JP5007034B2 - 光電変換素子及びそれを用いた電子線発生装置 - Google Patents

光電変換素子及びそれを用いた電子線発生装置 Download PDF

Info

Publication number
JP5007034B2
JP5007034B2 JP2005267593A JP2005267593A JP5007034B2 JP 5007034 B2 JP5007034 B2 JP 5007034B2 JP 2005267593 A JP2005267593 A JP 2005267593A JP 2005267593 A JP2005267593 A JP 2005267593A JP 5007034 B2 JP5007034 B2 JP 5007034B2
Authority
JP
Japan
Prior art keywords
photocathode
electron beam
photoelectric conversion
conversion element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005267593A
Other languages
English (en)
Other versions
JP2007080697A (ja
Inventor
博文 花木
順 佐々部
重司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Japan Atomic Energy Agency
Japan Synchrotron Radiation Research Institute
Original Assignee
Hamamatsu Photonics KK
Japan Atomic Energy Agency
Japan Synchrotron Radiation Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK, Japan Atomic Energy Agency, Japan Synchrotron Radiation Research Institute filed Critical Hamamatsu Photonics KK
Priority to JP2005267593A priority Critical patent/JP5007034B2/ja
Publication of JP2007080697A publication Critical patent/JP2007080697A/ja
Application granted granted Critical
Publication of JP5007034B2 publication Critical patent/JP5007034B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Microwave Tubes (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

本発明は、光を電子線に変換する光電変換素子及びそれを用いた電子線発生装置に関するものである。
従来の光電変換素子を加速器に用いた電子線発生装置では、光電面にレーザ光を照射することで高輝度な電子ビームが得られているが、この光電面は、ほとんどの場合は反射型カソード(光電面)が使用されている。このような反射型光電面を用いた電子線発生装置においては、光電面においてレーザ光の入射側の面と電子ビームの発生側の面とは同一になっている。そのため、レーザ光の光軸と電子ビームの光軸とを分離させるために、レーザ光は光電面に対して斜めに照射される。これにより、レーザ光の光電面上におけるビームパターンが楕円形になると共に、レーザ光源から光電面に到達するレーザ光の光電面上の波面に位相差が生じるため、ビームの強度及び位相の均一性が場所によって劣化する。
これに対して、レーザ光の入射側の面と電子ビームの発生側の面とが反対側になっている透過型光電面を用いた電子線発生装置においては、電子ビームを光電面に対して垂直に照射することが可能となる。その結果、反射型光電面よりもレーザ光を所定範囲に照射しやすく、光電面上のビームパターンが円形になるためビームの強度及び位相の均一性を図るのが容易である。
このような透過型光電面に関する技術としては、下記非特許文献1記載の透過型GaAs−NEA(Negative Electron Affinity)光電面が挙げられる。この技術では、光電面の下地基板としてサファイア基板を有するものを使用し、光電面から発生する電子ビームをDC加速電界で加速するとともに液体窒素を用いて冷却することで、5〜8meVという単色性が高く、かつ数mAという電流量の大きい電子ビームを連続的に得ようと試みられている。
図17(a)〜(c)には、上述した透過型GaAs−NEA光電面を含むカソードの構造を示す。同図に示すように、光電変換素子であるカソード902は、光電面の下地用ガラス基板であるサファイア基板903の上に透過型GaAs光電面904が製膜されており、光電面904の反対側のサファイア基板903の端面から光電面904に向かう方向Eに、レーザ光が照射される。また、この光電面904の外周側には光電面での導通性を確保するための金属層905が製膜され、この金属層905から光電面へ電荷を供給する構成となっている。図18には、上述したカソード902を用いた電子銃の構造を示す。同図の電子銃901においては、カソード902が液体窒素で冷却されるとともに、方向Eに向けてレーザ光が照射されることにより、カソード902の光電面から出射した電子ビームが引出電極906によって形成された直流電界によって加速される。
D. A. Orlov etal.、"Ultra-cold electronsource with a GaAs Photocathode"、Volume 532, Issues 1-2、11 October 2004、Pages 418-421
ここで、より高い加速電界(例えば、100MV/m)で短パルスの電子ビームを生成する電子銃として、マイクロ波加速空洞(RF空洞)を有するRF電子銃が用いられる。しかしながら、上述したような透過型光電面をRF電子銃に使用する場合は以下のような問題があったため、これまではRF電子銃には反射型光電面のみが使用されていた。
すなわち、高い加速電界では、光電面薄膜を通じて基板に入射する逆位相電子、逆位相イオンが存在し、これらの電荷により光電面下地用ガラス基板が帯電する結果、カソードプラグ表面に誘起された電荷により、光電面表面における沿面放電や、カソードプラグ挿入孔との間における真空放電を引き起こす。特に、光電面下地用ガラス基板としてサファイア基板を用いた場合は、サファイアが二次電子放出係数が高く帯電しやすい材料であるために、この傾向が顕著である。これにより、光電面薄膜がダメージを受けやすくなるとともに、RF空洞に入力されたマイクロ波が反射するために、加速電界が十分に形成されず、電子ビームが加速できなくなるという問題がある。
そこで、本発明は、かかる課題に鑑みて為されたものであり、光電面におけるダメージを低減するとともに、電子ビームの加速を容易にする光電変換素子、及びこれを用いた電子線発生装置を提供することを目的とする。
上記課題を解決するため、本発明の光電変換素子は、レーザ光を照射されてレーザ光の照射方向に電子ビームを発生させる透過型の光電変換素子であって、照射方向に沿って複数の貫通孔が設けられたキャピラリー基板と、キャピラリー基板の照射方向側の端面に沿って、複数の貫通孔を覆うように形成され、キャピラリー基板の反対側に電子ビームを発生させる光電面と、キャピラリー基板と光電面との間において、複数の貫通孔を覆うように光電面に沿って形成された金属製の自立膜と、キャピラリー基板と自立膜との間において、キャピラリー基板の表面の複数の貫通孔の開口以外の部分に製膜された金属膜とを備え、自立膜は、レーザ光を通過させるような膜厚を有し、レーザ光は、貫通孔及び自立膜を通過して光電面に照射される。
このような光電変換素子によれば、キャピラリー基板の貫通孔を通過してレーザ光が光電面に照射され、光電面からキャピラリー基板の反対側に電子ビームを発生させる。このとき、逆位相電子、逆位相イオン等の荷電粒子が光電面に戻ってきても、光電面及び貫通孔を通過することで、光電面及び基板を帯電させにくくなるので、帯電に起因する光電面におけるダメージを低減し、加速電界を形成しやすくして電子ビームを容易に加速させることができる。また、金属膜から光電面に対して短い距離で電荷を供給することができる。その結果、光電面から短パルスの電子ビームを発生させる場合であっても、光電面の面抵抗による応答性の劣化を防止すると共に、放射できる電子数を十分確保することができる。
また、複数の貫通孔は、端面に沿って2次元的に配列されていることが好ましい。かかる貫通孔を備えれば、光電面の全面において帯電を効果的に防止することができる。
また、金属膜の膜厚は、電子ビームの加速電界の周波数に対応する表皮厚さ以上であることも好ましい。こうすれば、加速電界が金属膜によりシールドされるので、光電面と下地基板との間で流れる電流が低減され、光電面及び基板の帯電を一層防止できる。また、光電面上の電界を垂直にすることで、電子ビームのエミッタンスの劣化を防ぐことができる。
本発明の電子線発生装置は、上述した光電変換素子と、光電変換素子に向けてレーザ光を照射するレーザ光照射手段とを備える。このような電子線発生装置においては、光電変換素子における光電面及び基板を帯電させにくくなるので、帯電に起因する光電面におけるダメージを低減し、加速電界を形成しやすくして電子ビームを容易に加速させる電子線発生装置を実現できる。
本発明による光電変換素子によれば、光電面におけるダメージを低減するとともに、電子ビームの加速を容易にすることができる。
以下、図面を参照しつつ本発明に係る電子線発生装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。
図1は、本発明の実施形態に係る電子線発生装置1の断面図、図2は、図1の電子線発生装置をA−A線に沿って切断した断面図である。図1及び図2に示すように、電子線発生装置1は、4本の光電面収容カートリッジ3が入れられるカートリッジボックス5と、光電面にレーザ光を照射する部屋であるレーザ光照射室73及びカートリッジボックス5が配置される待機室71から構成されるチャンバ7と、レーザ光照射室73に配置され、光電面収容カートリッジ3の蓋である金属膜を破るための膜破り器9と、待機室71に挿入可能であり、光電面収容カートリッジ3の光電面31を移動させるための移動用パイプ11と、待機室71に挿入可能であり、かつ移動用パイプ11と同軸でその外周に配置され、膜破り器9の位置まで光電面収容カートリッジ3を押し出す押出用パイプ13とを備える。
カートリッジボックス5は、待機室71の円筒部711と同軸の円筒形状を有し、回転導入機51により、カートリッジボックス5の円周方向であるB方向に回転自在に配置されている。さらに、カートリッジボックス5は、スライダ55が取り付けられることにより、膜破り器9の位置まで進退可能に支持されている。また、待機室71の円筒部711には、パイプ77を介して排気/分析系25が接続されるとともに、レーザ導入口721を通じてレーザ光源21からレーザ光LBが導入される。
押出用パイプ13の一方の端部133は、制御系17により矢印C方向及び矢印D方向に移動可能な移動板19に固定され、移動板19が矢印C方向に移動したとき、押出用パイプ13の他方の端部135がスライダ55に矢印C方向の力を加える。これにより、光電面収容カートリッジ3はスライダ55と一体の状態でレーザ光照射室73に押し出される。図3は、光電面収容カートリッジ3がレーザ光照射室73に移動された状態を示す断面図である。移動用パイプ11は、制御系17により矢印C、D方向及び回転の制御がなされる。このような構成により、押出用パイプ13の端部135をスライダ55の底面部に当接させた状態で、移動用パイプ11をスライダ55、光電面収容カートリッジ3、及びベローズ36を貫通して矢印C方向に移動させることにより、移動用パイプ11を光電面31の台座部37の位置に到達させて、移動用パイプ11と台座部37とをネジの作用により一体化させる。この状態で、押出用パイプ13をレーザ光照射室73に向けて押し出すことにより、光電面収容カートリッジ3の金属膜33に膜破り器9によって穴があけられ、台座部37がレーザ光照射室73の端面側の出口部155の縁に当接することにより、光電面31の位置決めがなされる。
レーザ光源21で発生したレーザ光LBは、レーザ導入口721を通過して待機室71に入った後、押出用パイプ13の貫通孔131及び移動用パイプ11の貫通孔111を通り、移動用パイプ11内に配置された反射ミラー(図示せず)により光電面31に向けて反射される。そして、レーザ光LBが光電面31に入射することにより光電面31から電子線が発生する。
以下、光電面収容カートリッジ3の構成について詳細に説明する。
図4は、光電面収容カートリッジ3の構成を示す斜視図である。同図に示すように光電面収容カートリッジ3は、光電面31を真空封止したものであり、両端側にコバール製のフランジ部が形成されたガラス製の円筒容器32を有し、円筒容器32の片方の端面には、容器の開口を塞ぐようにコバール製の金属膜33が形成されている。容器32の内部には、中心軸に沿ってベローズ36が収容され、ベローズ36の金属膜33側の端部には、光電面31及び台座部37を含む透過型カソードプラグ(光電変換素子)30が、光電面31と金属膜33が対面するように溶接により固定されている。この光電面31は、円筒容器32内で製膜されるものである。また、透過型カソードプラグ30の側面には、リング状の電極38が取り付けられ、電極38を用いてRF空洞表面を流れる電流がカソードプラグ30に供給され、同時に光電面31から発生した電子ビームに高周波の加速電界が印加される。
図5は、透過型カソードプラグ30の中心軸に沿った方向に切断した断面図、図6は、透過型カソードプラグ30の分解断面図である。図5及び図6に示すように、透過型カソードプラグ30は、略円筒状の台座部37及び蓋部39を有し、台座部37と蓋部39とが、台座部37の内周面に形成されたネジ部37a及び蓋部39の外周面に形成されたネジ部39aによって、互いに接続及び分離が可能な構造を有している。台座部37の先端側の端面301の中央には、円盤状に形成された光電面下地基板(キャピラリー基板)302が埋め込まれており、光電面下地基板302の外側表面には、光電面31が製膜されている。また、台座部37と蓋部39とが接続された状態で光電面31を真空に保つために、石英ガラス製の窓部303が、蓋部39の光電面31側の開口部304を塞ぐように設けられている。ここで、窓部303は、蓋部39の内周面に対してアルミニウムを用いて高温及び高圧でシールされている。台座部37の開口部304に対して反対側の縁部には鍔部305が形成され、蓋部39は、鍔部305とベローズ36とを溶接することにより、ベローズ36に接続される。このような透過型カソードプラグ30の構成により、中心軸に沿った方向に照射されたレーザ光LBは、窓部303を透過して光電面下地基板302の裏面から光電面31に入射し、光電面31において電子ビームEBに変換される。
次に、図7を参照して、光電面31を含む光電面下地基板302の構成について説明する。同図に示すように、直径が1μmから数百μmの貫通孔306が2次元的に等間隔で格子状に設けられた円板状の光電面下地基板302には、金属膜307が、光電面下地基板302の表面の貫通孔306の開口以外の部分に製膜され、金属製の自立膜308が、金属膜307上から光電面下地基板302の表面全体を覆うように製膜されるとともに、自立膜308上には、光電面31が形成されている。
光電面下地基板302としては、開孔比が30〜70%となるように貫通孔306が形成され、例えば、二次電子放出係数の小さい厚さ0.3mmの円板状の鉛ガラスに直径20μmの貫通孔306を2次元的に配列したものが用いられる。また、光電面下地基板302の貫通孔306の開口を除く表面には、電子ビームの加速電界の周波数で決まる表皮厚さ(例えば、Sバンド加速周波数2,856MHzでのクロムの表皮厚さ3.4μm)以上の膜厚を有するクロム製の金属膜307が、蒸着により形成されている。また、この金属膜307の表面には、光電面下地基板302の表面全体を覆うように、例えば、110Åの膜厚でアルミニウム製の自立膜308が形成されている。さらに、自立膜308上には、例えば、CsTeから成る透過型光電面31が製膜されている。なお、この光電面31は、上述した光電面収容カートリッジ3内で製膜される。
この場合、金属膜307としては、クロム製の金属膜を用いたが、アルミニウム膜の上にクロムを製膜したものを用いてもよい。Sバンド加速周波数2,856MHzでのアルミニウムの表皮厚さは1.5μmであるので、膜厚1.5μmのアルミニウム薄膜の上に、放電に対するダメージの小さいクロムが0.1μmの膜厚で製膜されたものを用いる。また、光電面31の主成分としては、CsTe以外に、RbTe、Cs-K-Te、K-Te、CsK2Sb、Na2KSb、Ag-O-Sb、Cs3Sb、ダイヤモンド、GaAs、GaAsP、GaN、AlGaN、InGaN、及びMg等の様々なものが代用可能である。
図5に戻って、このような光電面下地基板302の透過型カソードプラグ30の端面301への固定方法としては、フリットガラスによる接着や、アルミニウムを光電面下地基板302と端面301との間の中間層として高温及び高圧でシール(アルミニウムシール)する方法が用いられる。RF電子銃内では、カソードプラグ表面に強い加速電界が印加されるので、放電の防止及び暗電流の低減のため、光電面下地基板302と端面301とを一体的に研磨し、カソードプラグ表面の粗さ及び段差をできるだけ少なくすることが好ましい。また、カソードプラグ表面の粗さをより少なくするために、フリットガラスによる接着の場合は、光電面下地基板302と端面301との隙間にクロム蒸着されたフリットガラスが埋め込まれ、アルミニウムシールの場合は、光電面下地基板302と端面301との隙間にアルミニウムを埋め込むことが行われる。
以下、上記のような構成の光電面下地基板302から光電面31にかけての光透過率を示す。
図8は、金属膜307としてクロム製薄膜、光電面31としてCsTeを主成分とするものを用いた場合の、光電面下地基板302の裏面から光電面31の表面にかけての量子効率(QE)を示す。同図に示すように、光電面31を製膜前の光電面下地基板302のみの波長260nmの光に対する透過率は、17%であり、光電面製膜後の光電面下地基板302の裏面から光電面31の表面にかけての波長260nmの光に対する量子効率は、1.9%であった。
以上説明した透過型カソードプラグ30及び電子線発生装置1によれば、光電面下地基板302の貫通孔306及び自立膜308を通過してレーザ光LBが光電面31に照射され、光電面31から光電面下地基板302の反対側に電子ビームを発生させる。このとき、電子ビームを励起するためのレーザ光LBを光電面下地基板302の裏面から垂直に照射することができるので、発生する電子ビームの位相又は強度における均質性を保つことができる。また、逆位相電子、逆位相イオン等の荷電粒子が光電面31に戻ってきても、光電面31、貫通孔306、及び自立膜308を通過することで、光電面31及び基板302を帯電させにくくするので、帯電に起因する光電面31におけるダメージを低減し、カソードプラグ先端部における加速電界を形成しやすくして電子ビームを容易に加速させることができる。
また、従来は、カソードプラグ前面に印加されるマイクロ波の電界が光電面を透過してしまい、RF電子銃等に使用されるRF空洞内壁の表面電流が、光電面と光電面下地基板との間に流れ込み、光電面及び光電面下地基板が帯電しやすいという問題があった。これに対して、光電面下地基板として帯電しやすいサファイアの代わりに二次電子放出係数の低い鉛ガラスを用い、その表面に表皮厚さ以上の金属膜307及び自立膜308を設けることで上記問題を回避することができる。また、図19には、光電面下地基板の材料としてサファイアを用いた従来のカソード902の先端部における等電位線を示す。同図に示すように、光電面下地基板としてサファイアを用いた場合は、マイクロ波に対して透明であるため、カソード902内部の電界分布は、中心部が空洞の金属電極と同等になる。従って、カソード902の先端部の電界が、カソード902の中心軸線に平行とならず、光電面904に平行な方向に電界成分を持つことになり、電子線の密度等の質の劣化を引き起こす。これに対して、透過型カソードプラグ30では、上述したような帯電しにくく、電界を遮蔽し易い構成により、光電面31に対して垂直に電界を生じさせることができる。
また、光電面下地基板302の複数の貫通孔306は、端面301に沿って2次元的に配列されているので、光電面31の全面において帯電を効果的に防止することができる。
また、光電面下地基板302と光電面31との間において、金属膜307及び複数の貫通孔306を覆うように光電面に沿って形成された自立膜308を備えるので、金属膜307及び自立膜308から光電面31に対して短い距離で電荷を供給することができる。その結果、光電面から短パルスの電子ビームを発生させる場合であっても、光電面の面抵抗による応答性の劣化を防止すると共に、放射できる電子数を十分確保することができる。
なお、本発明は、前述した実施形態に限定されるものではない。例えば、透過型カソードプラグ30に埋め込む光電面下地基板としては、金属製の光電面下地基板312を用いてもよい。図9には、光電面31を含む光電面下地基板312の構成を示す。同図に示すように、光電面下地基板312として、ニッケル製の円板状基板に、電鋳法を用いて直径50μmの貫通孔314を開孔比40%で形成したものを用いる。この光電面下地基板312の表面に、表皮厚さ以上のアルミニウム製の自立膜313を製膜する。この自立膜313上に光電面31が形成される。この光電面31を含む光電面下地基板312の透過型カソードプラグ30の台座部37への固定方法としては、まず、キャップ状の光電面下地基板312を台座部37の端部に外側から嵌め合わせた後、リング状のホルダー部315を光電面下地基板312の外周部をネジにより押さえ付けるように締め込む(図10、ネジ部分については図示を省略)。このような金属材料からなる光電面下地基板を用いることで、光電面における帯電の問題を確実に回避することができる。
本発明においては、自立膜を使わない透過型カソードプラグ30の構造も可能である。図11には、自立膜を有さない場合の変形例である透過型カソードプラグの構成を示す。この透過型カソードプラグは、光電面31を石英面板326上に製膜し、その上に金属製の電極322を載せた構造を有している。ここでは、金属製の電極322としてニッケル製の円板状基板に、電鋳法を用いて直径50μmの貫通孔を開孔比40%で形成したものを用いる。電極322の膜厚は10μm〜40μmである。同図に示すように、この電極322は、光電面に戻ってくる逆位相電子、逆位相イオン等の荷電粒子の量を減らすと共に、荷電粒子により帯電した石英面板326の電荷を逃がす効果がある。
また、上記の変形例において石英面板326を使用せず、光電面31を金属製の電極332の貫通孔324の内面に製膜することも可能である。図12は、このような場合の透過型カソードプラグの構成、及び図13には、図12の金属製の電極の一部拡大断面図を示す。この透過型カソードプラグ30に励起用レーザ光LBを照射する場合は、照射効率を稼ぐために、拡散板327を用いる。これにより励起用レーザ光LBの方向がランダムに曲げられ、効率よくかつ均一に貫通孔324の内面を照射することができる(図14)。この構造では電極332に戻ってくる逆位相電子、逆位相イオン等の荷電粒子が直接、光電面31にぶつからない。また、石英面板326を用いないため、帯電の問題がない。
次に、本発明にかかる電子線発生装置1の変形例について説明する。
図15及び図16は、電子線発生装置1の変形例を示す一部拡大断面図である。図15に示す電子線発生装置では、ベローズ36の中心軸に沿って光電面31の反対側から窓部303の直前まで、光ファイバ316が挿入されている。このような構成を採れば、窓部303を透過させて光電面下地基板302の裏面から光電面31に向けて、効率的に励起用のレーザ光LBを照射することができ、光ファイバ316の中心軸線と、透過型カソードプラグ30の中心軸線を合わせることで、レーザ光LBの照射中心を光電面31の中心に正確に合わせることができる。これにより、発生する電子ビームEBのエミッタンスを低減することができる。
また、図16に示す電子線発生装置では、光電面下地基板302の裏面側に中心に円形の穴が空けられた金属製のアパーチャー317が固定されている。このアパーチャー317により、光ファイバ316から照射されるレーザ光LBの中心部のみを光電面31に照射させることができ、発生する電子線EBの分布を真円に近くすることができると共に、電子線EBの強度分布を均一にし、正確に光電面31の中心に位置させることができる。これにより、発生する電子ビームEBのエミッタンスを低減することができる。
本発明の実施形態に係る電子線発生装置の断面図である。 図1の電子線発生装置をA−A線に沿って切断した断面図である。 図1の光電面収容カートリッジがレーザ光照射室に移動された状態を示す断面図である。 図1の光電面収容カートリッジの構成を示す斜視図である。 図4の透過型カソードプラグの中心軸に沿った方向に切断した断面図である。 図4の透過型カソードプラグの分解断面図である。 図5の光電面を含む光電面下地基板の構成を示す図である。 図5の透過型カソードプラグにおいて光電面下地基板の裏面から光電面の表面にかけての量子効率(QE)を示すグラフである。 光電面を含む光電面下地基板の別の構成例を示す図である。 透過型カソードプラグの中心軸に沿った方向に切断した断面図である。 自立膜を有さない場合の変形例である透過型カソードプラグの断面図である。 本発明の別の変形例である透過型カソードプラグの断面図である。 図12の電極の一部拡大断面図である。 図12の電極におけるレーザ光の入射状態を示す一部拡大断面図である。 本発明の電子線発生装置の変形例を示す一部拡大断面図である。 本発明の電子線発生装置の別の変形例を示す一部拡大断面図である。 従来の透過型光電面を含むカソードの構造を示す図であり、(a)は、カソードの構造を示す斜視図、(b)は、(a)のI−I線に沿って切断した斜視断面図、(c)は、カソードにおける光電面周辺の構造を示す拡大断面図である。 カソード902を用いた電子銃の構造を示す斜視断面図である。 従来のカソードの先端部における等電位線を示す図である。
符号の説明
1…電子線発生装置、21…レーザ光源(レーザ光照射手段)、30…透過型カソードプラグ(光電変換素子)、31…光電面、111,131…貫通孔(レーザ光照射手段)、302,312…光電面下地基板(キャピラリー基板)、306,314…貫通孔、307…金属膜、307,313…自立膜(金属膜)、721…レーザ導入口(レーザ光照射手段)、316…光ファイバ(レーザ光照射手段)。

Claims (5)

  1. レーザ光を照射されて前記レーザ光の照射方向に電子ビームを発生させる透過型の光電変換素子であって、
    前記照射方向に沿って複数の貫通孔が設けられたキャピラリー基板と、
    前記キャピラリー基板の前記照射方向側の端面に沿って、前記複数の貫通孔を覆うように形成され、前記キャピラリー基板の反対側に電子ビームを発生させる光電面と、
    前記キャピラリー基板と前記光電面との間において、前記複数の貫通孔を覆うように前記光電面に沿って形成された金属製の自立膜と、
    前記キャピラリー基板と前記自立膜との間において、前記キャピラリー基板の表面の前記複数の貫通孔の開口以外の部分に製膜された金属膜と
    を備え、
    前記自立膜は、前記レーザ光を通過させるような膜厚を有し、
    前記レーザ光は、前記貫通孔及び前記自立膜を通過して前記光電面に照射される、
    ことを特徴とする光電変換素子。
  2. 前記複数の貫通孔は、前記端面に沿って2次元的に配列されている、
    ことを特徴とする請求項1記載の光電変換素子。
  3. 前記金属膜の膜厚は、前記電子ビームの加速電界の周波数に対応する表皮厚さ以上であることを特徴とする請求項1又は2に記載の光電変換素子。
  4. レーザ光を照射されて前記レーザ光の照射方向に電子ビームを発生させる透過型の光電変換素子であって、
    前記照射方向に沿って複数の貫通孔が設けられた金属製基板と、
    前記貫通孔の内面に形成された光電面と、
    を備えることを特徴とする光電変換素子。
  5. 請求項1〜のいずれか一項に記載の光電変換素子と、
    前記光電変換素子に向けてレーザ光を照射するレーザ光照射手段と、
    を備えることを特徴とする電子線発生装置。
JP2005267593A 2005-09-14 2005-09-14 光電変換素子及びそれを用いた電子線発生装置 Expired - Fee Related JP5007034B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005267593A JP5007034B2 (ja) 2005-09-14 2005-09-14 光電変換素子及びそれを用いた電子線発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267593A JP5007034B2 (ja) 2005-09-14 2005-09-14 光電変換素子及びそれを用いた電子線発生装置

Publications (2)

Publication Number Publication Date
JP2007080697A JP2007080697A (ja) 2007-03-29
JP5007034B2 true JP5007034B2 (ja) 2012-08-22

Family

ID=37940766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267593A Expired - Fee Related JP5007034B2 (ja) 2005-09-14 2005-09-14 光電変換素子及びそれを用いた電子線発生装置

Country Status (1)

Country Link
JP (1) JP5007034B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368331B2 (ja) * 2010-01-21 2013-12-18 浜松ホトニクス株式会社 電子線発生装置およびそれに用いられる光電面収容カートリッジ
EP2991095B1 (en) 2014-08-25 2018-01-31 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, electron diffraction apparatus and method of electrode manipulation in a vacuum environment
WO2018155543A1 (ja) * 2017-02-24 2018-08-30 株式会社ニコン 電子ビーム装置及びデバイス製造方法
WO2018155539A1 (ja) * 2017-02-24 2018-08-30 株式会社ニコン 電子ビーム装置及びデバイス製造方法、並びに光電素子保持容器
WO2019146027A1 (ja) * 2018-01-25 2019-08-01 株式会社ニコン 電子ビーム装置及びデバイス製造方法、並びに光電素子ユニット
JP7234099B2 (ja) 2019-11-12 2023-03-07 株式会社東芝 電子放出素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085669A (ja) * 1983-10-17 1985-05-15 Toppan Printing Co Ltd 密着型イメ−ジセンサ
JPS62254338A (ja) * 1986-01-25 1987-11-06 Toshiba Corp マイクロチヤンネルプレ−ト及びその製造方法
JP2601464B2 (ja) * 1986-12-16 1997-04-16 キヤノン株式会社 電子放出素子
JPH06275215A (ja) * 1993-03-19 1994-09-30 Hamamatsu Photonics Kk 二次元x線管
JP2683197B2 (ja) * 1993-04-13 1997-11-26 浜松ホトニクス株式会社 撮像管
JP3119285B2 (ja) * 1993-08-24 2000-12-18 株式会社日立製作所 光陰極とこれを用いた電子銃並びに加速器
JPH11246300A (ja) * 1997-10-30 1999-09-14 Canon Inc チタンナノ細線、チタンナノ細線の製造方法、構造体及び電子放出素子
JP4036399B2 (ja) * 1998-02-17 2008-01-23 株式会社東芝 Mri内視鏡及びmri用rfコイル
JP4028643B2 (ja) * 1998-10-09 2007-12-26 株式会社東芝 Mr内視鏡
JP4514998B2 (ja) * 2001-07-27 2010-07-28 浜松ホトニクス株式会社 電子線発生装置及び光電面収容カートリッジ
JP4058359B2 (ja) * 2003-02-07 2008-03-05 独立行政法人科学技術振興機構 キャピラリープレート、その製造方法、ガス比例計数管、及び撮像システム
JP2005100911A (ja) * 2003-09-22 2005-04-14 Koji Eto 高速連続撮影電子顕微鏡

Also Published As

Publication number Publication date
JP2007080697A (ja) 2007-03-29

Similar Documents

Publication Publication Date Title
JP5007034B2 (ja) 光電変換素子及びそれを用いた電子線発生装置
JP6224580B2 (ja) X線発生装置及びx線発生方法
US20160189909A1 (en) Target for x-ray generation and x-ray generation device
JP6929910B2 (ja) 陰極構成体、電子銃、及びこのような電子銃を有するリソグラフィシステム
KR100766907B1 (ko) 마이크로 집속 수준의 전자빔 발생용 탄소나노튜브 기판분리형 방사선관 시스템
KR102419456B1 (ko) 플라즈마 생성장치 및 열전자 방출부
JP4514998B2 (ja) 電子線発生装置及び光電面収容カートリッジ
WO2023276243A1 (ja) X線発生装置
JP6346532B2 (ja) 電子源ユニット及び帯電処理ユニット
CN110890256B (zh) 一种会聚角可调无磁飞秒电子源装置
WO2023276246A1 (ja) X線発生装置
KR101104484B1 (ko) 펨토초 전자빔 발생장치
EP0300932B1 (fr) Source d'électrons
JPS6047355A (ja) X線発生管
US20210183608A1 (en) Photon-induced ion source
JP2001099995A (ja) レーザ光の閉じ込め方法及びこの方法を用いたレーザ光閉じ込め装置ならびに該装置を用いたタンデム型加速器の荷電変換装置、イオン化装置
CN115299182A (zh) 利用电子束的极紫外线光源装置
JPH04275472A (ja) 電子波干渉素子、電界放射型微小真空装置および微小真空電子素子
JPH03286581A (ja) X線予備電離ガスレーザ装置
JPS5996640A (ja) ストリーク管の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees