性であれば特に限定されないが、硝酸白金(IV)、硫酸白金(IV)、テトラアンミン白金(II)塩化物、テトラアンミン白金(II)臭化物、テトラアンミン白金(II)硝酸塩、テトラアンミン白金(II)酢酸塩、ヘキサクロロ白金(IV)酸、テトラクロロ白金酸(II)、ヘキサヒドロキソ白金(IV)酸ナトリウム、ヘキサヒドロキソ白金(IV)酸(2−ヒドロキシエチルアンモニウム)、ジニトロジアンミン白金(II)硝酸溶液、ジニトロジアンミン白金(II)アンモニア水溶液等の水溶性化合物の他、ビス(2,4−ペンタンジオナト)白金(II)、ジクロロ(1,5−シクロオクタジエン)白金(II)、ジクロロビス(トリフェニルホスフィン)白金(II)、テトラキス(トリフェニルホスフィン)白金(II)、トリス(ジベンジリデンアセトン)二白金(0)等の有機溶媒に可溶な錯体が使用することができる。中でも、テトラアンミン白金(II)酢酸塩、ヘキサクロロ白金(IV)酸、テトラクロロ白金酸(II)、ヘキサヒドロキソ白金(IV)酸ナトリウム、ヘキサヒドロキソ白金(IV)酸(2−ヒドロキシエチルアンモニウム)、ジニトロジアンミン白金(II)硝酸溶液、ビス(2,4−ペンタンジオナト)白金(II)が好ましい。   The platinum compound is not particularly limited as long as it is soluble in a solvent used in the catalyst preparation step, but platinum (IV) nitrate, platinum (IV) sulfate, tetraammine platinum (II) chloride, tetraammine platinum (II) bromide. , Tetraammineplatinum (II) nitrate, tetraammineplatinum (II) acetate, hexachloroplatinum (IV) acid, tetrachloroplatinic acid (II), sodium hexahydroxoplatinate (IV), hexahydroxoplatinum (IV) acid (2- In addition to water-soluble compounds such as hydroxyethylammonium), dinitrodiammine platinum (II) nitric acid solution, dinitrodiammine platinum (II) aqueous ammonia solution, bis (2,4-pentanedionato) platinum (II), dichloro (1,5 -Cyclooctadiene) platinum (II), dichlorobis (triphenylphosphite) ) Platinum (II), can be tetrakis (triphenylphosphine) platinum (II), tris (dibenzylideneacetone) dipalladium (0) soluble complexes in an organic solvent such as may be used. Among them, tetraammineplatinum (II) acetate, hexachloroplatinic (IV) acid, tetrachloroplatinic acid (II), sodium hexahydroxoplatinum (IV), hexahydroxoplatinum (IV) acid (2-hydroxyethylammonium), dinitro Diammine platinum (II) nitric acid solution and bis (2,4-pentanedionato) platinum (II) are preferred.

本発明に用いられる白金固定炭素触媒は、例えば、商品名SGH−10MR(エヌイーケムキャット株式会社製)で入手することもできる。   The platinum fixed carbon catalyst used in the present invention can also be obtained, for example, under the trade name SGH-10MR (manufactured by NV Chemcat Co., Ltd.).

<脂肪族ケトンの接触水素化による脂肪族第2級アルコールの製造方法>
本発明によれば、上記の白金固定炭素触媒の存在下、湿式で、カルボニル基をただ一つ有する脂肪族ケトンを、常圧下、水素と接触させることにより、当該カルボニル基を水酸基へ変成して脂肪族第2級アルコールを製造することができる。ここで、「湿式で」とは、通常、「溶媒の存在下で」を意味し、好ましくは「溶媒中で」を意味する。
<Method for producing aliphatic secondary alcohol by catalytic hydrogenation of aliphatic ketone>
According to the present invention, an aliphatic ketone having only one carbonyl group is contacted with hydrogen under atmospheric pressure in the presence of the above platinum-fixed carbon catalyst to convert the carbonyl group to a hydroxyl group. Aliphatic secondary alcohols can be produced. Here, “wet” usually means “in the presence of a solvent”, preferably “in a solvent”.

本発明の方法において、基質として用いられる、カルボニル基をただ一つ有する脂肪族ケトンとしては、下記一般式(I):   As the aliphatic ketone having only one carbonyl group used as a substrate in the method of the present invention, the following general formula (I):

Figure 0005130957

(I)
(式中、R1及びR2は、異なっていても同じでもよい一価脂肪族炭化水素基を表し、相互に結合して一体化して2価の脂肪族炭化水素基を形成してもよく、該一価炭化水素基の炭素原子に結合している1つ以上の水素原子がハロゲン原子および/または水酸基で置換されていてもよい。)
で表される化合物が挙げられる。
該一般式(I)で表される脂肪族ケトンとしては、具体的には、例えば、アセトン、2−ブタノン、4−メチルブタン−2−オン、2−デカノン、4−デカノン、1,1,1−
トリフルオロアセトン、ヒドロキシアセトンなどが挙げられる。
Figure 0005130957

(I)
(In the formula, R 1 and R 2 represent a monovalent aliphatic hydrocarbon group which may be the same or different, and may be bonded together to form a divalent aliphatic hydrocarbon group. And one or more hydrogen atoms bonded to the carbon atom of the monovalent hydrocarbon group may be substituted with a halogen atom and / or a hydroxyl group.)
The compound represented by these is mentioned.
Specific examples of the aliphatic ketone represented by the general formula (I) include acetone, 2-butanone, 4-methylbutan-2-one, 2-decanone, 4-decanone, 1,1,1. −
Examples thereof include trifluoroacetone and hydroxyacetone.

上記一般式(I)で表される脂肪族ケトンに本発明の方法を適用することにより、下記一般式(II):   By applying the method of the present invention to the aliphatic ketone represented by the above general formula (I), the following general formula (II):

Figure 0005130957

(II)
(式中、R1及びR2は、前記と同じ意味を表す)
で表される脂肪族第2アルコールが得られる。
Figure 0005130957

(II)
(Wherein R 1 and R 2 represent the same meaning as described above)
The aliphatic secondary alcohol represented by these is obtained.

該一般式(II)で表される脂肪族第2アルコールとしては、具体的には、例えば、2−プロパノール、2−ブタノール、4−メチル−2−ブタノール、2−デカノール、4−デカノール、1,1,1−トリフルオロ−2−プロパノール、1,2−プロパンジオールなどが挙げられる。   Specific examples of the aliphatic secondary alcohol represented by the general formula (II) include 2-propanol, 2-butanol, 4-methyl-2-butanol, 2-decanol, 4-decanol, 1 , 1,1-trifluoro-2-propanol, 1,2-propanediol and the like.

例えば、脂肪族ケトン化合物である2−デカノンを、白金固定炭素触媒を用いてシクロヘキサン溶媒中で常圧下、水素を接触させることにより、常温の条件で3時間反応させることにより、脂肪族アルコールである2−デカノールを2−デカノン基準の収率100%で得ることができる。   For example, 2-decanone, which is an aliphatic ketone compound, is an aliphatic alcohol by reacting for 3 hours at room temperature by contacting hydrogen under normal pressure in a cyclohexane solvent using a platinum-fixed carbon catalyst. 2-decanol can be obtained with a yield of 100% based on 2-decanone.

上記一般式(I)および(II)において、R1およびR2は、脂肪族炭化水素基であり、異なっていても同じでもよく、相互に結合して一体化して2価の脂肪族炭化水素基を形成してもよく、炭素原子に結合している1つ以上の水素原子がハロゲン原子および/または水酸基で置換されていてもよい。R1およびR2が結合しないで独立した例としては、炭素原子数1〜20のアルキル基またはω−シクロアルキルアルキル基であり、炭素原子に結合している1つ以上の水素原子がハロゲン原子および/または水酸基で置換されていてもよく、好ましくは、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基等の炭素原子数1〜16のアルキル基;2−シクロペンチルエチル基、3−シクロヘキシルプロピル基である。 In the above general formulas (I) and (II), R 1 and R 2 are aliphatic hydrocarbon groups, which may be different or the same, and are bonded together to form a divalent aliphatic hydrocarbon. A group may be formed, and one or more hydrogen atoms bonded to a carbon atom may be substituted with a halogen atom and / or a hydroxyl group. As an independent example where R 1 and R 2 are not bonded, an alkyl group having 1 to 20 carbon atoms or an ω-cycloalkylalkyl group, and one or more hydrogen atoms bonded to the carbon atom are halogen atoms. And / or may be substituted with a hydroxyl group, preferably a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, etc. An alkyl group having 1 to 16 carbon atoms; a 2-cyclopentylethyl group or a 3-cyclohexylpropyl group;

また、R1およびR2が結合して一体化して形成される2価の脂肪族炭化水素基としては、例えば、1,3−プロパンジイル基、1,5−ペンタンジイル基、1,4−ブタンジイル基、1,11−ウンデカンジイル基、メチルテトラデカン−1,14−ジイル基、1,2,2−トリメチル−3−メチレン−シクロペンタン−1−イル基、ビシクロ−[3,3,1]−ノナン−3,7−ジイル基などが挙げられる。 Examples of the divalent aliphatic hydrocarbon group formed by combining R 1 and R 2 together include, for example, 1,3-propanediyl group, 1,5-pentanediyl group, 1,4-butanediyl. Group, 1,11-undecanediyl group, methyltetradecane-1,14-diyl group, 1,2,2-trimethyl-3-methylene-cyclopentan-1-yl group, bicyclo- [3,3,1]- Nonane-3,7-diyl group and the like can be mentioned.

R1およびR2が結合して一体化して2価の脂肪族炭化水素基を形成すると、一般式(I)においてR1およびR2が結合した炭素原子も環構成員として含む、脂肪族の環が形成され、一般式(I)の化合物は脂環式ケトンとなる。このような脂環式ケトンの例としては、炭素原子数3〜16のシクロアルカノン、炭素原子数6〜16のビシクロアルカノン、炭素原子数8〜16のトリシクロアルカノンであり、炭素原子に結合した1つ以上の水素が炭素原子数1〜8のアルキル基、シクロアルキル基、ハロゲン原子および/または水酸基で置換されていても差し支えない。好ましくは、シクロブタノン、シクロヘキサノン、シクロペンタノン、シクロドデカノン、メチルシクロペンタデカノン、カンファー、アダマンタノンである。 When R 1 and R 2 are combined to form a divalent aliphatic hydrocarbon group, an aliphatic group containing a carbon atom to which R 1 and R 2 are bonded in general formula (I) as a ring member A ring is formed and the compound of general formula (I) becomes an alicyclic ketone. Examples of such alicyclic ketones are cycloalkanones having 3 to 16 carbon atoms, bicycloalkanones having 6 to 16 carbon atoms, tricycloalkanones having 8 to 16 carbon atoms, and carbon atoms. One or more hydrogen atoms bonded to may be substituted with an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group, a halogen atom and / or a hydroxyl group. Preferred are cyclobutanone, cyclohexanone, cyclopentanone, cyclododecanone, methylcyclopentadecanone, camphor, and adamantanone.

本発明で用いる触媒は、反応物である脂肪族ケトン化合物に対して白金金属として、通常、0.001〜10重量%の間で用いられ、好ましくは0.01〜5重量%、より好ましくは0.05〜2重量%の範囲で用いられる。また反応の際に、白金を固定していない活性炭、アルミナまたは珪藻土などの粒子を混在させても差し支えない。   The catalyst used in the present invention is usually used in an amount of 0.001 to 10% by weight, preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight as platinum metal with respect to the aliphatic ketone compound as a reactant. % Range. In the reaction, particles such as activated carbon, alumina, or diatomaceous earth to which platinum is not fixed may be mixed.

接触水素化反応に用いる溶媒は、特に制限されないが、好ましくは、水;メタノール、エタノール、2−プロパノールなどの炭素原子数1〜6のアルカノール;炭素原子数5〜10のアルカン、炭素原子数5〜10のシクロアルカン;クロロホルム、ジクロロメタンなどの炭素原子数1〜2の塩素化炭化水素;またはこれらの組み合わせであり、2−プロパノール、シクロヘキサン、クロロホルムが特に好ましい。   The solvent used in the catalytic hydrogenation reaction is not particularly limited, but is preferably water; alkanol having 1 to 6 carbon atoms such as methanol, ethanol, 2-propanol; alkane having 5 to 10 carbon atoms, and 5 carbon atoms. 10 to 10 cycloalkanes; chlorinated hydrocarbons having 1 to 2 carbon atoms such as chloroform and dichloromethane; or a combination thereof, and 2-propanol, cyclohexane and chloroform are particularly preferable.

この接触水素化反応は、常圧下、水素の存在下で行われる。水素は純粋な水素ガスでもよいが、必要に応じて窒素などの不活性気体で水素を希釈した混合ガスでも差し支えない。通常、0〜40℃の温度領域で1〜48時間程度で反応が行われる。反応器に加熱や冷却などの操作を行わない室温での操作でも差し支えない。   This catalytic hydrogenation reaction is carried out under normal pressure and in the presence of hydrogen. Hydrogen may be pure hydrogen gas, but may be a mixed gas obtained by diluting hydrogen with an inert gas such as nitrogen as necessary. Usually, the reaction is carried out in the temperature range of 0 to 40 ° C. for about 1 to 48 hours. Operation at room temperature where the reactor is not heated or cooled is allowed.

以下に本発明の実施例を示すが、本発明は以下の実施例に限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited to the following examples.

<実施例1>
(10重量%白金固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成)
2−デカノン78 mg (0.5 mmol)をシクロヘキサン2 mlに溶解させた。得られた溶液に10%白金固定炭素粉末触媒(商品名:SGH−10MR、エヌ・イー ケムキャット(株)製)を白金金属として反応基質の1重量%相当量加え、バルーンによる水素雰囲気下、室温25 ℃で3時間攪拌して反応させた。その後、触媒をろ過分離し、1H-NMRにて得られた生成物を分析したところ、2−デカノールであった。投入した2−デカノンに対する2−デカノールの収率は100%であった。
<Example 1>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 10% by weight platinum fixed carbon catalyst)
2-Decanone 78 mg (0.5 mmol) was dissolved in cyclohexane 2 ml. To the resulting solution, 10% platinum-fixed carbon powder catalyst (trade name: SGH-10MR, manufactured by N.E. Chemcat Co., Ltd.) was added as platinum metal in an amount equivalent to 1% by weight of the reaction substrate. The reaction was allowed to stir at 25 ° C. for 3 hours. Thereafter, the catalyst was separated by filtration, and the product obtained by 1 H-NMR was analyzed. As a result, it was 2-decanol. The yield of 2-decanol relative to the charged 2-decanone was 100%.

<実施例2>
(10重量%白金固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成)
実施例1において、シクロヘキサンの代わりに2−プロパノール2mlを用いた以外は実施例1と同様にして、2−デカノールを得た。収率は98%であった。
<Example 2>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 10% by weight platinum fixed carbon catalyst)
In Example 1, 2-decanol was obtained in the same manner as in Example 1 except that 2 ml of 2-propanol was used instead of cyclohexane. The yield was 98%.

<実施例3>
(10重量%白金固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成)
実施例1において、シクロヘキサンの代わりにクロロホルム2mlを用いた以外は実施例1と同様にして、2−デカノールを得た。収率は93%であった。
<Example 3>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 10% by weight platinum fixed carbon catalyst)
In Example 1, 2-decanol was obtained in the same manner as in Example 1 except that 2 ml of chloroform was used instead of cyclohexane. The yield was 93%.

<実施例4>
(10重量%白金固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成)
実施例1において、反応時間を3時間の代りに1時間とした以外は実施例1と同様にして、2−デカノールを得た。収率は98%であった。
<Example 4>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 10% by weight platinum fixed carbon catalyst)
In Example 1, 2-decanol was obtained in the same manner as in Example 1 except that the reaction time was 1 hour instead of 3 hours. The yield was 98%.

<実施例5>
(10重量%白金固定炭素触媒を用いた4−デカノンの接触水素化による4−デカノールの合成)
実施例1において、2−デカノン78 mg (0.5 mmol)の代りに4−デカノン78 mg (0.5 mmol)を使用した以外は実施例1と同様にして、4−デカノールを得た。収率は98%であった。
<Example 5>
(Synthesis of 4-decanol by catalytic hydrogenation of 4-decanone using 10 wt% platinum fixed carbon catalyst)
In Example 1, 4-decanol was obtained like Example 1 except having used 4-decanone 78 mg (0.5 mmol) instead of 2-decanone 78 mg (0.5 mmol). The yield was 98%.

<実施例6>
(10重量%白金固定炭素触媒を用いた4−tert−ブチル−1−シクロヘキサノンの接触水素化による4−tert−ブチル−1−シクロヘキサノールの合成)
実施例1において、2−デカノン78 mg (0.5 mmol)の代わりに4−tert−ブチル−1−シクロヘキサノン77 mg (0.5 mmol)を用いた以外は実施例1と同様にして、4−tert−ブチル−1−シクロヘキサノールを得た。収率は90%であった。
<Example 6>
(Synthesis of 4-tert-butyl-1-cyclohexanol by catalytic hydrogenation of 4-tert-butyl-1-cyclohexanone using 10 wt% platinum-fixed carbon catalyst)
In Example 1, 4-tert-butyl was carried out in the same manner as in Example 1, except that 77 mg (0.5 mmol) of 4-tert-butyl-1-cyclohexanone was used instead of 78 mg (0.5 mmol) of 2-decanone. −1-cyclohexanol was obtained. The yield was 90%.

<実施例7>
(10重量%白金固定炭素触媒を用いた2−アダマンタノンの接触水素化による2−アダマンタノールの合成)
実施例1において、2−デカノン78 mg (0.5 mmol)の代わりに2−アダマンタノン75 mg (0.5 mmol)を用いた以外は実施例1と同様にして、2−アダマンタノールを得た。収率は90%であった。
<Example 7>
(Synthesis of 2-adamantanol by catalytic hydrogenation of 2-adamantanone using 10 wt% platinum fixed carbon catalyst)
In Example 1, 2-adamantanol was obtained like Example 1 except having used 2-adamantanone 75 mg (0.5 mmol) instead of 2-decanone 78 mg (0.5 mmol). The yield was 90%.

<比較例1>
(5重量%白金固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成
実施例1において、10重量%白金固定炭素触媒の代りに5重量%白金固定炭素触媒(商品名:5%Ptカーボン粉末Kタイプ、エヌ・イー ケムキャット(株)製)を使用した以外は、実施例1と同様にして2−デカノンの接触水素化により2−デカノールを生成させた。投入した2−デカノンに対する2−デカノールの収率は74%であった。
<Comparative Example 1>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 5 wt% platinum-fixed carbon catalyst In Example 1, instead of 10 wt% platinum-fixed carbon catalyst, 5 wt% platinum-fixed carbon catalyst (trade name: 2-decanol was produced by catalytic hydrogenation of 2-decanone in the same manner as in Example 1 except that 5% Pt carbon powder K type (manufactured by N.E. Chemcat Co., Ltd.) was used. The yield of 2-decanol based on decanone was 74%.

<比較例2>
(5重量%白金固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成
実施例1において、10重量%白金固定炭素触媒の代りに5重量%白金固定炭素粉末触媒(商品名:プラチナム オン カーボン(5wt% サポート アクティベイテッドカーボン)、アルドリッチ製)を使用した以外は、実施例1と同様にして2−デカノンの接触水素化により2−デカノールを生成させた。投入した2−デカノンに対する2−デカノールの収率は77%であった。
<Comparative example 2>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 5 wt% platinum-fixed carbon catalyst In Example 1, instead of 10 wt% platinum-fixed carbon catalyst, 5 wt. : 2-decanol was produced by catalytic hydrogenation of 2-decanone in the same manner as in Example 1 except that platinum on carbon (5 wt% supported activated carbon) manufactured by Aldrich was used. The yield of 2-decanol was 77%.

<比較例3>
(10重量%ロジウム固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成
実施例1において、10重量%白金固定炭素触媒の代りに10重量%ロジウム固定炭素粉末触媒(商品名:10%Rhカーボン粉末Kタイプ、エヌ・イー ケムキャット(株)製)を使用し、ロジウム金属として反応基質の1重量%相当量加えた以外は、実施例1と同様にして2−デカノンの接触水素化により2−デカノールを生成させた。投入した2−デカノンに対する2−デカノールの収率は21%であった。
<Comparative Example 3>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 10 wt% rhodium fixed carbon catalyst In Example 1, instead of 10 wt% platinum fixed carbon catalyst, 10 wt% rhodium fixed carbon powder catalyst (trade name : 10% Rh carbon powder K type, manufactured by N.E. Chemcat Co., Ltd.) and contact with 2-decanone in the same manner as in Example 1 except that an amount corresponding to 1% by weight of the reaction substrate was added as rhodium metal. The hydrogenation produced 2-decanol, and the yield of 2-decanol relative to the charged 2-decanone was 21%.

<比較例4>
(10重量%パラジウム固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成
実施例1において、10重量%白金固定炭素触媒の代りに10重量%パラジウム固定炭素粉末触媒(商品名:10%Pdカーボン粉末Kタイプ、エヌ・イー ケムキャット(株)製)を使用し、パラジウム金属として反応基質の1重量%相当量加えた以外は、実施例1と同様にして2−デカノンの接触水素化を試み、生成物の分析を行った。投入した2−デカノンに対する2−デカノールの収率は0%であった。
<Comparative example 4>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 10% by weight palladium fixed carbon catalyst In Example 1, instead of 10% by weight platinum fixed carbon catalyst, 10% by weight palladium fixed carbon powder catalyst (trade name) : 10% Pd carbon powder K type, manufactured by N.E. Hydrogenation was attempted and the product was analyzed, and the yield of 2-decanol relative to the 2-decanone charged was 0%.

<比較例5>
(10重量%ルテニウム固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成
実施例1において、10重量%白金固定炭素触媒の代りに10重量%ルテニウム固定炭素粉末触媒(商品名:10%Ruカーボン粉末Kタイプ、エヌ・イー ケムキャット(株)製)を使用し、ルテニウム金属として反応基質の1重量%相当量加えた以外は、実施例1と同様にして2−デカノンの接触水素化を試み、生成物の分析を行った。投入した2−デカノンに対する2−デカノールの収率は0%であった。
<Comparative Example 5>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 10 wt% ruthenium-fixed carbon catalyst In Example 1, instead of 10 wt% platinum-fixed carbon catalyst, 10 wt% ruthenium-fixed carbon powder catalyst (trade name) : 10% Ru carbon powder K type, manufactured by N.E. Chemcat Co., Ltd.) and contact with 2-decanone in the same manner as in Example 1 except that an amount corresponding to 1% by weight of the reaction substrate was added as ruthenium metal. Hydrogenation was attempted and the product was analyzed, and the yield of 2-decanol relative to the 2-decanone charged was 0%.

<比較例6>
(10重量%イリジウム固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成
実施例1において、10重量%白金固定炭素触媒の代りに10重量%イリジウム固定炭素粉末触媒(商品名:10%Irカーボン粉末Kタイプ、エヌ・イー ケムキャット(株)製)を使用し、イリジウム金属として反応基質の1重量%相当量加えた以外は、実施例1と同様にして2−デカノンの接触水素化を試み、生成物の分析を行った。投入した2−デカノンに対する2−デカノールの収率は0%であった。
<Comparative Example 6>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 10 wt% iridium fixed carbon catalyst In Example 1, instead of 10 wt% platinum fixed carbon catalyst, 10 wt% iridium fixed carbon powder catalyst (trade name : 10% Ir carbon powder K type, manufactured by N.E. Chemcat Co., Ltd.) and contact with 2-decanone in the same manner as in Example 1 except that an amount corresponding to 1% by weight of the reaction substrate was added as iridium metal. Hydrogenation was attempted and the product was analyzed, and the yield of 2-decanol relative to the 2-decanone charged was 0%.

<比較例7>
(10重量%金固定炭素触媒を用いた2−デカノンの接触水素化による2−デカノールの合成
実施例1において、10重量%白金固定炭素触媒の代りに10重量%金固定炭素粉末触媒(商品名:10%Auカーボン粉末Kタイプ、エヌ・イー ケムキャット(株)製)を金金属として反応基質の1重量%相当量加えた以外は、実施例1と同様にして2−デカノンの接触水素化を試み、生成物の分析を行った。投入した2−デカノンに対する2−デカノールの収率は0%であった。
<Comparative Example 7>
(Synthesis of 2-decanol by catalytic hydrogenation of 2-decanone using 10 wt% gold fixed carbon catalyst In Example 1, instead of 10 wt% platinum fixed carbon catalyst, 10 wt% gold fixed carbon powder catalyst (trade name : Catalytic hydrogenation of 2-decanone in the same manner as in Example 1 except that 10% Au carbon powder K type, manufactured by N.E. Chemcat Co., Ltd.) was used as a gold metal in an amount corresponding to 1% by weight of the reaction substrate. Attempts were made to analyze the product, and the yield of 2-decanol relative to the charged 2-decanone was 0%.

本発明の脂肪族第2級アルコールの製造方法は、医薬中間体製造や機能性材料製造などのファインケミカル産業や石油化学産業での研究、開発及び製造において有用である。 The method for producing an aliphatic secondary alcohol of the present invention is useful in research, development and production in the fine chemical industry and petrochemical industry such as pharmaceutical intermediate production and functional material production.

Claims (7)

炭素粒子と、該炭素粒子に固定された白金とを有してなる触媒にして、前記白金の該触媒中の含有率が8〜20重量%である、カルボニル基をただ一つ有する脂肪族ケトンの接触水素化により脂肪族第2級アルコールに転換する反応に用いられる白金炭素触媒。 An aliphatic ketone having only one carbonyl group as a catalyst comprising carbon particles and platinum fixed to the carbon particles, wherein the platinum content in the catalyst is 8 to 20% by weight. A platinum carbon catalyst used in a reaction to convert to an aliphatic secondary alcohol by catalytic hydrogenation of. 担体に使用される前記炭素粒子のBET法による比表面積が700〜2000 m2/gである請求項1に係る白金炭素触媒。 The platinum carbon catalyst according to claim 1, wherein the carbon particles used for the support have a specific surface area of 700 to 2000 m 2 / g by BET method. 前記脂肪族ケトンが下記一般式(I):
Figure 0005130957
(I)
(式中、R1及びR2は、異なっていても同じでもよい一価脂肪族炭化水素基を表し、相互に結合して一体化して2価の脂肪族炭化水素基を形成してもよく、該一価炭化水素基の炭素原子に結合している1つ以上の水素原子がハロゲン原子および/または水酸基で置換されていてもよい。)
で表される化合物であり、
前記脂肪族第2級アルコールが下記一般式(II):
Figure 0005130957
(II)
(式中、R1及びR2は、前記と同じ意味を表す)
で表される化合物である請求項1または2に係る白金炭素触媒。
The aliphatic ketone is represented by the following general formula (I):
Figure 0005130957
(I)
(In the formula, R 1 and R 2 represent a monovalent aliphatic hydrocarbon group which may be the same or different, and may be bonded together to form a divalent aliphatic hydrocarbon group. And one or more hydrogen atoms bonded to the carbon atom of the monovalent hydrocarbon group may be substituted with a halogen atom and / or a hydroxyl group.)
A compound represented by
The aliphatic secondary alcohol is represented by the following general formula (II):
Figure 0005130957
(II)
(Wherein R 1 and R 2 represent the same meaning as described above)
The platinum carbon catalyst according to claim 1 or 2 , which is a compound represented by
カルボニル基をただ一つ有する脂肪族ケトンの該カルボニル基を水素化して脂肪族第2級アルコールを製造する方法であって、
前記の脂肪族ケトンを触媒の存在下において常圧下で水素と湿式で接触させること、
前記触媒として、炭素粒子と、該炭素粒子に固定された白金とを有してなる触媒にして、該白金の該触媒中の含有率が8〜20重量%であるものを用いること、
を特徴とする上記脂肪族第2級アルコールの製造方法。
A process for producing an aliphatic secondary alcohol by hydrogenating the carbonyl group of an aliphatic ketone having only one carbonyl group,
Contacting the aliphatic ketone with hydrogen under atmospheric pressure in the presence of a catalyst in a wet manner;
As the catalyst, a catalyst comprising carbon particles and platinum fixed to the carbon particles, wherein the platinum content in the catalyst is 8 to 20% by weight ,
A process for producing the above-mentioned aliphatic secondary alcohol.
前記脂肪族ケトンが請求項に記載の一般式(I)で表される化合物であり、
前記脂肪族第2級アルコールが請求項に記載の一般式(II)で表される化合物であることを特徴とする請求項に係る脂肪族第2級アルコールの製造方法。
The aliphatic ketone is a compound represented by the general formula (I) according to claim 3 ,
Aliphatic secondary manufacturing process of alcohol according to claim 4, wherein the aliphatic secondary alcohol is of the general formula (II) compounds represented by claim 3.
反応基質である前記脂肪族ケトンに対する前記触媒中の白金分の割合が0.001〜10重量%である請求項4または5に係る脂肪族第2級アルコールの製造方法。 The method for producing an aliphatic secondary alcohol according to claim 4 or 5 , wherein a ratio of platinum in the catalyst to the aliphatic ketone as a reaction substrate is 0.001 to 10% by weight. 前記の脂肪族ケトンと水素との接触が0〜40℃で行われる請求項4〜6のいずれか1項に係る脂肪族第2級アルコールの製造方法。 The method for producing an aliphatic secondary alcohol according to any one of claims 4 to 6 , wherein the contact between the aliphatic ketone and hydrogen is performed at 0 to 40 ° C.
JP2008052677A 2008-03-03 2008-03-03 Platinum fixed carbon catalyst for catalytic hydrogenation of aliphatic ketones and process for producing aliphatic secondary alcohols from aliphatic ketones using the same Active JP5130957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052677A JP5130957B2 (en) 2008-03-03 2008-03-03 Platinum fixed carbon catalyst for catalytic hydrogenation of aliphatic ketones and process for producing aliphatic secondary alcohols from aliphatic ketones using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052677A JP5130957B2 (en) 2008-03-03 2008-03-03 Platinum fixed carbon catalyst for catalytic hydrogenation of aliphatic ketones and process for producing aliphatic secondary alcohols from aliphatic ketones using the same

Publications (2)

Publication Number Publication Date
JP2009207976A JP2009207976A (en) 2009-09-17
JP5130957B2 true JP5130957B2 (en) 2013-01-30

Family

ID=41181652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052677A Active JP5130957B2 (en) 2008-03-03 2008-03-03 Platinum fixed carbon catalyst for catalytic hydrogenation of aliphatic ketones and process for producing aliphatic secondary alcohols from aliphatic ketones using the same

Country Status (1)

Country Link
JP (1) JP5130957B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104926602A (en) * 2015-07-09 2015-09-23 武汉工程大学 Decyl alcohol preparing method by using catalytic hydrogenation of decanone
CN109761746B (en) * 2019-02-28 2022-03-22 江苏赛科化学有限公司 Process and system for preparing secondary alcohol by liquid wax oxidation
CN110240538B (en) * 2019-06-27 2022-04-22 万华化学集团股份有限公司 Method for preparing high-carbon branched-chain secondary alcohol
CN112973707A (en) * 2021-02-26 2021-06-18 广东工业大学 NiSn/C core-shell composite nano-catalyst and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626604A (en) * 1985-09-11 1986-12-02 Davy Mckee (London) Limited Hydrogenation process
FR2628417B1 (en) * 1988-03-08 1990-07-27 Rhone Poulenc Sante PROCESS FOR THE PREPARATION OF UNSATURATED ALCOHOLS
JPH0832307B2 (en) * 1993-03-11 1996-03-29 東芝タンガロイ株式会社 Catalyst composition
JP5028731B2 (en) * 2001-09-18 2012-09-19 旭硝子株式会社 Method for producing halogenated alcohol
DE10160141A1 (en) * 2001-12-07 2003-06-18 Basf Ag Process for the selective liquid phase hydrogenation of alpha, beta-unsaturated carbonyl compounds to unsaturated alcohols in the presence of a Pt / ZnO catalyst
JP4041953B2 (en) * 2002-03-28 2008-02-06 株式会社日本触媒 Hydrogenation catalyst and method for producing alcohol

Also Published As

Publication number Publication date
JP2009207976A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
Stratakis et al. Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes
Liang et al. Structure-sensitive and insensitive reactions in alcohol amination over nonsupported Ru nanoparticles
Spee et al. Selective liquid-phase semihydrogenation of functionalized acetylenes and propargylic alcohols with silica-supported bimetallic palladium− copper catalysts
CN106034401B (en) The improved method of the reduction amination and selective hydration of substrate containing selected halogen
JP5492813B2 (en) Catalyst, catalyst manufacturing method and process
Ye et al. Catalytic transfer hydrogenation of the C═ O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles
Li et al. Chemoselective hydrogenation of nitrobenzaldehyde to nitrobenzyl alcohol with unsupported Au nanorod catalysts in water
US20140179950A1 (en) Method of making adipic acid using nano catalyst
CN113058644B (en) Catalyst for catalyzing oxidative dehydrogenation and hydrogenation of organic compounds and application thereof
JP5130957B2 (en) Platinum fixed carbon catalyst for catalytic hydrogenation of aliphatic ketones and process for producing aliphatic secondary alcohols from aliphatic ketones using the same
US11969711B2 (en) Carbon-based, precious metal-transition metal composite catalyst and preparation method therefor
WO2017060922A1 (en) An eco-friendly process for hydrogenation or/and hydrodeoxygenation of organic compound using hydrous ruthenium oxide catalyst
CN109225253A (en) A kind of atom level dispersion palladium-copper catalyst and preparation method thereof and catalytic applications
Grirrane et al. Gold nanoparticles supported on ceria promote the selective oxidation of oximes into the corresponding carbonylic compounds
CN114849694A (en) Catalyst based on metal-loaded tungsten oxide hydrogenated nitroarene and preparation method and application thereof
Schmöger et al. A Practical Approach for Ambient‐Pressure Hydrogenations Using Pd on Porous Glass
JP5786621B2 (en) Selective hydrogenation catalyst, process for producing the same, and selective hydrogenation process using the same.
JP4862162B2 (en) Catalyst for hydrogenation of carbonyl group, method for producing the same, and method for producing unsaturated alcohol using the catalyst
CN113429301B (en) Method for preparing toluenediamine by hydrogenation of dinitrotoluene with isopropanol as hydrogen source
US11964261B2 (en) Catalyst of platinum/zirconium dioxide/SBA-15 and method for preparing the same
EP2799417B1 (en) METHOD OF PRODUCING 1-(2-t-BUTYL CYCLOHEXYLOXY)-2-ALKANOL
US9815758B2 (en) Process of preparing 4-methyl-3-decen-5-one
JP5664030B2 (en) Defluorination method for fluorine-containing compounds
CN109453767A (en) A kind of Pd-Au/C bimetallic catalyst and its preparation method and application
EP2799416A1 (en) METHOD OF PRODUCING 1-(2-t-BUTYL CYCLOHEXYLOXY)-2-BUTANOL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120821

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250