JP5016235B2 - 電流電圧変換器およびインピーダンス測定装置 - Google Patents

電流電圧変換器およびインピーダンス測定装置 Download PDF

Info

Publication number
JP5016235B2
JP5016235B2 JP2006055764A JP2006055764A JP5016235B2 JP 5016235 B2 JP5016235 B2 JP 5016235B2 JP 2006055764 A JP2006055764 A JP 2006055764A JP 2006055764 A JP2006055764 A JP 2006055764A JP 5016235 B2 JP5016235 B2 JP 5016235B2
Authority
JP
Japan
Prior art keywords
detector
current
integrator
variable gain
gain amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006055764A
Other languages
English (en)
Other versions
JP2007232604A (ja
Inventor
保明 小松
健史 岡部
拓也 平戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Priority to JP2006055764A priority Critical patent/JP5016235B2/ja
Publication of JP2007232604A publication Critical patent/JP2007232604A/ja
Application granted granted Critical
Publication of JP5016235B2 publication Critical patent/JP5016235B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

本発明は、自動平衡ブリッジを備えるインピーダンス測定装置に関する。
被測定物のインピーダンスを測定する技術の1つに自動平衡ブリッジがある(例えば、特許文献1〜6を参照。)。自動平衡ブリッジは、零位検出器と、零位検出器の出力信号を増幅する増幅器と、所定のインピーダンスを有し、増幅器の出力信号を零位検出器の入力へ帰還させる基準素子とを備える。零位検出器と基準素子との間には、被測定物の一端が接続される。また、被測定物の他の一端には信号が印加される。自動平衡ブリッジ内において、フィードバックループの働きにより、被測定物と零位検出器とを接続する点の電位がゼロになる。その結果、自動平衡ブリッジは、被測定物を流れる電流を電圧に変換する装置として動作する。なお、このフィードバックループは、零位点すなわちヌル点を形成するように作用するので、ヌルループとも称される。
増幅器は、通常、モデム(変復調器)型の狭帯域増幅器で構成される(例えば、特許文献7を参照。)。狭帯域増幅器は、入力信号を同相成分と直交成分とに分解する検波器と、検波器から出力される同相成分および直交成分を個別に積分する積分器と、積分器による各成分の積分結果に基づいて直交振幅変調信号を生成する変調器とを備える。検波器は、正弦波信号源と、余弦波信号源と、各信号源に対応する2つのミキサで構成される。ヌルループ内にノイズやDCオフセットドリフトが生じると、上記接続点の電位変動が生じる。上記接続点の電位変動は、電圧測定値や電流測定値の変動となり、インピーダンス測定値の変動として現れる。従来、検波器内のミキサが生じるDCオフセットドリフトが、ヌルループのダイナミックレンジを低下させる最大の要因となっていた。そこで、従来は、狭帯域増幅器の前段にさらに増幅器を設けることにより、インピーダンス測定値の変動を抑制し、測定精度の向上を図っている。ここで、狭帯域増幅器の前段に設けた増幅器を前置増幅器と称する。
特開平1−143968号公報(第2〜5頁、図1) 特開平4−204267号公報(第4〜8頁、図1) 特開平7−234256号公報(第3〜4頁、図1) 特開2002−323520号公報(第4頁、図1) 特開2003−279607号公報(第3〜4頁、図1) 特開2004−317391号公報(第5頁、図4) 特開2005−189184号公報(第5頁、図1)
前置増幅器を設けると、外乱によりヌルループが飽和しやすくなる。例えば、キャパシタの製造ラインにおいて製造不良により端子間が短絡された異常なキャパシタを測定する場合を考える。この場合、被測定物には大電流が流れるので狭帯域増幅器の出力信号の振幅が大きくなる。その後、端子間が短絡されていない正常なキャパシタを測定すると、狭帯域増幅器の出力信号は、その振幅が過大なまま前置増幅器へ入力される。この時、前置増幅器の増幅率が大きいと前置増幅器が飽和してしまう。前置増幅器が飽和すると飽和状態から復帰するまでの間はヌルループのフィードバックが切れた状態になる。そして、狭帯域増幅器はフィードバック信号を十分に供給することができなくなり、狭帯域増幅器内の積分器を充電するのに時間がかかってしまう。その結果、ヌルループが収束するまでの待ち時間が長くなる。以上のように、高精度測定を実現するために前置増幅器を設けることは、高速測定の妨げとなっていた。
本発明は、従来と同等の測定精度を維持しつつ、従来に比べ測定時間を短縮することを目的とする。本発明は、その目的を達成するために、ヌルループのダイナミックレンジを低下させる要因となっている装置の前段に第一の可変利得増幅器を設け、当該低下要因装置の後段に第二の可変利得増幅器を設ける。第二の可変利得増幅器の増幅率は、第一の可変利得増幅器の増幅率変化を補償してヌルループのループゲインが一定になるように設定される。そして、測定過程の前半では第一の可変利得増幅器の増幅率がより低く設定され、測定過程の前半では第一の可変利得増幅器の増幅率がより高く設定される。さらに詳細に言い換えれば、自動平衡ブリッジにおける電流電圧変換過程において、第一の可変利得増幅器を、最初はより低い増幅率に設定し、その後、同電流電圧変換過程の途中で、より高い増幅率に切り換える。
すなわち、本第一の発明は、零位検出器と、前記零位検出器の出力信号を増幅する増幅器と、一端が零位検出器に他端が前記増幅器に接続され、所定のインピーダンスを有する基準素子とを備え、前記増幅器が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器とを具備する電流電圧変換器であって、さらに、前記基準素子の一端と前記検波器の入力端との間に設けられる第一の可変利得増幅器と、前記検波器の出力端と前記基準素子の他端との間に設けられる第二の可変利得増幅器とを備え、前記第二の可変利得増幅器の増幅率が、第一の可変利得増幅器の増幅率変化を補償するように設定されることを特徴とするものである。
また、本第二の発明は、本第一の発明の装置において、前記第一の可変利得増幅器の増幅率が、電流電圧変換過程において、最初はより低い増幅率に設定され、その後、同電流電圧変換過程の途中で、より高い増幅率に切り換えられることを特徴とするものである。
さらに、本第三の発明は、本第一または本第二の発明の装置において、前記第一の可変利得増幅器の前段に直流遮断装置を備えることを特徴とするものである。
またさらに、本第四の発明は、本第一乃至本第三の発明のいずれかの装置において、前記第二の可変利得増幅器の前段に直流遮断装置を備えることを特徴とするものである。
また、本第五の発明は、本第一乃至本第四の発明のいずれかの装置において、前記検波器と前記第一の積分器との間、および、前記検波器と前記第二の積分器との間のそれぞれに、スイッチを備えることを特徴とするものである。
さらに、本第六の発明は、本第一乃至本第五の発明のいずれかの装置において、前記電流電圧変換器に電流が入力されない状態で前記検波器の入力端に生じる直流成分を、少なくとも電流電圧変換過程において、前記検波器の入力端に印加される信号から差し引く減算器を備えることを特徴とするものである。
またさらに、本第七の発明は、零位検出器と、前記零位検出器の出力信号を増幅する増幅器と、一端が零位検出器に他端が前記増幅器に接続され、所定のインピーダンスを有する基準素子とを備え、前記増幅器が、前記零位検出器の出力信号をディジタル変換するアナログディジタル変換器と、前記アナログディジタル変換器の変換結果を処理するディジタル信号処理装置と、前記ディジタル信号処理装置の処理結果をアナログ変換するディジタルアナログ変換器とを具備する電流電圧変換器であって、さらに、前記基準素子の一端と前記アナログディジタル変換器の入力端との間に設けられる第一の可変利得増幅器と、前記アナログディジタル変換器の出力端と前記基準素子の他端との間に設けられる第二の可変利得増幅器とを備え、前記第二の可変利得増幅器の増幅率が、第一の可変利得増幅器の増幅率変化を補償するように設定されることを特徴とするものである。
また、本第八の発明は、本第七の発明の装置において、前記第一の可変利得増幅器の増幅率が、電流電圧変換過程において、最初はより低い増幅率に設定され、その後、同電流電圧変換過程の途中で、より高い増幅率に切り換えられることを特徴とするものである。
さらに、本第九の発明は、本第七または本第八の発明の装置において、前記第一の可変利得増幅器の前段に直流遮断装置を備えることを特徴とするものである。
またさらに、本第十の発明は、本第七乃至本第九の発明のいずれかにおいて、前記第二の可変利得増幅器の前段に直流遮断装置を備えることを特徴とするものである。
また、本第十一の発明は、本第七乃至本第十の発明のいずれかの装置において、前記ディジタル信号処理装置が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器と、前記検波器と前記第一の積分器との間に設けられる第一のスイッチと、前記検波器と前記第二の積分器との間に設けられる第二のスイッチとして機能することを特徴とするものである。
さらに、本第十二の発明は、本第七乃至本第十一の発明のいずれかの装置において、本前記ディジタル信号処理装置が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器と、前記電流電圧変換器に電流が入力されない状態で前記検波器の入力端に生じる直流成分を、少なくとも電流電圧変換過程において、前記検波器の入力端に印加される信号から差し引く減算器として機能することを特徴とするものである。
またさらに、本第十三の発明は、被測定物の一端に接続される電流電圧変換器と、被測定物に印加される信号の電圧を測定する第一の電圧測定装置と、前記電流電圧変換器の出力電圧を測定する第二の電圧測定装置とを備え、前記電流電圧変換器が、零位検出器と、前記零位検出器の出力信号を増幅する増幅器と、一端が零位検出器に他端が前記増幅器に接続され、所定のインピーダンスを有する基準素子とを具備し、前記増幅器が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器とを具備するインピーダンス測定装置であって、さらに、前記電流電圧変換器が、前記基準素子の一端と前記検波器の入力端との間に設けられる第一の可変利得増幅器と、前記検波器の出力端と前記基準素子の他端との間に設けられる第二の可変利得増幅器とを備え、前記第二の可変利得増幅器の増幅率が、第一の可変利得増幅器の増幅率変化を補償するように設定されることを特徴とするものである。
また、本第十四の発明は、本第十三の発明の装置において、前記第一の可変利得増幅器の増幅率が、電流電圧変換過程において、最初はより低い増幅率に設定され、その後、同電流電圧変換過程の途中で、より高い増幅率に切り換えられることを特徴とするものである。
さらに、本第十五の発明は、本第十三または本第十四の発明の装置において、前記第一の可変利得増幅器の前段に直流遮断装置を備えることを特徴とするものである。
またさらに、本第十六の発明は、本第十三乃至本本第十五の発明のいずれかの装置において、前記第二の可変利得増幅器の前段に直流遮断装置を備えることを特徴とするものである。
また、本第十七の発明は、本第十三乃至本本第十六の発明のいずれかの装置において、前記検波器と前記第一の積分器との間、および、前記検波器と前記第二の積分器との間のそれぞれに、スイッチを備えることを特徴とするものである。
本第十八の発明は、本第十三乃至本本第十七の発明のいずれかの装置において、前記電流電圧変換器に電流が入力されない状態で前記検波器の入力端に生じる直流成分を、少なくとも電流電圧変換過程において、前記検波器の入力端に印加される信号から差し引く減算器を備えることを特徴とするものである。
本第十九の発明は、被測定物の一端に接続される電流電圧変換器と、被測定物に印加される信号の電圧を測定する第一の電圧測定装置と、前記電流電圧変換器の出力電圧を測定する第二の電圧測定装置とを備え、前記電流電圧変換器が、零位検出器と、前記零位検出器の出力信号を増幅する増幅器と、一端が零位検出器に他端が前記増幅器に接続され、所定のインピーダンスを有する基準素子とを具備し、前記増幅器が、前記零位検出器の出力信号をディジタル変換するアナログディジタル変換器と、前記アナログディジタル変換器の変換結果を処理するディジタル信号処理装置と、前記ディジタル信号処理装置の処理結果をアナログ変換するディジタルアナログ変換器とを具備するインピーダンス測定装置であって、さらに、前記電流電圧変換器が、前記基準素子の一端と前記アナログディジタル変換器の入力端との間に設けられる第一の可変利得増幅器と、前記アナログディジタル変換器の出力端と前記基準素子の他端との間に設けられる第二の可変利得増幅器とを備え、前記第二の可変利得増幅器の増幅率が、第一の可変利得増幅器の増幅率変化を補償するように設定されることを特徴とするインピーダンス測定装置。
本二十の発明は、本第十九の発明の装置において、前記第一の可変利得増幅器の増幅率が、電流電圧変換過程において、最初はより低い増幅率に設定され、その後、同電流電圧変換過程の途中で、より高い増幅率に切り換えられることを特徴とするものである。
本第二十一の発明は、本第十九または本第二十の発明の装置において、前記第一の可変利得増幅器の前段に直流遮断装置を備えることを特徴とするものである。
本第二十二の発明は、本第十九乃至本第二十一の発明のいずれかの装置において、前記第二の可変利得増幅器の前段に直流遮断装置を備えることを特徴とするものである。
本第二十三の発明は、本第十九乃至本第二十二の発明のいずれかの装置において、前記ディジタル信号処理装置が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器と、前記検波器と前記第一の積分器との間に設けられる第一のスイッチと、前記検波器と前記第二の積分器との間に設けられる第二のスイッチとして機能することを特徴とするものである。
本第二十四の発明は、本第十九乃至本第二十三の発明のいずれかの装置において、前記ディジタル信号処理装置が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器と、前記電流電圧変換器に電流が入力されない状態で前記検波器の入力端に生じる直流成分を、少なくとも電流電圧変換過程において、前記検波器の入力端に印加される信号から差し引く減算器として機能することを特徴とするものである。
本発明によれば、ヌルループのダイナミックレンジを低下させる要因となっている装置の前段に第一の可変利得増幅器を設け、第一の可変利得増幅器の増幅率変化を補償する第二の可変利得増幅器を当該低下要因装置の後段に設けるので、従来に比べ高精度かつ高速測定が可能なインピーダンス測定技術を提供することができる。
以下、本発明を添付の図面に示す好適実施形態に基づいて説明する。本発明の第一の実施形態は、自動平衡ブリッジ法によるインピーダンス測定装置であって、その内部構成図を図1に示す。
図1において、インピーダンス測定装置10は、被測定物100のインピーダンスを測定するために、信号源200と、電流電圧変換器300と、ベクトル電圧計400とを備える。
被測定物100は、少なくとも2つの端子を有する被測定物である。被測定物100が3以上の端子を有する場合、それらの端子のうち2つが測定に用いられる。被測定物100には、4つの端子(Hpot、Hcur、Lpot、Lcur)を介して、インピーダンス測定装置10と接続されている。
信号源200は、被測定物100に印加するための測定信号を発生する信号源であって、Hcur端子を介して被測定物100に接続される。また、信号源200は、Hcur端子、Hpot端子およびバッファ210を介してベクトル電圧計400にも接続される。なお、本実施形態において、測定信号は、単一周波数の正弦波信号である。
電流電圧変換器300は、被測定物100に流れる電流を電圧に変換する装置である。電流電圧変換器300は、零位検出器310と、ブロッキングキャパシタ320と、可変利得増幅器330と、狭帯域増幅器500と、ブロッキングキャパシタ340と、可変利得増幅器350と、基準素子の一例であるレンジ抵抗器360とを備える。零位検出器310、ブロッキングキャパシタ320、可変利得増幅器330、狭帯域増幅器500、ブロッキングキャパシタ340、可変利得増幅器350、および、レンジ抵抗器360は、負帰還ループ370を形成している。負帰還ループ370はヌルループとも称される。
零位検出器310は、レンジ抵抗器360に流れる電流と被測定物100に流れる電流とを平衡させることにより、Lpot端子を介して零位検出器310の入力端に流れ込む電流を零にするような信号を出力する装置である。レンジ抵抗器360に流れる電流と被測定物100に流れる電流とが平衡する時、Lpot端子は仮想接地される。
ブロッキングキャパシタ320およびブロッキングキャパシタ340は、直流を遮断するための装置である。ブロッキングキャパシタ320およびブロッキングキャパシタ340は、単なるコンデンサのみならず、高域通過フィルタなどのように他の種類の直流遮断装置に適宜置き換えることができる。
可変利得増幅器330は、増幅率可変の増幅器である。可変利得増幅器330は、ブロッキングキャパシタ320を介して零位検出器310の出力信号を受信し、該受信信号を増幅する。可変利得増幅器330は、1倍と10倍の2つの倍率を設定できるものとする。狭帯域増幅器500は、増幅率が固定された増幅器であって、可変利得増幅器330の出力信号を増幅する装置である。可変利得増幅器350は、増幅率可変の増幅器である。可変利得増幅器350は、ブロッキングキャパシタ340を介して狭帯域増幅器500の出力信号を受信し、該受信信号を増幅する。そして、可変利得増幅器350は、増幅結果をレンジ抵抗器360およびバッファ211へ出力する。可変利得増幅器350は、1倍と10倍の2つの倍率を設定できるものとする。可変利得増幅器330および可変利得増幅器350は、例えば、図2に示されるような構成を有し、増幅率の選択がアナログスイッチの切り換えによって行われるものとする。以下、可変利得増幅器330を前置増幅器とも称し、また、可変利得増幅器350を後置増幅器とも称する。
次に、図3を参照し、狭帯域増幅器500について説明する。図3は、狭帯域増幅器500の内部構成を示す図である。狭帯域増幅器500は、変復調技術を利用した増幅器であって、ヌルアンプあるいはモデムとも称される。狭帯域増幅器500は、特開平1−143968号公報などに記載されるようなディジタル制御式の増幅器である。狭帯域増幅器500は、アナログディジタル変換器510と、ディジタルシグナルプロセッサ600と、ディジタルアナログ変換器520とを備える。アナログディジタル変換器510は、狭帯域増幅器500に入力される信号をディジタルデータに変換する装置である。アナログディジタル変換器510の変換結果は、ディジタルシグナルプロセッサ600での処理に用いられる。ディジタルシグナルプロセッサ600は、所与のプログラムを実行することにより、減算器610と、直流信号源620と、検波器630と、スイッチ641およびスイッチ642と、積分器651および積分器652と、レベル測定器660と、変調器670として機能する。ディジタルシグナルプロセッサ600は、例えば、CPU、MPU、RISC、ASIC、コンピュータなどディジタル信号を処理する機能を有する他の装置に置き換えることができる。ディジタルアナログ変換器520は、ディジタルシグナルプロセッサ600の処理結果であるディジタルデータをアナログ信号に変換する装置である。ディジタルアナログ変換器520の変換結果は、狭帯域増幅器500の出力信号として、出力される。
減算器610は、アナログディジタル変換器510の出力データで表現される信号から、直流信号源620が生成する信号を減じて、該減算結果を出力する装置である。
検波器630は、混合器631および混合器633と、信号源632および信号源634とを備える。信号源632は、正弦波信号を発生し混合器631へ供給する。また、信号源634は、余弦波信号を発生し混合器633へ供給する。信号源632が出力する正弦波信号と信号源634が出力する余弦波信号は、測定信号と同一の周波数を有する。また、信号源632が出力する正弦波信号と信号源634が出力する余弦波信号は、互いに直交する。従って、混合器631と混合器633は、狭帯域増幅器500に入力される信号を同相成分と直交成分とに直交分解する。
スイッチ641は、混合器631と積分器651との間に設けられ、混合器631と積分器651とを選択的に電気的に接続する装置である。スイッチ642は、混合器633と積分器652との間に設けられ、混合器633と積分器652とを選択的に電気的に接続する装置である。
積分器651は、混合器631の出力信号を積分する装置である。また、積分器652は、混合器633の出力信号を積分する装置である。積分器651および積分器652は、入力信号を累積加算することにより積分する。積分器651および積分器652は、積分機能を有する装置であれば良いので、例えば、抵抗器とコンデンサと演算増幅器とにより構成される積分回路の動作を模した処理を行う装置であっても良い。
レベル測定器660は、積分器651の出力信号の振幅方向のレベルを測定する装置である。レベル測定器660は、スイッチを介して選択的に積分器651に電気的に接続されても良い。
変調器670は、混合器671および混合器673と、信号源672および信号源674と、加算器675とを備える。信号源672は、正弦波信号を発生し混合器671へ供給する。また、信号源674は、余弦波信号を発生し混合器673へ供給する。信号源672が出力する正弦波信号と信号源674が出力する余弦波信号は、測定信号と同一の周波数を有し、互いに直交する。混合器671は、信号源672から出力される正弦波信号を積分器651の出力信号で変調し出力する。混合器673は、信号源674から出力される余弦波信号を積分器651の出力信号で変調し出力する。混合器671から出力される信号と混合器673から出力される信号は、加算器675により加算される。加算器675における加算結果は、ディジタルシグナルプロセッサ600の処理結果として出力される。
再び、図1を参照する。レンジ抵抗器360は、図中に詳しく示していないが、抵抗値の異なる複数の抵抗器から構成されており、測定しようとする被測定物100のインピーダンスに応じて、それらの抵抗器が適宜選択され、異なる抵抗値を呈する。ベクトル電圧計400は、バッファ210の出力信号Edutおよびバッファ211の出力信号Errをそれぞれ測定する装置である。
次に、インピーダンス測定装置10による、被測定物100の測定手順を以下に説明する。ここで、図1、図3および図4を参照する。図4は、インピーダンス測定装置10の動作手順を示すフローチャートである。
まず、ステップS10において、ヌルループ370内のDCオフセットを補正するために、DCオフセットのレベルを測定する。具体的には、Lcur端子とLpot端子を短絡し、かつ、被測定物100など外部素子または外部装置からLcur端子およびLpot端子に電流が流入しない状態で、信号源632の出力信号をゼロにし、積分器651の出力信号レベルをレベル測定器660で測定する。本実施形態において、上記の状態は、例えば、被測定物100を開放標準器と置き換えることにより実現される。測定後、信号源632に、測定信号と同一の周波数を有し、信号源634の出力信号と直交する正弦波信号を出力させる。また、直流信号源620の出力信号レベルを、測定されたレベルと同じになるように設定する。なお、実際のインピーダンス測定時までにDCオフセットレベルが明らかになっていれば良いので、このDCオフセットの測定は、製品製造時に一度測定されるだけでも良いし、測定毎に行うようにしても良い。
次に、ステップS20において、被測定物100をインピーダンス測定装置10に接続する。
次に、ステップS30において、可変利得増幅器330の増幅率を低率に設定して、ヌルループ370を収束させる。具体的な手順は以下のとおりである。まず、可変利得増幅器330の増幅率を低率(1倍)に設定し、可変利得増幅器350の増幅率を高率(10倍)に設定する。そして、信号源200より被測定物100へ測定信号を印加した後、ヌルループ370が収束するまで待つ。あるいは、ヌルループ370が収束するに十分な予め決まった時間が経過するまで待つ。
次に、ステップS40において、可変利得増幅器330の増幅率を高率に設定して、ヌルループ370を収束させる。具体的な手順は以下のとおりである。まず、積分器651および積分器652へ入力される信号を遮断するために、スイッチ641およびスイッチ642をオフする。可変利得増幅器330の増幅率を高倍(10倍)に設定し、可変利得増幅器350の増幅率を低率(1倍)に設定する。スイッチ641およびスイッチ642によりヌルループ370を開放にすることは、増幅率切換時に生じる過渡的応答が積分器651および積分器652に伝わることを阻止する。例えば、増幅率切換時、可変利得増幅器330内および可変利得増幅器350内のアナログスイッチに起因して、チャージインジェクション(charge injection)が生じる場合がある。チャージインジェクションは、ヌルループ370内にパルス状の信号をもたらし、これにより、積分器651および積分器652の出力電圧が乱れ、ヌルループ370の収束時間を長期化する。さて、スイッチ641およびスイッチ642は、このチャージインジェクションによりヌルループ370内にもたらされるパルス状の信号が所定レベル以下まで収束すると、オンされる。あるいは、スイッチ641およびスイッチ642は、増幅率切換後、同パルス状の信号が所定レベル以下まで収束するに十分な予め決まった時間が経過した時に、オンされる。そして、増幅率切換後、ヌルループ370が収束するまで待つ。あるいは、ヌルループ370が収束するに十分な予め決まった時間が経過するまで待つ。なお、スイッチ641およびスイッチ642は、ディジタル信号処理技術により実現された仮想的なアナログスイッチであるので、チャージインジェクションが生じない。
最後に、ステップS50において、ベクトル電圧計400によりバッファ210の出力信号Edutおよびバッファ211の出力信号Errをそれぞれ測定する。さらには、図示しない演算装置により、測定された信号Edutと信号Errとのベクトル比が計算され、計算したベクトル比とレンジ抵抗器360の抵抗値とから被測定物100のインピーダンスが算出される。また、必要に応じて、算出したインピーダンスが表示装置(不図示)やプリンタ(不図示)などに出力される。
第一の実施形態のように、狭帯域増幅器500がディジタル信号処理技術により実現されている場合、アナログディジタル変換器510がヌルループ370のダイナミックレンジを制限する主たる要因となる。従って、可変利得増幅器330は、レンジ抵抗器360の被測定物100側の端子とアナログディジタル変換器510の入力端との間に配置される必要がある。また、可変利得増幅器350は、アナログディジタル変換器510の出力端とレンジ抵抗器360のベクトル電圧計400側の端子との間に配置される必要がある。それらの条件を満たす限り、可変利得増幅器330および可変利得増幅器350を自由に配置することができる。例えば、可変利得増幅器330の可変利得増幅器としての機能を零位検出器310内に組み込むことができる。また、可変利得増幅器350の可変利得増幅器としての機能を、狭帯域増幅器500の内部に組み込むことができる。そこで、可変利得増幅器350と同じ機能が狭帯域増幅器500の内部に組み込まれたインピーダンス測定装置の例を、本発明の第二の実施形態として以下に説明する。
本発明の第二の実施形態は、自動平衡ブリッジ法によるインピーダンス測定装置であって、その内部構成図を図5に示す。なお、第二の実施形態のインピーダンス測定装置は、第一の実施形態のインピーダンス測定装置10と共通する構成要素を有する。従って、図5においては、図1と共通する構成要素について、同一の参照符号を付し、詳細な説明を省略する。
図5において、インピーダンス測定装置20は、被測定物100のインピーダンスを測定するために、信号源200と、電流電圧変換器700と、ベクトル電圧計400とを備える。電流電圧変換器700は、図1に示す電流電圧変換器300について、狭帯域増幅器500を狭帯域増幅器800に置き換え、さらに、ブロッキングキャパシタ340および可変利得増幅器350を取り除いたものである。
次に、図6を参照し、狭帯域増幅器800について説明する。図6は、狭帯域増幅器800の内部構成を示す図である。狭帯域増幅器800は、図3に示す狭帯域増幅器500について、ディジタルシグナルプロセッサ600がディジタルシグナルプロセッサ900に置き換わったものである。そして、ディジタルアナログ変換器520は、ディジタルシグナルプロセッサ900の処理結果であるディジタルデータをアナログ信号に変換する。さて、ディジタルシグナルプロセッサ900は、所与のプログラムを実行することにより、様々な装置として機能する。そのシグナルプロセッサ900内で仮想的に実現される装置は、図3に示すディジタルシグナルプロセッサ600に対して、さらに、第一の実施形態における可変利得増幅器350の代わりの役目を果たす可変利得増幅器911および可変利得増幅器912が追加されている。ディジタルシグナルプロセッサ900は、例えば、CPU、MPU、RISC、ASIC、コンピュータなどディジタル信号を処理する機能を有する他の装置に置き換えることができる。可変利得増幅器911は、混合器631とスイッチ641との間に設けられ、混合器631の出力信号を増幅する。また、可変利得増幅器912は、混合器633とスイッチ642との間に設けられ、混合器633の出力信号を増幅する。可変利得増幅器911および可変利得増幅器912は、図1に示す可変利得増幅器350と同じ機能を有する。すなわち、可変利得増幅器911および可変利得増幅器912は、1倍と10倍の2つの倍率を設定できる、増幅率可変の増幅器である。可変利得増幅器911および可変利得増幅器912は、ディジタル信号処理技術により実現された仮想的な増幅器であるので、アナログスイッチによる増幅率の切り換えがなく、従って、チャージインジェクションも生じない。以下、可変利得増幅器911および可変利得増幅器912を後置増幅器とも称する。
次に、インピーダンス測定装置20による、被測定物100の測定手順を以下に説明する。ここで、図5、図6および図7を参照する。図7は、インピーダンス測定装置20の動作手順を示すフローチャートである。
まず、ステップS11において、ヌルループ770内のDCオフセットを補正するために、DCオフセットのレベルを測定する。具体的には、具体的には、Lcur端子とLpot端子を短絡し、かつ、被測定物100など外部素子または外部装置からLcur端子およびLpot端子に電流が流入しない状態で、信号源632の出力信号をゼロにし、積分器651の出力信号レベルをレベル測定器660で測定する。本実施形態において、上記の状態は、例えば、被測定物100を開放標準器と置き換えることにより実現される。測定後、信号源632に、測定信号と同一の周波数を有し、信号源634の出力信号と直交する正弦波信号を出力させる。また、直流信号源620の出力信号レベルを、測定されたレベルと同じになるように設定する。なお、実際のインピーダンス測定時までにDCオフセットレベルが明らかになっていれば良いので、このDCオフセットの測定は、製品製造時に一度測定されるだけでも良いし、測定毎に行うようにしても良い。
次に、ステップS21において、被測定物100をインピーダンス測定装置20に接続する。
次に、ステップS31において、可変利得増幅器330の増幅率を低率に設定して、ヌルループ770を収束させる。具体的な手順は以下のとおりである。まず、可変利得増幅器330の増幅率を低率(1倍)に設定し、可変利得増幅器911および可変利得増幅器912の増幅率を高率(10倍)に設定する。そして、信号源200より被測定物100へ測定信号を印加した後、ヌルループ770が収束するまで待つ。あるいは、ヌルループ770が収束するに十分な予め決まった時間が経過するまで待つ。
次に、ステップS41において、可変利得増幅器330の増幅率を高率に設定して、ヌルループ770を収束させる。具体的な手順は以下のとおりである。まず、積分器651および積分器652へ入力される信号を遮断するために、スイッチ641およびスイッチ642をオフする。可変利得増幅器330の増幅率を高倍(10倍)に設定し、可変利得増幅器911および可変利得増幅器912の増幅率を低率(1倍)に設定する。スイッチ641およびスイッチ642は、可変利得増幅器330内のアナログスイッチに起因するチャージインジェクションによりヌルループ770内にもたらされるパルス状の信号が所定レベル以下まで収束すると、オンされる。あるいは、スイッチ641およびスイッチ642は、増幅率切換後、同パルス状の信号が所定レベル以下まで収束するに十分な予め決まった時間が経過した時に、オンされる。そして、増幅率切換後、ヌルループ770が収束するまで待つ。あるいは、ヌルループ770が収束するに十分な予め決まった時間が経過するまで待つ。
最後に、ステップS51の処理を実施する。ステップS51は、図4に示すステップS50と同じ処理である。
以上、説明したように、測定過程前半のヌルループが収束する段階では、信号Edutおよび信号Errを測定しないので、可変利得増幅器330の増幅率が低くても、信号Edutおよび信号Errの測定値に影響を与える心配はない。また、可変利得増幅器330の出力飽和やアナログディジタル変換器510への過大入力などが抑えられ、狭帯域増幅器500が正常に機能するので、ヌルループ370が高速に収束する。あるいは、狭帯域増幅器800が正常に機能するので、ヌルループ770が高速に収束する。一方、同測定過程後半では、可変利得増幅器330の増幅率が高いので、ヌルループ370のダイナミックレンジが向上し、ヌルループ370が十分に収束した状態で信号Edutおよび信号Errを測定することができる。あるいは、ヌルループ770のダイナミックレンジが向上し、ヌルループ770が十分に収束した状態で信号Edutおよび信号Errを測定することができる。なお、測定過程前半にヌルループが一端収束しているので、その後に可変利得増幅器330の増幅率を高くしても、上記のような飽和は生じない。
また、可変利得増幅器330の増幅率が切り替わる時に、可変利得増幅器350の増幅率も切り替わり、ヌルループ370のバンド幅が一定に保たれるので、ヌルループ370は高速に収束する。あるいは、可変利得増幅器330の増幅率が切り替わる時に、可変利得増幅器911および可変利得増幅器912の増幅率も切り替わり、ヌルループ770のバンド幅が一定に保たれるので、ヌルループ770は高速に収束する。
さらに、ブロッキングキャパシタ320が可変利得増幅器330の前段に、ブロッキングキャパシタ340が可変利得増幅器350の前段に、それぞれ設けられているので、可変利得増幅器330および可変利得増幅器350の増幅率が変化しても、可変利得増幅器330および可変利得増幅器350の出力信号の直流レベルが変化せず、その結果、ヌルループ370は安定的に収束することができる。このことは、ヌルループ370の収束の高速化に貢献する。あるいは、可変利得増幅器330および可変利得増幅器911および可変利得増幅器912の増幅率が変化しても、可変利得増幅器330および可変利得増幅器911および可変利得増幅器912の出力信号の直流レベルが変化せず、その結果、ヌルループ770は安定的に収束することができる。このことは、ヌルループ770の収束の高速化に貢献する。
またさらに、Lpot端子とLcur端子とが電気的に接続され、かつ、Lpot端子およびLcur端子に電流が入力されない状態で検波器630の入力端に生じる直流成分を、検波器630の入力端に印加される信号から差し引くようにしているので、混合器631および混合器633での交流成分の発生が抑えられる。このことは、スイッチ641およびスイッチ642がオフになる直前において積分器651および積分器652に入力される信号の振幅レベルと、当該オフになった後にスイッチ641およびスイッチ642が再びオンになった直後において積分器651および積分器652に入力される信号の振幅レベルとの差を抑制することに貢献する。すなわち、ヌルループ370またはヌルループ770の安定的な収束に貢献する。
また、可変利得増幅器330および可変利得増幅器350の増幅率切換時において、スイッチ641およびスイッチ642によりヌルループ370を開放状態にするので、当該切換時にヌルループ370内に導入される過渡的応答が積分器651および積分器652に伝わることを阻止する。その結果、ヌルループ370は安定的に収束することができる。このことは、ヌルループ370の収束の高速化に貢献する。あるいは、可変利得増幅器330の増幅率切換時において、スイッチ641およびスイッチ642によりヌルループ770を開放状態にするので、当該切換時にヌルループ770内に導入される過渡的応答が積分器651および積分器652に伝わることを阻止する。その結果、ヌルループ770は安定的に収束することができる。このことは、ヌルループ770の収束の高速化に貢献する。
さて、第一の実施形態および第二の実施形態において、以下のような変更が可能である。例えば、狭帯域増幅器500および狭帯域増幅器800の増幅率は、少なくとも1つの測定過程中において固定あれば良い。従って、狭帯域増幅器500および狭帯域増幅器800の増幅率は、例えば、インピーダンス測定のための被測定物100に印加される測定信号の周波数に応じて変化することが許容される。
また、可変利得増幅器330および可変利得増幅器350が設定可能な増幅率は、2つに限らず3以上であっても良い。また、それらの増幅率は、1倍と10倍以外の増幅率であっても良い。例えば、可変利得増幅器330および可変利得増幅器350は、1倍、5倍、25倍の3つの増幅率を設定できるものであっても良い。可変利得増幅器911および可変利得増幅器912が設定可能な増幅率も、可変利得増幅器350と同様に、2つに限らず3以上であっても良い。また、それらの増幅率は、1倍と10倍以外の増幅率であっても良い。例えば、可変利得増幅器911および可変利得増幅器912は、1倍、5倍、25倍の3つの増幅率を設定できるものであっても良い。上記のように可変利得増幅器が3以上の増幅率を有する場合、それらの増幅率は、ヌルループの飽和が抑えられるような順序で切り換えられる。
さらに、第一の実施形態および第二の実施形態において、狭帯域増幅器をディジタル信号処理技術により仮想的に実現された増幅器とした。しかし、本発明は、狭帯域増幅器が実在のハードウェアにより実現される場合においても、有効に適用される。その場合、アナログディジタル変換器およびディジタルアナログ変換器は無く、ディジタル信号処理装置内で仮想的に実現される装置は実在のアナログ個別部品やアナログICなどのハードウェアにより構成される。そして、この場合、ヌルループのダイナミックレンジを制限する主たる要因は、狭帯域増幅器内の検出器内の混合器である。従って、可変利得増幅器330は、レンジ抵抗器360の被測定物100側の端子と検波器630(混合器631および混合器633)の入力端との間に配置される必要がある。また、可変利得増幅器350は、検波器630(混合器631および混合器633)の出力端とレンジ抵抗器360のベクトル電圧計400側の端子との間に配置される必要がある。それらの条件を満たす限り、可変利得増幅器330および可変利得増幅器350を自由に配置することができる。例えば、可変利得増幅器330の可変利得増幅器としての機能を零位検出器310内に組み込むことができる。また、可変利得増幅器350の可変利得増幅器としての機能を、第二の実施形態における可変利得増幅器911および可変利得増幅器912のように、狭帯域増幅器500の内部に組み込むことができる。
インピーダンス測定装置10の構成を示すブロック図である。 本発明のインピーダンス測定装置が備える可変利得増幅器の等価回路を示す図である。 狭帯域増幅器500の構成を示すブロック図である。 インピーダンス測定装置10の動作手順を示すフローチャートである。 インピーダンス測定装置20の構成を示すブロック図である。 狭帯域増幅器800の構成を示すブロック図である。 インピーダンス測定装置20の動作手順を示すフローチャートである。
符号の説明
10,20 インピーダンス測定装置
100 被測定物
200 信号源
210,211 バッファ
300,700 電流電圧変換器
310 零位検出器
320,340 ブロッキングキャパシタ
330,350,911,912 可変利得増幅器
360 レンジ抵抗器
360 基準素子
370、770 ヌルループ
400 ベクトル電圧計
500,800 狭帯域増幅器
510,520 アナログディジタル変換器
600,900 ディジタルシグナルプロセッサ
610 減算器
620 直流信号源
630 検波器
631,633 混合器
632,634 信号源
641,642 スイッチ
651,652 積分器
660 レベル測定器
670 変調器
671,673 混合器
672,674 信号源
675 加算器

Claims (24)

  1. 零位検出器と、前記零位検出器の出力信号を増幅する増幅器と、一端が零位検出器に他端が前記増幅器に接続され、所定のインピーダンスを有する基準素子とを備え、
    前記増幅器が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器とを具備する電流電圧変換器であって、
    さらに、
    前記基準素子の一端と前記検波器の入力端との間に設けられる第一の可変利得増幅器と、
    前記検波器の出力端と前記基準素子の他端との間に設けられる第二の可変利得増幅器と
    を備え、
    前記第二の可変利得増幅器の増幅率が、第一の可変利得増幅器の増幅率変化を補償するように設定される、
    ことを特徴とする電流電圧変換器。
  2. 前記第一の可変利得増幅器の増幅率が、電流電圧変換過程において、最初はより低い増幅率に設定され、その後、同電流電圧変換過程の途中で、より高い増幅率に切り換えられることを特徴とする請求項1に記載の電流電圧変換器。
  3. 前記第一の可変利得増幅器の前段に直流遮断装置を備えることを特徴とする請求項1または請求項2に記載の電流電圧変換器。
  4. 前記第二の可変利得増幅器の前段に直流遮断装置を備えることを特徴とする請求項1乃至請求項3のいずれかに記載の電流電圧変換器。
  5. 前記検波器と前記第一の積分器との間、および、前記検波器と前記第二の積分器との間のそれぞれに、スイッチを備えることを特徴とする請求項1乃至請求項4のいずれかに記載の電流電圧変換器。
  6. 前記電流電圧変換器に電流が入力されない状態で前記検波器の入力端に生じる直流成分を、少なくとも電流電圧変換過程において、前記検波器の入力端に印加される信号から差し引く減算器を備えることを特徴とする請求項1乃至請求項5のいずれかに記載の電流電圧変換器。
  7. 零位検出器と、前記零位検出器の出力信号を増幅する増幅器と、一端が零位検出器に他端が前記増幅器に接続され、所定のインピーダンスを有する基準素子とを備え、
    前記増幅器が、前記零位検出器の出力信号をディジタル変換するアナログディジタル変換器と、前記アナログディジタル変換器の変換結果を処理するディジタル信号処理装置と、前記ディジタル信号処理装置の処理結果をアナログ変換するディジタルアナログ変換器とを具備する電流電圧変換器であって、
    さらに、
    前記基準素子の一端と前記アナログディジタル変換器の入力端との間に設けられる第一の可変利得増幅器と、
    前記アナログディジタル変換器の出力端と前記基準素子の他端との間に設けられる第二の可変利得増幅器と
    を備え、
    前記第二の可変利得増幅器の増幅率が、第一の可変利得増幅器の増幅率変化を補償するように設定され
    前記ディジタル信号処理装置が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器と、前記検波器と前記第一の積分器との間に設けられる第一のスイッチと、前記検波器と前記第二の積分器との間に設けられる第二のスイッチとして機能する、
    ことを特徴とする電流電圧変換器。
  8. 前記ディジタル信号処理装置が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器と、前記電流電圧変換器に電流が入力されない状態で前記検波器の入力端に生じる直流成分を、少なくとも電流電圧変換過程において、前記検波器の入力端に印加される信号から差し引く減算器として機能する、
    ことを特徴とする請求項7に記載の電流電圧変換器。
  9. 零位検出器と、前記零位検出器の出力信号を増幅する増幅器と、一端が零位検出器に他端が前記増幅器に接続され、所定のインピーダンスを有する基準素子とを備え、
    前記増幅器が、前記零位検出器の出力信号をディジタル変換するアナログディジタル変換器と、前記アナログディジタル変換器の変換結果を処理するディジタル信号処理装置と、前記ディジタル信号処理装置の処理結果をアナログ変換するディジタルアナログ変換器とを具備する電流電圧変換器であって、
    さらに、
    前記基準素子の一端と前記アナログディジタル変換器の入力端との間に設けられる第一の可変利得増幅器と、
    前記アナログディジタル変換器の出力端と前記基準素子の他端との間に設けられる第二の可変利得増幅器と
    を備え、
    前記第二の可変利得増幅器の増幅率が、第一の可変利得増幅器の増幅率変化を補償するように設定され、
    前記ディジタル信号処理装置が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器と、前記電流電圧変換器に電流が入力されない状態で前記検波器の入力端に生じる直流成分を、少なくとも電流電圧変換過程において、前記検波器の入力端に印加される信号から差し引く減算器として機能する、
    ことを特徴とする電流電圧変換器。
  10. 前記第一の可変利得増幅器の増幅率が、電流電圧変換過程において、最初はより低い増幅率に設定され、その後、同電流電圧変換過程の途中で、より高い増幅率に切り換えられることを特徴とする請求項7乃至請求項9のいずれかに記載の電流電圧変換器。
  11. 前記第一の可変利得増幅器の前段に直流遮断装置を備えることを特徴とする請求項7乃至請求項10のいずれかに記載の電流電圧変換器。
  12. 前記第二の可変利得増幅器の前段に直流遮断装置を備えることを特徴とする請求項7乃至請求項11のいずれかに記載の電流電圧変換器。
  13. 被測定物の一端に接続される電流電圧変換器と、被測定物に印加される信号の電圧を測定する第一の電圧測定装置と、前記電流電圧変換器の出力電圧を測定する第二の電圧測定装置とを備え、
    前記電流電圧変換器が、零位検出器と、前記零位検出器の出力信号を増幅する増幅器と、一端が零位検出器に他端が前記増幅器に接続され、所定のインピーダンスを有する基準素子とを具備し、
    前記増幅器が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器とを具備するインピーダンス測定装置であって、
    さらに、前記電流電圧変換器が、
    前記基準素子の一端と前記検波器の入力端との間に設けられる第一の可変利得増幅器と、
    前記検波器の出力端と前記基準素子の他端との間に設けられる第二の可変利得増幅器と
    を備え、
    前記第二の可変利得増幅器の増幅率が、第一の可変利得増幅器の増幅率変化を補償するように設定される、
    ことを特徴とするインピーダンス測定装置。
  14. 前記第一の可変利得増幅器の増幅率が、電流電圧変換過程において、最初はより低い増幅率に設定され、その後、同電流電圧変換過程の途中で、より高い増幅率に切り換えられることを特徴とする請求項13に記載のインピーダンス測定装置。
  15. 前記第一の可変利得増幅器の前段に直流遮断装置を備えることを特徴とする請求項13または請求項14に記載のインピーダンス測定装置。
  16. 前記第二の可変利得増幅器の前段に直流遮断装置を備えることを特徴とする請求項13乃至請求項15のいずれかに記載のインピーダンス測定装置。
  17. 前記検波器と前記第一の積分器との間、および、前記検波器と前記第二の積分器との間のそれぞれに、スイッチを備えることを特徴とする請項13乃至請求項16のいずれかに記載のインピーダンス測定装置。
  18. 前記電流電圧変換器に電流が入力されない状態で前記検波器の入力端に生じる直流成分を、少なくとも電流電圧変換過程において、前記検波器の入力端に印加される信号から差し引く減算器を備えることを特徴とする請求項13乃至請求項17のいずれかに記載のインピーダンス測定装置。
  19. 被測定物の一端に接続される電流電圧変換器と、被測定物に印加される信号の電圧を測定する第一の電圧測定装置と、前記電流電圧変換器の出力電圧を測定する第二の電圧測定装置とを備え、
    前記電流電圧変換器が、零位検出器と、前記零位検出器の出力信号を増幅する増幅器と、一端が零位検出器に他端が前記増幅器に接続され、所定のインピーダンスを有する基準素子とを具備し、
    前記増幅器が、前記零位検出器の出力信号をディジタル変換するアナログディジタル変換器と、前記アナログディジタル変換器の変換結果を処理するディジタル信号処理装置と、前記ディジタル信号処理装置の処理結果をアナログ変換するディジタルアナログ変換器とを具備するインピーダンス測定装置であって、
    さらに、前記電流電圧変換器が、
    前記基準素子の一端と前記アナログディジタル変換器の入力端との間に設けられる第一の可変利得増幅器と、
    前記アナログディジタル変換器の出力端と前記基準素子の他端との間に設けられる第二の可変利得増幅器と
    を備え、
    前記第二の可変利得増幅器の増幅率が、第一の可変利得増幅器の増幅率変化を補償するように設定され
    前記ディジタル信号処理装置が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器と、前記検波器と前記第一の積分器との間に設けられる第一のスイッチと、前記検波器と前記第二の積分器との間に設けられる第二のスイッチとして機能する、
    ことを特徴とするインピーダンス測定装置。
  20. 前記ディジタル信号処理装置が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器と、前記電流電圧変換器に電流が入力されない状態で前記検波器の入力端に生じる直流成分を、少なくとも電流電圧変換過程において、前記検波器の入力端に印加される信号から差し引く減算器として機能する、
    ことを特徴とする請求項19に記載のインピーダンス測定装置。
  21. 被測定物の一端に接続される電流電圧変換器と、被測定物に印加される信号の電圧を測定する第一の電圧測定装置と、前記電流電圧変換器の出力電圧を測定する第二の電圧測定装置とを備え、
    前記電流電圧変換器が、零位検出器と、前記零位検出器の出力信号を増幅する増幅器と、一端が零位検出器に他端が前記増幅器に接続され、所定のインピーダンスを有する基準素子とを具備し、
    前記増幅器が、前記零位検出器の出力信号をディジタル変換するアナログディジタル変換器と、前記アナログディジタル変換器の変換結果を処理するディジタル信号処理装置と、前記ディジタル信号処理装置の処理結果をアナログ変換するディジタルアナログ変換器とを具備するインピーダンス測定装置であって、
    さらに、前記電流電圧変換器が、
    前記基準素子の一端と前記アナログディジタル変換器の入力端との間に設けられる第一の可変利得増幅器と、
    前記アナログディジタル変換器の出力端と前記基準素子の他端との間に設けられる第二の可変利得増幅器と
    を備え、
    前記第二の可変利得増幅器の増幅率が、第一の可変利得増幅器の増幅率変化を補償するように設定され、
    前記ディジタル信号処理装置が、前記零位検出器の出力信号を同相成分と直交成分とに分解する検波器と、前記同相成分を積分する第一の積分器と、前記直交成分を積分する第二の積分器と、前記第一の積分器の出力信号および前記第二の積分器の出力信号に基づき直交振幅変調信号を生成する変調器と、前記電流電圧変換器に電流が入力されない状態で前記検波器の入力端に生じる直流成分を、少なくとも電流電圧変換過程において、前記検波器の入力端に印加される信号から差し引く減算器として機能する、
    ことを特徴とするインピーダンス測定装置。
  22. 前記第一の可変利得増幅器の増幅率が、電流電圧変換過程において、最初はより低い増幅率に設定され、その後、同電流電圧変換過程の途中で、より高い増幅率に切り換えられることを特徴とする請求項19乃至請求項21のいずれかに記載のインピーダンス測定装置。
  23. 前記第一の可変利得増幅器の前段に直流遮断装置を備えることを特徴とする請求項19乃至請求項22のいずれかに記載のインピーダンス測定装置。
  24. 前記第二の可変利得増幅器の前段に直流遮断装置を備えることを特徴とする請求項19乃至請求項23のいずれかに記載のインピーダンス測定装置。
JP2006055764A 2006-03-02 2006-03-02 電流電圧変換器およびインピーダンス測定装置 Active JP5016235B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055764A JP5016235B2 (ja) 2006-03-02 2006-03-02 電流電圧変換器およびインピーダンス測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055764A JP5016235B2 (ja) 2006-03-02 2006-03-02 電流電圧変換器およびインピーダンス測定装置

Publications (2)

Publication Number Publication Date
JP2007232604A JP2007232604A (ja) 2007-09-13
JP5016235B2 true JP5016235B2 (ja) 2012-09-05

Family

ID=38553319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055764A Active JP5016235B2 (ja) 2006-03-02 2006-03-02 電流電圧変換器およびインピーダンス測定装置

Country Status (1)

Country Link
JP (1) JP5016235B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD279Z (ro) * 2010-03-26 2011-04-30 Технический университет Молдовы Impedanţmetru
FR2975497B1 (fr) * 2011-05-16 2013-06-28 Centre Nat Rech Scient Convertisseur electronique de puissance
JP7094190B2 (ja) * 2018-10-16 2022-07-01 日置電機株式会社 インピーダンス測定装置およびインピーダンス測定装置における負帰還回路の調整方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073443B2 (ja) * 1990-11-30 1995-01-18 株式会社エヌエフ回路設計ブロック 自動平衡装置
JP3474914B2 (ja) * 1994-02-23 2003-12-08 株式会社エヌエフ回路設計ブロック 自動平衡装置

Also Published As

Publication number Publication date
JP2007232604A (ja) 2007-09-13

Similar Documents

Publication Publication Date Title
KR101056003B1 (ko) 확장 범위 rms-dc 변환기
JP2007033286A (ja) インピーダンス測定方法およびインピーダンス測定器
US5959463A (en) Semiconductor test apparatus for measuring power supply current of semiconductor device
KR20140051054A (ko) 능동 션트 전류계 장치 및 방법
US7612698B2 (en) Test apparatus, manufacturing method, and test method
JP5016235B2 (ja) 電流電圧変換器およびインピーダンス測定装置
US5410282A (en) Wide dynamic range amplifier with error correction
CN110768661B (zh) 一种基于神经网络的锁相放大器
JPH04212067A (ja) デュアルパス広帯域高精度データ収集システム
EP1538450A1 (en) Electrical power meter
JP4819684B2 (ja) 差動コンパレータ回路、テストヘッド、及び試験装置
JP2008286699A (ja) 信号入出力装置、試験装置および電子デバイス
JP4451415B2 (ja) 電流/電圧変換回路
EP3223433A1 (en) Dc offset cancellation method and device
KR101657153B1 (ko) 방사선 계측용 광범위 미세전류-전압 변환모듈
JP4720696B2 (ja) 信号測定装置
US6724177B2 (en) Method and apparatus for accurate measurement of communications signals
JP4859353B2 (ja) 増幅回路、及び試験装置
US7038605B2 (en) Apparatus and method for measuring noise, and recording medium
US20240219442A1 (en) Measurement device for performing measurements with respect to a dut
JP3978672B2 (ja) 電圧印加電流測定器
JP2009287956A (ja) 半導体試験装置
Rose et al. Description and operation of the LEDA beam-position/intensity measurement module
JP4041559B2 (ja) 光検出装置
JPH073443B2 (ja) 自動平衡装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111124

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5016235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250