JP5028563B2 - Indium recovery method - Google Patents

Indium recovery method Download PDF

Info

Publication number
JP5028563B2
JP5028563B2 JP2005244794A JP2005244794A JP5028563B2 JP 5028563 B2 JP5028563 B2 JP 5028563B2 JP 2005244794 A JP2005244794 A JP 2005244794A JP 2005244794 A JP2005244794 A JP 2005244794A JP 5028563 B2 JP5028563 B2 JP 5028563B2
Authority
JP
Japan
Prior art keywords
indium
added
gallium
hydrochloric acid
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005244794A
Other languages
Japanese (ja)
Other versions
JP2007056337A (en
Inventor
健一 田山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2005244794A priority Critical patent/JP5028563B2/en
Publication of JP2007056337A publication Critical patent/JP2007056337A/en
Application granted granted Critical
Publication of JP5028563B2 publication Critical patent/JP5028563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、不純物としてガリウムを含むインジウム含有被処理物からインジウムを回収する方法に関する。   The present invention relates to a method for recovering indium from an indium-containing workpiece containing gallium as an impurity.

インジウムはInP、InAs等の化合物半導体や最近、急速な成長を見せている液晶の透明電極膜として利用されているITOの原料として需要が増大している。インジウムは主としてガリウム等とともに亜鉛製錬工程の副産物として微量に得られる金属元素であるが、最近はITOターゲット材屑や半導体材料のスクラップ等インジウム含有率の高い原料も増えてきている。   Demand for indium is increasing as a raw material for compound semiconductors such as InP and InAs, and for ITO used as a transparent electrode film for liquid crystal which has recently been rapidly growing. Indium is a metal element obtained in a trace amount as a by-product of the zinc smelting process together with gallium and the like, but recently, raw materials with a high indium content such as ITO target material scrap and semiconductor material scrap are increasing.

そのうちITOターゲット屑等を原料としたインジウム回収法はいくつか提案されている。たとえば、溶媒抽出を利用した方法(特許文献1参照)があるが、この方法では同族元素のガリウム等が多量に混同した半導体スクラップのような被処理物からインジウムを分離回収するには十分といえない。
特開平08−091838号公報
Among them, several methods for recovering indium using ITO target scraps as raw materials have been proposed. For example, there is a method using solvent extraction (see Patent Document 1), but this method is sufficient for separating and recovering indium from an object to be treated such as semiconductor scrap in which a large amount of the gallium of the family element is confused. Absent.
Japanese Patent Laid-Open No. 08-091838

本発明は、従来のインジウム回収方法における上記の問題を解決したものであって、金属の湿式精製において工程が単純で、しかも安価に同族の不純物であるガリウム等との分離性が良く、高収率でインジウムを回収できる方法を提案するものである。   The present invention solves the above-mentioned problems in the conventional indium recovery method, has a simple process in wet refining of metal, and has good separability from gallium and the like, which are impurities of the same family, at low cost and high yield. A method that can recover indium at a high rate is proposed.

通常半導体スクラップから発生するインジウム被処理物はその不純物として分離の困難なガリウム等の同族元素が固溶した金属の形態、金属間化合物の形態のものが多いことから、その分離回収方法としては不純物とともに原料全体を酸で分解し溶液化した後、溶媒で不純物を分離する、あるいは塩として析出させながら分離する手段をとるのが一般的であり、直接アルカリで処理してインジウムを回収するのは効果が無いと考えられていた。そこで本発明者は上述の課題を解決すべく鋭意試験研究を重ねた結果、ガリウム等の同族不純物を含むインジウム含有被処理物に多量のアルカリ剤を所定の温度で接触させることによって、液中に選択的に同族不純物であるガリウム等を溶出させ、簡単に回収対象であるインジウムを分離濃縮できることを見出し、本発明に到達した。   Usually, indium-treated materials generated from semiconductor scrap are often in the form of metals in which homologous elements such as gallium, which are difficult to separate, are dissolved, and in the form of intermetallic compounds. At the same time, after the whole raw material is decomposed with an acid and made into a solution, it is common to take a means of separating impurities with a solvent or separating them while precipitating as a salt. It was thought to be ineffective. Therefore, as a result of intensive studies and studies to solve the above-mentioned problems, the present inventor brought a large amount of an alkaline agent into contact with an indium-containing workpiece containing a family impurity such as gallium at a predetermined temperature. The present inventors have found that gallium and the like, which are impurities of the same family, can be selectively eluted to easily separate and concentrate indium to be collected.

すなわち、質量で不純物としてガリウムを含むインジウム含有被処理物の等倍以上の水酸化アルカリをインジウム含有被処理物に添加し、水を加え不純物を液中に溶解せしめた後、固液分離してインジウム濃縮物を得て、前記インジウム濃縮物を硫酸で浸出し、これに硫化水素を吹き込みインジウムの硫化物として沈殿分離後、このインジウム硫化物を塩酸と酸化剤で浸出し、この浸出液に水酸化アルカリを加え、インジウムを水酸化物とした後、該水酸化物を塩酸で溶解し、インジウム含有塩酸溶液を電解元液としてインジウム電解採取工程に供し、電解採取してインジウムメタルを得るインジウム回収方法を提供する。 That is, an alkali hydroxide at least equal to the indium-containing object to be processed containing gallium as an impurity by mass is added to the indium-containing object, water is added to dissolve the impurity in the liquid, and then solid-liquid separation is performed. An indium concentrate is obtained, and the indium concentrate is leached with sulfuric acid, and hydrogen sulfide is blown into the indium concentrate to precipitate and separate as indium sulfide. The indium sulfide is then leached with hydrochloric acid and an oxidizing agent, and the leachate is hydroxylated. An indium recovery method for obtaining indium metal by adding alkali and converting indium to hydroxide, then dissolving the hydroxide with hydrochloric acid, subjecting the indium-containing hydrochloric acid solution to an indium electrowinning process as an electrolytic base solution, and performing electrowinning I will provide a.

また、上記水酸化アルカリを固形状のまま、インジウム含有被処理物に添加してあらかじめ熱処理を施してから、水を加える方法を提供する。この方法によって、不純物のガリウム等の液中への移行率を更にあげることができる。この熱処理の温度は200℃以上が好ましい。   Further, the present invention provides a method of adding water after adding the alkali hydroxide to the indium-containing object to be processed in a solid state and performing heat treatment in advance. By this method, the rate of migration of impurities into the liquid such as gallium can be further increased. The heat treatment temperature is preferably 200 ° C. or higher.

本発明のインジウム回収方法によれば、従来の方法よりも、安価で工程が単純であり、ガリウム等の同族不純物との分離も良く、高収率でインジウムを回収できる。従って本発明は同族不純物であるガリウムを含むインジウム含有被処理物からインジウムを分離濃縮する方法として極めて有用である。   According to the indium recovery method of the present invention, it is cheaper and simpler than the conventional method, and it can be easily separated from homologous impurities such as gallium, and indium can be recovered in a high yield. Therefore, the present invention is extremely useful as a method for separating and concentrating indium from an indium-containing object containing gallium, which is a family impurity.

図1は本発明の一実施形態にかかるインジウム回収方法の概略構成を示すフロー図である。以下、図1を参照にしながら本発明の実施の形態にかかるインジウム回収方法を説明する。   FIG. 1 is a flowchart showing a schematic configuration of an indium recovery method according to an embodiment of the present invention. The indium recovery method according to the embodiment of the present invention will be described below with reference to FIG.

図1に示すフローは不純物としてガリウムを含むインジウム含有被処理物に水酸化アルカリを添加して熱処理を施す工程、熱処理後、放冷し水を加えて所定の液温で攪拌する工程、そして固液分離してインジウム濃縮物を得る工程とに分けられる。さらに得られたインジウム濃縮物を硫酸等の鉱酸で溶解し、残存するガリウム等不純物からさらにインジウムを分離するため硫化水素等の硫化剤を加え、インジウムを硫化物として分離する。インジウムを含む硫化物は酸化剤を含む塩酸を用いて浸出する。この塩酸浸出液を中和後、再度、塩酸で溶解してインジウム電解採取工程に電解元液として供し、電解して金属インジウムを回収する。   The flow shown in FIG. 1 includes a step of adding an alkali hydroxide to an indium-containing object containing gallium as an impurity and subjecting it to heat treatment, a step of cooling, adding water and stirring at a predetermined liquid temperature after the heat treatment, The process is divided into liquid separation to obtain an indium concentrate. Further, the obtained indium concentrate is dissolved with a mineral acid such as sulfuric acid, and a sulfurizing agent such as hydrogen sulfide is added to further separate indium from the remaining impurities such as gallium to separate indium as sulfide. Sulfides containing indium are leached using hydrochloric acid containing an oxidizing agent. After neutralizing this hydrochloric acid leaching solution, it is again dissolved in hydrochloric acid and used as an electrolytic source solution in the indium electrowinning step, and electrolyzed to recover metallic indium.

インジウム含有被処理物としては、半導体のエピタキシャル工程で発生するスクラップ、液晶の透明電極膜として利用されるITOターゲット材屑等様々であるが、本発明は通常ガリウム等の不純物との分離回収が難しいとされるメタル形状のスクラップに特に効果を発揮する。   Examples of indium-containing objects include scraps generated in semiconductor epitaxial processes, ITO target material scraps used as liquid crystal transparent electrode films, etc., but the present invention is generally difficult to separate and recover from impurities such as gallium. This is especially effective for metal-shaped scrap.

上記不純物としてガリウムを含むインジウム含有被処理物にフレーク状、粉状、粒状等固形の水酸化アルカリを添加する。水酸化アルカリとしては水酸化ナトリウム、水酸化カリウムが好適だがコストを考えた場合、水酸化ナトリウムが好ましい。水酸化アルカリの添加量はインジウム被処理物に対して質量で等量以上20倍以下が好ましい。等量未満では同族不純物のガリウムの除去できず、20倍を超えると不純物分離効果は大きいが回収対象となるインジウムロスが増え、収率が下がる。   Solid alkali hydroxide such as flakes, powders, and granules is added to the indium-containing object containing gallium as the impurity. As the alkali hydroxide, sodium hydroxide and potassium hydroxide are preferable, but sodium hydroxide is preferable in view of cost. The amount of alkali hydroxide added is preferably equal to or greater than 20 times the mass of the indium workpiece. If the amount is less than the same amount, the gallium of the family impurity cannot be removed, and if it exceeds 20 times, the impurity separation effect is large, but the indium loss to be recovered increases and the yield decreases.

不純物としてガリウムを含むインジウム含有被処理物がメタル形状の場合、熱処理工程は必須となるが、予め、他の回収工程、例えば亜鉛製錬副産物からの回収工程で得られる水酸化物等の塩類の形でインジウムが含有する場合は、熱処理工程を経ることなく、上記水酸化アルカリ添加後、水を加えるだけで不純物の除去率は上がり、水酸化アルカリ添加後、少量の酸化亜鉛を加えると同族不純物であるガリウムとの分離効果も上がる。また、予め水酸化アルカリを溶液として用いても十分な分離効果が得られる。   When the indium-containing object to be processed containing gallium as an impurity is in a metal shape, a heat treatment step is indispensable, but in advance, other recovery steps, for example, a salt such as a hydroxide obtained in a recovery step from a zinc smelting by-product When indium is included in the form, the removal rate of impurities can be increased by adding water after adding the above alkali hydroxide without passing through the heat treatment step. The separation effect from gallium is also increased. Further, a sufficient separation effect can be obtained even if alkali hydroxide is used as a solution in advance.

不純物としてガリウムを含むインジウム含有被処理物がメタル形状、金属間化合物の場合は、前述水酸化アルカリ添加後、熱処理を施すことが望ましい。同族不純物であるガリウム等の除去率からすると熱処理温度は200℃以上が好ましく、更に好ましくは300℃以上である。容器としては250℃まではPTFE製、それ以上はSUSを用いることができる。鉄等の不純物の混入が気になる場合はPTFEが好ましい。また、熱処理時間は1時間以上、好ましくは5時間以上である。熱処理後は次工程の突沸を考慮して放冷したほうが好ましい。   When the indium-containing object to be processed containing gallium as an impurity is in a metal shape or an intermetallic compound, it is desirable to perform heat treatment after adding the alkali hydroxide. The heat treatment temperature is preferably 200 ° C. or higher, more preferably 300 ° C. or higher, in view of the removal rate of gallium or the like that is a family impurity. The container can be made of PTFE up to 250 ° C., and SUS can be used for more than that. PTFE is preferable when impurities such as iron are a concern. The heat treatment time is 1 hour or longer, preferably 5 hours or longer. After heat treatment, it is preferable to cool in consideration of bumping in the next step.

放冷後、水を加えて攪拌しながら浸出行う。液の温度は50℃以上。攪拌速度は300RPM以上が好ましい。   After standing to cool, leaching is carried out while adding water and stirring. The temperature of the liquid is 50 ° C or higher. The stirring speed is preferably 300 RPM or more.

次工程の固液分離については、デカンテーション、フィルタープレス、遠心分離、通常の濾過いずれでもバッチの大きさによって選択すれば良いが、少量のバッチでは、塩類濃度が高いため遠心分離後、加圧濾過が好ましい。液温は常温に戻してからでも良いが、濾過性を考慮すると液温を50℃以上のままで行う方が好ましい。   For solid-liquid separation in the next step, decantation, filter press, centrifugation, or normal filtration may be selected depending on the size of the batch. However, in small batches, the salt concentration is high, so centrifugation is followed by pressurization. Filtration is preferred. The liquid temperature may be returned to room temperature, but it is preferable to perform the liquid temperature at 50 ° C. or higher in consideration of filterability.

固液分離後の固形物にはインジウムが濃縮され、液中の不純物のガリウムと分離される。固形物、すなわちインジウム濃縮物はさらに以下に示す次工程によってインジウムメタルとして回収できる。   The solid after the solid-liquid separation is concentrated with indium and separated from the impurity gallium in the liquid. The solid substance, that is, the indium concentrate, can be recovered as indium metal by the following process shown below.

インジウム濃縮物を硫酸で浸出し、浸出液中のフリーの硫酸濃度を80g/L以下に調整する。80g/Lを超える硫化剤添加時にインジウムの硫化物生成が不十分となり、インジウムの回収率が下がる。次にこの浸出液に硫化水素を吹き込む等の手段で硫化剤を添加し、Ag/AgCl電極で酸化還元電位を−50mV〜50mVの範囲に調整することによって、不純物のガリウム等を液中に残し、インジウムを硫化物の沈殿として分離回収することができる。また、この沈殿物はフィルタープレス等を用いて固液分離することができる。酸化還元電位が−50mV未満ではガリウムが沈殿し始め、50mVを超えるとインジウムの硫化物生成が不十分となり、インジウムの回収率が下がる。   The indium concentrate is leached with sulfuric acid, and the free sulfuric acid concentration in the leachate is adjusted to 80 g / L or less. When a sulfurizing agent exceeding 80 g / L is added, indium sulfide formation is insufficient, and the recovery rate of indium is lowered. Next, a sulfurizing agent is added by means such as blowing hydrogen sulfide into the leachate, and the oxidation / reduction potential is adjusted to a range of −50 mV to 50 mV with an Ag / AgCl electrode, thereby leaving impurities such as gallium in the liquid. Indium can be separated and recovered as a sulfide precipitate. The precipitate can be separated into solid and liquid using a filter press or the like. If the oxidation-reduction potential is less than −50 mV, gallium starts to precipitate, and if it exceeds 50 mV, indium sulfide is not sufficiently generated, and the recovery rate of indium is lowered.

上記で得られたインジウムの硫化物沈殿を酸化剤たとえばNaClO3を含む塩酸で浸出する。浸出液をアルカリで中和後、濾別し、再度水酸化物の沈殿を塩酸で浸出し、インジウムの電解採取の電解元液として供することができる。   The indium sulfide precipitate obtained above is leached with an oxidizing agent such as hydrochloric acid containing NaClO3. The leaching solution can be neutralized with an alkali and then filtered, and the hydroxide precipitate can be again leached with hydrochloric acid and used as an electrolysis solution for indium electrowinning.

また、得られるインジウムメタルの純度に特に制限がなければ、インジウム濃縮物を直接塩酸で浸出し、得られたインジウム含有塩酸溶液をインジウムの電解採取の電解元液として供することができる。   Moreover, if there is no restriction | limiting in particular in the purity of the indium metal obtained, an indium concentrate can be directly leached with hydrochloric acid, and the obtained indium-containing hydrochloric acid solution can be used as an electrolytic base solution for indium electrowinning.

亜鉛製錬副産物として水酸化物として回収されたインジウム含有被処理物50g(In10.6g、Ga9.8g含有)に粒状水酸化ナトリウム50gを加え、水で1000mlとし、液温50℃、300rpmで攪拌しながら1時間この状態を保った後、濾過し、沈殿を分離した。沈殿中のインジウム濃度、およびガリウム濃度をICP発光分光分析装置で測定し、回収率を算出した。その結果、インジウムは沈殿に98.5%回収され、ガリウムは0.6%のみで大半が溶液中に除かれた。   50 g of granular sodium hydroxide is added to 50 g of indium-containing material to be recovered as a hydroxide as a zinc smelting by-product (containing 10.6 g of In and 9.8 g of Ga), and made up to 1000 ml with water, and stirred at a liquid temperature of 50 ° C. and 300 rpm. While maintaining this state for 1 hour, the mixture was filtered to separate the precipitate. The indium concentration and gallium concentration in the precipitate were measured with an ICP emission spectroscopic analyzer, and the recovery rate was calculated. As a result, 98.5% of indium was recovered in the precipitate, and only 0.6% of gallium was removed in the solution.

半導体スクラップから発生したメタル状のインジウムスクラップ50g(In25.4g、Ga24.5g含有)をインジウム含有被処理物とし、粒状水酸化ナトリウム250gを添加し、200℃で1時間熱処理した。常温まで放冷後、水を加えて1000mlとし、液温50℃、300rpmで攪拌しながら1時間この状態を保った後、濾過し、沈殿を分離した。沈殿中のインジウム濃度、およびガリウム濃度をICP発光分光分析装置で測定し、回収率を算出した。その結果、インジウムは沈殿に99.1%回収され、ガリウムは73.9%が溶液中に除かれた。   Metal indium scrap 50 g (In 25.4 g, containing Ga 24.5 g) generated from semiconductor scrap was used as an indium-containing workpiece, 250 g of granular sodium hydroxide was added, and heat treatment was performed at 200 ° C. for 1 hour. After cooling to room temperature, water was added to make 1000 ml, and this state was maintained for 1 hour with stirring at a liquid temperature of 50 ° C. and 300 rpm, followed by filtration to separate the precipitate. The indium concentration and gallium concentration in the precipitate were measured with an ICP emission spectroscopic analyzer, and the recovery rate was calculated. As a result, 99.1% of indium was recovered in the precipitate and 73.9% of gallium was removed in the solution.

熱処理温度を350℃とした他は実施例2と同様に行った。その結果、インジウムは沈殿に98.1%回収され、ガリウムは95.2%が溶液中に除かれた。   The same procedure as in Example 2 was performed except that the heat treatment temperature was 350 ° C. As a result, 98.1% of indium was recovered in the precipitate and 95.2% of gallium was removed in the solution.

添加する粒状水酸化ナトリウムの量を1000g、熱処理温度を350℃とした他は実施例2と同様に行った。その結果、その結果、インジウムは沈殿に96.3.%回収され、ガリウムは97.7%が溶液中に除かれた。   The same procedure as in Example 2 was performed except that the amount of granular sodium hydroxide to be added was 1000 g and the heat treatment temperature was 350 ° C. As a result, as a result, indium precipitates 96.3. % Was recovered and 97.7% of the gallium was removed in the solution.

添加する水酸化アルカリを水酸化カリウムとし、熱処理温度を350℃とした他は実施例2と同様に行った。その結果、インジウムは沈殿に98.5%回収され、ガリウムは90.2%が溶液中に除かれた。   The same procedure as in Example 2 was performed except that the alkali hydroxide to be added was potassium hydroxide and the heat treatment temperature was 350 ° C. As a result, 98.5% of indium was recovered in the precipitate and 90.2% of gallium was removed in the solution.

熱処理操作を行わなかった他は実施例2と同様におこなった。その結果、インジウムは沈殿に99.8%回収され、ガリウムは15.1%が溶液中に除かれた。   The same procedure as in Example 2 was performed except that the heat treatment operation was not performed. As a result, 99.8% of indium was recovered in the precipitate and 15.1% of gallium was removed in the solution.

実施例4で得られた沈殿、すなわちインジウム濃縮物25gを硫酸(1+1)160g、80℃の液温で浸出した後、水を加えて全量を1000mlとした。浸出液中のフリーの硫酸濃度は48g/Lであった。次にこの浸出液に硫化水素を吹き込み、Ag/AgCl電極で酸化還元電位を−40mVに調整した。反応後、得られたスラリーを濾過しインジウムの硫化物の沈殿を得た。この沈殿を分析したところインジウムは98.8%回収され、不純物のガリウムは液中に99.7%除去できた。   The precipitate obtained in Example 4, ie, 25 g of indium concentrate was leached at 160 g of sulfuric acid (1 + 1) at a liquid temperature of 80 ° C., and water was added to make a total volume of 1000 ml. The free sulfuric acid concentration in the leachate was 48 g / L. Next, hydrogen sulfide was blown into this leachate, and the oxidation-reduction potential was adjusted to −40 mV with an Ag / AgCl electrode. After the reaction, the resulting slurry was filtered to obtain a precipitate of indium sulfide. As a result of analyzing the precipitate, 98.8% of indium was recovered and 99.7% of the impurity gallium could be removed in the liquid.

上記得られたインジウムの硫化物沈殿に1規定塩酸500mlを添加し、さらに20%塩素酸ナトリウム溶液150mlを添加しなから30℃で浸出した。この浸出液を30%水酸化ナトリウム水溶液でpH=9.5に調整した。得られたインジウム水酸化物の沈殿を濾別した。得られたインジウム水酸化物を塩酸で溶解し、30%水酸化ナトリウム水溶液でpH=1.5に調整した後、この溶液を電解元液として液温40℃、電流密度0.02A/cm2で電解を行い、インジウムメタルを得た。 1N Hydrochloric acid (500 ml) was added to the indium sulfide precipitate obtained above, and 150 ml of 20% sodium chlorate solution was further added, and leaching was performed at 30 ° C. The leachate was adjusted to pH = 9.5 with a 30% aqueous sodium hydroxide solution. The resulting indium hydroxide precipitate was filtered off. The obtained indium hydroxide was dissolved in hydrochloric acid and adjusted to pH = 1.5 with a 30% aqueous sodium hydroxide solution, and this solution was used as an electrolytic base solution at a liquid temperature of 40 ° C. and a current density of 0.02 A / cm 2. Electrolysis was performed to obtain indium metal.

本発明の一実施形態にかかるインジウム回収方法の概略構成を示すフロー図である。It is a flowchart which shows schematic structure of the indium recovery method concerning one Embodiment of this invention.

Claims (4)

不純物としてガリウムを含むインジウム含有被処理物からインジウムを回収する方法であって、質量で前記インジウム含有被処理物の等倍以上の水酸化アルカリを前記インジウム含有被処理物に添加し、水を加え不純物の一部を液中に溶解せしめた後、固液分離してインジウム濃縮物を得て、
前記インジウム濃縮物を硫酸で浸出し、この硫酸浸出液に硫化剤を加えインジウムを硫化物として沈殿分離後、前記硫化物を塩酸と酸化剤で浸出し、この浸出液に水酸化アルカリを加え、インジウムを水酸化物とした後、前記水酸化物を塩酸で溶解してインジウム含有塩酸溶液とし、前記インジウム含有塩酸溶液を電解元液としてインジウム電解採取工程に供し、電解してインジウムメタルを得るインジウム回収方法。
A method of recovering indium from an indium-containing object to be treated containing gallium as an impurity, wherein an alkali hydroxide having a mass equal to or more than that of the indium-containing object is added to the indium-containing object, and water is added. After dissolving some of the impurities in the liquid, solid-liquid separation to obtain an indium concentrate ,
The indium concentrate is leached with sulfuric acid, a sulfurizing agent is added to the sulfuric acid leachate, and indium is precipitated and separated as a sulfide. The sulfide is then leached with hydrochloric acid and an oxidizing agent, and an alkali hydroxide is added to the leachate, and indium is added. An indium recovery method for obtaining an indium metal by electrolysis by dissolving the hydroxide with hydrochloric acid to obtain an indium-containing hydrochloric acid solution, using the indium-containing hydrochloric acid solution as an electrolytic base solution for an indium electrowinning step .
前記水酸化アルカリを前記インジウム含有被処理物に添加後、熱処理を行う請求項1
に記載のインジウム回収方法。
The heat treatment is performed after the alkali hydroxide is added to the indium-containing workpiece.
The indium recovery method described in 1.
前記熱処理は2 0 0 ℃ 以上の温度で行う請求項2に記載のインジウム回収する方法。 The method for recovering indium according to claim 2, wherein the heat treatment is performed at a temperature of 200 ° C. or higher. 前記水酸化アルカリは水酸化ナトリウムである請求項1
〜 3 の何れかの方法に記載のインジウム回収方法。
2. The alkali hydroxide is sodium hydroxide.
The method for recovering indium according to any one of to 3.
JP2005244794A 2005-08-25 2005-08-25 Indium recovery method Active JP5028563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244794A JP5028563B2 (en) 2005-08-25 2005-08-25 Indium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244794A JP5028563B2 (en) 2005-08-25 2005-08-25 Indium recovery method

Publications (2)

Publication Number Publication Date
JP2007056337A JP2007056337A (en) 2007-03-08
JP5028563B2 true JP5028563B2 (en) 2012-09-19

Family

ID=37920065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244794A Active JP5028563B2 (en) 2005-08-25 2005-08-25 Indium recovery method

Country Status (1)

Country Link
JP (1) JP5028563B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201001985D0 (en) 2010-02-05 2010-03-24 Materialise Nv Guiding instruments and impactors for an acetabular cup implant, combinations therof, methods for manufacturing and uses thereof
JP6017876B2 (en) * 2012-07-30 2016-11-02 三菱マテリアル株式会社 A method for recovering gallium from waste copper gallium.
JP6017877B2 (en) * 2012-07-30 2016-11-02 三菱マテリアル株式会社 Method for recovering gallium from InGa waste
CN109802005A (en) * 2018-12-11 2019-05-24 汉能新材料科技有限公司 The recovery method of thin-film solar cells chip

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024332A (en) * 1983-07-20 1985-02-07 Nippon Mining Co Ltd Treatment of scrap of iii-v group compound semiconductor
JP2005146420A (en) * 2004-12-28 2005-06-09 Dowa Mining Co Ltd High purity indium

Also Published As

Publication number Publication date
JP2007056337A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
US7479262B2 (en) Method for separating platinum group element
JP3602329B2 (en) Method for recovering indium from indium-containing material
EA014105B1 (en) Processing of nickel ore or concentrates with sodium chloride
JPWO2013077296A1 (en) Manufacturing method of high purity nickel sulfate
JP2001207223A (en) Method for recovering valuable metal from copper electrolytic slime
JP4999058B2 (en) Method for recovering indium from indium-containing material
JP5028563B2 (en) Indium recovery method
JP2010138490A (en) Method of recovering zinc
JP2015086436A (en) Method for recovering valuable material
EP3575420A1 (en) Bismuth purification method
EP1577408B1 (en) Method for separating platinum group elements from selenum/tellurium bearing materials
JP5156992B2 (en) Method for recovering indium from indium-containing material
JP2010059035A (en) Method for producing aqueous arsenous acid solution of high purity from copper removal slime
JP4269693B2 (en) Process for treating selenium mixture
JP2011208248A (en) Method for separating platinum group element
JP2004190133A (en) Method of treating selenium, tellurium, and platinum group-containing material
JP6835577B2 (en) How to collect valuables
JP6400047B2 (en) Method for treating metal-containing acidic aqueous solution
JP5002790B2 (en) Gallium recovery method
JP2009242911A (en) Method for producing indium metal
JP2007246988A (en) Method for collecting indium
JP6017876B2 (en) A method for recovering gallium from waste copper gallium.
JPH10158752A (en) Method for extracting and recovering silver
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JPH0665658A (en) Method for recovering indium from indium scrap

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Ref document number: 5028563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250