JP5002078B2 - 生体に含有される生体成分の濃度を測定する方法 - Google Patents

生体に含有される生体成分の濃度を測定する方法 Download PDF

Info

Publication number
JP5002078B2
JP5002078B2 JP2011552649A JP2011552649A JP5002078B2 JP 5002078 B2 JP5002078 B2 JP 5002078B2 JP 2011552649 A JP2011552649 A JP 2011552649A JP 2011552649 A JP2011552649 A JP 2011552649A JP 5002078 B2 JP5002078 B2 JP 5002078B2
Authority
JP
Japan
Prior art keywords
light
concentration
reflected
optical filter
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011552649A
Other languages
English (en)
Other versions
JPWO2012046423A1 (ja
Inventor
達朗 河村
勝 南口
正彦 塩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011552649A priority Critical patent/JP5002078B2/ja
Application granted granted Critical
Publication of JP5002078B2 publication Critical patent/JP5002078B2/ja
Publication of JPWO2012046423A1 publication Critical patent/JPWO2012046423A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、生体に含有されるグルコースのような生体成分の濃度を測定する方法及び当該方法に用いられる計測装置に関する。
生体に照射された光の反射光、散乱光、または透過光に基づいて、当該生体に含有されるグルコースのような生体成分の濃度が計測される。より具体的には、生体成分のラマン散乱光が観測され、当該ラマン散乱光の強度に基づいて生体成分の濃度が算出される。
特許文献1および特許文献2は、グルコース濃度を光学的に測定する方法を開示している。当該方法によれば、まず、粒子が皮膚上層に埋め込まれる。当該粒子は、グルコースとの反応時に蛍光特性を変化させる試薬を含有する。次に、生体外から励起波長を有する光が粒子に照射され、粒子で発生した蛍光を経皮的に測定する。測定された蛍光に基づき、グルコース濃度が測定される。
特表2004−510527号公報 特表2007−537805号公報
Melissa F. Mrozek, and Michael J. Weaver, "Detection and Identification of Aqueous Saccharides by Using Surface-Enhanced Raman Spectroscopy", Analytical Chemistry, Vol. 74, No. 16, 4069-4075, 2002
本発明の目的の1つは、生体成分に含有される濃度をより正確に測定する方法を提供することである。
上述の課題を解決するために、本発明の例示的な実施形態として、以下のものが提供される:
(1) 生体に含有される生体成分の濃度を測定する方法であって、以下の工程(a)〜(g)を具備する、方法:
測定装置を用意する工程(a)、ここで、
前記測定装置は、光源、光学フィルタ、および受光器を具備し、
前記光源からの略平行光を、皮膚の表面上の位置を介して前記皮膚に埋め込まれた粒子チップに照射し、第1反射光を発生させる工程(b)、ここで、
前記粒子チップは基板および複数の金属粒子を具備し、
前記第1反射光を、前記光学フィルタを介して前記受光器により受光し、第1信号Xaを得る工程(c)、ここで、以下の等式(III)が充足され、
λ2=(107・λ1)/(107−B・λ1)・・・(III)
λ2:フィルタを透過する光の波長
λ1:前記光源からの光の波長
B:前記生体成分に固有のラマンシフト
前記光源を傾ける工程(d)、
前記粒子チップが前記略平行光に照射されないように、前記略平行光を前記位置と同一の位置に照射し、第2反射光を得る工程(e)、
前記第2反射光を、前記光学フィルタを介して前記受光器により受光し、第2信号Xbを得る工程(f)、および
前記第1信号Xaと前記第2信号Xbとの間の差に基づいて、前記生体成分の濃度を算出する工程(g)。
(2) 項目1に記載の方法であって、 前記生体成分はグルコースであり、Bは1120cm-1である、方法。
(3) 項目1に記載の方法であって、工程(b)および工程(c)が同時に実施される、方法。
(4) 項目1に記載の方法であって、工程(d)および工程(e)が同時に実施される、方法。
(5) 項目1に記載の方法であって、工程(d)から工程(f)が同時に実施される、方法。
本発明の一実施形態は、生体に含有される生体成分の濃度をより正確に測定する方法を提供する。
皮膚の断面図 粒子チップ3を示す図 計測装置を示す図 表面増強ラマン散乱光を示す図
(実施の形態1)
この例示的な実施形態(実施の形態1)による生体成分の濃度を測定する方法が、図面を参照しながら、以下、説明される。図面に記された構成要素は、必ずしも、縮尺通りに記したものではなく、本発明の原理を明確に例示するために誇張したものとなっている。本実施形態において、生体に含有される生体成分の濃度を測定する方法が提供される。この方法は、以下の段落で説明する工程(a)〜(g)を具備する。
(工程(a))
工程(a)では、測定装置が準備される。図3に示されるように、測定装置は、光源9、光学フィルタ13、および受光器14を具備する。測定装置は、必要に応じて、光路変調器10、レンズ系12、信号発生器15、ロックインアンプ16、およびコンピュータ17を具備する。
信号発生器15は、光路を変化させ照射状態を切替えるための変調信号を光路変調器10に供給する。ロックインアンプ16は、当該変調信号を参照信号として用いて、受光器14からの出力信号を位相検波する。コンピュータ17は、ロックインアンプ16の出力信号に基づき生体成分の濃度を算出する。コンピュータ17はまた、信号発生器15を制御する。支持体18は、光路変調器10、レンズ系12、フィルタ13、および受光器14を保持する。
(工程(b)および工程(c))
図1は、図3において破線によって囲まれた皮膚の拡大断面図を示す。工程(b)では、図1および図3に示されるように、光源9からの光が、皮膚の表面上の位置Cを透過する。皮膚に埋め込まれた粒子チップ3は透過した光によって照射され、第1反射光6をそこで発生させる。
工程(c)では、図1に示されるように、第1反射光6は、皮膚の屈折率(およそ1.37)および空気の屈折率(1)との差のために、皮膚表面で屈折する。そして、図3に示されるように、屈折した第1反射光6は、光学フィルタ13を透過し、受光器14によって受光される。このようにして、第1信号Xaが得られる。
工程(b)および工程(c)は、好ましくは、同時に行われる。
図1に示すように、皮膚は、表皮組織1、真皮組織2、および皮下組織4を具備する。これらの表皮組織1、真皮組織2、および皮下組織4はこの順に積層されている。
表皮組織1は生体の表面に位置する。表皮組織1は、およそ0.2ミリメートル〜およそ0.5ミリメートルの厚さを有する。真皮組織2は、およそ0.5ミリメートル〜2ミリメートルの厚さを有する。粒子チップ3は、真皮組織2に埋め込まれ、組織細胞間の体液である細胞間質液(interstitial fluid)に浸されて維持されている。皮下組織4は、主に脂肪組織から構成される。
本明細書において用いられる用語「体液」とは、細胞間質液(interstitial fluid)を意味する。
真皮組織2は複数の毛細血管を有するので、体液は当該毛細血管中の生体成分を含有している。特に、毛細血管壁は、グルコースについて高い透過性を有するので、体液中のグルコース濃度は、血糖値との高い相関性を有する。
光源9は図1におけるz方向に沿って略平行光5を皮膚に放つ。当該略平行光5の一例は、785ナノメートルナノメートルの波長を有し、かつ100マイクロメートルマイクロメートルの直径を有する円形のビーム形状を有している光である。略平行光5は、表皮組織1を透過し、粒子チップ3に到達する。略平行光5は、粒子チップ3上で反射し、第1反射光をそこで生じる。
図2は、粒子チップ3を示す。粒子チップ3は、基板と当該基板の表面に配置された金属粒子8を具備する。金属粒子8の数の例は、およそ1万個である。金属粒子8は、照射光によって局在化表面プラズモン共鳴を発生する。金属粒子8の一例は、およそ10ナノメートルの直径、およびおよそ38ナノメートルの長さを有する金ナノロッドである。金ナノロッドに代えて、金または銀のような金属によって被覆した表面を有する誘電体粒子が用いられ得る。当該誘電体粒子の例はシリカである。
当該金属粒子8は、785ナノメートルの局在化表面プラズモン共鳴波長を有する。当該金属粒子8は、およそ70ナノメートルの半値幅を有する。本明細書において用いられる用語「局在化表面プラズモン共鳴波長」は、吸光のピークの波長を意味する。
基板は、およそ100マイクロメートルマイクロメートルの直径およびおよそ100マイクロメートルの厚みを有する。基板の材料の例は、アクリル樹脂などの樹脂、ガラス、またはシリコンである。金属粒子8は、各長軸方向がx方向に平行になるように配置されている。y方向は基板の表面においてx方向と直交する。z方向は、基板の厚みに沿った方向である。米国特許出願公開第2010/0195106号公報は、粒子チップ3を詳細に開示している。米国特許出願公開第2010/0195106号公報は、国際公開第2007/108453号公報および特開2007−248284号公報に対応する。
図1に示されるように、金属粒子8を具備する面が表皮組織1と平行になる様に、粒子チップ3は真皮組織2中に埋め込まれる。表皮組織1から粒子チップ3までの距離Lは、およそ1.5ミリメートルである。
略平行光5によって粒子チップ3が照射されると、金属粒子8上で局在化表面プラズモン共鳴が生じ、金属粒子8の近傍における電磁場強度を増強する。これは、金属粒子8の近傍(0.5〜30ナノメートル以内)に位置する生体物質のラマン散乱光の増強をもたらす。このようにして、表面増強ラマン散乱光が発生する。第1反射光は、当該表面増強ラマン散乱光を含む。
表面増強ラマン散乱光の強度は、通常のラマン散乱光の強度の104倍〜10倍大きい。従って、金属粒子8の近傍で発生する表面増強ラマン散乱光は、皮膚表面(角質層を含む)、表皮組織1、または真皮組織2において発生するラマン散乱光よりも遥かに大きい強度を有する。これは、金属粒子8の近傍の体液に含有されている生体成分由来のラマン散乱光が選択的に増強されていることを意味する。このようにして、迷光および妨害成分の影響が低減される。
生体に含有されるグルコースのような生体成分の量は、生体に含有される妨害成分の量よりもずっと低い。従って、グルコースの通常のラマン散乱光は、皮膚表面(表皮組織1の角質層)、表皮組織1、または真皮組織2に含有される妨害成分のラマン散乱光と比べて極めて小さい強度を有する。このような理由から、グルコースの通常のラマン散乱光を抽出することは難しい。
しかし、粒子チップ3により、真皮組織2中の体液に含まれる金属粒子8の近傍のグルコースのラマン散乱光が選択的に増強される。これが、グルコースのラマン散乱光の強度を、妨害物質のラマン散乱光の強度と比較して選択的に大きくする。グルコースの表面増強ラマン散乱光の強度は、グルコースの濃度に比例するため、グルコースの表面増強ラマン散乱光の強度より、グルコースの濃度が算出される。
グルコースの濃度の算出の一例が以下に説明される。
非特許文献1の図1は、グルコースの表面増強ラマン散乱光スペクトルを示す。非特許文献1の図1に示されているように、グルコースの表面増強ラマン散乱光スペクトルは、1000cm−1〜1500cm−1であるラマンシフトの範囲に、グルコース特有の複数のピークを有する。
当該複数のピークの中でも、ラマンシフトが1120(cm−1)にあるピークは、アルブミンおよびクレアチニンのラマン散乱光スペクトルのピークに重ならない。従って、当該ラマンシフトが1120(cm−1)にある表面増強ラマン散乱光の強度は、グルコースの濃度にのみ比例する。
略平行光5の波長が785ナノメートルである場合、波長860.7ナノメートルの光を透過させるフィルタが光学フィルタ13として使用される。その理由が以下に述べられる。
波長λと波数kとの間の関係は以下の等式(I)を充足する。
k(cm−1)=10/λ(nm) ・・・(I)
785nmの波長は、12739cm−1の波数に対応する。従って、1120cm−1のラマンシフトを有するグルコースに特有なラマン散乱光の波数は、以下の等式から算出される。
12739(cm−1)−1120(cm−1)=11619(cm−1)。
等式(I)により換算されると、1120cm−1のラマンシフトを有するグルコースに特有なラマン散乱光の波長は、860.7nmである。
光学フィルタ13は、例えば、860.7ナノメートルの中心波長を有し、かつ3ナノメートルの半値全幅を有する。当該光学フィルタ13の透過域は859.2ナノメートル〜862.2ナノメートルである。等式(I)より、当該透過域の波数は11599cm-1〜11639cm-1である。
図4は、照射光、表面増強ラマン散乱光、ラマンシフト、および半値全幅の間の関係を示す。
グルコースに特有の表面増強ラマン散乱光スペクトルの中心波長およびその幅は、光学フィルタ13の透過スペクトルの中心波長およびその幅により規定された、透過を許容する範囲に入る。この設定により、グルコースに特有の表面増強ラマン散乱光は光学フィルタ13を透過する。しかし、他の光は光学フィルタ13を透過しない。
より詳細には、図4に示すように、12739cm−1の波数を有する第1集束光5aに対して1100cm−1〜1140cm−1のラマンシフトを有するラマン散乱光のみが選択的に透過する。他方、この光学フィルタ13は、妨害成分のラマン散乱光及び第1反射光6を含む、不要な波数の光の透過を選択的に制限する。1100cm−1のラマンシフトを有するラマン散乱光の波数は、11,639cm−1 (12,739cm−1−1,100cm−1=11,639cm−1)であり、1140cm−1のラマンシフトを有するラマン散乱光の波数は、11,599cm−1(12,739cm−1−1,140cm−1=11,599cm−1)である。これらの値は、光学フィルタ13の透過域の端点の波数と一致する。
表面増強ラマン散乱光の強度を強くするために、第1集束光5aの強度が強められると、反射光6の強度及び妨害成分のラマン散乱光の強度も強められる。しかし、妨害成分のラマン散乱光及び反射光6は光学フィルタ13により遮蔽され、受光器14に到達しない。このようにして標的物質に特有な第1信号Xaのみが得られる。
グルコースの濃度検出のために用いられる光学フィルタ13の中心波長λは、下記等式(II)によって算出される。λは、第1集束光5aの波長を示す。
λ=(10・λ)/(10−1120・λ) ・・・(II)
λ:光学フィルタ13の中心波長
λ:第1集束光5aの波長
以上のように、実施の形態1による計測装置を用いることによって、1120cm−1のラマンシフトを有するグルコースの表面増強ラマン散乱光が選択的に計測される。
言うまでもないが、通常の計測の場合と同様に、上記計測時には予め用意された検量線が用いられる。
Bcm−1のラマンシフトを有する生体物質の濃度を算出するためには、等式(II)に代えて、以下の等式(III)が用いられる。
λ=(10・λ)/(10−B・λ) ・・・(III)
λ:光学フィルタ13の中心波長
λ:第1集束光5aの波長
B:生体成分のラマンシフト
(工程(d)〜工程(f))
一見したところ、工程(a)〜工程(c)を介して、生体成分の濃度は測定されるように思われる。しかし、得られた濃度の値は不正確である。その理由が、以下、説明される。
第1反射光6は、迷光を含む。迷光は、測定精度を低下させる。迷光は、反射迷光61および拡散散乱光71を含む。反射迷光61は、皮膚表面に略平行光5を照射することより皮膚表面から生じる。拡散散乱光71は、皮膚内部を進行する略平行光5によって皮膚内部から生じる。
反射迷光61が測定精度を大きく低下させる。一方、拡散散乱光71は測定精度をほとんど低下させない。なぜなら、反射迷光61の強度は、拡散散乱光71の強度よりずっと大きいためである。
屈折率の差が大きいと、反射迷光61の量も大きくなる。略平行光5は、空気から皮膚内部に向かって進行する。空気の屈折率と皮膚の屈折率との大きな差(およそ0.37)のため、皮膚表面で略平行光5は大きく反射する。
一方、皮膚内部では、皮膚内部の屈折率は実質的に一定である(およそ1.37)ため、拡散散乱光71の強度は、反射迷光61の強度よりもずっと弱い。
略平行光5は、皮膚の表面上で全ての方向に強く反射され、反射迷光61を発生させる。反射迷光61は、皮膚の最表面に位置する角質層(厚さ:10マイクロメートル〜20マイクロメートル)において発生する。反射迷光61の強度は、照射光の強度のおよそ4〜7%に等しい。反射迷光61の強度は、角質層の表面粗さおよび異なる屈折率を有する領域の分布に応じて変化する。
一方、通常のラマン散乱光の強度は、照射光の強度の10−16以下である。表面増強ラマン散乱光の強度は、照射光の強度の10−7以下である。即ち、検出される表面増強ラマン散乱光の強度よりも、皮膚の表面において発生した反射迷光61の強度の方が極めて大きい。従って、たとえ反射迷光61の強度が極めて小さいとしても、当該反射迷光61の受光器14への混入が、光センサの出力信号を飽和させ、計測を不可能にする。
光学フィルタ13は、光センサに混入する第1反射迷光61の量を低減させ、受光器14が飽和すること防止し得る。
しかし、光学フィルタ13を透過する光の透過率が下がる(すなわち、光学フィルタ13の遮断効果が上がる)と、ラマン散乱光の透過率も下がる。実用上、光学フィルタ13を透過する光の透過率の最小値は、おおよそ10−8である。即ち、全ての反射迷光61が遮断されることはなく、一部の第1反射迷光61がフィルタを透過する。当該一部の第1反射迷光61は受光器14に混入し、生体成分の濃度の計測精度を低下させる。
さらに、生体は、グルコースのような生体成分のラマンスペクトルと重なるラマンスペクトルを有する物質を有する。上記の光学フィルタ13を使っても当該物質により発生するラマン散乱光(以下、「妨害ラマン光」という)は、低減されない。このことも、生体成分の濃度の計測精度を低下させる。
上記の問題を解決するため、本発明のこの実施形態では、工程(d)〜工程(f)が実施される。工程(d)および工程(e)は同時に実施されることが好ましい。より好ましくは、工程(d)〜工程(f)は同時に実施される。
(工程(d))
まず、工程(d)では、光源9が傾けられる。光源9の傾き角度の例は、3°以上20°以下である。
(工程(e))
工程(e)において、略平行光5は位置Cを透過する。図1に示されるように、光源9が傾いているので、粒子チップ3は、位置Cを通過した略平行光5に照射されない。
工程(e)において、略平行光5は位置Cを透過することが必要とされる。すなわち、位置C以外の皮膚表面の位置が略平行光5によって照射されてはならない。その理由が以下、記述される。
皮膚表面の光学特性は、表面粗さ、屈折率の分布、および妨害成分の濃度に依存する。皮膚表面の光学特性は、同一生体であっても均一ではない。即ち、皮膚表面上の位置に応じて、光学特性は異なる。
従って、同一の強度を有する光によって同一生体が照射されても、光に照射される位置に応じて、反射迷光61の強度の強度は異なる。そのため、工程(e)において、略平行光5は位置Cを透過することが必要とされる。
工程(b)の場合と同様に、工程(e)においても、反射迷光が生じる。工程(e)において生じた反射迷光は、第2反射迷光62と言う。言うまでもないが、第2反射迷光62は、表面増強ラマン散乱光を含まない。なぜなら、光源9は傾いているからである。
工程(c)の場合と同様に、工程(f)において、第2反射迷光62は、光学フィルタ13を介して受光器14により受光され、第2信号Xbを得る。最後に、工程(g)において、第1信号Xaから第2信号Xbが差し引かれ、それらの差を算出する。当該差に基づいて、生体成分の濃度が算出される。コンピュータ17がこれらを計算する。
第1信号Xaから第2信号Xbを差し引くことが、測定精度を大きく低下させる反射迷光61を相殺する。妨害ラマン光も相殺される。すなわち、上記差は、反射迷光61または妨害ラマン光の成分を含まない。従って、工程(a)〜工程(c)のみを介して得られた濃度よりも、工程(a)〜工程(f)を介して得られた濃度は、より正確である。
本発明の一実施形態は、生体における物質(例えば、グルコース)の濃度を測定するために用いられ得る。
1 表皮組織
2 真皮組織
3 粒子チップ
4 皮下組織
5 略平行光
6 反射光
71 拡散散乱光
8 金属粒子
9 光源
10 偏光変調器
12 レンズ系
13 光学フィルタ
14 受光器
15 信号発生器
16 ロックインアンプ
17 コンピュータ
18 支持体

Claims (5)

  1. 生体に含有される生体成分の濃度を測定する方法であって、以下の工程(a)〜(g)を具備する、方法:
    測定装置を用意する工程(a)、ここで、
    前記測定装置は、光源、光学フィルタ、および受光器を具備し、
    前記光源からの略平行光を、皮膚の表面上の位置を介して前記皮膚に埋め込まれた粒子チップに照射し、第1反射光を発生させる工程(b)、ここで、
    前記粒子チップは基板および複数の金属粒子を具備し、
    前記第1反射光を、前記光学フィルタを介して前記受光器により受光し、第1信号Xaを得る工程(c)、ここで、以下の等式(III)が充足され、
    λ2=(107・λ1)/(107−B・λ1)・・・(III)
    λ2:フィルタを透過する光の波長
    λ1:前記光源からの光の波長
    B:前記生体成分に固有のラマンシフト
    前記光源を傾ける工程(d)、
    前記粒子チップが前記略平行光に照射されないように、前記略平行光を前記位置と同一の位置に照射し、第2反射光を得る工程(e)、
    前記第2反射光を、前記光学フィルタを介して前記受光器により受光し、第2信号Xbを得る工程(f)、および
    前記第1信号Xaと前記第2信号Xbとの間の差に基づいて、前記生体成分の濃度を算出する工程(g)。
  2. 請求項1に記載の方法であって、
    前記生体成分はグルコースであり、
    Bは1120cm-1である、方法。
  3. 請求項1に記載の方法であって、
    工程(b)および工程(c)が同時に実施される、方法。
  4. 請求項1に記載の方法であって、
    工程(d)および工程(e)が同時に実施される、方法。
  5. 請求項1に記載の方法であって、
    工程(d)から工程(f)が同時に実施される、方法。
JP2011552649A 2010-10-06 2011-09-29 生体に含有される生体成分の濃度を測定する方法 Active JP5002078B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552649A JP5002078B2 (ja) 2010-10-06 2011-09-29 生体に含有される生体成分の濃度を測定する方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010226327 2010-10-06
JP2010226327 2010-10-06
JP2011552649A JP5002078B2 (ja) 2010-10-06 2011-09-29 生体に含有される生体成分の濃度を測定する方法
PCT/JP2011/005515 WO2012046423A1 (ja) 2010-10-06 2011-09-29 生体に含有される生体成分の濃度を測定する方法

Publications (2)

Publication Number Publication Date
JP5002078B2 true JP5002078B2 (ja) 2012-08-15
JPWO2012046423A1 JPWO2012046423A1 (ja) 2014-02-24

Family

ID=45927430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011552649A Active JP5002078B2 (ja) 2010-10-06 2011-09-29 生体に含有される生体成分の濃度を測定する方法

Country Status (4)

Country Link
US (1) US8548545B2 (ja)
JP (1) JP5002078B2 (ja)
CN (1) CN102781325B (ja)
WO (1) WO2012046423A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519833A (ja) * 2010-04-20 2012-08-30 パナソニック株式会社 生体に含有される生体成分の濃度を測定する方法
US9861303B2 (en) 2013-01-25 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Method and apparatus for measuring concentration of test substance in organism

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201415671D0 (en) * 2014-09-04 2014-10-22 Systems Rsp As Method and apparatus for transdermal in vivo measurement by raman spectroscopy
US9924894B2 (en) * 2015-06-03 2018-03-27 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Non-invasive measurement of skin thickness and glucose concentration with Raman spectroscopy and method of calibration thereof
TWI696822B (zh) * 2015-10-05 2020-06-21 財團法人工業技術研究院 載子濃度的量測方法及其設備
CN109758162A (zh) * 2019-02-01 2019-05-17 浙江澍源智能技术有限公司 一种探测体内组织液葡萄糖信号的光学装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050027176A1 (en) * 2003-07-31 2005-02-03 Skymoon Research & Development, Llc Optical in vivo analyte probe using embedded intradermal particles
JP2009014380A (ja) * 2007-07-02 2009-01-22 Casio Comput Co Ltd 膜の赤外吸収スペクトル測定方法
US20100087723A1 (en) * 2002-08-30 2010-04-08 Van Duyne Richard P Surface-enhanced raman nanobiosensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0025147D0 (en) 2000-10-13 2000-11-29 Torsana Diabetes Diagnostics A Optical sensor for in situ measurement of analytes
GB0411162D0 (en) 2004-05-19 2004-06-23 Precisense As Optical sensor for in vivo detection of analyte
EP1855584A1 (en) * 2005-02-22 2007-11-21 Koninklijke Philips Electronics N.V. Surface-enhanced spectroscopy with implanted biosensors
JP4994682B2 (ja) 2006-03-16 2012-08-08 キヤノン株式会社 検知素子、該検知素子を用いた標的物質検知装置及び標的物質を検知する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100087723A1 (en) * 2002-08-30 2010-04-08 Van Duyne Richard P Surface-enhanced raman nanobiosensor
US20050027176A1 (en) * 2003-07-31 2005-02-03 Skymoon Research & Development, Llc Optical in vivo analyte probe using embedded intradermal particles
JP2009014380A (ja) * 2007-07-02 2009-01-22 Casio Comput Co Ltd 膜の赤外吸収スペクトル測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519833A (ja) * 2010-04-20 2012-08-30 パナソニック株式会社 生体に含有される生体成分の濃度を測定する方法
US9861303B2 (en) 2013-01-25 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Method and apparatus for measuring concentration of test substance in organism

Also Published As

Publication number Publication date
CN102781325B (zh) 2014-11-12
JPWO2012046423A1 (ja) 2014-02-24
WO2012046423A1 (ja) 2012-04-12
CN102781325A (zh) 2012-11-14
US8548545B2 (en) 2013-10-01
US20120215078A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5214036B2 (ja) 生体に含有される生体成分の濃度を測定する方法
US8509868B2 (en) Method for measuring a concentration of a biogenic substance contained in a living body
JP5002078B2 (ja) 生体に含有される生体成分の濃度を測定する方法
US9068891B2 (en) Method and apparatus for measuring concentration of biogenic substance
US9833179B2 (en) Blood component analyzing method and blood component analyzing apparatus
US20080214913A1 (en) Surface-Enhanced Spectroscopy with Implanted Biosensors
JP5712337B2 (ja) 被検物質を検出する方法、および、検出システム
KR102372083B1 (ko) 생체 센서 및 이를 포함하는 생체 분석 시스템
JP2007083028A (ja) 非侵襲性検査装置
US9861303B2 (en) Method and apparatus for measuring concentration of test substance in organism
US20160341668A1 (en) Angled confocal spectroscopy
JP5076035B1 (ja) 生体に含有される生体成分の濃度を測定する方法
JP4823064B2 (ja) 後方散乱分光法の方法及び装置
JP2013176436A (ja) 生体成分濃度測定装置
Li et al. Flattened fiber-optic ATR sensor enhanced by silver nanoparticles for glucose measurement
Kinnunen et al. Measurements of glucose content in scattering media with time-of-flight technique: comparison with Monte Carlo simulations
JP2013205079A (ja) 生体成分計測方法
JP2013205078A (ja) ラマン分光法による生体内成分の濃度計測方法および濃度計測装置
WO2012134515A1 (en) Method and apparatus for in vivo optical measurement of blood glucose concentration
PL245054B1 (pl) Urządzenie do bezinwazyjnego pomiaru stężenia glukozy we krwi
JP2010185738A (ja) 被検物質濃度計測方法及び本方法を用いた被検物質濃度計測装置
JP2014174140A (ja) 光学プローブ保持具、および、検出装置
Wang Infrared attenuated total reflection spectroscopy for monitoring biological systems
Li et al. Improved double-integrating-spheres system for multiwavelength optical properties measurement: investigation and application
JP2013192913A (ja) 生体成分濃度計測装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

R150 Certificate of patent or registration of utility model

Ref document number: 5002078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3