JP5002790B2 - Gallium recovery method - Google Patents

Gallium recovery method Download PDF

Info

Publication number
JP5002790B2
JP5002790B2 JP2005248776A JP2005248776A JP5002790B2 JP 5002790 B2 JP5002790 B2 JP 5002790B2 JP 2005248776 A JP2005248776 A JP 2005248776A JP 2005248776 A JP2005248776 A JP 2005248776A JP 5002790 B2 JP5002790 B2 JP 5002790B2
Authority
JP
Japan
Prior art keywords
gallium
raw material
impurities
indium
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005248776A
Other languages
Japanese (ja)
Other versions
JP2007063044A (en
Inventor
健一 田山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2005248776A priority Critical patent/JP5002790B2/en
Publication of JP2007063044A publication Critical patent/JP2007063044A/en
Application granted granted Critical
Publication of JP5002790B2 publication Critical patent/JP5002790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、ガリウム原料からガリウムを回収する方法に関する。   The present invention relates to a method for recovering gallium from a gallium source.

ガリウム金属はGaAsやGaP等の化合物半導体素子や青色或いは白色LEDに用いられるGaN等の発光素子の原料として需要が増大している。ガリウムは主としてアルミニウム製錬や亜鉛製錬工程の副産物として微量に得られる金属元素であるが、最近は半導体材料のスクラップ等ガリウム含有率の高い原料も増えてきている。   The demand for gallium metal is increasing as a raw material for compound semiconductor elements such as GaAs and GaP and light emitting elements such as GaN used for blue or white LEDs. Gallium is a metal element mainly obtained in a small amount as a by-product of aluminum smelting and zinc smelting processes, but recently, raw materials with a high gallium content such as scrap of semiconductor materials are increasing.

このようなガリウム含有率の高い原料からガリウムを回収する方法としての電解精製法がある。電解精製法は、電解液中でガリウム原料を陽極として通電するとガリウムおよびガリウムより卑な金属が電解液中に溶出し、陰極においてガリウムおよびガリウムより貴な金属が電着する性質を利用して、陰極に精製されたガリウム金属を得る方法である。例えば特許文献1には電解槽底部にガリウム原料を入れ陽極とし、棒状の陰極との間で電解を行うと、陰極表面に析出したガリウム金属は粒状となって滴下し下方の受器に捕集される。
特開平6−192877号公報
There is an electrolytic purification method as a method for recovering gallium from such a raw material having a high gallium content. The electrolytic purification method utilizes the property that when a gallium raw material is energized in an electrolytic solution as an anode, gallium and a metal lower than gallium are eluted into the electrolytic solution, and a noble metal than gallium and gallium is electrodeposited at the cathode. This is a method for obtaining purified gallium metal at the cathode. For example, in Patent Document 1, when a gallium raw material is placed at the bottom of an electrolytic cell to serve as an anode and electrolysis is performed with a rod-shaped cathode, the gallium metal deposited on the cathode surface drops in a granular form and is collected in a lower receiver. Is done.
JP-A-6-192877

電解精製法は工程が簡単で、ほとんど人手がかからず、装置も安価であることから、高純度精製(6N〜7Nのガリウムを生成する工程)への繋ぎとしての中間精製法としてしばしば用いられているが、インジウム、銅、鉛等を陽極中に濃縮して残すというものであり、所定量以上の不純物が陽極に濃縮すると、電解液中に不純物が入り込み、陰極に析出するガリウム純度が低下する結果となり、精製ガリウムの純度を規制した場合、自ずと電解寿命は決められることとなる。   The electrolytic purification method is simple, requires little manual labor, and is inexpensive, so it is often used as an intermediate purification method as a link to high-purity purification (a process for producing 6N to 7N gallium). However, indium, copper, lead, etc. remain concentrated in the anode, and if more than a certain amount of impurities are concentrated in the anode, the impurities enter the electrolyte and the purity of gallium deposited on the cathode decreases. As a result, when the purity of the purified gallium is regulated, the electrolysis life is naturally determined.

例えば特許文献2または特許文献3には精製ガリウムの純度を規制しつつ陽極中への不純物、特にインジウムの濃度を上昇させ、電解寿命を延ばすことができるガリウムの電解精製法が開示されている。具体的には陽極に80%以上までインジウムを濃縮させている。
特開2000−144474号公報、 特開2000−144475号公報
For example, Patent Document 2 or Patent Document 3 discloses an electrolytic purification method of gallium that can increase the concentration of impurities, particularly indium, in the anode while regulating the purity of the purified gallium, thereby extending the electrolysis life. Specifically, indium is concentrated to 80% or more on the anode.
JP 2000-144474 A, JP 2000-144475 A

しかしながら、陽極に不純物を多く濃縮できても、この濃縮物に含有するガリウムは回収できていない。例えば前述の例では約20%のガリウムが回収されていない。このガリウムを回収する方法として、従来、複数の鉱酸、例えば(硝酸+硫酸)等を用いて濃縮物を全量分解し、アルカリ剤で中和する方法もあるがガリウムとインジウムの分離が十分でなく、鉱酸分解後、pH調整して溶媒抽出を行い、ガリウムとインジウムを分離する方法もあるがコストと手間がかなりかかってしまう。   However, even if a large amount of impurities can be concentrated on the anode, gallium contained in this concentrate cannot be recovered. For example, in the above example, about 20% gallium is not recovered. As a method for recovering gallium, there is a conventional method in which the concentrate is completely decomposed using a plurality of mineral acids such as (nitric acid + sulfuric acid) and neutralized with an alkali agent, but separation of gallium and indium is sufficient. In addition, there is a method of separating the gallium and indium by adjusting the pH and then extracting the solvent after the mineral acid decomposition, but it costs much time and labor.

したがって本発明は、ガリウム原料から、安価で工程が単純であり、不純物、特にインジウムとの分離が良く、高収率でガリウムを回収することを課題としたものである。   Accordingly, an object of the present invention is to recover gallium from a gallium raw material at a low cost and with a simple process, with good separation from impurities, particularly indium, and in a high yield.

通常ガリウム原料は不純物の固溶した金属の形態、金属間化合物の形態のものが多いことから、その分離回収方法としては不純物とともに原料全体を酸で分解し溶液化した後、不純物を分離する、あるいは塩として析出させながら分離する手段を講ずるのが常識であり、直接アルカリで浸出する方法は原料がすべて塩の場合は可能であるが、上記金属の形態を一部でも含む原料については効果が無いと考えられていた。そこで本発明者は上述の課題を解決すべく鋭意試験研究を重ねた結果、インジウム等の不純物を含有するガリウム原料に多量のアルカリ剤を所定の温度で接触させることによって、液中に選択的にガリウムを溶出させ、簡単にインジウム等の不純物から分離できることを見出し、本発明に到達した。   Usually, gallium raw materials are in the form of a metal in which impurities are dissolved, and in the form of intermetallic compounds, so the separation and recovery method is to decompose the raw materials together with the impurities with acid to separate the impurities, Or it is common sense to take a means of separating while precipitating as a salt, and the method of leaching directly with alkali is possible when the raw materials are all salts, but it is effective for raw materials including even a part of the above metal form. It was thought that there was no. Therefore, as a result of intensive studies and studies to solve the above-mentioned problems, the present inventor selectively brought into contact with a gallium raw material containing impurities such as indium at a predetermined temperature by bringing a large amount of alkaline agent into contact therewith. The inventors have found that gallium can be eluted and easily separated from impurities such as indium, and the present invention has been achieved.

すなわち、質量で前記ガリウム原料の5倍以上の水酸化アルカリを前記ガリウム原料に添加し、水を加え液温を50℃以上とした後、固液分離してガリウム含有溶液を得るガリウム回収方法を提供する。   That is, a gallium recovery method in which an alkali hydroxide at least 5 times the mass of the gallium raw material is added to the gallium raw material and water is added to bring the liquid temperature to 50 ° C. or higher, followed by solid-liquid separation to obtain a gallium-containing solution. provide.

また、上記水酸化アルカリを固形状のまま、ガリウム原料に添加してあらかじめ熱処理を施してから、水を加える方法を提供する。この方法によって、ガリウムの液中への移行率を更にあげることができる。この熱処理の温度は200℃以上が好ましい。   Further, the present invention provides a method of adding water after adding the alkali hydroxide to a gallium raw material in a solid state and performing heat treatment in advance. By this method, the rate of migration of gallium into the liquid can be further increased. The heat treatment temperature is preferably 200 ° C. or higher.

また、ガリウム原料としては電解精製によって不純物、特にインジウムが濃縮された陽極のガリウムが好適である。   Further, as the gallium raw material, anode gallium enriched with impurities, particularly indium by electrolytic purification is suitable.

さらに、上述で水酸化アルカリを含んだガリウム回収液をそのまま或いは水で希釈してガリウム電解精製法および/またはガリウム電解採取法の電解液として使用する方法を提供する。   Further, the present invention provides a method of using the gallium recovery solution containing alkali hydroxide as it is or by diluting with water as an electrolytic solution for the gallium electrolytic purification method and / or the gallium electrolytic collection method.

本発明のガリウムの回収法によれば、従来の方法よりも、安価で工程が単純であり、不純物との分離も良く、高収率でガリウムを回収できる。従って本発明は不純物の濃縮したガリウム原料からガリウムを回収する方法として極めて有用である。   According to the gallium recovery method of the present invention, gallium can be recovered in a high yield with a lower cost and simpler process, better separation from impurities. Therefore, the present invention is extremely useful as a method for recovering gallium from a gallium raw material enriched with impurities.

図1は本発明の一実施形態にかかるガリウム回収方法の概略構成を示すフロー図である。以下、図1を参照にしながら本発明の実施の形態にかかるガリウム回収方法を説明する。   FIG. 1 is a flowchart showing a schematic configuration of a gallium recovery method according to an embodiment of the present invention. The gallium recovery method according to the embodiment of the present invention will be described below with reference to FIG.

図1に示すフローはガリウム原料に水酸化アルカリを添加して熱処理を施す工程、熱処理後、放冷し水を加えて所定の液温で攪拌する工程、そして最後に固液分離してガリウム含有溶液を得る工程とに分けられる。さらに得られたガリウム含有溶液は別のガリウム電解精製工程またはガリウム電解採取工程の電解液として利用され、金属ガリウムとして回収される。   The flow shown in FIG. 1 is a step in which alkali hydroxide is added to a gallium raw material and subjected to heat treatment, after heat treatment, the step of allowing to cool, adding water and stirring at a predetermined liquid temperature, and finally solid-liquid separation to contain gallium. It is divided into the process of obtaining a solution. Further, the obtained gallium-containing solution is used as an electrolytic solution in another gallium electrolytic purification process or gallium electrolytic collection process, and is recovered as metallic gallium.

ガリウム原料としては、各種ガリウム精製工程から得られる不純物の濃縮したガリウムや半導体のエピタキシャル工程で発生するスクラップ等様々であるが、本発明は通常インジウム等の不純物との分離回収が難しいとされるメタル形状のスクラップに効果を発揮する。   There are various gallium raw materials such as gallium enriched with impurities obtained from various gallium refining processes and scrap generated in the epitaxial process of semiconductors, but the present invention is usually a metal that is difficult to separate and recover from impurities such as indium. Effective for scrap of shape.

上記ガリウム原料にフレーク状、粉状、粒状等固形の水酸化アルカリを添加する。水酸化アルカリとしては水酸化ナトリウム、水酸化カリウムが好適だがコストおよび後工程のガリウム電解精製工程またはガリウム電解採取工程の電解液として利用を考えた場合、水酸化ナトリウムが好ましい。水酸化アルカリの添加量はガリウム原料に対して質量で5倍以上20倍以下が好ましい。5倍未満ではガリウムの浸出率が数%しかなく、20倍を超えるとガリウム浸出率は横這いとなり逆に不純物のインジウム、銅、鉛等が溶液中に溶けだしガリウムとの分離が悪くなる。   Solid alkali hydroxide such as flakes, powders, and granules is added to the gallium raw material. Sodium hydroxide and potassium hydroxide are preferable as the alkali hydroxide, but sodium hydroxide is preferable in view of cost and utilization as an electrolytic solution in a gallium electrolytic purification step or a gallium electrolytic extraction step in the subsequent step. The addition amount of the alkali hydroxide is preferably 5 to 20 times by mass with respect to the gallium raw material. If it is less than 5 times, the leaching rate of gallium is only a few percent, and if it exceeds 20 times, the gallium leaching rate is flat, and impurities such as indium, copper and lead are dissolved in the solution and the separation from gallium is worsened.

ガリウム原料がメタル形状の場合、熱処理工程は必須となるが、予め、他の回収工程、例えば亜鉛製錬副産物からの回収工程で得られる水酸化ガリウム等の塩類の形で含有するスクラップ原料については熱処理工程を経ることなく、上記水酸化アルカリ添加後、水を加えるだけで十分回収率は上がり、水酸化アルカリ添加後、少量の酸化亜鉛を加えるとインジウム等の不純物との分離効果も高い。また、予め水酸化アルカリを溶液として用いても十分な回収率が得られる。   When the gallium raw material is in the metal form, the heat treatment step is essential, but for the scrap raw material contained in the form of a salt such as gallium hydroxide obtained in another recovery step, for example, a recovery step from a zinc smelting by-product in advance. Without passing through the heat treatment step, the recovery rate can be sufficiently increased by adding water after the alkali hydroxide is added, and if a small amount of zinc oxide is added after the alkali hydroxide is added, the effect of separating impurities such as indium is high. Further, a sufficient recovery rate can be obtained even if alkali hydroxide is used in advance as a solution.

ガリウム原料がメタル形状、金属間化合物の場合は、前述水酸化アルカリ添加後、熱処理を施すことが望ましい。ガリウムの浸出率からすると熱処理温度は200℃以上が好ましく、更に好ましくは300℃以上である。容器としては250℃まではPTFE製、それ以上はSUSを用いることができる。鉄等の不純物の混入が気になる場合はPTFEが好ましい。また、熱処理時間は1時間以上、好ましくは5時間以上である。熱処理後は次工程の突沸を考慮して放冷したほうが好ましい。   In the case where the gallium raw material is in a metal shape and an intermetallic compound, it is desirable to perform a heat treatment after adding the alkali hydroxide. Considering the leaching rate of gallium, the heat treatment temperature is preferably 200 ° C. or higher, more preferably 300 ° C. or higher. The container can be made of PTFE up to 250 ° C., and SUS can be used for more than that. PTFE is preferable when impurities such as iron are a concern. The heat treatment time is 1 hour or longer, preferably 5 hours or longer. After heat treatment, it is preferable to cool in consideration of bumping in the next step.

放冷後、水を加えて攪拌しながら浸出する。液の温度は50℃以上。攪拌速度は300RPM以上が好ましい。   After standing to cool, add water and leach with stirring. The temperature of the liquid is 50 ° C or higher. The stirring speed is preferably 300 RPM or more.

次工程の固液分離については、デカンテーション、フィルタープレス、遠心分離、通常の濾過いずれでもバッチの大きさによって選択すれば良いが、少量のバッチでは、塩類濃度が高いため遠心分離後、加圧濾過が好ましい。液温は常温に戻してからでも良いが、濾過性を考慮すると液温を50℃以上のままで行う方が好ましい。   For solid-liquid separation in the next step, decantation, filter press, centrifugation, or normal filtration may be selected depending on the size of the batch. However, in small batches, the salt concentration is high, so centrifugation is followed by pressurization. Filtration is preferred. The liquid temperature may be returned to room temperature, but it is preferable to perform the liquid temperature at 50 ° C. or higher in consideration of filterability.

固液分離後の液中にはガリウム、固形物にはインジウム、銅、鉛等の不純物と分離される。溶液中に回収されたガリウム含有溶液は、水酸化アルカリ液性でそのまま、または水で希釈してガリウム電解精製工程あるいはガリウム電解採取工程の電解液として供され、金属ガリウムとして回収される。   The liquid after the solid-liquid separation is separated from impurities such as gallium, and the solid is separated from indium, copper, lead and the like. The gallium-containing solution recovered in the solution is alkaline hydroxide solution as it is or diluted with water to be used as an electrolytic solution in the gallium electrolytic purification step or gallium electrowinning step, and recovered as metallic gallium.

亜鉛製錬副産物として水酸化物として回収されたガリウム原料50g(Ga19.6g、In0.6g含有)に粒状水酸化ナトリウム250gを加え、水で1000mlとし、液温50℃、300rpmで攪拌しながら1時間この状態を保った後、濾過し、溶液中のガリウム濃度、およびインジウム濃度をICP発光分光分析装置で測定し、回収率を算出した。その結果、溶液中にガリウムは99.5%回収され、不純物のインジウムは0.6%であった。   250 g of granular sodium hydroxide is added to 50 g of gallium raw material recovered as a hydroxide as a zinc smelting by-product (containing 19.6 g of Ga and 0.6 g of In), and made up to 1000 ml with water, while stirring at a liquid temperature of 50 ° C. and 300 rpm. After maintaining this state for a period of time, filtration was performed, and the gallium concentration and indium concentration in the solution were measured with an ICP emission spectroscopic analyzer, and the recovery rate was calculated. As a result, 99.5% of gallium was recovered in the solution and 0.6% of indium as an impurity.

ガリウムの電解精製工程で陽極に濃縮されたガリウムメタル100g(Ga77.6g、In22.3g、Cu15mg,Pb10mg含有)をガリウム原料とし、粒状水酸化ナトリウム500gを添加し、200℃で1時間熱処理した。常温まで放冷後、水を加えて1000mlとし、液温50℃、300rpmで攪拌しながら1時間この状態を保った後、濾過し、溶液中のガリウム濃度、およびインジウム濃度をICP発光分光分析装置で測定し、回収率を算出した。その結果、溶液中にガリウムは52.2%回収され、不純物のインジウム、銅、鉛はそれぞれ0.4%、6.7%、15%であった。   100 g of gallium metal (containing Ga 77.6 g, In 22.3 g, Cu 15 mg, and Pb 10 mg) concentrated on the anode in the gallium electrolytic purification process was used as a gallium raw material, and 500 g of granular sodium hydroxide was added, followed by heat treatment at 200 ° C. for 1 hour. After cooling to room temperature, water is added to make 1000 ml, and this state is maintained for 1 hour with stirring at a liquid temperature of 50 ° C. and 300 rpm, followed by filtration, and the concentration of gallium and indium in the solution is determined by an ICP emission spectroscopic analyzer. And the recovery rate was calculated. As a result, 52.2% of gallium was recovered in the solution, and impurities of indium, copper, and lead were 0.4%, 6.7%, and 15%, respectively.

熱処理温度を350℃とした他は実施例2と同様に行った。その結果、溶液中にガリウムは78.8%回収され、不純物のインジウム、銅、鉛はそれぞれ0.8%、13.3%、25%であった。   The same procedure as in Example 2 was performed except that the heat treatment temperature was 350 ° C. As a result, 78.8% of gallium was recovered in the solution, and impurities of indium, copper and lead were 0.8%, 13.3% and 25%, respectively.

添加する粒状水酸化ナトリウムの量を1000g、熱処理温度を350℃とした他は実施例2と同様に行った。その結果、溶液中にガリウムは95.2%回収され、不純物のインジウム、銅、鉛はそれぞれ1.1%、26.7%、35%であった。   The same procedure as in Example 2 was performed except that the amount of granular sodium hydroxide to be added was 1000 g and the heat treatment temperature was 350 ° C. As a result, 95.2% of gallium was recovered in the solution, and impurities of indium, copper and lead were 1.1%, 26.7% and 35%, respectively.

添加する水酸化アルカリを水酸化カリウムとし、熱処理温度を350℃とした他は実施例2と同様に行った。その結果、溶液中にガリウムは70.6%回収され、不純物のインジウム、銅、鉛はそれぞれ0.7%、12%、25%であった。   The same procedure as in Example 2 was performed except that the alkali hydroxide to be added was potassium hydroxide and the heat treatment temperature was 350 ° C. As a result, 70.6% of gallium was recovered in the solution, and impurities of indium, copper, and lead were 0.7%, 12%, and 25%, respectively.

熱処理操作を行わなかった他は実施例2と同様におこなった。その結果、溶液中にガリウムは12.1%回収され、不純物のインジウム、銅、鉛はそれぞれ0.02%、0%、0%であった。   The same procedure as in Example 2 was performed except that the heat treatment operation was not performed. As a result, 12.1% of gallium was recovered in the solution, and impurities of indium, copper and lead were 0.02%, 0% and 0%, respectively.

実施例3で得られた回収液を水で2倍に希釈し、ガリウム電解採取装置の電解液として50℃に保ちながら電流密度0.05A/cm2で通電し、ガリウムメタルを得た。得られたガリウム中のインジウムは2300ppmであり、ガリウムの電解精製工程の原料に十分なり得る純度であった。   The recovered liquid obtained in Example 3 was diluted twice with water and energized at a current density of 0.05 A / cm 2 while maintaining the electrolytic solution of the gallium electrowinning apparatus at 50 ° C. to obtain gallium metal. Indium in the obtained gallium was 2300 ppm, which was a purity that could be sufficient as a raw material for the electrolytic purification process of gallium.

比較例Comparative example

添加する粒状水酸化ナトリウムの量を100gとし、熱処理操作を行わなかった他は実施例2と同様におこなった。その結果、ガリウムは溶液中に0.1%しか回収されず、インジウム、銅、鉛とも0%であった。   The same procedure as in Example 2 was performed except that the amount of granular sodium hydroxide to be added was 100 g and the heat treatment operation was not performed. As a result, only 0.1% of gallium was recovered in the solution, and all of indium, copper and lead were 0%.

本発明の一実施形態にかかるガリウム回収方法の概略構成を示す フロー図である。It is a flowchart which shows schematic structure of the gallium collection | recovery method concerning one Embodiment of this invention.

Claims (7)

ガリウム原料からガリウムを回収する方法であって、質量で前記ガリウム原料の5
倍以上の水酸化アルカリを前記ガリウム原料に添加し、水を加え液温を5 0 ℃ 以上とした後、固液分離してガリウム含有溶液を得るガリウム回収方法。
A method of recovering gallium from a gallium source, wherein the gallium source
A method for recovering gallium by adding at least twice as much alkali hydroxide to the gallium raw material, adding water to make the liquid temperature at 50 ° C. or higher, and then solid-liquid separation to obtain a gallium-containing solution.
前記水酸化アルカリを前記ガリウム原料に添加後、熱処理を行う請求項1
に記載のガリウム回収方法。
The heat treatment is performed after the alkali hydroxide is added to the gallium raw material.
2. The gallium recovery method described in 1.
前記熱処理は2 0
0 ℃ 以上の温度で行う請求項2 に記載のガリウムを回収する方法。
The heat treatment is 20
The method for recovering gallium according to claim 2, which is performed at a temperature of 0 ° C or higher.
前記水酸化アルカリは水酸化ナトリウムである請求項1
〜 3 のいずれかに記載のガリウム回収方法。
2. The alkali hydroxide is sodium hydroxide.
The gallium collection | recovery method in any one of -3.
前記ガリウム原料は、ガリウムを陽極として陰極に精製ガリウムを電解液中で析出させる電解精製工程を経た後の不純物が濃縮した陽極ガリウムである請求項1
〜 4 のいずれかに記載のガリウム回収方法。
2. The gallium raw material is anode gallium in which impurities are concentrated after an electrolytic purification process in which gallium is used as an anode and purified gallium is deposited in an electrolytic solution on a cathode.
The gallium collection | recovery method in any one of -4.
前記ガリウム原料はインジウムを含有するガリウム原料である請求項1
〜 5のいずれかに記載のガリウム回収方法。
The gallium raw material is a gallium raw material containing indium.
The gallium collection | recovery method in any one of -5.
請求項1 〜 6
のいずれかで得られたガリウム含有溶液を、そのまま或いは水で希釈してガリウム電解精製工程および/ またはガリウム電解採取工程の電解液として供し、金属ガリウムを得るガリウム回収方法。
Claims 1 to 6
The gallium-containing solution obtained in any of the above is used as an electrolytic solution in the gallium electrolytic purification step and / or the gallium electrowinning step as it is or diluted with water, to obtain metal gallium.
JP2005248776A 2005-08-30 2005-08-30 Gallium recovery method Active JP5002790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248776A JP5002790B2 (en) 2005-08-30 2005-08-30 Gallium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005248776A JP5002790B2 (en) 2005-08-30 2005-08-30 Gallium recovery method

Publications (2)

Publication Number Publication Date
JP2007063044A JP2007063044A (en) 2007-03-15
JP5002790B2 true JP5002790B2 (en) 2012-08-15

Family

ID=37925653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248776A Active JP5002790B2 (en) 2005-08-30 2005-08-30 Gallium recovery method

Country Status (1)

Country Link
JP (1) JP5002790B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107338455A (en) * 2017-09-01 2017-11-10 江西德义半导体科技有限公司 The electrolysis unit and method of a kind of high purity gallium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027613A (en) * 1983-07-20 1985-02-12 Nippon Mining Co Ltd Recovery of indium-gallium
JPS644433A (en) * 1987-06-26 1989-01-09 Mitsubishi Metal Corp Method for recovering gallium from gallium-containing scrap
JPH06192877A (en) * 1992-12-24 1994-07-12 Sumitomo Metal Mining Co Ltd Refining method for gallium metal
JP3802245B2 (en) * 1998-10-30 2006-07-26 同和鉱業株式会社 Method and apparatus for electrolytic purification of gallium
JP3927706B2 (en) * 1998-10-30 2007-06-13 Dowaホールディングス株式会社 Method and apparatus for electrolytic purification of gallium
JP4119960B2 (en) * 2002-10-02 2008-07-16 Dowaメタルマイン株式会社 Purification method of gallium solution
JP3971286B2 (en) * 2002-10-24 2007-09-05 Dowaホールディングス株式会社 Gallium recovery method

Also Published As

Publication number Publication date
JP2007063044A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
US8308933B2 (en) Method of recovering valuable metals from IZO scrap
JP4745400B2 (en) Recovery method of valuable metals from ITO scrap
US8308932B2 (en) Method of recovering valuable metals from IZO scrap
JP3602329B2 (en) Method for recovering indium from indium-containing material
JP4298712B2 (en) Method for electrolytic purification of copper
KR101199513B1 (en) Valuable metal recovery method from waste solder
US9051626B2 (en) Method and a system for gold extraction with halogens
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
JP6662230B2 (en) Method for producing high-purity indium
JP5028563B2 (en) Indium recovery method
JP5002790B2 (en) Gallium recovery method
JP6233478B2 (en) Purification method of bismuth
CN117568624A (en) Bismuth purification method
JP2015086436A (en) Method for recovering valuable material
JP5482461B2 (en) Method for recovering copper from copper electrolysis waste liquid
JPH06280075A (en) Method for electrolytic extraction of highly pure platinum from platinum alloy
JP6373772B2 (en) Method for recovering indium and gallium
CN113355701A (en) Method for separating and recovering silver and gallium
JPS63496A (en) Method for purifying gallium electrolytic solution
Fedorov et al. Preparation of high-purity gallium from semiconductor fabrication waste
JP2007246988A (en) Method for collecting indium
JP2001172731A (en) Method for recovering bismuth
JP7420001B2 (en) Method for producing metal cadmium
JP2000226623A (en) METHOD FOR PURIFYING Ca-CONTAINING SOLUTION
JP6017876B2 (en) A method for recovering gallium from waste copper gallium.

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5002790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250