JP2007246988A - Method for collecting indium - Google Patents

Method for collecting indium Download PDF

Info

Publication number
JP2007246988A
JP2007246988A JP2006072063A JP2006072063A JP2007246988A JP 2007246988 A JP2007246988 A JP 2007246988A JP 2006072063 A JP2006072063 A JP 2006072063A JP 2006072063 A JP2006072063 A JP 2006072063A JP 2007246988 A JP2007246988 A JP 2007246988A
Authority
JP
Japan
Prior art keywords
indium
containing solution
solution
reaction
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006072063A
Other languages
Japanese (ja)
Other versions
JP5119524B2 (en
Inventor
Mitsuo Abumiya
三雄 鐙屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2006072063A priority Critical patent/JP5119524B2/en
Publication of JP2007246988A publication Critical patent/JP2007246988A/en
Application granted granted Critical
Publication of JP5119524B2 publication Critical patent/JP5119524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently and inexpensively collecting indium from an indium-containing solution with a high collecting rate. <P>SOLUTION: This method for collecting indium comprises the steps of: adjusting the pH of a solution which contains indium and at least one impurity element among Zn, Al and Fe, to 1 or higher; adding a very small amount of a copper compound into the indium-containing solution to make copper ions exist in the solution while keeping the temperature of the indium-containing solution at 60°C or lower and preferably 30°C or lower; adding a zinc powder (Zn powder) to cause a substitution reaction; and separating indium of the solid from the liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、インジウムの回収方法に関し、特に、インジウム含有溶液からインジウムを回収する方法に関する。   The present invention relates to a method for recovering indium, and more particularly to a method for recovering indium from an indium-containing solution.

インジウム(In)は、InPやInAsなどの金属間化合物からなるIII−V族化合物半導体の原料や、錫をドープした酸化インジウム(ITO)からなる透明導電性薄膜の原料として利用されている。特に、ITOは、液晶ディスプレイ(LCD)、タッチパネル、太陽電池、調光ガラスなどの透明電極や、凍結防止膜などに幅広く利用されている。   Indium (In) is used as a raw material for III-V compound semiconductors made of intermetallic compounds such as InP and InAs, and as a raw material for transparent conductive thin films made of indium oxide (ITO) doped with tin. In particular, ITO is widely used for transparent electrodes such as liquid crystal displays (LCDs), touch panels, solar cells, and light control glasses, and antifreezing films.

近年、液晶ディスプレイなどのフラットパネルディスプレイの普及に伴って、その電極に用いられる透明導電膜の需要が急速に拡大しており、ITOの原料であるインジウムの需要が非常に高まっている。   In recent years, with the spread of flat panel displays such as liquid crystal displays, the demand for transparent conductive films used for the electrodes is rapidly expanding, and the demand for indium, which is a raw material for ITO, is greatly increased.

しかし、インジウムには主たる鉱石がなく、工業的には、亜鉛製錬において副生する中和石膏に濃縮されたインジウムを回収することによって生産されている。この中和石膏には、インジウムの他に、亜鉛(Zn)、アルミニウム(Al)、鉄(Fe)などの金属不純物が多く含まれており、また、これらの金属不純物以外にも微量に含まれる成分の種類が多い。   However, indium has no main ore and is industrially produced by recovering indium concentrated in neutralized gypsum by-produced in zinc smelting. In addition to indium, this neutralized gypsum contains a large amount of metal impurities such as zinc (Zn), aluminum (Al), and iron (Fe). There are many types of ingredients.

一般に、亜鉛製錬において副生する中和石膏からインジウムを回収するために、中和石膏を硫酸で浸出してインジウム含有溶液とした後にインジウムを回収している。この浸出は、一般に硫酸濃度を20〜40g/Lにして行われ、得られたインジウム含有溶液には、25〜40g/LのZn、10〜20g/LのAl、5〜15g/LのFeが含まれている。   In general, in order to recover indium from neutralized gypsum by-produced in zinc smelting, the neutralized gypsum is leached with sulfuric acid to form an indium-containing solution, and then indium is recovered. This leaching is generally performed at a sulfuric acid concentration of 20 to 40 g / L, and the obtained indium-containing solution contains 25 to 40 g / L Zn, 10 to 20 g / L Al, and 5 to 15 g / L Fe. It is included.

従来、インジウム含有溶液からインジウムを濃縮して回収する方法として、(1)インジウム含有溶液のpHを調整することによってインジウムの水酸化物として沈殿させる方法、(2)インジウム含有溶液に硫化剤を添加することによってインジウムの硫化物として沈殿させる方法、(3)インジウム含有溶液に金属Al、Zn、Cd、Zn−Cd合金などを添加することによってインジウムを置換析出させる方法、(4)溶媒抽出によってインジウムを回収する方法(例えば、特許文献1参照)、(5)イオン交換法によってインジウムを回収する方法などが知られている。   Conventionally, as a method of concentrating and recovering indium from an indium-containing solution, (1) a method of precipitating as an indium hydroxide by adjusting the pH of the indium-containing solution, (2) adding a sulfiding agent to the indium-containing solution (3) A method of precipitating indium by adding metal Al, Zn, Cd, Zn—Cd alloy or the like to the indium-containing solution, and (4) Indium by solvent extraction. There are known methods for recovering indium (for example, see Patent Document 1), (5) methods for recovering indium by ion exchange, and the like.

特開平8−91838号公報(段落番号0013−0018)JP-A-8-91838 (paragraph numbers 0013-0018)

上記(1)の方法は、金属イオンの水酸化物を生成するpH領域の相違を利用する方法であり、例えば、ZnおよびAlとInとを分離してInを濃縮・回収する方法として、pHを12以上にすることによって、ZnおよびAlを溶解し、Inを水酸化物として沈殿させて回収する方法が知られている。しかし、この方法によって生成したInの水酸化物は、濾過性が極めて悪いため、濾過設備が大きくなり、操作も長時間になるという問題がある。また、この方法では、インジウム含有溶液からFeを分離できないという問題もある。さらに、この方法では、インジウム含有溶液がZnやAlを多量に含む場合には、消費するアルカリ薬剤の量が非常に多くなり、コスト的にも不利である。   The method (1) is a method that utilizes the difference in pH range in which metal ion hydroxide is generated. For example, as a method for concentrating and recovering In by separating Zn and Al from In, A method is known in which Zn and Al are dissolved, and In is precipitated as a hydroxide and recovered by setting the value to 12 or more. However, the hydroxide of In produced by this method has a problem that the filtration facility becomes large and the operation takes a long time because the filterability is extremely poor. This method also has a problem that Fe cannot be separated from the indium-containing solution. Further, in this method, when the indium-containing solution contains a large amount of Zn or Al, the amount of the alkaline agent to be consumed becomes very large, which is disadvantageous in terms of cost.

上記(2)の方法は、金属硫化物の溶解度積の相違を利用する方法であるが、インジウム含有溶液が様々な金属不純物を含む場合には、純度の低い硫化物が大量に発生する。これらの硫化物は一般に濾過性が悪く、また、得られたInを浸出する場合に、硫酸だけでは完全に浸出することができないという問題がある。   The method (2) is a method that utilizes the difference in solubility product of metal sulfides. However, when the indium-containing solution contains various metal impurities, sulfides with low purity are generated in large quantities. These sulfides generally have poor filterability, and there is a problem that when the obtained In is leached, it cannot be completely leached with sulfuric acid alone.

上記(3)の方法は、インジウムより卑な金属をインジウム含有溶液に添加して、置換によってInをスポンジとして回収する方法であるが、Zn、Al、Feなどの卑な元素との分離は容易であるが、In自体が卑であるため、回収率が悪いという問題がある。   The method (3) is a method in which a base metal indium is added to an indium-containing solution, and In is recovered as a sponge by substitution, but separation from base elements such as Zn, Al, and Fe is easy. However, since In itself is obscene, there is a problem that the recovery rate is poor.

上記(4)および(5)の方法では、Inと分離する不純物によっては、前処理に負担がかかり、また、ランニングコストが高いという問題がある。   In the methods (4) and (5), depending on the impurities separated from In, there is a problem that a pretreatment is burdened and the running cost is high.

したがって、本発明は、このような従来の問題点に鑑み、インジウム含有溶液からインジウムを高い回収率で効率的且つ安価に回収するインジウムの回収方法を提供することを目的とする。   Therefore, in view of such a conventional problem, an object of the present invention is to provide an indium recovery method for recovering indium efficiently and inexpensively from an indium-containing solution.

本発明者らは、上記課題を解決するために鋭意研究した結果、上記の(3)の方法、すなわち、インジウムより卑な金属をインジウム含有溶液に添加してインジウムを置換析出させる方法において、インジウム含有溶液に微量の銅イオンの存在下において亜鉛末(Zn末)を添加して置換反応させることにより、インジウム含有溶液の液電位が著しく低下し、液中の残留In濃度が極端に低下して、置換効率が著しく向上することを見出し、特に、インジウム含有溶液中のZn、Al、Feなどの濃度が高い場合であっても、インジウム含有溶液からZn、Al、Feなどの卑な元素を容易に分離してインジウムを高い回収率で効率的且つ安価に回収することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that indium in the method of (3) above, that is, a method in which a metal lower than indium is added to an indium-containing solution to substitute and deposit indium. By adding zinc powder (Zn powder) in the presence of a small amount of copper ions to the contained solution and causing a substitution reaction, the liquid potential of the indium-containing solution is significantly reduced, and the residual In concentration in the liquid is extremely reduced. Finds that the substitution efficiency is remarkably improved, and in particular, even when the concentration of Zn, Al, Fe, etc. in the indium-containing solution is high, it is easy to remove base elements such as Zn, Al, Fe, etc. from the indium-containing solution. It was found that indium can be recovered efficiently and inexpensively with a high recovery rate, and the present invention has been completed.

すなわち、本発明によるインジウムの回収方法は、インジウム含有溶液に銅イオンの存在下で亜鉛末を添加した後に固液分離することを特徴とする。このインジウムの回収方法において、インジウム含有溶液に銅化合物を添加することによってインジウム含有溶液に銅イオンを存在させるのが好ましい。また、インジウム含有溶液のpHを1以上に調整するのが好ましく、インジウム含有溶液の温度を60℃以下に保持するのが好ましく、30℃以下に保持するのがさらに好ましい。また、インジウム含有溶液がZn、AlおよびFeの少なくとも一種を含有してもよい。   That is, the method for recovering indium according to the present invention is characterized by solid-liquid separation after adding zinc powder to an indium-containing solution in the presence of copper ions. In this indium recovery method, it is preferable that copper ions are present in the indium-containing solution by adding a copper compound to the indium-containing solution. The pH of the indium-containing solution is preferably adjusted to 1 or higher, the temperature of the indium-containing solution is preferably maintained at 60 ° C. or lower, and more preferably maintained at 30 ° C. or lower. The indium-containing solution may contain at least one of Zn, Al, and Fe.

本発明によれば、インジウム含有溶液中のZn、Al、Feなどの濃度が高い場合であっても、インジウム含有溶液からZn、Al、Feなどの卑な元素を容易に分離してインジウムを高い回収率で効率的且つ安価に回収することができる。   According to the present invention, even when the concentration of Zn, Al, Fe, etc. in the indium-containing solution is high, base elements such as Zn, Al, Fe, etc. are easily separated from the indium-containing solution to increase the indium. It can be recovered efficiently and inexpensively with a recovery rate.

本発明によるインジウムの回収方法の実施の形態では、不純物としてZn、AlおよびFeの少なくとも一種を含有するインジウム含有溶液のpHを1以上に調整し、インジウム含有溶液の温度を60℃以下、好ましくは30℃以下に保持して、このインジウム含有溶液に微量の銅化合物を添加して銅イオンを存在させるとともに、亜鉛末(Zn末)を添加して置換反応させた後に、固液分離することによってインジウムを回収する。このように、インジウム含有溶液に微量の銅イオンの存在下においてZn末を添加して置換反応させることによって、インジウム含有溶液の液電位が著しく低下し、液中の残留In濃度が極端に低下して、置換効率が著しく向上する。   In the embodiment of the method for recovering indium according to the present invention, the pH of the indium-containing solution containing at least one of Zn, Al and Fe as impurities is adjusted to 1 or more, and the temperature of the indium-containing solution is 60 ° C. or lower, preferably By maintaining a temperature below 30 ° C., adding a small amount of copper compound to this indium-containing solution to make copper ions exist, and adding zinc powder (Zn powder) to cause a substitution reaction, followed by solid-liquid separation Indium is recovered. In this way, by adding Zn powder to the indium-containing solution in the presence of a small amount of copper ions to cause a substitution reaction, the liquid potential of the indium-containing solution is remarkably reduced, and the residual In concentration in the liquid is extremely reduced. Thus, the replacement efficiency is remarkably improved.

インジウム含有溶液に添加する銅化合物は、硫酸銅や塩化銅などの易溶性の塩であれば、どのような銅化合物でもよく、すなわち、インジウム含有溶液に溶ければ、どのような銅化合物でもよく、酸化銅でもよい。この銅化合物は、中性から弱酸性下でインジウム含有溶液に溶かしてイオンとする。添加するCuの量は、添加するZn末の量が数g/L程度であれば、インジウム含有溶液中のCuの量が10〜20mg/L程度で液電位の低下が認められ、60〜80mg/L程度またはそれ以上で液電位が−1000mv前後(Ag/AgCl電極基準)に達する。   The copper compound added to the indium-containing solution may be any copper compound as long as it is a readily soluble salt such as copper sulfate or copper chloride, that is, any copper compound as long as it is soluble in the indium-containing solution. Copper oxide may be used. This copper compound is dissolved in an indium-containing solution under neutral to slightly acidic conditions to form ions. As for the amount of Cu to be added, if the amount of Zn powder to be added is about several g / L, a decrease in liquid potential is observed when the amount of Cu in the indium-containing solution is about 10 to 20 mg / L, and 60 to 80 mg. The liquid potential reaches around -1000 mV (Ag / AgCl electrode standard) at about / L or more.

上記の置換反応の際のpHは、pH1以下であると、Zn末の自然溶解(Zn+HSO=ZnSO+H)や、置換されたInスポンジの再溶解が進み易くなり、置換効率が悪くなるので、pH1以上であるのが好ましい。一方、pHの上限は、AlやZnが水酸化物として析出するまで高くすることができるが、置換の進行とともにpHが上昇する傾向があるので、置換終了の際のpHが、上記の水酸化物の析出pHより低いのが好ましい。なお、pHの調整に使用するアルカリ剤としては、NaOHやKOHを使用するのが好ましい。 When the pH during the above substitution reaction is pH 1 or less, natural dissolution of Zn powder (Zn + H 2 SO 4 = ZnSO 4 + H 2 ) and re-dissolution of the substituted In sponge are facilitated, and the substitution efficiency is improved. Since it worsens, it is preferable that pH is 1 or more. On the other hand, the upper limit of the pH can be increased until Al or Zn is precipitated as a hydroxide, but the pH tends to increase with the progress of substitution. It is preferably lower than the precipitation pH of the product. In addition, it is preferable to use NaOH or KOH as the alkaline agent used for adjusting the pH.

また、置換反応の温度が高いとZn末の自然溶解とInスポンジの再溶解が進み易くなるので、反応温度は、低いほどよく、30℃以下であるのが好ましい。また、置換反応は、反応温度が高いと短時間で終了し、反応温度が低いと終了まで長時間を要するが、この反応は、液電位の低下が定常になった時点で終了したとみなすことができる。また、この反応の際に、空気を巻き込まない程度の強さで攪拌するのが好ましい。   Further, when the temperature of the substitution reaction is high, the natural dissolution of Zn powder and the re-dissolution of In sponge tend to proceed. Therefore, the lower the reaction temperature, the better, and it is preferably 30 ° C. or lower. In addition, the substitution reaction is completed in a short time when the reaction temperature is high, and it takes a long time until the reaction is completed when the reaction temperature is low, but this reaction is considered to be completed when the decrease in liquid potential becomes steady. Can do. In this reaction, it is preferable to stir with a strength that does not involve air.

以下、本発明によるインジウムの回収方法の実施例について詳細に説明する。   Examples of the indium recovery method according to the present invention will be described in detail below.

[実施例1]
インジウム含有溶液として、557mg/LのIn、35.1g/LのZn、12.4g/LのAl、6.8g/LのFeを含む硫酸酸性溶液0.9Lを用意し、この溶液にNaOH溶液を添加してpHを2.2に調整し、溶液の温度を55℃に保持した。この溶液に試薬硫酸銅(Cuとして90mg/L)を添加して溶解させた後、3.5gのZn末を添加して反応を開始させた。なお、この反応中、空気を巻き込まない程度の強さで溶液を攪拌した。
[Example 1]
As an indium-containing solution, 0.9 L of a sulfuric acid acidic solution containing 557 mg / L In, 35.1 g / L Zn, 12.4 g / L Al, and 6.8 g / L Fe was prepared. The solution was added to adjust the pH to 2.2 and the solution temperature was maintained at 55 ° C. After adding reagent copper sulfate (90 mg / L as Cu) to this solution and dissolving it, 3.5 g of Zn powder was added to initiate the reaction. During the reaction, the solution was stirred with a strength that does not involve air.

この反応中の液電位(Ag/AgCl電極基準)の推移を図1に示す。図1から、液電位がほぼ定常になった12分経過時点で反応が終了しているのがわかる。そこで、12分経過後にC濾紙を用いて吸引濾過したところ、濾液中のIn濃度が35mg/Lであり、インジウムの回収率が93.7%であった。   The transition of the liquid potential (Ag / AgCl electrode standard) during this reaction is shown in FIG. From FIG. 1, it can be seen that the reaction has been completed when 12 minutes have passed since the liquid potential became substantially steady. Therefore, when suction filtration was performed using C filter paper after 12 minutes had elapsed, the In concentration in the filtrate was 35 mg / L, and the indium recovery rate was 93.7%.

[比較例1]
インジウム含有溶液に硫酸銅を添加しなかった以外は実施例1と同様に反応させた。この反応中の液電位(Ag/AgCl電極基準)の推移を図1に示す。図1から、液電位がほぼ定常になった60分経過時点で反応が終了しているのがわかる。そこで、60分経過後にC濾紙を用いて吸引濾過したところ、濾液中のIn濃度が84mg/Lであり、インジウムの回収率が84.9%であった。
[Comparative Example 1]
The reaction was performed in the same manner as in Example 1 except that copper sulfate was not added to the indium-containing solution. The transition of the liquid potential (Ag / AgCl electrode standard) during this reaction is shown in FIG. From FIG. 1, it can be seen that the reaction is completed when 60 minutes have elapsed since the liquid potential has become substantially steady. Then, when 60 minutes passed, it filtered by suction using C filter paper, In concentration in a filtrate was 84 mg / L, and the recovery rate of indium was 84.9%.

[実施例2]
溶液の温度を27℃に保持した以外は実施例1と同様に反応させた。この反応中の液電位(Ag/AgCl電極基準)の推移を図2に示す。図2から、液電位がほぼ定常になった35分経過時点で反応が終了しているのがわかる。そこで、35分経過後にC濾紙を用いて吸引濾過したところ、濾液中のIn濃度が4mg/Lであり、インジウムの回収率が99.3%であった。
[Example 2]
The reaction was conducted in the same manner as in Example 1 except that the temperature of the solution was maintained at 27 ° C. The transition of the liquid potential (Ag / AgCl electrode reference) during this reaction is shown in FIG. From FIG. 2, it can be seen that the reaction is completed at the point of 35 minutes when the liquid potential becomes almost steady. Then, when suction filtration was performed using C filter paper after 35 minutes had elapsed, the In concentration in the filtrate was 4 mg / L, and the indium recovery rate was 99.3%.

[比較例2]
インジウム含有溶液に硫酸銅を添加しなかった以外は実施例2と同様に反応させた。この反応中の液電位(Ag/AgCl電極基準)の推移を図2に示す。図2から、液電位が漸次低下傾向を示し、定常電位になっていないのがわかる。この結果から、インジウム含有溶液中に銅イオンを存在させない場合には、溶液の温度が低いと反応速度が著しく低下して、実操業的には適用不可能であると判断される。そこで、120分経過後にC濾紙を用いて吸引濾過したところ、濾液中のIn濃度が139mg/Lであり、インジウムの回収率が75.0%であった。
[Comparative Example 2]
The reaction was performed in the same manner as in Example 2 except that copper sulfate was not added to the indium-containing solution. The transition of the liquid potential (Ag / AgCl electrode reference) during this reaction is shown in FIG. From FIG. 2, it can be seen that the liquid potential shows a gradually decreasing tendency and does not become a steady potential. From this result, in the case where copper ions are not present in the indium-containing solution, it is judged that the reaction rate is remarkably lowered when the temperature of the solution is low, and it is not practically applicable. Therefore, when suction filtration was performed using C filter paper after 120 minutes had elapsed, the In concentration in the filtrate was 139 mg / L, and the indium recovery rate was 75.0%.

実施例1および比較例1の反応時間に対する液電位(Ag/AgCl電極基準)の変化を示すグラフである。6 is a graph showing changes in liquid potential (Ag / AgCl electrode standard) with respect to reaction time in Example 1 and Comparative Example 1. 実施例2および比較例2の反応時間に対する液電位(Ag/AgCl電極基準)の変化を示すグラフである。It is a graph which shows the change of the liquid potential (Ag / AgCl electrode reference | standard) with respect to the reaction time of Example 2 and Comparative Example 2.

Claims (5)

インジウム含有溶液に銅イオンの存在下で亜鉛末を添加した後に固液分離することを特徴とする、インジウムの回収方法。 A method for recovering indium, characterized by solid-liquid separation after adding zinc powder to an indium-containing solution in the presence of copper ions. 前記インジウム含有溶液に銅化合物を添加することによって前記インジウム含有溶液に銅イオンを存在させることを特徴とする、請求項1に記載のインジウムの回収方法。 The method for recovering indium according to claim 1, wherein copper ions are present in the indium-containing solution by adding a copper compound to the indium-containing solution. 前記インジウム含有溶液のpHを1以上に調整することを特徴とする、請求項1または2に記載のインジウムの回収方法。 The method for recovering indium according to claim 1, wherein the pH of the indium-containing solution is adjusted to 1 or more. 前記インジウム含有溶液の温度を60℃以下に保持することを特徴とする、請求項1乃至3のいずれかに記載のインジウムの回収方法。 The method for recovering indium according to any one of claims 1 to 3, wherein the temperature of the indium-containing solution is maintained at 60 ° C or lower. 前記インジウム含有溶液がZn、AlおよびFeの少なくとも一種を含有することを特徴とする、請求項1乃至5のいずれかに記載のインジウムの回収方法。
6. The method for recovering indium according to any one of claims 1 to 5, wherein the indium-containing solution contains at least one of Zn, Al, and Fe.
JP2006072063A 2006-03-16 2006-03-16 Indium recovery method Active JP5119524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072063A JP5119524B2 (en) 2006-03-16 2006-03-16 Indium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072063A JP5119524B2 (en) 2006-03-16 2006-03-16 Indium recovery method

Publications (2)

Publication Number Publication Date
JP2007246988A true JP2007246988A (en) 2007-09-27
JP5119524B2 JP5119524B2 (en) 2013-01-16

Family

ID=38591605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072063A Active JP5119524B2 (en) 2006-03-16 2006-03-16 Indium recovery method

Country Status (1)

Country Link
JP (1) JP5119524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049361A1 (en) * 2010-10-12 2012-04-19 Outotec Oyj Method for treating a solution containing zinc sulphate
CN114703368A (en) * 2022-02-21 2022-07-05 云锡文山锌铟冶炼有限公司 Method for treating zinc-indium-containing gypsum slag

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355508B (en) * 2018-11-21 2021-03-26 湖南锐异资环科技有限公司 Comprehensive recovery method of high-arsenic multi-metal indium-containing material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156381A (en) * 1991-12-02 1993-06-22 Sumitomo Metal Mining Co Ltd Method for recovering raw indium for electrolysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156381A (en) * 1991-12-02 1993-06-22 Sumitomo Metal Mining Co Ltd Method for recovering raw indium for electrolysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049361A1 (en) * 2010-10-12 2012-04-19 Outotec Oyj Method for treating a solution containing zinc sulphate
US20130192424A1 (en) * 2010-10-12 2013-08-01 Outotec Oyj Method for treating a solution containing zinc sulphate
EP2627792A1 (en) * 2010-10-12 2013-08-21 Outotec OYJ Method for treating a solution containing zinc sulphate
AU2011315400B2 (en) * 2010-10-12 2015-04-09 Metso Outotec Finland Oy Method for treating a solution containing zinc sulphate
EA024741B1 (en) * 2010-10-12 2016-10-31 Ототек Оюй Method for separating indium, gallium and germanium from a solution containing zinc sulphate
US9617621B2 (en) 2010-10-12 2017-04-11 Outotec Oyj Method for treating a solution containing zinc sulphate
EP2627792A4 (en) * 2010-10-12 2017-04-26 Outotec (Finland) Oy Method for treating a solution containing zinc sulphate
CN114703368A (en) * 2022-02-21 2022-07-05 云锡文山锌铟冶炼有限公司 Method for treating zinc-indium-containing gypsum slag

Also Published As

Publication number Publication date
JP5119524B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101155359B1 (en) Method for collection of valuable metal from ito scrap
JP4549501B2 (en) Indium recovery method
KR20090055651A (en) Method for collection of valuable metal from ito scrap
JP3602329B2 (en) Method for recovering indium from indium-containing material
KR101012109B1 (en) Method for recycling indium
JP4852720B2 (en) Indium recovery method
JP2009035808A (en) Method for separating tin from coexistence metal
JP2007009274A (en) Method for recovering indium
JP6662230B2 (en) Method for producing high-purity indium
JP4999058B2 (en) Method for recovering indium from indium-containing material
JP5119524B2 (en) Indium recovery method
JP2010138490A (en) Method of recovering zinc
JP2008297608A (en) Method for separating/recovering tin
JP4598921B2 (en) Indium recovery method
JP2015086436A (en) Method for recovering valuable material
JP5028563B2 (en) Indium recovery method
JP5156992B2 (en) Method for recovering indium from indium-containing material
JP4663053B2 (en) Indium recovery method
JP5339762B2 (en) Method for producing indium metal
JP2008297607A (en) In-Sn SEPARATING/RECOVERING METHOD
JP4914975B2 (en) Manufacturing method of high purity indium metal
JP4806820B2 (en) Method for indium sulfide from indium-containing material and method for recovering indium
JP2008208438A (en) Method for separating indium and tin
JP5177471B2 (en) Method for recovering indium hydroxide or indium
KR20080100030A (en) Method for recycling indium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5119524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250