JP5016401B2 - Multilayer insulation film - Google Patents

Multilayer insulation film Download PDF

Info

Publication number
JP5016401B2
JP5016401B2 JP2007154396A JP2007154396A JP5016401B2 JP 5016401 B2 JP5016401 B2 JP 5016401B2 JP 2007154396 A JP2007154396 A JP 2007154396A JP 2007154396 A JP2007154396 A JP 2007154396A JP 5016401 B2 JP5016401 B2 JP 5016401B2
Authority
JP
Japan
Prior art keywords
layer
insulating film
weight
multilayer
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007154396A
Other languages
Japanese (ja)
Other versions
JP2008302677A (en
Inventor
信弘 後藤
鈴木  勲
大輔 鳥取
剛之 小林
克 瓶子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2007154396A priority Critical patent/JP5016401B2/en
Publication of JP2008302677A publication Critical patent/JP2008302677A/en
Application granted granted Critical
Publication of JP5016401B2 publication Critical patent/JP5016401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、多層絶縁フィルム及びそれを用いた配線基板の製造方法に関する。   The present invention relates to a multilayer insulating film and a method for producing a wiring board using the same.

近年、電子機器の高性能化、高機能化及び小型化が急速に進んでおり、電子機器に用いられる電子部品の小型軽量化の要請が高まっている。これに伴い、多層プリント配線板については多層化と、層間の薄型化が求められている。   2. Description of the Related Art In recent years, the performance, functionality, and miniaturization of electronic devices are rapidly progressing, and there is an increasing demand for miniaturization and weight reduction of electronic components used in electronic devices. Accordingly, multilayered printed wiring boards are required to be multilayered and thinned between layers.

例えば多層プリント配線板の製造においては、導体回路パターン上に絶縁層を形成する際に、絶縁層の成形時に絶縁性樹脂が溶融した後に硬化することによって、導体回路が絶縁層に埋め込まれる。ところが、配線板が多層化するほど絶縁層への導体回路の埋設時に発生する凹凸が増幅して、絶縁層の形成時に導体回路の凹凸を吸収しきれなくなり、絶縁層に厚みが過剰に薄くなる箇所が形成されるなどして絶縁信頼性が低下するおそれがあった。   For example, in the production of a multilayer printed wiring board, when an insulating layer is formed on a conductor circuit pattern, the insulating resin is melted and then cured when the insulating layer is formed, whereby the conductor circuit is embedded in the insulating layer. However, as the wiring board becomes multilayered, the unevenness generated when the conductor circuit is embedded in the insulating layer is amplified, and the unevenness of the conductor circuit cannot be absorbed when forming the insulating layer, and the insulating layer becomes excessively thin. There was a risk that the insulation reliability would be lowered due to the formation of a portion.

そのため、多層プリント配線板の製造に際し、基板に設けられた隙間等に良好に埋め込まれ、かつ絶縁層としての平滑性と絶縁層厚みを維持できる絶縁フィルムが求められていた。   Therefore, when manufacturing a multilayer printed wiring board, there has been a demand for an insulating film that can be satisfactorily embedded in a gap or the like provided on a substrate and can maintain smoothness and insulating layer thickness as an insulating layer.

しかし、いくつかの技術が提案されているが課題解決には到っていなかった(例えば、特許文献1参照。)。
特開11−87927号公報
However, some techniques have been proposed, but the problem has not been solved (see, for example, Patent Document 1).
JP 11-87927 A

本発明は、基板に設けられた隙間等に良好に埋め込まれ、かつ絶縁層としての平滑性と絶縁層厚みを維持できる絶縁フィルムを提供することを目的とする。   An object of the present invention is to provide an insulating film that is satisfactorily embedded in a gap or the like provided on a substrate and that can maintain smoothness and insulating layer thickness as an insulating layer.

本発明は、基材と、基材上に積層された、エポキシ樹脂、エポキシ樹脂硬化剤、ポリスチレン換算重量平均分子量が3万以上のフェノキシ樹脂、平均粒子径0.01〜2μmの無機充填材、硬化促進剤を含む第1層であって、ポリスチレン換算重量平均分子量が3万以上のフェノキシ樹脂を、第1層の全重量基準で10wt%以上含む第1層と、第1層上に積層された、エポキシ樹脂、エポキシ樹脂硬化剤、平均粒子径0.1〜10μmの無機充填材、硬化促進剤からなる第2層と、を有し、第2層に含まれる無機充填材の粒径は、第1層に含まれる無機充填材の粒径よりも大きく、第1層に含まれる硬化促進剤の量は、第2層に含まれる硬化促進剤の量よりも多い多層絶縁フィルムを要旨とする。 The present invention includes a base material, an epoxy resin laminated on the base material, an epoxy resin curing agent, a phenoxy resin having a polystyrene equivalent weight average molecular weight of 30,000 or more, an inorganic filler having an average particle diameter of 0.01 to 2 μm , a curing accelerator a including a first layer, a polystyrene-reduced weight average molecular weight of 30,000 or more phenoxy resins, a first layer comprising a first layer based on the total weight at 10 wt% or more, on the first layer stacked, epoxy resins, epoxy resin curing agent, average particle diameter 0.1~10μm of inorganic filler, and a second layer of curing accelerator, have a particle of the inorganic filler contained in the second layer The diameter is larger than the particle size of the inorganic filler contained in the first layer, and the amount of the curing accelerator contained in the first layer is larger than the amount of the curing accelerator contained in the second layer. The gist.

本発明によれば、基板に設けられた隙間等に良好に埋め込まれ、かつ絶縁層としての平滑性と絶縁層厚みを維持できる絶縁フィルムが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the insulating film which can be favorably embedded in the clearance gap etc. which were provided in the board | substrate, and can maintain the smoothness and insulating layer thickness as an insulating layer is provided.

以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。尚、図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。   Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited to the following embodiments. In addition, about what has the same function or a similar function in a figure, the same or similar code | symbol is attached | subjected and description is abbreviate | omitted.

(多層絶縁フィルム)
実施形態にかかる多層絶縁フィルムは、基材と、基材上に積層された、エポキシ樹脂、エポキシ樹脂硬化剤、ポリスチレン換算重量平均分子量が3万以上のフェノキシ樹脂、平均粒子径0.01〜2μmの無機充填材を含む第1層と、第1層上に積層された、エポキシ樹脂、エポキシ樹脂硬化剤、平均粒子径0.1〜10μmの無機充填材を含む第2層と、を有する。尚、第2層の上に使用時に剥離可能に配置されたごみ等付着防止のための保護シートをさらに有しても構わない。
(Multilayer insulation film)
The multilayer insulating film according to the embodiment includes a base material, an epoxy resin laminated on the base material, an epoxy resin curing agent, a phenoxy resin having a polystyrene-equivalent weight average molecular weight of 30,000 or more, and an average particle size of 0.01 to 2 μm. A first layer containing an inorganic filler, and a second layer containing an inorganic filler with an epoxy resin, an epoxy resin curing agent, and an average particle diameter of 0.1 to 10 μm laminated on the first layer. In addition, you may further have a protection sheet for prevention of adhesion, such as dust, which is disposed on the second layer so as to be peelable during use.

実施形態にかかる多層絶縁フィルムは、第2層に含まれる無機充填材の粒径が、第1層に含まれる無機充填材の粒径よりも大きくなるように構成されている。その結果、実施形態にかかる多層絶縁フィルムを用いて例えば多層プリント配線板を製造した場合、第2層が基板上に設けられた素子等の凹凸に追従して変形しても、第1層は基板の凹凸形状に追従して変形することなく第1層の形状を維持できる。その結果、基板に設けられたスルーホールやビュア等の隙間を良好に封止しつつ、多層絶縁フィルムとしての平滑性を維持できる。またプレス等で押し圧しても絶縁層厚みを維持できる。即ち第1層は封止後の絶縁層厚み精度と絶縁層回路形成面の平滑性を確保し、第2層は封止の際の狭い隙間への埋め込み性を確保する。実施形態にかかる多層絶縁フィルムは、比較的短時間で埋め込み可能である。   The multilayer insulating film according to the embodiment is configured such that the particle size of the inorganic filler contained in the second layer is larger than the particle size of the inorganic filler contained in the first layer. As a result, for example, when a multilayer printed wiring board is manufactured using the multilayer insulating film according to the embodiment, even if the second layer is deformed following the unevenness of an element or the like provided on the substrate, the first layer is The shape of the first layer can be maintained without being deformed following the uneven shape of the substrate. As a result, it is possible to maintain smoothness as a multilayer insulating film while satisfactorily sealing gaps such as through holes and viewers provided in the substrate. Further, the insulating layer thickness can be maintained even when pressed with a press or the like. That is, the first layer ensures the thickness accuracy of the insulating layer after sealing and the smoothness of the insulating layer circuit formation surface, and the second layer ensures the filling property in a narrow gap during sealing. The multilayer insulating film according to the embodiment can be embedded in a relatively short time.

(基材層)
基材層としては、特に制限はないが、例えば、ポリエチレンテレフタレート(PET)フィルム等のポリエステル系フィルム、ポリテトラフルオロエチレンフィルム、ポイエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリビニルアセテートフィルム等のポリオレフィン系フィルム、ポリ塩化ビニルフィルム、ポリイミドフィルムなどのプラスチックフィルム等を用いることができる。また銅箔を用いることもできる。具体的には透明なポリエチレンテレフタレート(PET)フィルム(商品名「PET5011 550」、厚み50μm、リンテック社製)を用いることができる。
(Base material layer)
The substrate layer is not particularly limited. For example, a polyolefin film such as a polyester film such as a polyethylene terephthalate (PET) film, a polytetrafluoroethylene film, a polyethylene film, a polypropylene film, a polymethylpentene film, or a polyvinyl acetate film. A plastic film such as a plastic film, a polyvinyl chloride film, or a polyimide film can be used. A copper foil can also be used. Specifically, a transparent polyethylene terephthalate (PET) film (trade name “PET5011 550”, thickness 50 μm, manufactured by Lintec Corporation) can be used.

(第1層、第2層)
第1層及び第2層に用いられる原材料を以下に列記する。
(1st layer, 2nd layer)
The raw materials used for the first layer and the second layer are listed below.

1.エポキシ系樹脂
エポキシ系樹脂としては、特に制限なく種々のものを用いることができる。例えばビフェニル系エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂を用いることができる。具体的には、ビフェニル系エポキシ樹脂としては、商品名「NC−3000」、エポキシ等量275、日本化薬社製、商品名「NC−3000H」、エポキシ等量288、日本化薬社製、商品名「NC−3100」、エポキシ等量254、日本化薬社製を用いることができる。ビスフェノールA型エポキシ樹脂としては、商品名「エピコート828US」、エポキシ等量183、ジャパンエポキシレジン社製を用いることができる。ビスフェノールF型エポキシ樹脂としては、商品名「EPICLON830S」、エポキシ等量168、大日本インキ化学工業社製を用いることができる。これらのエポキシ樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
1. Epoxy resin Various epoxy resins can be used without any particular limitation. For example, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin can be used. Specifically, as the biphenyl-based epoxy resin, trade name “NC-3000”, epoxy equivalent 275, manufactured by Nippon Kayaku Co., Ltd., trade name “NC-3000H”, epoxy equivalent 288, manufactured by Nippon Kayaku Co., Ltd., Trade name “NC-3100”, epoxy equivalent 254, manufactured by Nippon Kayaku Co., Ltd. can be used. As the bisphenol A type epoxy resin, trade name “Epicoat 828US”, epoxy equivalent 183, Japan Epoxy Resin Co., Ltd. can be used. As the bisphenol F type epoxy resin, trade name “EPICLON830S”, epoxy equivalent 168, manufactured by Dainippon Ink & Chemicals, Inc. can be used. These epoxy resins may be used independently and 2 or more types may be used together.

2.エポキシ樹脂硬化剤
エポキシ樹脂硬化剤としては、特に制限なく種々のものを用いることができる。具体的にはフェノール系硬化剤(商品名「MEH7851−4H」、Pst換算での重量平均分子量10200、明和化成社製)、活性エステル化合物型硬化剤(商品名「EXB-9451-65T」、Pst換算での重量平均分子量2840、大日本インキ化学工業社製)、ジシアンジアミド(商品名「EH−3636S」、旭電化工業社製)を用いることができる。これらのエポキシ樹脂硬化剤は、単独で用いられてもよく、2種以上が併用されてもよい。
2. Epoxy resin curing agent As the epoxy resin curing agent, various types can be used without particular limitation. Specifically, phenol-based curing agent (trade name “MEH7851-4H”, weight average molecular weight 10200 in terms of Pst, manufactured by Meiwa Kasei Co., Ltd.), active ester compound type curing agent (trade name “EXB-9451-65T”, Pst A weight average molecular weight 2840 in terms of conversion, manufactured by Dainippon Ink & Chemicals, Inc.) and dicyandiamide (trade name “EH-3636S”, manufactured by Asahi Denka Kogyo Co., Ltd.) can be used. These epoxy resin curing agents may be used alone or in combination of two or more.

3.硬化促進剤
1.エポキシ系樹脂、2.エポキシ樹脂硬化剤に加えて、さらに硬化促進剤を用いることが好ましい。硬化促進剤としては、特に制限なく種々のものを用いることができるが、具体的にはイミダゾール、トリフェニルホスフィン等を用いることができる。これらの効果促進剤は、単独で用いられてもよく、2種以上が併用されてもよい。
3. Curing accelerator 1. In addition to the epoxy resin and 2. the epoxy resin curing agent, it is preferable to use a curing accelerator. Various curing accelerators can be used without particular limitation, and specifically, imidazole, triphenylphosphine, and the like can be used. These effect promoters may be used independently and 2 or more types may be used together.

4.有機化層状珪酸塩
層状珪酸塩としては、特に制限なく種々のものを用いることができる。例えば、モンモリロナイト、ヘクトライト、サポナイト、バイデライト、スティブンサイト及びノントロナイト等のスメクタイト系粘土鉱物、膨潤性マイカ、バーミキュライト、ハロイサイト等が挙げられる。なかでも、モンモリロナイト、ヘクトライト、膨潤性マイカ、及び、バーミキュライトからなる群より選択される少なくとも1種が好適に用いられる。これらの層状珪酸塩は、単独で用いられてもよく、2種以上が併用されてもよい。層状珪酸塩を用いる場合、層状珪酸塩に化学修飾して樹脂との親和性を高め、樹脂中への分散性を向上させておくことが好ましい。このような化学処理により樹脂中に層状珪酸塩が大量に分散することができる。化学修飾法は、カチオン性界面活性剤によるカチオン交換法ともいい、予め層状珪酸塩の層間をカチオン性界面活性剤でカチオン交換し、疎水化しておく方法である。予め層状珪酸塩の層間を疎水化しておくことにより、層状珪酸塩と樹脂との親和性が高まり、層状珪酸塩を均一に微分散させることができる。尚、層状珪酸塩に有機化処理を行うことに加えて脂肪酸による処理を行ってもよい。層状珪酸塩を樹脂中においてより高度に、すなわち層間がナノメータ単位となるように分散させることができるからである。
4). Organized layered silicate As the layered silicate, various types can be used without particular limitation. Examples thereof include smectite clay minerals such as montmorillonite, hectorite, saponite, beidellite, stevensite and nontronite, swellable mica, vermiculite, and halloysite. Among these, at least one selected from the group consisting of montmorillonite, hectorite, swellable mica, and vermiculite is preferably used. These layered silicates may be used alone or in combination of two or more. When using a layered silicate, it is preferable to chemically modify the layered silicate to increase the affinity with the resin and to improve the dispersibility in the resin. By such chemical treatment, a large amount of layered silicate can be dispersed in the resin. The chemical modification method is also referred to as a cation exchange method using a cationic surfactant, and is a method in which cation exchange between layers of a layered silicate is performed with a cationic surfactant in advance to make it hydrophobic. By making the layers of the layered silicate hydrophobic beforehand, the affinity between the layered silicate and the resin is increased, and the layered silicate can be uniformly finely dispersed. In addition to performing an organic treatment on the layered silicate, a treatment with a fatty acid may be performed. This is because the layered silicate can be dispersed in the resin at a higher level, that is, so that the interlayer is in nanometer units.

有機化層状珪酸塩の具体的としてはトリオクチルメチルアンモニウム塩で化学処理が施された合成ヘクトライト(商品名「ルーセンタイトSTN」、コープケミカル社製)を用いることができる。 Specific examples of the organic layered silicate include synthetic hectorite (trade name “Lucentite STN”, manufactured by Co-op Chemical Co., Ltd.) that has been chemically treated with trioctylmethylammonium salt.

有機化層状珪酸塩の添加量は、第1層の全重量100重量部に対して、有機化層状珪酸塩を0.01〜50重量部の割合で含むことが好ましい。また第2層の全重量100重量部に対して、有機化層状珪酸塩を0.01〜50重量部の割合で含むことが好ましい。第1層と第2層の両方に含まれていても、いずれか一方にのみ含まれていても構わない。   The addition amount of the organic layered silicate preferably includes the organic layered silicate in a proportion of 0.01 to 50 parts by weight with respect to 100 parts by weight of the total weight of the first layer. Moreover, it is preferable that the organic layered silicate is contained in a proportion of 0.01 to 50 parts by weight with respect to 100 parts by weight of the total weight of the second layer. It may be included in both the first layer and the second layer, or may be included in only one of them.

5.無機充填材
無機充填材としては、第2層に含まれる無機充填材の粒径が、第1層に含まれる無機充填材の粒径よりも大きければ、特に制限なく種々のものを用いることができる。第1層に含まれる無機充填材の平均粒子径を0.01〜2μmとし、第2層に含まれる無機充填材の平均粒子径を0.1〜10μmとすることが好ましい。多層絶縁フィルムを用いて多層プリント配線板を製造した場合、第2層が基板上に設けられた素子等の凹凸に追従して変形しても、第1層は基板の凹凸形状に追従して変形することなく第1層の形状を維持できるからである。無機系充填剤の例としては、鉄、銅、青銅、チタン、ステンレス、ニッケル、金、銀、アルミニウム、鉛、タングステン等の金属、カーボンブラック、グラファイト、活性炭、炭素バルーン等の炭素、シリカ、シリカバルーン、アルミナ、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、酸化すず、酸化アンチモン、酸化ベリリウム、バリウムフェライト、ストロンチウムフェライト等の無機酸化物、水酸化アルミニウム、水酸化マグネシウム等の無機水酸化物、炭酸カルシウム、炭酸マグネシウム、炭酸水素ナトリウム等の無機炭酸塩、硫酸カルシウム等の無機硫酸塩、タルク、カオリン、フライアッシュ、ケイ酸カルシウム、ガラス、ガラスバルーン等の無機ケイ酸塩、チタン酸カルシウム、チタン酸ジルコン酸鉛、窒化アルミニウム、炭化ケイ素、熱膨張性塩化ビニリデン粒子、ウィスカー等が挙げられる。
5. Inorganic filler As the inorganic filler, various types of inorganic fillers may be used without any limitation as long as the particle size of the inorganic filler contained in the second layer is larger than the particle size of the inorganic filler contained in the first layer. it can. The average particle diameter of the inorganic filler contained in the first layer is preferably 0.01 to 2 μm, and the average particle diameter of the inorganic filler contained in the second layer is preferably 0.1 to 10 μm. When a multilayer printed wiring board is manufactured using a multilayer insulating film, the first layer follows the uneven shape of the substrate even if the second layer deforms following the unevenness of the elements provided on the substrate. This is because the shape of the first layer can be maintained without being deformed. Examples of inorganic fillers include metals such as iron, copper, bronze, titanium, stainless steel, nickel, gold, silver, aluminum, lead, tungsten, carbon such as carbon black, graphite, activated carbon, carbon balloon, silica, silica Balloon, alumina, titanium oxide, iron oxide, zinc oxide, magnesium oxide, tin oxide, antimony oxide, beryllium oxide, barium ferrite, strontium ferrite and other inorganic oxides, aluminum hydroxide, magnesium hydroxide and other inorganic hydroxides, Inorganic carbonates such as calcium carbonate, magnesium carbonate and sodium hydrogen carbonate, inorganic sulfates such as calcium sulfate, talc, kaolin, fly ash, calcium silicate, glass, glass balloons and other inorganic silicates, calcium titanate, titanium Lead zirconate, aluminum nitride , Silicon carbide, heat-expandable vinylidene chloride particles, whiskers, and the like.

粒子径は粒度分布計によって測定することによる定義される。例えばレーザー回折式
粒度分布測定装置SALD-7000(島津製作所製)を用いて、充填材粒子を溶剤に分散
したスラリーの粒度分布を測定し、中心値を平均粒子径(D50)を算出することで求めることが出来る。
The particle size is defined by measuring with a particle size distribution meter. For example, by using a laser diffraction particle size distribution analyzer SALD-7000 (manufactured by Shimadzu Corporation), the particle size distribution of a slurry in which filler particles are dispersed in a solvent is measured, and the average value is calculated by calculating the average particle size (D50). You can ask.

無機充填材としては、シランカップリング剤により表面処理されたものを用いることが好ましい。中でも、シランカップリング剤により表面処理されたシリカを用いることが好ましい。具体的にはシリカ(龍森社製、平均粒径0.2μm)をイミダゾールシラン(商品名「IM-1000」日興マテリアルズ社製)により表面処理したシリカ、シリカ(アドマテックス社製、平均粒径0.3μm)をイミダゾールシラン(商品名「IM-1000」日興マテリアルズ社製)により表面処理したシリカを用いることができる。   As the inorganic filler, it is preferable to use a surface treated with a silane coupling agent. Among these, it is preferable to use silica surface-treated with a silane coupling agent. Specifically, silica, silica (manufactured by Admatechs, average particle size), which is obtained by surface-treating silica (manufactured by Tatsumori Co., Ltd., average particle size 0.2 μm) with imidazole silane (trade name “IM-1000”, manufactured by Nikko Materials). Silica whose surface is treated with imidazole silane (trade name “IM-1000” manufactured by Nikko Materials Co., Ltd.) can be used.

尚、無機充填材には上記「有機化層状珪酸塩」は含まれないものとする。 The inorganic filler does not include the above “organized layered silicate”.

6.フェノキシ樹脂
第1層は、ポリスチレン換算重量平均分子量が3万以上のフェノキシ樹脂を、第1層の全重量基準で5wt%よりも多く含むことが好ましく、10wt%以上含むことがより好ましく、40〜50wt%の範囲で含むことがさらに好ましい。
6. Phenoxy resin The first layer preferably contains more than 5 wt% of a phenoxy resin having a polystyrene-equivalent weight average molecular weight of 30,000 or more, more preferably 10 wt% or more, based on the total weight of the first layer. More preferably, it is contained in the range of 40-50 wt%.

フェノキシ樹脂を5wt%よりも多く含むことで、クイック式真空プレスなどの加圧によるスルーホールへの封止時に第1層の樹脂の流動を抑制でき、均一な厚みの絶縁層を形成できる。フェノキシが5wt%より少ないと、加圧による樹脂封止時に第1層も第2層と一緒に流動してしまい、均一な絶縁層厚みを維持できないという問題がある。均一な厚みの絶縁層を形成することでインピーダンスマッチングが良好となり、高周波・高速信号伝送を正確に行うことができるという利点がある。フェノキシ樹脂としては具体的にはフェノキシ樹脂(商品名:YX6954BH30、重量平均分子量39000、ジャパンエポキシレジン社製)を用いることができる。 By containing more than 5 wt% of phenoxy resin, it is possible to suppress the flow of the first layer resin during sealing into a through hole by pressurization such as a quick vacuum press, and an insulating layer having a uniform thickness can be formed. When phenoxy is less than 5 wt%, the first layer also flows together with the second layer during resin sealing by pressurization, and there is a problem that a uniform insulating layer thickness cannot be maintained. By forming an insulating layer having a uniform thickness, impedance matching is improved, and there is an advantage that high-frequency and high-speed signal transmission can be performed accurately. Specifically, a phenoxy resin (trade name: YX6954BH30, weight average molecular weight 39000, manufactured by Japan Epoxy Resin Co., Ltd.) can be used as the phenoxy resin.

7.有機溶剤
上記成分を有機溶媒に溶解もしくは分散させワニス状にし、第1層の樹脂組成物溶液と、第2層の樹脂組成物溶液をそれぞれ調製する。そして後に説明する積層方法に従って多層絶縁フィルムを製造することが好ましい。有機溶剤は、特に制限なく種々のものを用いることができるが、具体的にはN,N−ジメチルホルムアミド(DMF、特級、和光純薬社製)を用いることができる。
7). Organic solvent The above components are dissolved or dispersed in an organic solvent to form a varnish, and a first layer resin composition solution and a second layer resin composition solution are respectively prepared. And it is preferable to manufacture a multilayer insulation film according to the lamination | stacking method demonstrated later. Various organic solvents can be used without particular limitation, and specifically, N, N-dimethylformamide (DMF, special grade, manufactured by Wako Pure Chemical Industries, Ltd.) can be used.

上記成分を配合することにより、第1層は、化学処理及びメッキにより導体層形成可能とすることが好ましい。また第1層は化学処理後の表面粗さRaが200nm以下、Rzが2μm以下であることが好ましい。   By blending the above components, it is preferable that the first layer can form a conductor layer by chemical treatment and plating. The first layer preferably has a surface roughness Ra after chemical treatment of 200 nm or less and Rz of 2 μm or less.

(積層方法)
多層絶縁フィルムの積層方法としては種々の方法を用いることができる。例えば、上記成分を含む第1層の樹脂組成物溶液と、第2層の樹脂組成物溶液をそれぞれ調製する。次に、第1層の樹脂組成物溶液を、離型処理が施されたポリエチレンテレフタレート(PET)フィルム等の基材層上に塗布し加熱乾燥させる。更に、第2層の樹脂組成物溶液を第1層の上から塗布し加熱乾燥させる。このようにして多層絶縁フィルムを得ることができる。その他にも別々に作製したフィルムをラミネートする方法等が挙げられる。
(Lamination method)
Various methods can be used for laminating the multilayer insulating film. For example, a first layer resin composition solution containing the above components and a second layer resin composition solution are prepared. Next, the resin composition solution of the first layer is applied onto a base material layer such as a polyethylene terephthalate (PET) film that has been subjected to a release treatment, and is dried by heating. Further, the resin composition solution of the second layer is applied from above the first layer and dried by heating. In this way, a multilayer insulating film can be obtained. In addition, the method of laminating the film produced separately is mentioned.

(封止)
本発明の多層絶縁フィルムを用いて、導体回路、半導体素子等の封止を実施する方法としてはプレス機を用いることが望ましい。真空ラミネータよりでは封止できない深い貫通ビアやブラインドビアにも本発明の多層絶縁フィルムの第二層を流し込むことが可能である。また、プレス機としてはミカドテクノス社製のクイック式真空プレスあるいは北川精機社製の真空プレスが使用可能であり、短時間で封止及び取り出しが可能なことから、ミカドテクノス社製のクイック式真空プレスを使用することが好ましい。
(Sealing)
It is desirable to use a pressing machine as a method for sealing conductor circuits, semiconductor elements, etc. using the multilayer insulating film of the present invention. The second layer of the multilayer insulating film of the present invention can be poured into deep through vias or blind vias that cannot be sealed with a vacuum laminator. Also, as a press machine, a quick vacuum press made by Mikado Technos or a vacuum press made by Kitagawa Seiki can be used, and since it can be sealed and taken out in a short time, a quick vacuum made by Mikado Technos. It is preferable to use a press.

(使用用途)
実施形態にかかる多層絶縁フィルムは、種々の用途に用いられるが、基板に設けられた隙間等に良好に埋め込まれ、かつ絶縁層としての平滑性と絶縁層厚みを維持できるという特性を生かせる用途に用いられることが好ましい。例えばコア基板に絶縁層とスルーホールや銅線が設けられた導体回路とを積み上げて構成されるビルドアップ配線板の絶縁層として、基板上に設けられた半導体チップ等の素子、コンデンサ、アンテナ回路を封止するための封止材として、BGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)半導体装置のダイボンディング材として用いることができる。
(Use applications)
The multilayer insulating film according to the embodiment is used for various applications, but is embedded in a gap provided in a substrate and the like, and is used for making use of the characteristics of maintaining smoothness and insulating layer thickness as an insulating layer. It is preferable to be used. For example, as an insulating layer of a build-up wiring board configured by stacking an insulating layer and a conductor circuit provided with a through hole or copper wire on a core substrate, an element such as a semiconductor chip provided on the substrate, a capacitor, an antenna circuit It can be used as a die bonding material for BGA (Ball Grid Array), CSP (Chip Size Package), and MCP (Multi Chip Package) semiconductor devices.

(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、実施形態において説明した構成を一部に含む半導体装置やその製造方法も同様に製造することができる。このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   For example, a semiconductor device partially including the configuration described in the embodiment and a manufacturing method thereof can be manufactured in the same manner. As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

[多層絶縁フィルムの調整]
以下に示す原材料を用いて、本実施例及び比較例にかかる多層絶縁フィルムを調製した。
[Adjustment of multilayer insulation film]
The multilayer insulating film concerning a present Example and a comparative example was prepared using the raw material shown below.

(原材料)
1.エポキシ系樹脂
・ビフェニル系エポキシ樹脂(1)(商品名「NC−3000」、エポキシ等量275、日本化薬社製)
・ビフェニル系エポキシ樹脂(2)(商品名「NC−3000H」、エポキシ等量288、日本化薬社製)
・ビフェニル型エポキシ樹脂(3)(商品名「NC−3100」、エポキシ等量254、日本化薬社製)
・ビスフェノールA型エポキシ樹脂(商品名「エピコート828US」、エポキシ等量183、ジャパンエポキシレジン社製)
・ビスフェノールF型エポキシ樹脂(商品名「EPICLON830S」、エポキシ等量168、大日本インキ化学工業社製)
2.エポキシ樹脂硬化剤
・フェノール系硬化剤(商品名「MEH7851−4H」、Pst換算での重量平均分子量10200、明和化成社製)
・活性エステル化合物型硬化剤(商品名「EXB-9451-65T」、Pst換算での重量平均分子量2840、大日本インキ化学工業社製)
・ ジシアンジアミド(商品名「EH−3636S」、旭電化工業社製)
3.硬化促進剤
・ イミダゾール(商品名「2MAOK-PW」、四国化成工業社製)
・トリフェニルホスフィン(和光純薬社製)
4.有機化層状珪酸塩(合成ヘクトライト)
・トリオクチルメチルアンモニウム塩で化学処理が施された合成ヘクトライト(商品名「ルーセンタイトSTN」、コープケミカル社製)
5.シリカ
・シリカ(1)(龍森社製、平均粒径0.2μm)をイミダゾールシラン(商品名「IM-1000」日興マテリアルズ社製)により表面処理したシリカ
・シリカ(2)(アドマテックス社製、平均粒径0.3μm)をイミダゾールシラン(商品名「IM-1000」日興マテリアルズ社製)により表面処理したシリカ
6.フェノキシ樹脂
・商品名:YX6954BH30、重量平均分子量39000、ジャパンエポキシレジン社製
7.有機溶剤
・N,N−ジメチルホルムアミド(DMF、特級、和光純薬社製)
(実施例1)
第1層の樹脂組成物溶液:合成ヘクトライト「ルーセンタイトSTN」1.00gを最終固形分比率が35wt%になる量のDMFに混合して溶液を得た。その後、完全に均一な溶液となるまで上記溶液を常温で攪拌した。さらに、イミダゾール「2MAOK-PW」0.50g、シリカ(1)30.00g、フェノキシ樹脂45.00g、ビフェニル型エポキシ樹脂(3)3.40g、ビスフェノールA型エポキシ樹脂7.30gの順で上記溶液に投入した。その際、各成分を上記溶液に投入した後、完全に均一な溶液になるまで常温で攪拌した後に、次の成分を上記溶液に投入した。最後に、フェノール系樹脂よりなるエポキシ樹脂硬化剤「MEH7851−4H」12.80gを投入し、完全に均一な溶液となるまで常温で攪拌することにより、第1層の樹脂組成物溶液を調製した。
(raw materials)
1. Epoxy resin / biphenyl epoxy resin (1) (trade name “NC-3000”, epoxy equivalent 275, manufactured by Nippon Kayaku Co., Ltd.)
Biphenyl epoxy resin (2) (trade name “NC-3000H”, epoxy equivalent 288, manufactured by Nippon Kayaku Co., Ltd.)
Biphenyl type epoxy resin (3) (trade name “NC-3100”, epoxy equivalent 254, manufactured by Nippon Kayaku Co., Ltd.)
・ Bisphenol A type epoxy resin (trade name “Epicoat 828US”, epoxy equivalent 183, manufactured by Japan Epoxy Resin Co., Ltd.)
・ Bisphenol F type epoxy resin (trade name “EPICLON830S”, epoxy equivalent 168, manufactured by Dainippon Ink & Chemicals, Inc.)
2. Epoxy resin curing agent / phenolic curing agent (trade name “MEH7851-4H”, weight average molecular weight 10200 in terms of Pst, manufactured by Meiwa Kasei Co., Ltd.)
Active ester compound type curing agent (trade name “EXB-9451-65T”, weight average molecular weight 2840 in terms of Pst, manufactured by Dainippon Ink & Chemicals, Inc.)
・ Dicyandiamide (trade name “EH-3636S”, manufactured by Asahi Denka Kogyo Co., Ltd.)
3. Curing accelerator-Imidazole (Brand name "2MAOK-PW", manufactured by Shikoku Kasei Kogyo Co., Ltd.)
・ Triphenylphosphine (Wako Pure Chemical Industries, Ltd.)
4). Organized layered silicate (synthetic hectorite)
・ Synthetic hectorite chemically treated with trioctylmethylammonium salt (trade name “Lucentite STN”, manufactured by Corp Chemical)
5. Silica-silica (2) (Admatex Co., Ltd.) surface-treated with silica-silica (1) (manufactured by Tatsumori Co., Ltd., average particle size 0.2 μm) with imidazole silane (trade name “IM-1000” manufactured by Nikko Materials Co., Ltd.) Silica produced by surface treatment of imidazole silane (trade name “IM-1000” manufactured by Nikko Materials Co., Ltd.) 6. Product name: YX6954BH30, weight average molecular weight 39000, Japan Epoxy Resin Co., Ltd. Product 7. Organic solvent, N, N-dimethylformamide (DMF, special grade, manufactured by Wako Pure Chemical Industries, Ltd.)
Example 1
First layer resin composition solution: 1.00 g of synthetic hectorite “Lucentite STN” was mixed with DMF in an amount such that the final solid content ratio was 35 wt% to obtain a solution. Thereafter, the solution was stirred at room temperature until a completely uniform solution was obtained. Furthermore, the above solution in the order of 0.50 g of imidazole “2MAOK-PW”, 30.00 g of silica (1), 45.00 g of phenoxy resin, 3.40 g of biphenyl type epoxy resin (3), and 7.30 g of bisphenol A type epoxy resin. It was thrown into. At that time, each component was added to the above solution and then stirred at room temperature until a completely uniform solution was obtained, and then the next component was added to the above solution. Finally, 12.80 g of an epoxy resin curing agent “MEH7851-4H” made of a phenolic resin was added, and the resin composition solution of the first layer was prepared by stirring at room temperature until a completely uniform solution was obtained. .

第2層の樹脂組成物溶液:合成ヘクトライト「ルーセンタイトSTN」1.00gを最終固形分比率が60wt%になる量のDMFに混合して溶液を得た。その後、完全に均一な溶液となるまで常温で攪拌した。次に、イミダゾール「2MAOK-PW」0.10g及びトリフェニルホスフィン0.10gを上記溶液に投入し、完全に均一な溶液となるまで常温で攪拌した。さらに、シリカ(2)50.00g、ビフェニル型エポキシ樹脂(1)3.20g、ビスフェノールF型エポキシ樹脂18.10gの順で上記溶液に投入した。   Second layer resin composition solution: 1.00 g of synthetic hectorite “Lucentite STN” was mixed with DMF in an amount such that the final solid content ratio was 60 wt% to obtain a solution. Then, it stirred at normal temperature until it became a completely uniform solution. Next, 0.10 g of imidazole “2MAOK-PW” and 0.10 g of triphenylphosphine were added to the above solution and stirred at room temperature until a completely uniform solution was obtained. Further, 50.00 g of silica (2), 3.20 g of biphenyl type epoxy resin (1), and 18.10 g of bisphenol F type epoxy resin were added to the above solution in this order.

その際、各成分を上記溶液に投入した後、完全に均一な溶液になるまで常温で攪拌した後に、次の成分を上記溶液に投入した。最後に、フェノール系樹脂よりなるエポキシ樹脂硬化剤「MEH7851−4H」27.70gを上記溶液に投入し、完全に均一な溶液となるまで常温で攪拌して、第2層の樹脂組成物溶液を調製した。 At that time, each component was added to the above solution and then stirred at room temperature until a completely uniform solution was obtained, and then the next component was added to the above solution. Finally, 27.70 g of an epoxy resin curing agent “MEH7851-4H” made of a phenolic resin is added to the above solution and stirred at room temperature until a completely uniform solution is obtained. Prepared.

多層絶縁フィルム:第1層の樹脂組成物溶液を、離型処理が施された透明なポリエチレンテレフタレート(PET)フィルム(商品名「PET5011 550」、厚み50μm、リンテック社製)にアプリケーターを用いて乾燥後の厚みが20μmとなるように塗工し、100℃のギアオーブン中で12分間乾燥した。更に、第2層の樹脂組成物溶液を第1層の上からアプリケーターを用いて乾燥後の厚みが100μmとなるように塗工し、100℃のギアオーブン中で12分間乾燥して多層絶縁フィルムを得た。   Multilayer insulation film: The resin composition solution of the first layer is dried on a transparent polyethylene terephthalate (PET) film (trade name “PET5011 550”, thickness 50 μm, manufactured by Lintec Corporation) that has been subjected to a release treatment using an applicator. It was coated so that the subsequent thickness was 20 μm, and dried in a gear oven at 100 ° C. for 12 minutes. Furthermore, the resin composition solution of the second layer is coated on the first layer using an applicator so that the thickness after drying is 100 μm, and is dried in a gear oven at 100 ° C. for 12 minutes to obtain a multilayer insulating film Got.

(実施例2、3および比較例1〜比較例5)
第1層及び第2層の樹脂組成物溶液を表1に示す配合組成としたこと以外は実施例1の場合と同様にして、樹脂組成物溶液を調製し多層絶縁フィルムを作製した。

Figure 0005016401
(Examples 2 and 3 and Comparative Examples 1 to 5)
A resin composition solution was prepared and a multilayer insulating film was prepared in the same manner as in Example 1 except that the resin composition solutions of the first layer and the second layer were changed to the composition shown in Table 1.
Figure 0005016401

[評価試験]
(粗化接着強度評価)
上記多層絶縁フィルムをガラスエポキシ基板(FR-4、品番「CS-3665」、利昌工業社製)に加熱ラミネートし、PEフィルムを剥がしてから170℃のギアオーブン中で1時間加熱して、第1層の表面を、下記の過マンガン酸塩処理、すなわち粗化処理を行った。
[Evaluation test]
(Roughening adhesion strength evaluation)
The multilayer insulation film was heated and laminated to a glass epoxy substrate (FR-4, product number “CS-3665”, manufactured by Risho Kogyo Co., Ltd.), peeled off the PE film, and heated in a gear oven at 170 ° C. for 1 hour. The surface of one layer was subjected to the following permanganate treatment, that is, roughening treatment.

(1)過マンガン酸塩処理
80℃の過マンガン酸カリウム(コンセントレートコンパクトCP、アトテックジャパン社製)粗化水溶液に、多層絶縁フィルムを入れて15分間揺動させる処理を行った。また、過マンガン酸塩処理が終了した多層絶縁フィルムを、25℃の洗浄液(リダクションセキュリガントP、アトテックジャパン社製)を用いて2分間処理した後、純粋でよく洗浄し、乾燥させた。
(1) Permanganate treatment A 80 ° C. potassium permanganate (Concentrate Compact CP, manufactured by Atotech Japan Co., Ltd.) roughened aqueous solution was placed in a multilayer insulating film and rocked for 15 minutes. In addition, the multi-layer insulating film after the permanganate treatment was treated for 2 minutes using a cleaning solution (Reduction Securigant P, manufactured by Atotech Japan Co., Ltd.) at 25 ° C., and then washed thoroughly and dried.

(2)銅めっき処理
次に、粗化処理された多層絶縁フィルムに銅めっき処理を行った。多層絶縁フィルムを60℃のアルカリクリーナ(クリーナーセキュリガント902)で5分間処理し、表面を脱脂洗浄した。洗浄後、多層絶縁フィルムを25℃のプリディップ液(プリディップネオガントB)で2分間処理した。その後、多層絶縁フィルムを40の℃のアクチベーター液(アクチベーターネオガント834)で5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(リデューサーネオガントWA)で5分間処理した。次に、多層絶縁フィルムを化学銅液(ベーシックプリントガントMSK−DK、カッパープリントガントMSK、スタビライザープリントガントMSK)に入れ、無電解メッキをメッキ厚さが0.5μm程度になるまで実施した。無電解メッキ後は残留水素ガス除去のため、120℃の温度で30分間アニールをかけた。無電解メッキの工程までのすべての工程においては、ビーカースケールで処理液を1Lとし、多層絶縁フィルムを揺動させながら各工程を実施した。次に、無電解メッキ処理された樹脂シートに、電解メッキをメッキ厚さが20μmとなるまで実施した。電気銅メッキとして硫酸銅(リデューサーCu)を用い、電流は0.6A/cm2とした。180℃×1hrのアフターベークを行った。得られた硬化物を10mm幅に切り欠きを入れて引張試験機(商品名「オートグラフ」、島津製作所社製)を用いて、クロスヘッド速度5mm/分の条件で測定を行い、粗化接着強度を測定した。
(2) Copper plating treatment Next, the roughened multilayer insulating film was subjected to copper plating treatment. The multilayer insulating film was treated with an alkaline cleaner (cleaner securigant 902) at 60 ° C. for 5 minutes to degrease and clean the surface. After washing, the multilayer insulating film was treated with a predip solution (Predip Neogant B) at 25 ° C. for 2 minutes. Thereafter, the multilayer insulating film was treated with an activator solution (activator Neogant 834) at 40 ° C. for 5 minutes to attach a palladium catalyst. Next, it was treated with a reducing solution (reducer Neogant WA) at 30 ° C. for 5 minutes. Next, the multilayer insulating film was placed in a chemical copper solution (basic print Gantt MSK-DK, copper print Gantt MSK, stabilizer print Gantt MSK), and electroless plating was performed until the plating thickness reached about 0.5 μm. After electroless plating, annealing was performed at a temperature of 120 ° C. for 30 minutes in order to remove residual hydrogen gas. In all the processes up to the electroless plating process, each process was performed while the processing liquid was 1 L on a beaker scale and the multilayer insulating film was swung. Next, electrolytic plating was performed on the electroless plated resin sheet until the plating thickness reached 20 μm. Copper sulfate (reducer Cu) was used as the electrolytic copper plating, and the current was 0.6 A / cm 2 . After baking at 180 ° C. × 1 hr was performed. The obtained cured product was cut into a 10 mm width, and measured using a tensile tester (trade name “Autograph”, manufactured by Shimadzu Corporation) under the condition of a crosshead speed of 5 mm / min. The strength was measured.

(銅接着強度)
CZ処理銅箔(CZ-8301、メック社製)に多層絶縁フィルムを真空中でラミネートし、上記過マンガン酸塩による粗化処理を行った。得られた硬化物を10mm幅に切り欠きを入れて引張試験機(商品名「オートグラフ」、島津製作所社製)を用いて、クロスヘッド速度5mm/分の条件で測定を行い、粗化接着強度を測定した。
(Copper adhesive strength)
A multilayer insulating film was laminated in a vacuum on a CZ-treated copper foil (CZ-8301, manufactured by MEC), and the roughening treatment with the permanganate was performed. The obtained cured product was cut into a 10 mm width, and measured using a tensile tester (trade name “Autograph”, manufactured by Shimadzu Corporation) under the condition of a crosshead speed of 5 mm / min. The strength was measured.

(銅接着強度2)
CZ処理銅箔(CZ-8301、メック社製)に多層絶縁フィルムを、クイック式真空プレス(ミカドテクノス社製)のプレス温度を90℃に設定し、プレス板に対して下からSUS板(厚み1mm)、多層絶縁フィルム(第1層側が上)、CZ処理銅箔、SUS板(厚み1mm)の順に重ねてセットし、6MPaの圧力で30分間真空プレスを行った。
(Copper bond strength 2)
A multilayer insulating film is applied to CZ-treated copper foil (CZ-8301, manufactured by MEC), the press temperature of a quick vacuum press (made by Mikado Technos) is set to 90 ° C., and a SUS plate (thickness) is applied to the press plate from below. 1 mm), a multilayer insulating film (the first layer side is on top), a CZ-treated copper foil, and a SUS plate (thickness 1 mm) were stacked and set in this order, and vacuum pressing was performed at a pressure of 6 MPa for 30 minutes.

次いで、170℃1時間か熱硬化させた。 Next, it was cured at 170 ° C. for 1 hour.

得られた硬化物を10mm幅に切り欠きを入れて引張試験機(商品名「オートグラフ」、島津製作所社製)を用いて、クロスヘッド速度5mm/分の条件で測定を行い、粗化接着強度を測定した。 The obtained cured product was cut into a 10 mm width, and measured using a tensile tester (trade name “Autograph”, manufactured by Shimadzu Corporation) under the condition of a crosshead speed of 5 mm / min. The strength was measured.

(表面粗さ(Ra、Rz)測定)
ガラスエポキシ基板(FR-4、品番「CS-3665」、利昌工業社製)に多層絶縁フィルムを加圧プレスし、上記過マンガン酸塩による粗化処理を行った。得られた硬化物を走査型レーザー顕微鏡(品番「1LM21」、レーザーテック社製)にて100μm2の測定範囲における表面粗さ(Ra,Rz)を測定した。
(Surface roughness (Ra, Rz) measurement)
The multilayer insulating film was pressed and pressed on a glass epoxy substrate (FR-4, product number “CS-3665”, manufactured by Risho Kogyo Co., Ltd.), and the roughening treatment with the permanganate was performed. The obtained cured product was measured for surface roughness (Ra, Rz) in a measuring range of 100 μm 2 with a scanning laser microscope (product number “1LM21”, manufactured by Lasertec Corporation).

(封止性評価)
厚さ0.4mmで100mm角のガラスエポキシ基板(FR-4、品番「CS-3665」、利昌工業社製)に穴あけドリルにてΦ700μmのスルーホールを形成したガラスエポキシ基板を作製した(スルーホールの数は、100mm角の多層絶縁フィルムの第2層の体積の95%が、スルーホール全体の体積相当となるように計算して形成した)。次に、PETにアプリケーターで第1層のみを厚み20μmになるように塗工し、100℃のギアオーブン中で12分間乾燥して単層絶縁フィルムAを得た。単層絶縁フィルムA上にスルーホールを形成したガラスエポキシ基板を設置し、120℃1MPaで2分間圧着し、更に170℃のギアオーブン中で60分間加熱接着させ、評価基板を作製した。次いで、上記スルーホールの略中央部にダイアタッチメントフィルムを貼り付けた0603コンデンサチップを単層絶縁フィルムA上に挿入接着し、170℃で30分間加熱硬化した。
(Sealability evaluation)
A glass epoxy substrate having a thickness of 0.4 mm and a 100 mm square glass epoxy substrate (FR-4, product number “CS-3665”, manufactured by Risho Kogyo Co., Ltd.) formed with a Φ700 μm through hole with a drill was produced (through hole). Was calculated so that 95% of the volume of the second layer of the 100 mm square multi-layer insulating film would correspond to the volume of the entire through hole). Next, only the first layer was applied to PET so as to have a thickness of 20 μm with an applicator, and dried in a gear oven at 100 ° C. for 12 minutes to obtain a single-layer insulating film A. A glass epoxy substrate having through-holes formed on the single-layer insulating film A was placed, pressure-bonded at 120 ° C. and 1 MPa for 2 minutes, and further heat-bonded in a gear oven at 170 ° C. for 60 minutes to produce an evaluation substrate. Next, a 0603 capacitor chip having a die attachment film attached to the substantially central portion of the through hole was inserted and bonded onto the single-layer insulating film A, and was cured by heating at 170 ° C. for 30 minutes.

次に、クイック式真空プレス(ミカドテクノス社製)のプレス温度を90℃に設定し、プレス板に対して下からSUS板(厚み1mm)、単層絶縁フィルムA、上記評価基板、多層絶縁フィルム(第2層をSUS板側)、SUS板(厚み1mm)の順に重ねてセットし、6MPaの圧力で30分間真空プレスを行った。プレスより絶縁フィルムが積層された評価基板を取り出し、PETフィルムを剥離し、170℃のギアオーブン中で60分間加熱硬化させた。次に、以下の評価を行った。   Next, the press temperature of the quick vacuum press (manufactured by Mikado Technos) is set to 90 ° C., and the SUS plate (thickness 1 mm), the single-layer insulating film A, the evaluation substrate, and the multilayer insulating film from the bottom with respect to the press plate (The second layer was on the SUS plate side) and the SUS plate (thickness 1 mm) were stacked and set in this order, and vacuum pressing was performed at a pressure of 6 MPa for 30 minutes. The evaluation board | substrate with which the insulating film was laminated | stacked was taken out from the press, PET film was peeled, and it heat-hardened for 60 minutes in a 170 degreeC gear oven. Next, the following evaluation was performed.

(1)埋め込み性
スルーホール部分の断面観察を金属顕微鏡で行い、下側まで封止されているものを○、封止不足のものを×と判定した。封止されていない場合は気泡が観察される。
(1) Embeddability Cross-sectional observation of the through-hole portion was performed with a metal microscope, and it was determined that the one sealed to the lower side was ○, and the one that was insufficiently sealed was ×. If it is not sealed, bubbles are observed.

(2)絶縁層厚み範囲及びばらつき
スルーホール部分の断面を観察し、金属顕微鏡で多層絶縁フィルム側の絶縁層厚みを直線状に乗る任意の連続する50箇所を計測した。スルーホール中心部とスルーホール間の中央部との厚さの差を50箇所計測結果を元に絶縁層厚み範囲及びばらつきを算出した。
(2) Insulating layer thickness range and variation A cross section of the through-hole portion was observed, and arbitrary continuous 50 points on the insulating layer thickness on the multilayer insulating film side were measured with a metal microscope. The insulating layer thickness range and variations were calculated based on the measurement results of the thickness difference between the center portion of the through hole and the center portion between the through holes at 50 locations.

以上の結果より、実施例にかかる絶縁フィルムは、絶縁フィルムに要求される諸特性を維持しつつ、極めて良好な厚さ精度を有することがわかった。そのため、実施例にかかる絶縁フィルムを絶縁層として用いれば回路を形成した際に、厚さ方向の電気抵抗と電気信号の長さのばらつきが少なくなり、信号のノイズ等が低減できる。   From the above results, it was found that the insulating film according to the example has extremely good thickness accuracy while maintaining various properties required for the insulating film. Therefore, if the insulating film according to the example is used as an insulating layer, when a circuit is formed, variations in electric resistance in the thickness direction and length of the electric signal are reduced, and signal noise and the like can be reduced.

Claims (8)

基材と、
前記基材上に積層された、エポキシ樹脂、エポキシ樹脂硬化剤、ポリスチレン換算重量平均分子量が3万以上のフェノキシ樹脂、平均粒子径0.01〜2μmの無機充填材、硬化促進剤を含む第1層であって、前記ポリスチレン換算重量平均分子量が3万以上のフェノキシ樹脂を、前記第1層の全重量基準で10wt%以上含む第1層と、
前記第1層上に積層された、エポキシ樹脂、エポキシ樹脂硬化剤、平均粒子径0.1〜10μmの無機充填材、硬化促進剤からなる第2層と、を有し、
前記第2層に含まれる無機充填材の粒径は、前記第1層に含まれる無機充填材の粒径よりも大きく、
前記第1層に含まれる前記硬化促進剤の量は、前記第2層に含まれる前記硬化促進剤の量よりも多いことを特徴とする多層絶縁フィルム。
A substrate;
A first layer containing an epoxy resin, an epoxy resin curing agent, a phenoxy resin having a polystyrene-equivalent weight average molecular weight of 30,000 or more, an inorganic filler having an average particle diameter of 0.01 to 2 μm, and a curing accelerator laminated on the substrate. A first layer containing 10 wt% or more of a phenoxy resin having a polystyrene-equivalent weight average molecular weight of 30,000 or more based on the total weight of the first layer,
Layered on the first layer, an epoxy resin, an epoxy resin curing agent, an inorganic filler having an average particle size of 0.1 to 10 μm, and a second layer made of a curing accelerator,
The particle size of the inorganic filler contained in the second layer is larger than the particle size of the inorganic filler contained in the first layer,
The amount of the hardening accelerator contained in the first layer is larger than the amount of the hardening accelerator contained in the second layer.
前記第1層は、前記第1層の全重量100重量部に対して、有機化層状珪酸塩を0.01〜50重量部の割合でさらに含むことを特徴とする請求項1に記載の多層絶縁フィルム。   2. The multilayer according to claim 1, wherein the first layer further includes an organic layered silicate in a ratio of 0.01 to 50 parts by weight with respect to 100 parts by weight of the total weight of the first layer. Insulating film. 前記第2層は、前記第2層の全重量100重量部に対して、有機化層状珪酸塩を0.01〜50重量部の割合でさらに含むことを特徴とする請求項1又は2に記載の多層絶縁フィルム。   The said 2nd layer further contains 0.01-50 weight part of organic layered silicate with respect to the total weight of 100 weight part of the said 2nd layer. Multilayer insulation film. 前記無機充填材は、シランカップリング剤により表面処理されたシリカであることを特徴とする請求項1〜3のいずれか1項に記載の多層絶縁フィルム。   The multilayer insulating film according to claim 1, wherein the inorganic filler is silica surface-treated with a silane coupling agent. 前記第1層は、化学処理及びメッキにより導体層形成可能であることを特徴とする請求項1〜のいずれか1項に記載の多層絶縁フィルム。 The first layer, the multilayer insulating film according to any one of claims 1 to 4, characterized in that the chemical treatment and plating can be conductive layers formed. 前記第1層の化学処理後の表面粗さRaが200nm以下、Rzが2μm以下であることを特徴とする請求項1〜のいずれか1項に記載の多層絶縁フィルム。 The multilayer insulating film according to any one of claims 1 to 5, the surface roughness Ra after the chemical treatment of the first layer is 200nm or less, Rz is equal to or is 2μm or less. 前記基材はポリエチレンテレフタレート(PET)もしくは銅箔であることを特徴とする請求項1〜のいずれか1項に記載の多層絶縁フィルム。 The multilayer insulating film according to any one of claims 1 to 6, wherein said base material which is a polyethylene terephthalate (PET) or copper foil. 前記ポリスチレン換算重量平均分子量が3万以上のフェノキシ樹脂を、前記第1層の全重量基準で40〜50wt%の範囲で含むことを特徴とする請求項1〜のいずれか1項に記載の多層絶縁フィルム。 The polystyrene-reduced weight average molecular weight of 30,000 or more phenoxy resins, according to any one of claims 1 to 7, characterized in that it comprises in the range of 40~50Wt% based on the total weight of the first layer Multilayer insulation film.
JP2007154396A 2007-06-11 2007-06-11 Multilayer insulation film Active JP5016401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154396A JP5016401B2 (en) 2007-06-11 2007-06-11 Multilayer insulation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154396A JP5016401B2 (en) 2007-06-11 2007-06-11 Multilayer insulation film

Publications (2)

Publication Number Publication Date
JP2008302677A JP2008302677A (en) 2008-12-18
JP5016401B2 true JP5016401B2 (en) 2012-09-05

Family

ID=40231789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154396A Active JP5016401B2 (en) 2007-06-11 2007-06-11 Multilayer insulation film

Country Status (1)

Country Link
JP (1) JP5016401B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI621638B (en) * 2008-11-28 2018-04-21 味之素股份有限公司 Resin composition
JP5504064B2 (en) * 2010-06-16 2014-05-28 日本発條株式会社 Circuit board laminate and metal base circuit board manufacturing method
KR101298368B1 (en) 2011-03-31 2013-08-20 세키스이가가쿠 고교가부시키가이샤 Preliminary-cured material, roughened preliminary-cured material, and laminated body
KR101788738B1 (en) * 2012-08-30 2017-10-20 삼성전기주식회사 Insulating film and manufacturing method for insulating film
KR101560518B1 (en) 2012-09-07 2015-10-14 세키스이가가쿠 고교가부시키가이샤 Insulating resin material and multilayer substrate
JP6098988B2 (en) 2012-09-28 2017-03-22 味の素株式会社 Support-containing prepolymer sheet
JP5978936B2 (en) * 2012-11-13 2016-08-24 味の素株式会社 Resin composition
JP2015147310A (en) * 2014-02-05 2015-08-20 日本ゼオン株式会社 Multilayer curable resin film, prepreg, laminate, cured product, composite body, and multilayer circuit board
JP6911009B2 (en) * 2016-03-24 2021-07-28 三洋電機株式会社 Non-aqueous electrolyte secondary battery
KR101927631B1 (en) * 2017-07-27 2018-12-10 주식회사 케이씨씨 Epoxy resin composition and semiconductor device comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347324A (en) * 1989-07-13 1991-02-28 Kubota Corp Plural layer column construction for underground structure
JPH1117345A (en) * 1997-06-19 1999-01-22 Ibiden Co Ltd Multilayer printed wiring board
JP2002064275A (en) * 2000-08-17 2002-02-28 Sumitomo Bakelite Co Ltd Insulating resin film for multilayer printed wiring board
JP4466590B2 (en) * 2001-08-31 2010-05-26 住友ベークライト株式会社 Resin composition, prepreg, laminate and semiconductor package
JP2003286391A (en) * 2002-03-28 2003-10-10 Nippon Steel Chem Co Ltd Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
JP2005209489A (en) * 2004-01-23 2005-08-04 Sumitomo Bakelite Co Ltd Insulation sheet
WO2007032424A1 (en) * 2005-09-15 2007-03-22 Sekisui Chemical Co., Ltd. Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate

Also Published As

Publication number Publication date
JP2008302677A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5016401B2 (en) Multilayer insulation film
JP6109569B2 (en) Epoxy resin composition for circuit board, prepreg, laminate, resin sheet, laminate substrate for printed wiring board, printed wiring board, and semiconductor device
JP5703547B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring, and semiconductor device
KR101730218B1 (en) Primer layer for plating process, laminate for circuit board and production method for same, and multilayer circuit board and production method for same
WO2011010672A1 (en) Resin compositions, resin sheet, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
WO2012131971A1 (en) Preliminarily cured product, roughened preliminarily cured product, and laminate
JP2010053334A (en) Epoxy-based resin composition, prepreg, cured product, sheet-like molded article, laminate plate, and multilayer laminate plate
JP5359026B2 (en) Slurry composition, method for producing slurry composition, method for producing resin varnish
JP6389782B2 (en) Multilayer insulating film, method for manufacturing multilayer substrate, and multilayer substrate
JP2012153752A (en) Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP2012131947A (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP5118469B2 (en) Copper foil with filler particle-containing resin layer and copper-clad laminate using the filler particle-containing copper foil with resin layer
TW201823323A (en) Prepreg, metal-clad laminate, and printed wiring board
JP2012131946A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP4871828B2 (en) Manufacturing method of multilayer printed wiring board
JP2011105911A (en) Epoxy resin composition containing silicone rubber fine particle, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JPWO2008123248A1 (en) Insulating sheet with substrate, multilayer printed wiring board, semiconductor device, and method for manufacturing multilayer printed wiring board
JP5977969B2 (en) Insulating sheet, method for manufacturing insulating sheet, and multilayer substrate
JP2014120687A (en) Laminated plate, multilayer laminated plate, printed wiring board, multilayer printed wiring board, and method for manufacturing laminated plate
JP2010222391A (en) Epoxy resin composition, sheet-shaped formed body, prepreg, cured product, laminate and multilayered laminate
JP4840303B2 (en) Insulated resin sheet with glass fiber woven fabric, laminated board, multilayer printed wiring board, and semiconductor device
JP5821845B2 (en) Resin composition used for formation of resin layer constituting metal base substrate, metal base substrate, and method of manufacturing metal base substrate
JP2006019451A (en) Printed-circuit board and interlayer insulating layer therefor
TWI401271B (en) Pre-hardened, coarsened pre-hardened and laminated
JP2012131948A (en) Resin composition, prepreg, laminate plate, resin sheet, printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5016401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3