JP5018032B2 - Lead-free glass for electrode coating - Google Patents

Lead-free glass for electrode coating Download PDF

Info

Publication number
JP5018032B2
JP5018032B2 JP2006308023A JP2006308023A JP5018032B2 JP 5018032 B2 JP5018032 B2 JP 5018032B2 JP 2006308023 A JP2006308023 A JP 2006308023A JP 2006308023 A JP2006308023 A JP 2006308023A JP 5018032 B2 JP5018032 B2 JP 5018032B2
Authority
JP
Japan
Prior art keywords
glass
mol
lead
tio
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006308023A
Other languages
Japanese (ja)
Other versions
JP2007182365A (en
Inventor
俊弘 竹内
哲 藤峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006308023A priority Critical patent/JP5018032B2/en
Publication of JP2007182365A publication Critical patent/JP2007182365A/en
Application granted granted Critical
Publication of JP5018032B2 publication Critical patent/JP5018032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

本発明は、ガラス基板上に形成された銀、ITO(スズがドープされた酸化インジウム)、酸化スズ、酸化亜鉛、アルミニウム、クロムなどの電極を絶縁被覆するのに好適な電極被覆用無鉛ガラス、およびプラズマディスプレイ装置(以下、PDPという。)の製造に用いられる隔壁付きガラス基板の製造方法に関する。   The present invention is a lead-free glass for electrode coating suitable for insulatingly coating electrodes such as silver, ITO (indium oxide doped with tin), tin oxide, zinc oxide, aluminum and chromium formed on a glass substrate, The present invention also relates to a method for manufacturing a glass substrate with a partition wall used for manufacturing a plasma display device (hereinafter referred to as PDP).

近年、薄型の平板型カラー表示装置が注目を集めている。このような表示装置では画像を形成する画素における表示状態を制御するために各画素に電極が形成される。このような電極としては銀、ITO、酸化スズ、アルミニウム、クロムなどが用いられている。   In recent years, thin flat panel color display devices have attracted attention. In such a display device, an electrode is formed in each pixel in order to control a display state in the pixel forming the image. As such an electrode, silver, ITO, tin oxide, aluminum, chromium, or the like is used.

前記表示装置の表示面として使用されるガラス基板の表面に形成される電極は、精細な画像を実現するために細い線状に加工される。そして各画素を独自に制御するためには、このような微細に加工された電極相互の絶縁性を確保する必要がある。ところが、ガラス基板の表面に水分が存在する場合やガラス基板中にアルカリ成分が存在する場合、このガラス基板の表面を介して若干の電流が流れることがある。このような電流を防止するには、電極間に絶縁層を形成することが有効である。このような絶縁層を形成する絶縁材料としては種々のものが知られているが、なかでも、信頼性の高い絶縁材料であるガラス材料が広く用いられている。多くの場合、前記被覆用絶縁層は焼結性、絶縁性などの点から鉛を含有するガラスが用いられている。   The electrodes formed on the surface of the glass substrate used as the display surface of the display device are processed into thin lines in order to realize a fine image. In order to control each pixel independently, it is necessary to ensure insulation between such finely processed electrodes. However, when moisture is present on the surface of the glass substrate or when an alkali component is present in the glass substrate, a slight current may flow through the surface of the glass substrate. In order to prevent such a current, it is effective to form an insulating layer between the electrodes. Various insulating materials for forming such an insulating layer are known, and among these, glass materials that are highly reliable insulating materials are widely used. In many cases, the glass containing lead is used for the said insulating layer for a coating | cover from points, such as sinterability and insulation.

電極被覆用ガラスには、先に述べたような電気絶縁性の他に、典型的には、軟化点(Ts)が450〜600℃であること、50〜350℃における平均線膨張係数(α)が60×10−7〜90×10−7/℃であること、等が求められており、種々のガラスが従来提案されている。
近年は鉛を含有しないガラスが望まれており、たとえば、質量百分率表示で、B 34.0%、SiO 4.4%、ZnO 49.9%、BaO 3.9%、KO 7.8%、からなる電極被覆用ガラスが開示されている(特許文献1参照)。
In addition to electrical insulation as described above, the electrode coating glass typically has a softening point (Ts) of 450 to 600 ° C., and an average coefficient of linear expansion (α at 50 to 350 ° C. ) Is 60 × 10 −7 to 90 × 10 −7 / ° C., etc., and various glasses have been conventionally proposed.
In recent years, glass containing no lead has been desired. For example, in terms of mass percentage, B 2 O 3 34.0%, SiO 2 4.4%, ZnO 49.9%, BaO 3.9%, K 2 An electrode coating glass composed of 7.8% O is disclosed (see Patent Document 1).

最近大型平面カラーディスプレイ装置として期待されているPDPにおいては、表示面として使用される前面基板、背面基板および隔壁によりセルが区画形成されており、そのセル中でプラズマ放電を発生させることにより画像が形成される。前記前面基板及び背面基板の表面には電極が形成されており、この電極をプラズマから保護するために、プラズマ耐久性に優れたガラスにより前記電極を被覆する必要がある。   In a PDP that has recently been expected as a large flat color display device, cells are defined by a front substrate, a rear substrate, and barrier ribs used as a display surface, and an image is generated by generating plasma discharge in the cells. It is formed. Electrodes are formed on the surfaces of the front substrate and the rear substrate. In order to protect the electrodes from plasma, it is necessary to cover the electrodes with glass having excellent plasma durability.

このような電極被覆に用いられるガラスは、通常はガラス粉末にして使用される。たとえば、前記ガラス粉末に必要に応じてフィラー等を添加した上で樹脂、溶剤等と混合してガラスペーストとしこれを電極が形成されているガラス基板に塗布後焼成する、前記ガラス粉末に樹脂、さらに必要に応じて無機酸化物フィラーを混合して得られたペーストを電極が形成されているガラス基板上に塗布、乾燥後に焼成する、スラリーをグリーンシートに成形しこれを電極が形成されているガラス基板上にラミネート後焼成する、等の方法によって前記電極を被覆する。   The glass used for such electrode coating is usually used as a glass powder. For example, after adding a filler or the like to the glass powder as necessary, it is mixed with a resin, a solvent or the like to form a glass paste, which is applied to a glass substrate on which an electrode is formed and then fired. Furthermore, if necessary, a paste obtained by mixing an inorganic oxide filler is applied on a glass substrate on which an electrode is formed, fired after drying, a slurry is formed into a green sheet, and the electrode is formed The electrode is coated by a method such as laminating and baking on a glass substrate.

PDPでは背面基板上の電極を被覆した絶縁層(電極被覆ガラス層)の上に隔壁を形成する。隔壁の形成方法は様々なものが提案されており、その一つとしてエッチング法が知られている。
エッチング法では隔壁用ペーストを絶縁層の上に塗布、焼成して隔壁形成用ガラス層を形成した後、隔壁形成に不必要な部分をパターニングにより露出させ、酸等にて選択的に除去することで隔壁の形成を行う(特許文献2参照)。
In the PDP, a partition wall is formed on an insulating layer (electrode covering glass layer) covering the electrode on the back substrate. Various methods for forming the partition walls have been proposed, and an etching method is known as one of them.
In the etching method, a partition wall paste is applied on an insulating layer and baked to form a partition wall forming glass layer, and then unnecessary portions for partition wall formation are exposed by patterning and selectively removed with an acid or the like. Then, the partition walls are formed (see Patent Document 2).

エッチング法では、酸等によって隔壁形成用ガラス層を侵食することで隔壁区画を形成するため、その過程で、隔壁の下に位置する電極被覆ガラス層の一部も酸等にさらされる。このため、エッチング法に用いる電極被覆材料は化学的耐久性が強いことが求められる。   In the etching method, partition walls are formed by eroding the partition-forming glass layer with an acid or the like, and in this process, a part of the electrode-covered glass layer located under the partition is also exposed to acids or the like. For this reason, the electrode coating material used for the etching method is required to have high chemical durability.

特開2002−249343号公報JP 2002-249343 A 特開2000−95542号公報JP 2000-95542 A

エッチング法に用いられる電極被覆ガラス層としては鉛含有ガラスが使用されているが、これを鉛に含有しないものにしようとすると化学的耐久性が低下してエッチング時に電極被覆ガラス層が侵食されやすくなる問題があった。
本発明は、化学的耐久性に優れ、PDP背面基板の電極被覆に用いることが可能な電極被覆用無鉛ガラスの提供を目的とする。
Lead-containing glass is used as the electrode-covered glass layer used in the etching method, but if it is not included in lead, the chemical durability is reduced and the electrode-covered glass layer is easily eroded during etching. There was a problem.
An object of the present invention is to provide a lead-free glass for electrode coating that is excellent in chemical durability and can be used for electrode coating of a PDP back substrate.

本発明は、下記酸化物基準のモル%表示で、SiO 25〜55%、B 4〜25%、ZnO 5〜30%、Al 0〜10%、TiO 0〜10%、LiO 0〜17%、NaO+KO 0〜10%、Bi 0〜25%、CoO+CuO+CeO+SnO 0〜3%、から本質的になり、Alを含有する場合B+Alが26モル%以下であり、TiO、NaOまたはKOを含有する場合(TiO+4モル%)≧(NaO+KO)である電極被覆用無鉛ガラス(以下、第1のガラスということがある。)を提供する。 The present invention, in mol% based on the following oxides, SiO 2 25~55%, B 2 O 3 4~25%, 5~30% ZnO, Al 2 O 3 0~10%, TiO 2 0~10 %, Li 2 O 0-17%, Na 2 O + K 2 O 0-10%, Bi 2 O 3 0-25%, CoO + CuO + CeO 2 + SnO 2 0-3%, containing Al 2 O 3 In the case where B 2 O 3 + Al 2 O 3 is 26 mol% or less and TiO 2 , Na 2 O or K 2 O is contained (TiO 2 +4 mol%) ≧ (Na 2 O + K 2 O) A lead-free glass for coating (hereinafter sometimes referred to as first glass) is provided.

また、下記酸化物基準のモル%表示で、SiO 25〜55%、B 4〜25%、ZnO 5〜30%、Al 0〜10%、TiO 2〜10%、LiO 0〜17%、NaO+KO 0〜10%、Bi 0〜25%、CoO+CuO+CeO+SnO 0〜3%、から本質的になり、Alを含有する場合B+Alが26モル%以下である電極被覆用無鉛ガラス(以下、第2のガラスということがある。)を提供する。
また、前記電極被覆用無鉛ガラスの粉末と、その粉末100質量部に対して0.1〜40質量部の割合の無機酸化物粉末とを含有するガラスセラミックス組成物を提供する。
Further, in mole% based on the following oxides, SiO 2 25~55%, B 2 O 3 4~25%, 5~30% ZnO, Al 2 O 3 0~10%, TiO 2 2~10%, When consisting essentially of Li 2 O 0-17%, Na 2 O + K 2 O 0-10%, Bi 2 O 3 0-25%, CoO + CuO + CeO 2 + SnO 2 0-3%, and containing Al 2 O 3 Provided is a lead-free glass for electrode coating (hereinafter sometimes referred to as second glass) in which B 2 O 3 + Al 2 O 3 is 26 mol% or less.
Moreover, the glass ceramics composition containing the said lead-free glass powder for electrode coating and the inorganic oxide powder of the ratio of 0.1-40 mass parts with respect to 100 mass parts of the powder is provided.

また、PDPの製造に用いられる隔壁付きガラス基板の製造方法であって、ガラス基板上に形成された電極を前記電極被覆用無鉛ガラスによって被覆し、その電極を被覆したガラスの上にエッチング法によって隔壁を形成する隔壁付きガラス基板の製造方法を提供する。   Moreover, it is a manufacturing method of the glass substrate with a partition used for manufacture of PDP, Comprising: The electrode formed on the glass substrate is coat | covered with the said lead-free glass for electrode coating, By the etching method on the glass which coat | covered the electrode A method for manufacturing a glass substrate with a partition wall for forming a partition wall is provided.

また、PDPの製造に用いられる隔壁付きガラス基板の製造方法であって、ガラス基板上に形成された電極を前記ガラスセラミックス組成物を含有するグリーンシートまたは同ガラスセラミックス組成物を含有するガラスペーストによって被覆して焼成し、そのグリーンシートまたはガラスペーストの焼成体の上にエッチング法によって隔壁を形成する隔壁付きガラス基板の製造方法を提供する。   Moreover, it is a manufacturing method of the glass substrate with a partition used for manufacture of PDP, Comprising: The electrode formed on the glass substrate by the green paste containing the said glass ceramic composition, or the glass paste containing the same glass ceramic composition Provided is a method for producing a glass substrate with a partition, which is coated and fired, and a partition is formed by etching on the green sheet or glass paste fired body.

本発明によれば、エッチング法を用いた隔壁形成を行うときの電極被覆に用いられるガラスを鉛を含有しないものにできる。   According to the present invention, glass used for electrode coating when performing partition formation using an etching method can be made to contain no lead.

本発明の電極被覆用無鉛ガラス(以下、本発明のガラスという。)は通常、粉末状にして使用される。
たとえば、本発明のガラスの粉末、または本発明のガラスの粉末に光学特性、電気特性もしくは色調調整のため無機酸化物フィラーを添加したガラスセラミックス組成物を、印刷性を付与するための有機ビヒクル等を用いてガラスペーストとし、ガラス基板上に形成された電極上に前記ガラスペーストを塗布、焼成して電極を被覆する。
なお、有機ビヒクルとはエチルセルロース等のバインダをα−テルピネオール等の有機溶剤に溶解したものである。また、ガラスペーストに限らず先に述べたようなグリーンシート法を用いて電極を被覆してもよい。
The lead-free glass for electrode coating of the present invention (hereinafter referred to as the glass of the present invention) is usually used in a powder form.
For example, the glass powder of the present invention, or a glass ceramic composition in which an inorganic oxide filler is added to the glass powder of the present invention to adjust optical properties, electrical properties or color tone, an organic vehicle for imparting printability, etc. The glass paste is applied to the electrode formed on the glass substrate and fired to coat the electrode.
The organic vehicle is obtained by dissolving a binder such as ethyl cellulose in an organic solvent such as α-terpineol. Moreover, you may coat | cover an electrode using not only a glass paste but the green sheet method as stated above.

PDPにおいては、本発明のガラスは銀電極の被覆に好適に使用される。
本発明のガラスを用いたPDPの製造は、たとえば交流方式のものであれば次のようにして行われる。
パターニングされた透明電極およびバス線(典型的には銀線)をガラス基板の表面に形成し、その上に透明電極被覆用ガラスの粉末をガラスペースト法またはグリーンシート法によって塗布・焼成してガラス層を形成し、最後に保護膜として酸化マグネシウムの層を形成して前面基板とする。
In the PDP, the glass of the present invention is suitably used for coating a silver electrode.
Production of the PDP using the glass of the present invention is carried out as follows, for example, in the case of an alternating current type.
A patterned transparent electrode and a bus wire (typically a silver wire) are formed on the surface of a glass substrate, and a glass for transparent electrode coating glass is applied and fired thereon by a glass paste method or a green sheet method. A layer is formed, and finally a magnesium oxide layer is formed as a protective film to form a front substrate.

一方、パターニングされたアドレス用電極を別のガラス基板の表面に形成し、その上に本発明のガラス粉末または本発明のガラス粉末と無機酸化物粉末との混合物(ガラスセラミックス組成物)をガラスペーストとしたものを塗布・焼成してガラス層またはガラス含有層(以下、これをもガラス層ということがある。)を形成し、その上にエッチング法やサンドブラスト法等にて隔壁を形成する。
エッチング法にて隔壁を形成する場合、従来の電極被覆用無鉛ガラスでは浸食が生じやすかったが、本発明のガラスを用いることによりその問題はなくなる、または軽減される。
On the other hand, a patterned address electrode is formed on the surface of another glass substrate, and the glass powder of the present invention or a mixture of the glass powder of the present invention and an inorganic oxide powder (glass ceramic composition) is formed on the glass paste. Then, a glass layer or a glass-containing layer (hereinafter also referred to as a glass layer) is formed, and a partition wall is formed thereon by an etching method or a sand blast method.
When the partition walls are formed by the etching method, the conventional lead-free glass for electrode coating easily eroded, but the problem is eliminated or reduced by using the glass of the present invention.

隔壁を形成して隔壁付きガラス基板とした後、さらに蛍光体層を印刷・焼成して背面基板とする。なお、前記ガラス層を形成するのにガラスペーストを使用せず、グリーンシート法等を用いてもよい。
前面基板と背面基板の周縁にシール材をディスペンサで塗布し、前記透明電極と前記アドレス用電極が対向するように組み立てた後、焼成してPDPとする。そしてPDP内部を排気して、放電空間(セル)にNeやHe−Xeなどの放電ガスを封入する。
なお、上記の例は交流方式のものであるが、本発明のガラスは直流方式のものにも適用できる。
After the partition walls are formed to form a glass substrate with partition walls, the phosphor layer is further printed and baked to form a back substrate. The glass layer may be formed by using a green sheet method or the like without using glass paste.
A sealant is applied to the peripheral edges of the front substrate and the rear substrate with a dispenser, assembled so that the transparent electrode and the address electrode face each other, and then baked to form a PDP. Then, the inside of the PDP is exhausted, and a discharge gas such as Ne or He—Xe is sealed in the discharge space (cell).
In addition, although said example is a thing of an alternating current system, the glass of this invention is applicable also to a direct current system.

本発明のガラスのTsは450〜600℃であることが好ましい。600℃超では、通常使用されているガラス基板(ガラス転移点:550〜620℃)が焼成時に変形するおそれがある。   It is preferable that Ts of the glass of this invention is 450-600 degreeC. If it exceeds 600 ° C., a glass substrate (glass transition point: 550 to 620 ° C.) usually used may be deformed during firing.

前記ガラス基板としては通常、αが80×10−7〜90×10−7/℃のものが用いられる。したがってこのようなガラス基板と膨張特性をマッチングさせ、ガラス基板のそりや強度の低下を防止するためには、本発明のガラスまたは本発明のセラミックス組成物の焼成体のαは好ましくは60×10−7〜90×10−7/℃、より好ましくは70×10−7〜85×10−7/℃である。
本発明のガラスは、Tsが450〜600℃、αが60×10−7〜90×10−7/℃であることが好ましい。
As the glass substrate, those having α of 80 × 10 −7 to 90 × 10 −7 / ° C. are usually used. Therefore, in order to match the expansion characteristics with such a glass substrate and prevent warpage of the glass substrate and a decrease in strength, α of the fired body of the glass of the present invention or the ceramic composition of the present invention is preferably 60 × 10. It is −7 to 90 × 10 −7 / ° C., more preferably 70 × 10 −7 to 85 × 10 −7 / ° C.
The glass of the present invention preferably has Ts of 450 to 600 ° C. and α of 60 × 10 −7 to 90 × 10 −7 / ° C.

本発明のガラスの250℃における比抵抗(ρ)は10Ωcm以上であることが好ましい。10Ωcm未満では電気絶縁不良が起こるおそれがある。 The specific resistance (ρ) at 250 ° C. of the glass of the present invention is preferably 10 9 Ωcm or more. If it is less than 10 9 Ωcm, electrical insulation failure may occur.

次に、本発明のガラスの組成についてモル百分率表示を用いて説明する。
SiOは化学的耐久性を向上させる成分であり、必須である。SiOが25%未満では化学的耐久性が低下し、好ましくは30%以上、より好ましくは35%以上である。SiOが55%超ではTsが高くなり、好ましくは50%以下、より好ましくは48%以下である。
Next, the composition of the glass of the present invention will be described using a mole percentage display.
SiO 2 is a component that improves chemical durability and is essential. When SiO 2 is less than 25%, the chemical durability is lowered, preferably 30% or more, more preferably 35% or more. If SiO 2 exceeds 55%, Ts is high, preferably 50% or less, more preferably 48% or less.

はSiOほどにはTsを上げずにガラスを安定化させることができる成分であり、必須である。Bが4%未満ではTsが高くなり、好ましくは6%以上、より好ましくは8%以上である。Bが25%超では化学的耐久性が低下し、好ましくは20%以下、より好ましくは18%以下である。 B 2 O 3 is a component that can stabilize the glass without increasing Ts as much as SiO 2 and is essential. When B 2 O 3 is less than 4%, Ts is high, preferably 6% or more, and more preferably 8% or more. If B 2 O 3 exceeds 25%, the chemical durability is lowered, preferably 20% or less, more preferably 18% or less.

ZnOはTsを低下させる成分であり、必須である。ZnOが5%未満ではTsが高くなり、好ましくは9%以上、より好ましくは11%以上である。ZnOが30%超では化学的耐久性が低下し、また、焼成時に結晶が析出しやすくなり、好ましくは28%以下、より好ましくは27%以下、特に好ましくは26%以下、典型的には24%以下である。   ZnO is a component that lowers Ts and is essential. If ZnO is less than 5%, Ts becomes high, preferably 9% or more, more preferably 11% or more. If ZnO exceeds 30%, the chemical durability decreases, and crystals tend to precipitate during firing, preferably 28% or less, more preferably 27% or less, particularly preferably 26% or less, typically 24%. % Or less.

Alは必須ではないが、ガラスを安定化させるために10%まで含有してもよい。Alが10%超ではTsが高くなり、好ましくは8%以下、より好ましくは5%以下である。
Alを含有する場合その含有量は1%以上であることが好ましい。
また、その場合BおよびAlの含有量合計B+Alは26%以下である。これが26%超では化学的耐久性が低下する。
Al 2 O 3 is not essential, but may be contained up to 10% in order to stabilize the glass. When Al 2 O 3 exceeds 10%, Ts becomes high, preferably 8% or less, more preferably 5% or less.
When Al 2 O 3 is contained, the content is preferably 1% or more.
Further, the total content B 2 O 3 + Al 2 O 3 in that case B 2 O 3 and Al 2 O 3 is not more than 26%. If it exceeds 26%, the chemical durability is lowered.

第1のガラスにおいては、TiOは必須ではないが、化学的耐久性を向上させる目的で10%まで含有してもよく、その場合の含有量は典型的には2%以上である。TiOが10%超ではガラスが失透しやすくなり、好ましくは8%以下、より好ましくは7%以下である。
第2のガラスにおいては、TiOは化学的耐久性を向上させる成分であり、必須である。TiOは典型的には3%以上、好ましくは3.2%以上である。TiOが10%超ではガラスが失透しやすくなり、好ましくは8%以下、より好ましくは7%以下である。
In the first glass, TiO 2 is not essential, but may be contained up to 10% for the purpose of improving chemical durability, and the content in that case is typically 2% or more. If TiO 2 exceeds 10%, the glass tends to be devitrified, preferably 8% or less, more preferably 7% or less.
In the second glass, TiO 2 is a component that improves chemical durability and is essential. TiO 2 is typically less than 3%, preferably 3.2% or more. If TiO 2 exceeds 10%, the glass tends to be devitrified, preferably 8% or less, more preferably 7% or less.

LiOは必須ではないが、Tsを低下させる効果を有し17%まで含有してもよい。LiOが17%超ではαが大きくなりすぎ、好ましくは15%以下、典型的には13%以下である。LiOを含有する場合その含有量は2%以上であることが好ましい。LiOが2%未満ではTsを低下させる効果が小さく、好ましくは4%以上である。
NaOおよびKOはいずれも必須ではないが、Tsを低下させるため、いずれか一方または両者を合計で10%までの範囲で含有してもよい。NaO+KOが10%超では化学的耐久性が低下し、またはαが大きくなりすぎ、好ましくは8%以下、より好ましくは7%以下、典型的には6%以下である。
Li 2 O is not essential, but has an effect of lowering Ts and may be contained up to 17%. If Li 2 O exceeds 17%, α becomes too large, preferably 15% or less, and typically 13% or less. When Li 2 O is contained, the content is preferably 2% or more. If Li 2 O is less than 2%, the effect of lowering Ts is small, preferably 4% or more.
Both Na 2 O and K 2 O are not essential, but either or both may be contained in a total range of up to 10% in order to reduce Ts. If Na 2 O + K 2 O exceeds 10%, the chemical durability decreases, or α becomes too large, preferably 8% or less, more preferably 7% or less, and typically 6% or less.

第1のガラスにおいては、化学的耐久性を向上させるために、TiO、NaOまたはKOを含有する場合においてTiO含有量に4モル%を加算した値はNaOおよびKOの含有量の合計以上とされる。たとえば、TiOを含有せずNaOまたはKOを含有する場合にはNaO+KOは4%以下とされる。(TiO+2%)が(NaO+KO)以上であることが好ましい。
第1のガラスにおいてTsを低下させたい場合には、TiOは含有しないようにするか2%未満の範囲で含有するようにすることが好ましい。
In the first glass, in order to improve chemical durability, when TiO 2 , Na 2 O or K 2 O is contained, the value obtained by adding 4 mol% to the TiO 2 content is Na 2 O and K It is set to be equal to or more than the total content of 2 O. For example, when not containing TiO 2 and containing Na 2 O or K 2 O, Na 2 O + K 2 O is 4% or less. (TiO 2 + 2%) is preferably (Na 2 O + K 2 O) or more.
When it is desired to lower Ts in the first glass, it is preferable not to contain TiO 2 or to contain it in a range of less than 2%.

Biは必須ではないがTsを低下させるために25%まで含有してもよい。Biが25%超ではαが高くなるおそれがあり、好ましくは20%以下、より好ましくは15%以下である。Biを含有する場合その含有量は1%以上であることが好ましい。Biが1%未満ではTsを低下させる効果が小さい。 Bi 2 O 3 is not essential, but may be contained up to 25% in order to reduce Ts. If Bi 2 O 3 exceeds 25%, α tends to be high, preferably 20% or less, more preferably 15% or less. When Bi 2 O 3 is contained, the content is preferably 1% or more. If Bi 2 O 3 is less than 1%, the effect of lowering Ts is small.

CoO、CuO、CeOおよびSnOはいずれも必須ではないが、これら成分の1以上を含有する場合、これら4成分の含有量の合計は3%以下である。
CoO、CuOおよびCeOは銀発色現象を抑制したい等の場合に好適な成分であり、これら成分の1以上を合計で2%まで含有してもよい。
SnOは耐候性を上げたい等の場合に好適な成分であり、2%まで含有してもよい。
CoO, CuO, CeO 2 and SnO 2 are not essential, but when one or more of these components are contained, the total content of these four components is 3% or less.
CoO, CuO, and CeO 2 are suitable components when it is desired to suppress the silver coloring phenomenon, and one or more of these components may be contained up to 2% in total.
SnO 2 is a suitable component for improving weather resistance, and may be contained up to 2%.

第2のガラスにおいては、典型的には、SiOが30〜50%、Bが6〜20%、ZnOが9〜28%、Alが0〜8%、TiOが2〜8%、LiOが2〜17%、NaO+KOが0〜8%であり、また、Biを1%以上含有する場合の典型的な態様として、SiOが35〜48%、Bが8〜18%、ZnOが11〜26%、Alが0〜5%、TiOが2〜7%、LiOが4〜15%、NaO+KOが0〜6%、Biが1〜15%であるものが挙げられる。
第2のガラスは化学的耐久性をより向上させたい場合に好適な態様である。
In the second glass, typically, SiO 2 is 30 to 50%, B 2 O 3 is 6 to 20%, ZnO is 9 to 28%, Al 2 O 3 is 0 to 8%, and TiO 2 is 2 to 8%, Li 2 O is 2 to 17%, Na 2 O + K 2 O is 0 to 8%, and as a typical embodiment in which Bi 2 O 3 is contained in an amount of 1% or more, SiO 2 is 35~48%, B 2 O 3 is 8 to 18%, ZnO is 11~26%, Al 2 O 3 is 0 to 5%, TiO 2 is 2~7%, Li 2 O is 4 to 15%, Na 2 O + K 2 O is 0 to 6%, and Bi 2 O 3 is 1 to 15%.
The second glass is a suitable mode when it is desired to further improve the chemical durability.

本発明のガラスは本質的に上記成分からなるが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。そのような成分を含有する場合、それらの含有量の合計は、好ましくは10%以下、より好ましくは7%以下である。
前記その他の成分としてはガラスの安定化等を目的とするMgO、CaO、SrO、BaO等が例示される。MgO、CaO、SrOまたはBaOを含有する場合これら成分の含有量の合計は5%以下であることが好ましい。
なお、本発明のガラスはPbOを含有しないし、Sbも含有しないことが好ましい。
The glass of the present invention consists essentially of the above components, but may contain other components as long as the object of the present invention is not impaired. When such components are contained, the total content thereof is preferably 10% or less, more preferably 7% or less.
Examples of the other components include MgO, CaO, SrO, BaO and the like for the purpose of stabilizing the glass. When MgO, CaO, SrO or BaO is contained, the total content of these components is preferably 5% or less.
The glass of the present invention do not contain PbO, it is preferred not to contain even Sb 2 O 3.

表のSiOからBaOまでの欄にモル百分率表示で示す組成となるように、原料を調合して混合し、1200〜1350℃の電気炉中で白金ルツボを用いて1時間溶融し、薄板状ガラスに成形した後、ボールミルで粉砕し、ガラス粉末を得た。なお、表のB+Alの欄にはB+Alを示す。
例1〜9は実施例、例10〜19は比較例である。
The raw materials were prepared and mixed so as to have a composition expressed in mole percentages in the columns from SiO 2 to BaO in the table, and melted for 1 hour using a platinum crucible in an electric furnace at 1200 to 1350 ° C. After forming into glass, it was pulverized with a ball mill to obtain glass powder. The B + Al column of the table shows B 2 O 3 + Al 2 O 3 .
Examples 1 to 9 are examples, and examples 10 to 19 are comparative examples.

これらガラス粉末について、軟化点Ts(単位:℃)、前記平均線膨張係数α(単位:10−7/℃)を以下に述べるようにして測定した。結果を表に示す。
Ts:800℃までの範囲で示差熱分析計を用いて測定した。
α:ガラス粉末を加圧成形後、Tsより30℃高い温度で10分間焼成して得た焼成体を直径5mm、長さ2cmの円柱状に加工し、熱膨張計で50〜350℃の平均線膨張係数を測定した。
For these glass powders, the softening point Ts (unit: ° C.) and the average linear expansion coefficient α (unit: 10 −7 / ° C.) were measured as described below. The results are shown in the table.
Ts: Measured using a differential thermal analyzer in the range up to 800 ° C.
α: After the glass powder is pressure-molded, a fired body obtained by firing at a temperature 30 ° C. higher than Ts for 10 minutes is processed into a cylindrical shape having a diameter of 5 mm and a length of 2 cm, and an average of 50 to 350 ° C. with a thermal dilatometer. The linear expansion coefficient was measured.

また、例1〜19の各ガラス粉末70gとチタニア粉末10gを有機ビヒクル20gと混練してガラスペーストを作製した。なお、有機ビヒクルは、α−テルピネオールにエチルセルロースを質量百分率表示で12%溶解して作製した。
次に、大きさ50mm×75mm、厚さ2.8mmのガラス基板を用意した。なお、前記ガラス基板は、質量百分率表示組成が、SiO 58%、Al 7%、NaO 4%、KO 6.5%、MgO 2%、CaO 5%、SrO 7%、BaO 7.5%、ZrO 3%、であり、またガラス転移点が626℃、αが83×10−7/℃、であるガラスからなる。
Moreover, each glass powder 70g of Examples 1-19 and 10g of titania powders were knead | mixed with 20g of organic vehicles, and the glass paste was produced. The organic vehicle was prepared by dissolving 12% of ethyl cellulose in α-terpineol in terms of mass percentage.
Next, a glass substrate having a size of 50 mm × 75 mm and a thickness of 2.8 mm was prepared. The glass substrate has a mass percentage display composition of SiO 2 58%, Al 2 O 3 7%, Na 2 O 4%, K 2 O 6.5%, MgO 2%, CaO 5%, SrO 7%. BaO 7.5%, ZrO 2 3%, and a glass transition point of 626 ° C. and α of 83 × 10 −7 / ° C.

上記ガラス基板の50mm×50mmの部分に前記ガラスペーストを均一にスクリーン印刷後、120℃で10分間乾燥した。これらガラス基板を昇温速度10℃/分で温度がTsに達するまで加熱し、さらにその温度をTsに10分間保持して焼成した。このようにしてガラス基板上に形成されたガラス層の厚さは10〜15μmであった。
ガラス基板上に前記ガラス層が形成された試料について、化学的耐久性を以下に述べるようにして測定した。結果を表に示す。
The glass paste was uniformly screen-printed on a 50 mm × 50 mm portion of the glass substrate, and then dried at 120 ° C. for 10 minutes. These glass substrates were heated at a heating rate of 10 ° C./min until the temperature reached Ts, and further, the temperature was maintained at Ts for 10 minutes to be fired. Thus, the thickness of the glass layer formed on the glass substrate was 10-15 micrometers.
The chemical durability of the sample having the glass layer formed on the glass substrate was measured as described below. The results are shown in the table.

化学的耐久性:42℃に保持した3.0質量%の硝酸溶液に前記試料を90秒浸漬し、浸漬前後での膜厚の減少の程度により化学的耐久性を評価した。好ましい耐久性を有しているものを○、膜厚減少が生じていて耐久性が劣るものを△、焼成膜自体が消失しており極めて劣るものを×、と表記した。なお、前記評価において好ましい耐久性を有しているものの中で浸漬時間を180秒にしても焼成膜面の性状変化が認められなかったものは高い耐久性を有するものとして◎と表記した。   Chemical durability: The sample was immersed in a 3.0% by mass nitric acid solution maintained at 42 ° C. for 90 seconds, and the chemical durability was evaluated by the degree of decrease in film thickness before and after immersion. Those having preferable durability were indicated as ◯, those having a decrease in film thickness and inferior in durability were indicated by Δ, and those in which the fired film itself disappeared and extremely inferior were indicated as ×. In the above evaluation, among those having preferable durability, those in which no change in the properties of the fired film surface was observed even when the immersion time was 180 seconds were marked as ◎ as having high durability.

Figure 0005018032
Figure 0005018032

Figure 0005018032
Figure 0005018032

PDPの背面基板の電極被覆および背面基板に利用できる。   It can be used for electrode coating on the back substrate of the PDP and for the back substrate.

Claims (11)

下記酸化物基準のモル%表示で、SiO 25〜55%、B 4〜25%、ZnO 5〜30%、Al 0〜10%、TiO 0〜10%、LiO 0〜17%、NaO+KO 0〜10%、Bi 0〜25%、CoO+CuO+CeO+SnO 0〜3%、から本質的になり、Alを含有する場合B+Alが26モル%以下であり、TiO、NaOまたはKOを含有する場合(TiO+4モル%)≧(NaO+KO)である電極被覆用無鉛ガラス。 In mole% based on the following oxides, SiO 2 25~55%, B 2 O 3 4~25%, 5~30% ZnO, Al 2 O 3 0~10%, TiO 2 0~10%, Li 2 O 2 to 17%, Na 2 O + K 2 O 0 to 10%, Bi 2 O 3 0 to 25%, CoO + CuO + CeO 2 + SnO 2 0 to 3%, and when Al 2 O 3 is contained, B 2 Lead-free glass for electrode coating in which O 3 + Al 2 O 3 is 26 mol% or less and contains TiO 2 , Na 2 O or K 2 O (TiO 2 +4 mol%) ≧ (Na 2 O + K 2 O) . SiOが30〜50モル%、Bが6〜20モル%、ZnOが9〜27モル%、TiOが0〜8モル%、LiOが2〜15モル%、NaO+KOが0〜8モル%である請求項1の電極被覆用無鉛ガラス。 SiO 2 30 to 50 mol%, B 2 O 3 6 to 20 mol%, ZnO is 9 to 27 mol%, TiO 2 0 to 8 mol%, Li 2 O 2 to 15 mol%, Na 2 O + K The lead-free glass for electrode coating according to claim 1, wherein 2 O is 0 to 8 mol%. 下記酸化物基準のモル%表示で、SiO 25〜55%、B 4〜25%、ZnO 5〜30%、Al 0〜10%、TiO 2〜10%、LiO 0〜17%、NaO+KO 0〜10%、Bi 0〜25%、CoO+CuO+CeO+SnO 0〜3%、から本質的になり、Alを含有する場合B+Alが26モル%以下である電極被覆用無鉛ガラス。 In mole% based on the following oxides, SiO 2 25~55%, B 2 O 3 4~25%, 5~30% ZnO, Al 2 O 3 0~10%, TiO 2 2~10%, Li 2 O 2 to 17%, Na 2 O + K 2 O 0 to 10%, Bi 2 O 3 0 to 25%, CoO + CuO + CeO 2 + SnO 2 0 to 3%, and when Al 2 O 3 is contained, B 2 O 3 + Al 2 O 3 is for covering electrodes lead-free glass is less than 26 mol%. SiOが30〜50モル%、Bが6〜20モル%、ZnOが9〜27モル%、TiOが2〜8モル%、LiOが2〜15モル%、NaO+KOが0〜8モル%である請求項3の電極被覆用無鉛ガラス。 SiO 2 30 to 50 mol%, B 2 O 3 6 to 20 mol%, ZnO is 9 to 27 mol%, TiO 2 is 2-8 mol%, Li 2 O 2 to 15 mol%, Na 2 O + K The lead-free glass for electrode coating according to claim 3, wherein 2 O is 0 to 8 mol%. TiOが3.2モル%以上である請求項3または4の電極被覆用無鉛ガラス。 Claim 3 or 4 for covering electrodes lead-free glass TiO 2 is 3.2 mol% or more. Biを1〜15モル%含有する請求項1〜5のいずれかの電極被覆用無鉛ガラス。 The lead-free glass for electrode coating according to any one of claims 1 to 5, comprising 1 to 15 mol% of Bi 2 O 3 . SiOが35〜48モル%、Bが8〜18モル%、ZnOが11〜27モル%、LiOが2〜15モル%である請求項6の電極被覆用無鉛ガラス。 SiO 2 is 35-48 mol%, B 2 O 3 is 8 to 18 mol%, ZnO is 11-27 mol%, Li 2 O is for covering electrodes lead-free glass according to claim 6 which is 2 to 15 mol%. 請求項1〜7のいずれかの電極被覆用無鉛ガラスの粉末と、その粉末100質量部に対して0.1〜40質量部の割合の無機酸化物粉末とを含有するガラスセラミックス組成物。   A glass ceramic composition comprising the lead-free glass powder for electrode coating according to any one of claims 1 to 7 and an inorganic oxide powder in a proportion of 0.1 to 40 parts by mass with respect to 100 parts by mass of the powder. 無機酸化物粉末が、TiO、ZnO、SiO、Al、ZrO、P、Fe、MnO、CrおよびCoからなる群から選ばれた1種以上の無機酸化物の粉末である請求項8のガラスセラミックス組成物。 The inorganic oxide powder is selected from the group consisting of TiO 2 , ZnO, SiO 2 , Al 2 O 3 , ZrO 2 , P 2 O 5 , Fe 2 O 3 , MnO 2 , Cr 2 O 3 and Co 2 O 3. The glass ceramic composition according to claim 8, which is a powder of one or more inorganic oxides. プラズマディスプレイ装置の製造に用いられる隔壁付きガラス基板の製造方法であって、ガラス基板上に形成された電極を請求項1〜7のいずれかの電極被覆用無鉛ガラスによって被覆し、その電極を被覆したガラスの上にエッチング法によって隔壁を形成する隔壁付きガラス基板の製造方法。   A method for manufacturing a glass substrate with a partition wall used for manufacturing a plasma display device, wherein the electrode formed on the glass substrate is covered with the lead-free glass for electrode coating according to any one of claims 1 to 7, and the electrode is covered The manufacturing method of the glass substrate with a partition which forms a partition on an etched glass by an etching method. プラズマディスプレイ装置の製造に用いられる隔壁付きガラス基板の製造方法であって、ガラス基板上に形成された電極を請求項8または9のガラスセラミックス組成物を含有するグリーンシートまたは同ガラスセラミックス組成物を含有するガラスペーストによって被覆して焼成し、そのグリーンシートまたはガラスペーストの焼成体の上にエッチング法によって隔壁を形成する隔壁付きガラス基板の製造方法。   A method for manufacturing a glass substrate with a partition wall used for manufacturing a plasma display device, wherein the electrode formed on the glass substrate is a green sheet containing the glass ceramic composition of claim 8 or 9, or the glass ceramic composition. A method for producing a glass substrate with barrier ribs, which is covered with a glass paste and fired, and a barrier rib is formed by etching on the green sheet or the fired body of the glass paste.
JP2006308023A 2005-12-09 2006-11-14 Lead-free glass for electrode coating Active JP5018032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308023A JP5018032B2 (en) 2005-12-09 2006-11-14 Lead-free glass for electrode coating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005356292 2005-12-09
JP2005356292 2005-12-09
JP2006308023A JP5018032B2 (en) 2005-12-09 2006-11-14 Lead-free glass for electrode coating

Publications (2)

Publication Number Publication Date
JP2007182365A JP2007182365A (en) 2007-07-19
JP5018032B2 true JP5018032B2 (en) 2012-09-05

Family

ID=38338759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308023A Active JP5018032B2 (en) 2005-12-09 2006-11-14 Lead-free glass for electrode coating

Country Status (1)

Country Link
JP (1) JP5018032B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246382A (en) * 2006-02-16 2007-09-27 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel
JP2009059692A (en) * 2007-08-06 2009-03-19 Panasonic Corp Plasma display panel
JP2009102199A (en) * 2007-10-24 2009-05-14 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel
CN101835720A (en) * 2007-10-24 2010-09-15 日本电气硝子株式会社 Dielectric material for plasma display panel
JP5228821B2 (en) 2007-11-21 2013-07-03 パナソニック株式会社 Plasma display panel
JP5343545B2 (en) * 2008-12-09 2013-11-13 日本電気硝子株式会社 Dielectric material for plasma display panel
JP5093761B2 (en) * 2009-03-13 2012-12-12 日本電気硝子株式会社 Dielectric material for plasma display panel
WO2011132753A1 (en) * 2010-04-21 2011-10-27 旭硝子株式会社 Method for producing glass member, and planar lens and glass paste
JP5956713B2 (en) * 2010-10-18 2016-07-27 日本硝子産業株式会社 Ampoule with color marking
WO2016129255A1 (en) * 2015-02-13 2016-08-18 日本板硝子株式会社 Glass for laser processing, and method for producing glass with hole using said glass for laser processing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326558B1 (en) * 1998-09-01 2002-09-17 엘지전자주식회사 Composition of Barrier Rib for Plasma Display Panel
JP2000226231A (en) * 1999-02-08 2000-08-15 Okuno Chem Ind Co Ltd Leadless low-melting glass composition
KR100605755B1 (en) * 1999-05-18 2006-07-31 엘지전자 주식회사 Composition of Dielectric for Plasma Display Panel
JP2002012442A (en) * 2000-06-23 2002-01-15 Asahi Glass Co Ltd Low fusing point glass
JP3827987B2 (en) * 2001-10-22 2006-09-27 旭テクノグラス株式会社 Lead-free glass frit
JP2005194120A (en) * 2004-01-06 2005-07-21 Sumitomo Metal Mining Co Ltd Glass ceramic powder composition and glass paste
JP2005336048A (en) * 2004-04-26 2005-12-08 Matsushita Electric Ind Co Ltd Glass composition, paste composition, and plasma display panel
JP2007277016A (en) * 2004-08-02 2007-10-25 Asahi Glass Co Ltd Lead-free glass for coating fluorescent flat lamp electrode
JP2006193385A (en) * 2005-01-14 2006-07-27 Asahi Glass Co Ltd Glass for coating electrode and front and back substrates of plasma display panel
JP2007246382A (en) * 2006-02-16 2007-09-27 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel

Also Published As

Publication number Publication date
JP2007182365A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP5018032B2 (en) Lead-free glass for electrode coating
JP2009221027A (en) Lead-free low-melting-point glass composition having acid resistance
JP2002053342A (en) Low melting point glass for electrode coating
JP2006193385A (en) Glass for coating electrode and front and back substrates of plasma display panel
JP4791746B2 (en) Lead-free borosilicate glass frit and its glass paste
JP2007126350A (en) Barrier rib forming material for plasma display panel and glass composition for barrier rib forming material
JP2007246382A (en) Dielectric material for plasma display panel
JP4725045B2 (en) Lead-free glass, electrode coating glass powder and plasma display device
JP2008150272A (en) Partition wall-forming material for plasma display panel and glass composition for partition wall-forming material
JP2008050252A (en) Method for manufacturing glass substrate with partition wall
JP2001151532A (en) Low-melting glass for covering electrode and plasma display device
JP2011079718A (en) Bismuth-based non-lead glass and composite material
JP4380589B2 (en) Low melting point glass for electrode coating and plasma display device
JP4282885B2 (en) Low melting point glass for electrode coating and plasma display device
JP2006347835A (en) Glass for coating electrode
JP4016560B2 (en) Low melting point glass for electrode coating and glass ceramic composition for electrode coating
JP4075298B2 (en) Low melting point glass for electrode coating
JP2006143479A (en) Glass for forming barrier rib, and plasma display panel
JP2007112686A (en) Glass for covering electrode and plasma display panel
KR100867285B1 (en) Lead-free glass for electrode coating
JP4961708B2 (en) Electrode coating glass and plasma display panel
JP2001146436A (en) Insulating material for fluorescent character display tube
JP4958078B2 (en) A material for a plasma display panel, a method for producing a rear glass substrate for a plasma display panel, and a rear glass substrate for a plasma display panel produced by the method.
KR100694388B1 (en) A dielectric substance composition material and the same composition method to pdp
KR100882769B1 (en) Lead free glass for forming barrier rib, glass ceramics composition for forming barrier rib and plasma display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5018032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250