JP5001455B1 - Bonding wire and manufacturing method thereof - Google Patents

Bonding wire and manufacturing method thereof Download PDF

Info

Publication number
JP5001455B1
JP5001455B1 JP2011253851A JP2011253851A JP5001455B1 JP 5001455 B1 JP5001455 B1 JP 5001455B1 JP 2011253851 A JP2011253851 A JP 2011253851A JP 2011253851 A JP2011253851 A JP 2011253851A JP 5001455 B1 JP5001455 B1 JP 5001455B1
Authority
JP
Japan
Prior art keywords
wire
bonding
coating layer
thickness
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011253851A
Other languages
Japanese (ja)
Other versions
JP2013110261A (en
Inventor
剛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2011253851A priority Critical patent/JP5001455B1/en
Application granted granted Critical
Publication of JP5001455B1 publication Critical patent/JP5001455B1/en
Publication of JP2013110261A publication Critical patent/JP2013110261A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/4557Plural coating layers
    • H01L2224/45572Two-layer stack coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/45693Material with a principal constituent of the material being a solid not provided for in groups H01L2224/456 - H01L2224/45691, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • H01L2224/48511Heat affected zone [HAZ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

【課題】集積回路間の縮小化の要求に応えた、安定した接合強度を有する純銅にPdを被覆したボンディングワイヤを提供する。
【解決手段】集積回路素子電極aと回路配線基板導体配線cをボールボンディング法によって接続するための線径L50.8μm以下のボンディングワイヤWである。芯材1が純銅及び不可避不純物からなり、その芯材1の外周全面に、Pdによる厚みt:0.010〜0.090μmの被覆層2を形成し、その表面に0.0001〜0.0005μm厚tの炭素濃縮層3を形成する。また、調質熱処理の炉温度:400℃以上800℃以下、同処理時間は0.33〜1秒で行なって、室温での引張試験による引張強さTSと250℃での引張試験による引張強さTSの比(HR=TSH/TSR×100)を50〜70%とする。その炭素濃縮層3は、伸線時の潤滑剤の洗浄度合によって形成する。
【選択図】図1
Provided is a bonding wire obtained by coating Pd on pure copper having stable bonding strength that meets the demand for reduction in size between integrated circuits.
A bonding wire W having a wire diameter L of 50.8 μm or less for connecting an integrated circuit element electrode a and a circuit wiring board conductor wiring c by a ball bonding method. The core material 1 is made of pure copper and unavoidable impurities, and a coating layer 2 having a thickness t 2 of 0.010 to 0.090 μm is formed on the entire outer periphery of the core material 1, and 0.0001 to 0.0. A carbon enriched layer 3 having a thickness of 0005 μm t 3 is formed. Furthermore, the furnace temperature of the refining heat treatment: 400 ° C. or higher 800 ° C. or less, the processing time is performed in 0.33 to 1 seconds, tensile by tensile test at a tensile strength TS R and 250 ° C. by a tensile test at room temperature the ratio of the strength TS H a (HR = TS H / TS R × 100) 50 to 70%. The carbon enriched layer 3 is formed by the degree of cleaning of the lubricant during wire drawing.
[Selection] Figure 1

Description

この発明は、IC、LSI、トランジスタ等の集積回路素子上の電極と、リードフレーム、セラミック基板、プリント基板等の回路配線基板の導体配線とをボールボンディング法によって接続するためのボンディングワイヤ及びその製造方法に関するものである。   The present invention relates to a bonding wire for connecting an electrode on an integrated circuit element such as an IC, LSI, transistor or the like to a conductor wiring of a circuit wiring board such as a lead frame, a ceramic substrate, or a printed circuit board by a ball bonding method, and its manufacture. It is about the method.

この種のボールボンディング法による接続方法は、図3(a)〜(h)に示す態様が一般的であり、同図(a)に示す、ワイヤWがキャピラリー10aに挿通されてその先端にボール(FAB:Free Air Ball)bが形成された状態から、クランプ10bが開いて、キャピラリー10aが集積回路素子上の電極aに向かって降下する。このとき、ボール(FAB)bはキャピラリー10a内に捕捉され、電極aにボンディングされる。   The connection method by this kind of ball bonding method is generally the embodiment shown in FIGS. 3A to 3H, and the wire W shown in FIG. 3A is inserted into the capillary 10a and a ball is formed at the tip thereof. From the state where (FAB: Free Air Ball) b is formed, the clamp 10b is opened, and the capillary 10a is lowered toward the electrode a on the integrated circuit element. At this time, the ball (FAB) b is captured in the capillary 10a and bonded to the electrode a.

ターゲットである電極aにボールbが接触すると(キャピラリー10aが電極aに至ると)キャピラリー10aがボールbをグリップし、ボールbに熱・荷重・超音波を与え、それによってボールbが圧着されて(圧着ボールb’となって)と電極aと固相接合され、1stボンドが形成されて電極aと接着する(同図(b))。
1stボンドが形成されれば、キャピラリー10aは、一定高さまで上昇した後(同図(c))、導体配線cの真上まで移動する(同図(d)〜(e))。このとき、安定したループを形成するため、キャピラリー10aに特殊な動きをさせてワイヤWに「くせ」を付ける動作をする場合がある(同図(d)の鎖線から実線参照)。
When the ball b comes into contact with the target electrode a (when the capillary 10a reaches the electrode a), the capillary 10a grips the ball b and applies heat / load / ultrasonic wave to the ball b, whereby the ball b is pressed. (It becomes a press-bonded ball b ′) and the electrode a are solid-phase bonded, and a 1st bond is formed and adhered to the electrode a ((b) in the figure).
If the 1st bond is formed, the capillary 10a moves up to a certain height (FIG. (C)) and then moves to a position directly above the conductor wiring c (FIGs. (D) to (e)). At this time, in order to form a stable loop, there is a case where a special movement is performed on the capillary 10a so that the wire W is attached with a “string” (see the solid line from the chain line in FIG. 4D).

導体配線cの真上に至ったキャピラリー10aは、導体配線cに向かって降下し、ワイヤWを導体配線(2ndターゲット)cに押付ける(同図(e)〜(f))。これと同時に、その押付け部位に熱・荷重・超音波を与え、それによってワイヤWを変形させ、ワイヤWを導体配線c上に接合させるためのステッチボンドと、次のステップでテイルを確保するテイルボンドを形成する(同図(f))。   The capillary 10a that has reached directly above the conductor wiring c descends toward the conductor wiring c and presses the wire W against the conductor wiring (2nd target) c (FIGS. (E) to (f)). At the same time, heat, a load, and an ultrasonic wave are applied to the pressed portion, thereby deforming the wire W and joining the wire W onto the conductor wiring c, and a tail that secures the tail in the next step. A bond is formed (figure (f)).

その両ボンドを形成した後、キャピラリー10aはワイヤWを残したまま上昇し、キャピラリー10aの先端に一定の長さのテイルを確保した後、クランプ10bを閉じて(ワイヤWをつかんで)、テイルボンドの部分からワイヤWを引きちぎる(同図(g))。   After forming both the bonds, the capillary 10a rises with the wire W remaining, and after securing a tail of a certain length at the tip of the capillary 10a, the clamp 10b is closed (by grabbing the wire W), and the tail The wire W is torn off from the bond portion ((g) in the figure).

キャピラリー10aは、所要の高さまで上昇すると停止し、そのキャピラリー10aの先端に確保されたワイヤWの先端部分に、放電棒gでもって高電圧を掛けて火花を飛ばし(放電し)、その熱でワイヤWを溶かし、この溶けたワイヤ素材は表面張力によって球状に近いボールbになって固まる(同図(h))。   The capillary 10a stops when it rises to the required height, and a high voltage is applied to the tip of the wire W secured at the tip of the capillary 10a with the discharge rod g to discharge (discharge) the spark. The wire W is melted, and the melted wire material becomes a spherical ball b by the surface tension and is hardened ((h) in the figure).

以上の作用で一サイクルが終了し、以後、同様な作用によって、電極aと配線導体cのボールボンディング法による接続がなされる。   One cycle is completed by the above operation, and thereafter, the electrode a and the wiring conductor c are connected by the ball bonding method by the same operation.

このボールボンディング法による接続において、ボンディングワイヤWには、金線が主に使用されるが、金は高価であるため、近年、銅純度99.99質量%以上の安価な銅線を使用することが行われている。そのとき、銅は裸のままでは、表面の酸化が起こり易いことから、図4に示すように、銅線からなる芯線1に耐酸化金属2を被覆したものが使用されている。
その被覆金属(被覆層)2としては、金(Au)、白金(Pt)、パラジウム(Pd)、銀(Ag)、ニッケル(Ni)等が採用されている(特許文献1〜5)。
In the connection by this ball bonding method, a gold wire is mainly used as the bonding wire W. However, since gold is expensive, in recent years, an inexpensive copper wire having a copper purity of 99.99% by mass or more has been used. Has been done. At that time, since the oxidation of the surface is likely to occur when the copper is bare, as shown in FIG. 4, a core wire 1 made of a copper wire is coated with an oxidation resistant metal 2 is used.
As the coating metal (coating layer) 2, gold (Au), platinum (Pt), palladium (Pd), silver (Ag), nickel (Ni) or the like is employed (Patent Documents 1 to 5).

特開2003−133361号公報JP 2003-133361 A 特開2004−64033号公報JP 2004-64033 A 特開2007−12776号公報JP 2007-12776 A 特許第4542203号公報Japanese Patent No. 4542203 特許第4349641号公報Japanese Patent No. 4349641

この金属被覆の銅線からなるボンディングワイヤWにおいて、近年の電子部品の小型化等による集積回路素子間の極小化に伴い、上記ボールbもより小さくする必要から、ボンディングワイヤWにも小径のものが望まれ、そのためには、その径Lを50μm以下とするのが好ましいとされている(特許文献1段落0009)。   In the bonding wire W made of a metal-coated copper wire, the ball b needs to be made smaller with the miniaturization of integrated circuit elements due to the recent miniaturization of electronic components. For this purpose, the diameter L is preferably 50 μm or less (paragraph 0009 in Patent Document 1).

また、集積回路素子の電極aへの接続において、ボールbが下向き槍状(逆円錐状)になっていると、上記ボールbの電極aへの押付け時、そのボールbの尖鋭端によって電極aを損傷させる恐れがあるため、ボールbはできるだけ、真球であることが好ましい。そのボールbの真球度を高めるために、上記被覆層2の厚みtを芯線(芯材1)径の0.001以下としたり(特許文献1請求項1)、同じく被覆層2の厚みtを0.001〜0.2μmとしたり(特許文献3請求項1)、同じく被覆層2の厚みtを0.021〜0.12μmとしたり(特許文献4請求項1)、芯材1の銅よりも高融点の耐酸化金属で被覆層2を形成したりしている(特許文献2段落0014)。また、被覆層2のPdまたはPtの周りにさらにAuの表皮層を設けることで真球度を高めることも提案されている。(特許文献5段落0011) In addition, when the ball b is in a downward bowl shape (reverse conical shape) in connection to the electrode a of the integrated circuit element, the electrode b is pressed by the sharp end of the ball b when the ball b is pressed against the electrode a. The ball b is preferably a true sphere as much as possible. To increase the sphericity of the ball b, the coating layer 2 of a thickness t 2 core (core 1) or 0.001 or less diameter (Patent Document 1 claims 1), also the thickness of the coating layer 2 t 2 may be 0.001 to 0.2 μm (Patent Document 3 claim 1), and the thickness t 2 of the coating layer 2 may be 0.021 to 0.12 μm (Patent Document 4 claim 1). The coating layer 2 is formed of an oxidation resistant metal having a melting point higher than that of copper 1 (Patent Document 2, paragraph 0014). It has also been proposed to increase the sphericity by further providing an Au skin layer around Pd or Pt of the coating layer 2. (Patent Document 5, paragraph 0011)

さらに、有機基板をベースにしたBGA(Ball Grid Array)などでは加熱温度(ステージ温度)を高くすると、有機基板の反りが発生してボンディング性が著しく悪化する。このため、上記ワイヤWと電極a又は導体配線cとの接合時の加熱温度(ステージ温度)を低く、例えば、150℃程度にしても、十分な接合強度を担保するための種々の工夫、例えば、熱処理後に伸線する加工等もされている(特許文献3段落0020、同0054等)。   Further, in the case of BGA (Ball Grid Array) based on an organic substrate, if the heating temperature (stage temperature) is increased, the warping of the organic substrate occurs and the bonding property is remarkably deteriorated. For this reason, various devices for ensuring sufficient bonding strength even when the heating temperature (stage temperature) at the time of bonding between the wire W and the electrode a or the conductor wiring c is low, for example, about 150 ° C., for example, In addition, the wire is drawn after the heat treatment (Patent Document 3, paragraphs 0020, 0054, etc.).

以上のように、耐酸化金属で銅線を被覆したボンディングワイヤWは、従来から、種々の工夫がなされてそれなりに好評を得ている。しかし、近年は低コスト化のため、作業の高速化が求められており、さらに接合強度を向上させる必要がある。
また、電子部品の小型化に伴い、ループを低背化(ループ高さ(図5のh)を低く)したり、限られたスペースに配線したりするために、多段に積層された電極aにボンディングしたりする必要がある。その多段積層の場合、一層目のボンディングは、そのループをできるだけ低くする必要があり、二層目以降は、その一層目以降のボンディングワイヤ(接続線)Wを超えてボンディングすることとなるから、従来より、高いループ(ループ高さh)を要求される。そのループを高くする際、通常、図3(d)鎖線で示す「くせ付け」が行われ、そのくせ付けがフレキシブルに行い得るワイヤWが求められている。
As described above, the bonding wire W in which the copper wire is coated with the oxidation-resistant metal has hitherto been well received by various devices. However, in recent years, in order to reduce the cost, it is required to increase the work speed, and it is necessary to further improve the bonding strength.
Further, as electronic components are miniaturized, the electrodes a stacked in multiple stages are used in order to reduce the height of the loop (lower the loop height (h in FIG. 5)) or to wire in a limited space. It is necessary to bond it. In the case of the multi-layer lamination, the first layer bonding needs to make the loop as low as possible, and the second and subsequent layers will bond beyond the bonding wires (connection lines) W of the first and subsequent layers. Conventionally, a high loop (loop height h) is required. When the loop is raised, the “Wacking” shown by the chain line in FIG. 3D is normally performed, and a wire W that can be flexibly performed is required.

この発明は、そのような実状の下、上記要求に応えることを課題とする。   This invention makes it a subject to respond to the said request | requirement in such an actual condition.

上記課題を達成するために、この発明は、上記の集積回路素子の電極aと回路配線基板の導体配線cをボールボンディング法によって接続するための線径L:50.8μm以下のボンディングワイヤWであって、芯材1が純度99.99質量%以上の銅及び不可避不純物からなり、その芯材1の外周全面に、Pdによる厚みt:0.010〜0.090μ mの被覆層2を形成し、かつ、室温での引張試験による引張強さ(TS)と250℃での引張試験による引張強さ(TS)との比(HR=TS/TS×100)が50〜70%となるようにしたのである。 In order to achieve the above object, the present invention provides a bonding wire W having a diameter L of 50.8 μm or less for connecting the electrode a of the integrated circuit element and the conductor wiring c of the circuit wiring board by a ball bonding method. The core material 1 is made of copper having a purity of 99.99% by mass or more and unavoidable impurities, and the coating layer 2 having a thickness t 2 of Pd: 0.010 to 0.090 μm is formed on the entire outer periphery of the core material 1. The ratio of the tensile strength (TS R ) by the tensile test at room temperature and the tensile strength (TS H ) by the tensile test at 250 ° C. (HR = TS H / TS R × 100) is 50 to It was set to 70%.

ボンディングワイヤWの線径Lを、50.8μm以下としたのは、上述の特許文献1ではその径Lを50μm以下としているが、50.8μm以下であれば、50μm以下と変わらない程度でもって、上記ボールbをより小さくできるからである(実施例4参照)。
また、線径Lの下限は特に規定しないが、12μm未満ではボンディング前にオペレータがワイヤWをキャピラリー10aに通すのが困難になり、作業性が悪くなる。
芯材1の銅純度を99.99質量%以上(残部が不可避不純物)としたのは、高導電性を担保するためである。
The reason why the diameter L of the bonding wire W is set to 50.8 μm or less is that the diameter L is set to 50 μm or less in the above-mentioned Patent Document 1, but if it is 50.8 μm or less, it is not changed to 50 μm or less. This is because the ball b can be made smaller (see Example 4).
The lower limit of the wire diameter L is not particularly defined, but if it is less than 12 μm, it becomes difficult for the operator to pass the wire W through the capillary 10a before bonding, and workability is deteriorated.
The reason why the copper purity of the core material 1 is 99.99% by mass or more (the balance is inevitable impurities) is to ensure high conductivity.

被覆層2の厚みtは薄いほど、ボールbの硬度が低くなり、Siチップ(電極a)の損傷の可能性が低くなるが、薄すぎると、ステッチボンド接合の際に芯材1の銅が露出する度合いが大きくなり、被覆層2を有さない銅ワイヤ程度のステッチボンド接合性しか発現できない。例えば、後記の実施例と比較例の実験結果から理解できるように、2回以上のマシンストップが生じる恐れがある。このため、その実施例と比較例の実験結果から、被覆層2の厚みtは0.010μm以上とする。 As the thickness t 2 of the coating layer 2 is thin, the hardness of the ball b is low, Si chip is likelihood of damage (electrode a) is lowered, too thin, copper core 1 during stitch bond joining The degree of exposure becomes greater, and only the stitch bondability of a copper wire without the coating layer 2 can be exhibited. For example, as can be understood from the experimental results of Examples and Comparative Examples described later, there is a possibility that two or more machine stops may occur. For this reason, thickness t2 of the coating layer 2 shall be 0.010 micrometer or more from the experimental result of the Example and a comparative example.

なお、ステージ温度:150℃程の低温度でのボールボンディングの時には、連続ボンディング性の実験結果からその厚みtを0.040μm以上とする。ステージ温度を低くすると、ステッチボンド接合に要する荷重が大きくなり、被覆層2の厚みtが0.010μm以上から0.040μm未満の範囲では芯材1の銅が露出する度合いが大きくなり、連続ボンディング性が損なわれることがあるからである。
一方、被覆層2が厚いと、ボールbの硬度が高くなり、Siチップ(電極a)の損傷による不良の可能性が高くなる。このため、後記の実施例と比較例の実験結果から、被覆層2の厚みtは0.090μm以下とする。
In addition, at the time of ball bonding at a stage temperature as low as about 150 ° C., the thickness t 2 is set to 0.040 μm or more from the experimental results of the continuous bonding property. When the stage temperature is lowered, the load required for the stitch bond bonding increases, and the degree of exposure of the copper of the core material 1 increases in the range where the thickness t 2 of the coating layer 2 is 0.010 μm or more and less than 0.040 μm. This is because bonding properties may be impaired.
On the other hand, if the coating layer 2 is thick, the hardness of the ball b is increased, and the possibility of failure due to damage to the Si chip (electrode a) is increased. For this reason, the thickness t2 of the coating layer 2 shall be 0.090 micrometer or less from the experimental result of the below-mentioned Example and a comparative example.

被覆金属をPdとしたのは、これらの貴金属が電子材料の被覆材として一般的であり、入手が比較的容易であるからである。また、Pdの融点は1554℃と、銅の融点(1083℃)よりも高いのでボールbを作製するための放電棒gでの放電時にPdが先に溶けず、銅が溶融して表面張力によって真上にワイヤを這い上がっていき、良好な真球状のボールbを得ることができる。Pdの純度については、より純度が高いほどボールbの硬度を低くできるため、芯材1の純銅と同様に99.99質量%以上(残部が不可避不純物)とすることが好ましい。   The reason why the coating metal is Pd is that these noble metals are generally used as coating materials for electronic materials and are relatively easy to obtain. In addition, since Pd has a melting point of 1554 ° C., which is higher than the melting point of copper (1083 ° C.), Pd does not melt first during discharge with the discharge rod g for producing the ball b, and copper melts due to surface tension. The wire is rolled up right above, and a good spherical ball b can be obtained. As for the purity of Pd, the higher the purity, the lower the hardness of the ball b. Therefore, it is preferable that the purity is 99.99% by mass or more (the remainder is an inevitable impurity) like the pure copper of the core material 1.

これらの構成のボンディングワイヤWの製造方法には種々のものが採用できるが、例えば、純度99.99質量%以上の銅からなる芯材1の外周全面に、Pdによる被覆層2を形成し、その被覆線を拡散熱処理して芯材と被覆層の密着性を高めた後、線径50.8μm以下まで伸線し、さらに、調質熱処理を行って、被覆層2の厚みt:0.010〜0.090μmとした構成を採用できる。 Various methods can be used for manufacturing the bonding wire W having these configurations. For example, the coating layer 2 made of Pd is formed on the entire outer surface of the core 1 made of copper having a purity of 99.99% by mass or more. The coated wire is subjected to diffusion heat treatment to improve the adhesion between the core material and the coating layer, and then drawn to a wire diameter of 50.8 μm or less, and further subjected to a tempering heat treatment to obtain a thickness t 2 : 0 of the coating layer 2. A configuration of 0.010 to 0.090 μm can be adopted.

上記被覆層2は、電解メッキ、無電解メッキ、蒸着法等の周知の手段によって形成され、一般に、ワイヤWは大きな線径の銅ロッドをダイスと呼ばれるツールに順次貫通させていくことにより、所定の線径に仕上げられるため、この工程途中の適宜な線径で被覆層2を上記手段により形成する。このとき、被覆する際の芯材1の線径は作業性・コストにより決定されるが、製造装置の制限から0.2〜0.8mmが一般的である。外周全面にPdを被覆された被覆線は200〜500℃で拡散熱処理を施して前記芯材1と被覆層2の密着性を高めた後、線径50.8μm以下まで伸線することで、被覆層2の厚みtを0.010〜0.090μmとすることができる。その後、ワイヤWに調質熱処理を施す。 The coating layer 2 is formed by known means such as electrolytic plating, electroless plating, vapor deposition, and the like. In general, the wire W is predetermined by sequentially passing a copper rod having a large wire diameter through a tool called a die. Therefore, the coating layer 2 is formed by the above means with an appropriate wire diameter in the middle of this process. At this time, the wire diameter of the core material 1 at the time of coating is determined by workability and cost, but is generally 0.2 to 0.8 mm due to the limitation of the manufacturing apparatus. The coated wire coated with Pd on the entire outer surface is subjected to diffusion heat treatment at 200 to 500 ° C. to improve the adhesion between the core material 1 and the coating layer 2, and then drawn to a wire diameter of 50.8 μm or less. The thickness t 2 of the coating layer 2 can be set to 0.010 to 0.090 μm. Thereafter, the wire W is subjected to a tempering heat treatment.

その調質熱処理は、所定の線径まで伸線を行いリールに巻きとられたワイヤWを、巻き戻して管状の熱処理炉中に走行させ、再び巻き取りリールで巻き取ることによって連続熱処理を行う。管状の熱処理炉中には窒素ガスもしくは窒素に微量の水素を混合させたガスを流す。
この調質熱処理において、後記の実施例と比較例の対比から、ワイヤWの室温(20〜25℃)での引張試験による引張強さTSと250℃での引張試験による引張強さTSの比HR(TS/TS×100)が50〜70%となるように調整する。
The tempering heat treatment is a continuous heat treatment by drawing the wire W to a predetermined wire diameter and winding the wire W around the reel, running it in a tubular heat treatment furnace, and winding it again with a take-up reel. . In the tubular heat treatment furnace, nitrogen gas or a gas obtained by mixing a small amount of hydrogen with nitrogen is allowed to flow.
In this refining heat treatment, from the comparison of Comparative Example with Examples below, the wire W of the tensile strength at room temperature according to a tensile test at is (20~25 ℃) TS R and tensile tensile by test strength TS H at 250 ° C. The ratio HR (TS H / TS R × 100) is adjusted to be 50 to 70%.

通常、HRは調質熱処理時間及び処理温度によって左右され、50%未満にするには、室温での引張強さTSを高くする必要があるため、低温もしくは短時間で調質熱処理を行う。この場合、低温、短時間であることから、ワイヤWの銅の結晶組織は加工ひずみが残る微細組織となる。一方、上記図3(h)の放電棒gの放電によってそのワイヤWにボールbを形成する際、そのボールbからキャピラリー10aに向かってある長さのワイヤWは、溶融したのち再結晶した結晶組織の粗大化した熱影響部(図5のe参照)が生じる。このため、そのボールbから所要距離に結晶組織の境界ができる。この結晶組織の境界がループの途中にあるとその部分に亀裂が生じたり、場合によっては破断したりする不具合の原因となるため、ワイヤを高いループ形状(ループ高さ)でボンディングすることができなくなる。
また、HRが70%を超えるようにするためには、室温での引張強さTSを低くする必要があるため、高温もしくは長時間で調質熱処理を行う。この場合、高温、長時間であることから、ワイヤWの銅の結晶組織が粗大化して脆弱となり、ボンディング時のくせ付けする(わん曲)部分で結晶粒界から亀裂が生成したり破断したりする不具合の原因となる。
Usually, HR is governed by refining heat treatment time and treatment temperature, to less than 50%, it is necessary to increase the tensile strength TS R at room temperature, performing refining heat treatment at a low temperature or short time. In this case, since the temperature is low and the time is short, the copper crystal structure of the wire W becomes a fine structure in which processing strain remains. On the other hand, when the ball b is formed on the wire W by the discharge of the discharge rod g in FIG. 3 (h), the wire W having a length from the ball b toward the capillary 10a is melted and recrystallized. A coarse heat-affected zone (see e in FIG. 5) of the tissue is generated. For this reason, a boundary of the crystal structure is formed at a required distance from the ball b. If the boundary of this crystal structure is in the middle of the loop, it may cause cracks in the part or breakage in some cases, so the wire can be bonded in a high loop shape (loop height). Disappear.
Further, in order HR is to exceed 70%, because it is necessary to lower the tensile strength TS R at room temperature, performing refining heat treatment at a high temperature or long time. In this case, because of the high temperature and long time, the copper crystal structure of the wire W becomes coarse and brittle, and cracks are generated or broken from the crystal grain boundaries at the crease (curvature) part during bonding. Cause malfunction.

以上から、この発明によるワイヤWのHRを50〜70%とすれば、後記の実施例と比較例の対比から、微細組織と粗大化した再結晶組織の境界が発生しないため、ループの途中で亀裂が生じることがなく、また、ワイヤWの結晶組織が粗大化していないため、くせ付けのときに結晶粒界から亀裂が生じることもない、と考える。このため、ワイヤWに亀裂が発生することなく、フレキシブルにくせ付けが可能になる。
そのHR:50〜70%は、調質熱処理時間及び処理温度を実験等によって適宜に設定して得る。例えば、炉長:50cmの場合、その炉温度は400℃以上800℃以下として、ワイヤ走行速度は30〜90m/分で熱処理を行う。このとき、調質熱処理時間は0.33〜1秒となる。
From the above, if the HR of the wire W according to the present invention is set to 50 to 70%, the boundary between the microstructure and the coarsened recrystallized structure does not occur from the comparison of the examples and comparative examples described later. It is considered that no cracks are generated and that the crystal structure of the wire W is not coarsened, so that no cracks are generated from the crystal grain boundaries during the soldering. For this reason, the wire W can be flexed without being cracked.
The HR: 50 to 70% can be obtained by appropriately setting the tempering heat treatment time and the treatment temperature by experiments or the like. For example, when the furnace length is 50 cm, the furnace temperature is set to 400 ° C. or more and 800 ° C. or less, and the heat treatment is performed at a wire traveling speed of 30 to 90 m / min. At this time, the tempering heat treatment time is 0.33 to 1 second.

完成したワイヤWは所定のスプールに小分けされて巻き上げられ、このスプールをボンディング装置に取り付けてワイヤWを繰り出すことによってボンディングに使用するが、被覆層2の表面状態により、ワイヤW同士が密着し、繰り出しができなくなる可能性がある。特許文献4には被覆層2の表面に酸化層を設けることでこの繰り出し性を向上させると記述されているが、Pd表面の酸化層を制御することは実際には難しい。
そのワイヤWの密着を防ぐため、被覆層2表面に炭素濃縮層を設けることが好ましい。この炭素濃縮層の炭素濃度は1〜80質量%とする。その炭素濃度が1質量%未満では密着を防ぐ効果が発現できず、80質量%を超えると、ステッチボンド接合性が下がり、連続ボンディング性が損なわれる恐れがある。
The completed wire W is subdivided into a predetermined spool and wound up, and this spool is attached to a bonding apparatus and used for bonding by feeding out the wire W. However, due to the surface state of the coating layer 2, the wires W are in close contact with each other, You may not be able to pay out. Although Patent Document 4 describes that this feeding property is improved by providing an oxide layer on the surface of the coating layer 2, it is actually difficult to control the oxide layer on the Pd surface.
In order to prevent adhesion of the wire W, it is preferable to provide a carbon enriched layer on the surface of the coating layer 2. The carbon concentration of this carbon enrichment layer shall be 1-80 mass%. If the carbon concentration is less than 1% by mass, the effect of preventing adhesion cannot be exhibited, and if it exceeds 80% by mass, the stitch bondability may be lowered and the continuous bonding property may be impaired.

炭素濃縮層の形成には、ワイヤを金属密着防止剤に浸漬したり、ワイヤに金属密着防止剤を吹き付けたりなど様々な方法があるが、伸線潤滑剤の濃度を調整して伸線後のワイヤWの表面に潤滑剤が一部残るように、余分な伸線潤滑剤や異物などの除去を目的とした洗浄を行った後、調質熱処理を行うことで、前記一部残った潤滑剤からなる炭素濃縮層を設ける方法が経済的である。このとき、調質熱処理は大気中で行うとワイヤW上に残した伸線潤滑剤が酸素と反応して飛散してしまうため、窒素ガス中もしくは水素―窒素混合ガス中など酸素を遮断した状態で行うものとする。
後記の実施例と比較例の実験結果から、炭素濃縮層の厚みを0.0001〜0.0005μmとする。この炭素濃縮層の厚みが0.0001μm未満であると、上記の繰り出し性を向上させるには至らず、0.0005μmを超えると、ステッチボンド接合性が下がり、連続ボンディング性が損なわれる恐れがある。
There are various methods for forming the carbon enriched layer, such as immersing the wire in a metal adhesion preventive agent or spraying a metal adhesion preventive agent on the wire, but after adjusting the concentration of the wire drawing lubricant, In order to leave a part of the lubricant on the surface of the wire W, after the cleaning for the purpose of removing excess wire drawing lubricant and foreign matters, the part of the lubricant remaining by performing a tempering heat treatment is performed. It is economical to provide a carbon enriched layer comprising: At this time, if the heat treatment is performed in the air, the drawn lubricant left on the wire W reacts with the oxygen and scatters, so the oxygen is blocked in nitrogen gas or hydrogen-nitrogen mixed gas. It shall be done in
From the experimental results of Examples and Comparative Examples described later, the thickness of the carbon enriched layer is set to 0.0001 to 0.0005 μm. If the thickness of the carbon-enriched layer is less than 0.0001 μm, the above-described pay-out property cannot be improved, and if it exceeds 0.0005 μm, the stitch bond bondability may be lowered and the continuous bondability may be impaired. .

この発明は、以上のようにしたので、安定した接合強度を有する純銅にPdを被覆したボンディングワイヤを得ることができる。   Since the present invention is configured as described above, it is possible to obtain a bonding wire in which pure copper having stable bonding strength is coated with Pd.

この発明に係るボンディングワイヤの断面図Sectional drawing of the bonding wire which concerns on this invention HR:50〜70%のボンディングワイヤ表面結晶組織の顕微鏡写真図HR: Photomicrograph of the crystal structure of the bonding wire surface of 50 to 70% HR:50%未満のボンディングワイヤ表面結晶組織の顕微鏡写真図HR: Micrograph of bonding wire surface crystallographic structure less than 50% HR:70%を超えるボンディングワイヤ表面結晶組織の顕微鏡写真図HR: Micrograph of bonding wire surface crystallographic structure exceeding 70% ボールボンディング接続法の説明図であり、(a)〜(h)はその途中図It is explanatory drawing of a ball bonding connection method, (a)-(h) is the middle figure 他のボンディングワイヤの断面図Cross section of another bonding wire 電極aと導体配線cのボンディング接続状態拡大図Enlarged view of bonding connection between electrode a and conductor wiring c

純度99.99質量%以上で0.2〜0.8mm径の銅線を用意し、その銅線にPdを電解メッキ法によって被覆し、その被覆線に拡散熱処理を施して銅線(芯材)1と被覆層2の密着性を高めた後、水溶性の伸線潤滑剤を介在させて線径12〜50.8μmまで伸線し、さらに、引張強さの比HRが45〜78%となるように窒素ガス中で調質熱処理を行い、被覆層2の厚みt:0.002〜0.12μmのボンディングワイヤWを得た。このとき、伸線時の潤滑剤の濃度を調整するとともに、伸線後の洗浄において、ワイヤWの表面に潤滑剤が一部残るように余分な潤滑剤や異物などの除去した後、炉長:50cmの酸素遮断状態で、炉温度:400℃以上800℃以下、ワイヤ走行速度:30〜90m/分での熱処理によって上記調質熱処理を行って、厚みt:0.0009μm以下の炭素濃縮層3を設けた。 A copper wire having a purity of 99.99% by mass or more and a diameter of 0.2 to 0.8 mm is prepared. The copper wire is coated with Pd by an electrolytic plating method, and the coated wire is subjected to diffusion heat treatment to obtain a copper wire (core material). ) After improving the adhesion between 1 and the coating layer 2, the wire was drawn to a wire diameter of 12 to 50.8 μm with a water-soluble wire drawing lubricant interposed therebetween, and the tensile strength ratio HR was 45 to 78%. Thus, a tempering heat treatment was performed in nitrogen gas to obtain a bonding wire W having a thickness t 2 of the coating layer 2 of 0.002 to 0.12 μm. At this time, the length of the furnace is adjusted after adjusting the concentration of the lubricant at the time of wire drawing and removing extra lubricant or foreign matter so that a part of the lubricant remains on the surface of the wire W in the cleaning after the wire drawing. : The above-mentioned tempering heat treatment is performed by heat treatment at an oxygen shut-off state of 50 cm, furnace temperature: 400 ° C. to 800 ° C., wire traveling speed: 30 to 90 m / min, and thickness t 3 : carbon concentration of 0.0009 μm or less Layer 3 was provided.

この方法によって、表1に示す実施例1〜16及び比較例1〜9の各ボンディングワイヤWを製作し、そのボンディングワイヤWの連続ボンディング性、1st接合部のSiチップ(電極a)の損傷度合、ワイヤの繰り出し性及びループ形状(亀裂の有無)の評価を下記の方法で行った。その評価結果を表1に示す。   By this method, the bonding wires W of Examples 1 to 16 and Comparative Examples 1 to 9 shown in Table 1 are manufactured, and the continuous bonding property of the bonding wires W and the damage degree of the Si chip (electrode a) at the first joint portion are manufactured. The wire drawability and loop shape (presence of cracks) were evaluated by the following methods. The evaluation results are shown in Table 1.

「被覆層(皮膜層)2の厚みt
蛍光X線膜厚計で、X線を照射し発生した蛍光X線の強度を皮膜厚さに換算して皮膜厚とした。
“Thickness t 2 of coating layer (film layer) 2
Using a fluorescent X-ray film thickness meter, the intensity of fluorescent X-rays generated by irradiating X-rays was converted to the film thickness to obtain the film thickness.

「炭素濃縮層3の厚みt
Arイオンで深さ方向に単位時間のスパッタを行い、その都度炭素濃度を測定していき、最外層の炭素濃度の1/2の濃度になったところまでを炭素濃縮層3の厚みtとするオージェ分光分析法(AES)で測定した。厚さの換算には一般的なSiO換算を用いた。
“Thickness t 3 of carbon enriched layer 3
Sputtering is performed in the depth direction with Ar ions for a unit time, and the carbon concentration is measured each time. The thickness t 3 of the carbon enriched layer 3 is reached up to the point where the carbon concentration of the outermost layer is ½. Measured by Auger spectroscopy (AES). For the conversion of thickness, general SiO 2 conversion was used.

「室温での引張強度TS、250℃での引張強度TS
室温(23℃)において、100mmのワイヤを10mm/分の引張速度にて引張試験を行い、破断した際の荷重を引張試験前のワイヤWの断面積で除した値を引張強度とした。
また、250℃においても同様の試験を行うが、250℃の雰囲気に試料をセットした後、低下した温度が250℃に復帰した20秒後に引張試験を行うようにした。
"Tensile strength TS H in tensile strength TS R, 250 ° C. at room temperature"
At room temperature (23 ° C.), a tensile test was performed on a 100 mm wire at a tensile speed of 10 mm / min, and the value obtained by dividing the load at the time of fracture by the cross-sectional area of the wire W before the tensile test was taken as the tensile strength.
The same test was performed at 250 ° C., but after setting the sample in an atmosphere at 250 ° C., a tensile test was performed 20 seconds after the lowered temperature returned to 250 ° C.

「HR」
上記TSとTSから、HR=TS/TS×100として求めた。例えば、表1における実施例1の線径20μmのワイヤWのTSは234MPa、TSは143MPaであり、HRは143/234×100=61%となる。
"HR"
From the TS R and TS H, was determined as HR = TS H / TS R × 100. For example, the TS R of the wire W having a diameter of 20μm in Example 1 in Table 1 234MPa, TS H is 143MPa, HR becomes 143/234 × 100 = 61% .

「ループ高さh」
1st接合部と2nd接合部の高さが同じであるフラットボンドにおいて、1st接合部および2nd接合部の接地点を基準として最高地点のワイヤまでの高さhを表す(図5参照)。ワイヤ径Lの3倍〜5倍の高さhのときを低ループ、10倍以上の高さhのときを高ループとし、表1においては、それぞれ「低」、「高」とした。
"Loop height h"
In a flat bond in which the heights of the 1st junction and the 2nd junction are the same, the height h up to the highest point wire is expressed with reference to the ground point of the 1st junction and the 2nd junction (see FIG. 5). When the height h is 3 to 5 times the wire diameter L, the low loop is set, and when the height h is 10 times or more, the high loop is set. In Table 1, “low” and “high” are set, respectively.

「連続ボンディング性」
ボンディングマシンで10,000回の連続ボンディングを行い、マシンストップが発生しなければ「A」、1回のマシンストップが発生すれば「B」、2回以上のマシンストップが起これば「D」とした。このとき、ステージ温度が低くなれば、その連続ボンディングが困難になることから、200℃(±5℃)、150℃(±5℃)の2水準で行った。
“Continuous bonding”
Bonding machine performs 10,000 continuous bonding, "A" if no machine stop occurs, "B" if one machine stop occurs, "D" if more than one machine stop occurs It was. At this time, if the stage temperature is lowered, the continuous bonding becomes difficult. Therefore, it was performed at two levels of 200 ° C. (± 5 ° C.) and 150 ° C. (± 5 ° C.).

「1st接合部のSiチップ損傷」
ボンディング後、1st接合部直下のSiチップ損傷を評価するために、1st接合部および電極膜を王水で溶解し、Siチップのクラックを光学顕微鏡と走査型電子顕微鏡(SEM)で観察した。このとき、100個の接合部を観察して5μm以下の微小なピットが1個もしくはまったく見られない場合は「A」、5μm以上のクラックが認められた場合は「D」とした。
"Si chip damage at 1st junction"
After bonding, in order to evaluate Si chip damage directly under the 1st junction, the 1st junction and the electrode film were dissolved in aqua regia, and cracks of the Si chip were observed with an optical microscope and a scanning electron microscope (SEM). At this time, when 100 joints were observed and one or no minute pits of 5 μm or less were observed, “A” was indicated, and when cracks of 5 μm or more were observed, “D” was assigned.

「ワイヤの繰り出し性」
ボンディング装置に取り付けるためのスプールに完成品を500m巻き取り、そのスプールを巻き取り方向とは逆の方向に回転させることによって、ワイヤWを自然落下させて、ワイヤの繰り出し性を評価した。自然落下させるときのスプールから接地点までの距離を1mとし、500m分の自然落下中、ワイヤの引っかかりが2回以下なら「A」、3回以上ならば使用上問題があると判断して評価を「D」とした。
"Wire feedability"
The finished product was wound up about 500 m on a spool to be attached to the bonding apparatus, and the spool was rotated in a direction opposite to the winding direction, whereby the wire W was naturally dropped and the wire feeding property was evaluated. Assume that the distance from the spool to the grounding point when naturally dropping is 1 m, and during 500 m of natural dropping, “A” if the wire is caught 2 times or less, and if it is 3 times or more, it is judged that there is a problem in use. Was “D”.

「ループ形状(亀裂の有無)」
ボンディング後のループを走査型電子顕微鏡(SEM)で確認し、ワイヤ表面の亀裂の有無により判定した。ワイヤ表面が平滑に弧を描き、どこにも亀裂が生じていないものの評価を「A」とし、ワイヤ径の3%以上の亀裂が生じているものは使用上問題があると判断して評価を「D」とした。
"Loop shape (with or without cracks)"
The loop after bonding was confirmed with a scanning electron microscope (SEM), and judged by the presence or absence of cracks on the wire surface. If the wire surface is smoothly arced and no cracks are generated, the evaluation is “A”. If the crack is 3% or more of the wire diameter, it is judged that there is a problem in use. D ".

「総合評価」
「連続ボンディング性」の評価が200℃・150℃ともに「A」であり、かつ「1st接合部のSiチップ損傷」、「ワイヤの繰り出し性」及び「ループ形状」の評価がすべて「A」のものを「A」、「連続ボンディング性」の評価が200℃では「A」であり、150℃では「B」であり、かつ他の全ての評価がすべて「A」のものを「B」とした。また、他の評価のひとつでも「D」のあるものについては実用上問題であるので「D」とした。
"Comprehensive evaluation"
Evaluation of “continuous bondability” is “A” for both 200 ° C. and 150 ° C., and evaluation of “Si chip damage at 1st junction”, “wire unwinding property” and “loop shape” are all “A”. “A” for the case, “A” for “continuous bonding” at 200 ° C., “B” for 150 ° C., and “B” for all other evaluations “A” did. Further, one of the other evaluations having “D” is “D” because it is a practical problem.

この試験結果から、被覆層厚(皮膜厚)tが0.010μm未満であると、200℃及び150℃の両連続ボンディング性が低下し(比較例4、9)、0.01μm以上0.040μm未満であると、前者の連続ボンディング性が満足できるものとなり(実施例4〜6、8、11〜13、比較例8)、さらに0.040μm以上となると、両者の連続ボンディング性が満足できるものとなることが理解できる(実施例1〜3、7、9、10、14〜16、比較例1、2、5、6)。ただし、被膜層厚tが0.040μm以上でも、炭素濃縮層3の厚さtが0.0005μmを超えると、200℃及び150℃の両連続ボンディング性が低下する(比較例7)。 From this test result, when the coating layer thickness (film thickness) t 2 is less than 0.010 μm, both continuous bonding properties at 200 ° C. and 150 ° C. are lowered (Comparative Examples 4 and 9), and 0.01 μm or more and 0.0. When the thickness is less than 040 μm, the former continuous bonding property is satisfactory (Examples 4 to 6, 8, 11 to 13, Comparative Example 8), and when it is 0.040 μm or more, both continuous bonding properties are satisfactory. (Examples 1-3, 7, 9, 10, 14-16, Comparative Examples 1, 2, 5, 6). However, even if the coating layer thickness t 2 is 0.040 μm or more, if the thickness t 3 of the carbon enriched layer 3 exceeds 0.0005 μm, both continuous bonding properties at 200 ° C. and 150 ° C. are deteriorated (Comparative Example 7).

一方、被覆層厚tが0.090μmを越えると、ボールbが硬くなって、Siチップ(電極a)の損傷が認められるようになる(比較例1〜3、5〜7)。 On the other hand, when the coating layer thickness t 2 exceeds 0.090, the ball b is harder, so damage to the Si chip (electrode a) is observed (Comparative Example 1~3,5~7).

また、炭素濃縮層3の厚さtが0.0001μm未満であると、ワイヤWが正常に繰り出されずに引っかかりが生じ(比較例5、6)、0.0001μm以上では問題なく繰り出すことができる(実施例1〜15、比較例1〜4、7〜9)。
但し、ボールボンディング法による接続時、スプールから引き出されるワイヤWにはボンディング装置から引き出し力が加わるため、ボンディング装置によっては、上記「ワイヤの繰り出し性」において「D」のものであっても、支障がない場合がある。この場合、実施例16に示すように、炭素濃縮層3が殆ど無い場合でも(厚さt≒0.00)、被覆層2の厚みt:0.010〜0.090μm、HR:50〜70%であれば、他の評価において「A」を得ていることから、そのワイヤWは使用し得る。
If the thickness t 3 of the carbon concentration layer 3 is less than 0.0001micrometer, wire W is generated is caught without fed normally (Comparative Examples 5 and 6), can be fed out without problems in the above 0.0001micrometer (Examples 1-15, Comparative Examples 1-4, 7-9).
However, since a pulling force is applied from the bonding device to the wire W pulled out from the spool during connection by the ball bonding method, even if “D” in the above “wire unwinding property” is a problem, There may be no. In this case, as shown in Example 16, even when there is almost no carbon enriched layer 3 (thickness t 3 ≈0.00), the thickness t 2 of the coating layer 2 is 0.010 to 0.090 μm, and HR is 50 If it is ˜70%, since “A” is obtained in other evaluations, the wire W can be used.

さらに、HRが50%未満では、そのHR:45%(比較例8)を示す図2(b)の写真に示すように、銅の結晶組織は加工ひずみが残る繊維組織(軟化が少ない結晶組織)となり、上記図3(h)の放電棒gによってそのワイヤWにボールbの形成する際、銅の結晶組織が粗大化し、上記結晶組織の境界ができるため、ループ形状に亀裂の問題が生じ(比較例5、8)、同70%を超えると、そのHR:71%(比較例9)を示す図2(c)の写真のように、銅の結晶組織が粗大化し(過軟化結晶組織(粗大化した二次再結晶組織)となり)、ループが高い場合、ループ形状に亀裂の問題が生じ(比較例4)、ループが低い場合でも、破断が発生し連続ボンディング性に支障が生じる恐れがある(比較例7、9)。
これに対し、HRが50〜70%であると、そのHR:65%(実施例9)を示す図2(a)の写真に示すように、良好な再結晶組織となって、繊維組織と粗大化した二次再結晶組織の境界が発生し難いため、くせ付けのときに結晶粒界から亀裂が生じることもなかった(実施例1〜16、比較例1〜3、6)。
Further, when the HR is less than 50%, as shown in the photograph of FIG. 2B showing the HR: 45% (Comparative Example 8), the copper crystal structure is a fiber structure in which processing strain remains (crystal structure with little softening). When the ball b is formed on the wire W by the discharge rod g shown in FIG. 3 (h), the crystal structure of copper is coarsened and the boundary of the crystal structure is formed. (Comparative Examples 5 and 8), when it exceeds 70%, the crystal structure of copper is coarsened (over-softened crystal structure) as shown in the photograph of FIG. 2 (c) showing HR: 71% (Comparative Example 9). (Large secondary recrystallized structure)) When the loop is high, there is a problem of cracking in the loop shape (Comparative Example 4), and even when the loop is low, breakage may occur and the continuous bonding property may be impaired. (Comparative Examples 7 and 9).
On the other hand, when the HR is 50 to 70%, as shown in the photograph of FIG. 2A showing the HR: 65% (Example 9), a good recrystallized structure is obtained, and the fiber structure and Since the boundary of the coarsened secondary recrystallized structure is less likely to occur, cracks did not occur from the crystal grain boundaries during the soldering (Examples 1 to 16 and Comparative Examples 1 to 3 and 6).

W ボンディングワイヤ
1 芯材
2 被覆層
3 炭素濃縮層
a 集積回路素子の電極
b ボンディングボール
c 回路配線基板の導体配線
W Bonding wire 1 Core material 2 Coating layer 3 Carbon enriched layer a Electrode b of integrated circuit element b Bonding ball c Conductor wiring of circuit wiring board

Claims (3)

集積回路素子の電極(a)と回路配線基板の導体配線(c)をボールボンディング法によって接続するための線径(L)50.8μm以下のボンディングワイヤ(W)であって、芯材(1)が純度99.99質量%以上の銅及び不可避不純物からなり、その芯材(1)の外周全面に、Pdによる厚み(t)0.010〜0.090μm の被覆層(2)を形成し、調質熱処理を、炉温度:400℃以上800℃以下、ワイヤ走行速度:30〜90m/分で行って、室温での引張試験による引張強さ(TS)と250℃での引張試験による引張強さ(TS)との比(HR=TS/TS×100)が50〜70%となるようにして、前記銅からなる芯材(1)の再結晶組織と粗大化した二次再結晶組織の境界が発生し難くなっていることを特徴とするボンディングワイヤ。 A bonding wire (W) having a wire diameter (L) of 50.8 μm or less for connecting an electrode (a) of an integrated circuit element and a conductor wiring (c) of a circuit wiring board by a ball bonding method. ) Is made of copper having a purity of 99.99% by mass or more and inevitable impurities, and a coating layer (2) having a thickness (t 2 ) of 0.010 to 0.090 μm is formed on the entire outer periphery of the core material (1). The tempering heat treatment is performed at a furnace temperature of 400 ° C. to 800 ° C. and a wire traveling speed of 30 to 90 m / min. Tensile strength (TS R ) by a tensile test at room temperature and a tensile test at 250 ° C. The ratio (HR = TS H / TS R × 100) to the tensile strength (TS H ) by 50 was 50 to 70%, and the recrystallized structure of the core material (1) made of copper was coarsened. The boundary of secondary recrystallization structure is less likely to occur Bonding wires, wherein the door. 上記被覆層(2)の外周部に炭素濃度:1〜80質量%の炭素濃縮層(3)を有し、その炭素濃縮層(3)の厚み(t)が0.0001〜0.0005μmであることを特徴とする請求項1に記載のボンディングワイヤ。 The carbon concentration layer (3) having a carbon concentration of 1 to 80% by mass is provided on the outer peripheral portion of the coating layer (2), and the thickness (t 3 ) of the carbon concentration layer ( 3 ) is 0.0001 to 0.0005 μm. The bonding wire according to claim 1, wherein: 請求項2に記載のボンディングワイヤ(W)の製造方法であって、上記純度99.99質量%以上の銅及び不可避不純物からなる芯材(1)にPdを被覆し、その被覆線に拡散熱処理を施して芯材(1)と被覆層(2)の密着性を高めた後、潤滑剤を塗布して伸線し、その後、その伸線を洗浄工程を経て酸素遮断状態で上記調質熱処理を行い、前記洗浄工程の洗浄度合を調整することによって前記被覆層(2)の表面に前記潤滑剤からなる上記炭素濃縮層(3)を形成することを特徴とするボンディングワイヤの製造方法。   It is a manufacturing method of the bonding wire (W) of Claim 2, Comprising: Pd is coat | covered to the core material (1) which consists of the said copper of 99.99 mass% or more and an unavoidable impurity, The diffusion heat processing is carried out to the covered wire | wire. Is applied to improve the adhesion between the core material (1) and the coating layer (2), and then a lubricant is applied and the wire is drawn. And the carbon concentration layer (3) made of the lubricant is formed on the surface of the coating layer (2) by adjusting the degree of cleaning in the cleaning step.
JP2011253851A 2011-11-21 2011-11-21 Bonding wire and manufacturing method thereof Active JP5001455B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253851A JP5001455B1 (en) 2011-11-21 2011-11-21 Bonding wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253851A JP5001455B1 (en) 2011-11-21 2011-11-21 Bonding wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP5001455B1 true JP5001455B1 (en) 2012-08-15
JP2013110261A JP2013110261A (en) 2013-06-06

Family

ID=46793976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253851A Active JP5001455B1 (en) 2011-11-21 2011-11-21 Bonding wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5001455B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002300B1 (en) * 2015-09-02 2016-10-05 田中電子工業株式会社 Palladium (Pd) coated copper wire for ball bonding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297360A (en) * 1985-10-24 1987-05-06 Mitsubishi Metal Corp Minute high impurity copper wire, whose surface is coated, for bonding wire for semiconductor device
JPH0955396A (en) * 1995-08-10 1997-02-25 Mitsubishi Materials Corp Bonding wire for semiconductor device
JP2003059964A (en) * 2001-08-10 2003-02-28 Tanaka Electronics Ind Co Ltd Bonding wire and manufacturing method therefor
JP2004064033A (en) * 2001-10-23 2004-02-26 Sumitomo Electric Wintec Inc Bonding wire
JP2010062395A (en) * 2008-09-04 2010-03-18 Sumitomo Metal Mining Co Ltd Copper bonding wire
JP2010153918A (en) * 2007-07-24 2010-07-08 Nippon Steel Materials Co Ltd Semiconductor device bonding wire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297360A (en) * 1985-10-24 1987-05-06 Mitsubishi Metal Corp Minute high impurity copper wire, whose surface is coated, for bonding wire for semiconductor device
JPH0955396A (en) * 1995-08-10 1997-02-25 Mitsubishi Materials Corp Bonding wire for semiconductor device
JP2003059964A (en) * 2001-08-10 2003-02-28 Tanaka Electronics Ind Co Ltd Bonding wire and manufacturing method therefor
JP2004064033A (en) * 2001-10-23 2004-02-26 Sumitomo Electric Wintec Inc Bonding wire
JP2010153918A (en) * 2007-07-24 2010-07-08 Nippon Steel Materials Co Ltd Semiconductor device bonding wire
JP2010062395A (en) * 2008-09-04 2010-03-18 Sumitomo Metal Mining Co Ltd Copper bonding wire

Also Published As

Publication number Publication date
JP2013110261A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
WO2010087053A1 (en) Bonding wire
JP4554724B2 (en) Bonding wires for semiconductor devices
JP5616739B2 (en) Multilayer copper bonding wire bonding structure
CN105023902B (en) Bonding wire for semiconductor
JP4904252B2 (en) Bonding wires for semiconductor devices
WO2015093306A1 (en) Bonding wire for semiconductor devices
JP4637256B1 (en) Bonding wire for semiconductor
JP5497360B2 (en) Bonding wire for semiconductor
KR101536554B1 (en) Bonding wire
JPWO2002023618A1 (en) Semiconductor bonding wire and method of manufacturing the same
CN107195609B (en) Bonding wire for semiconductor device
JPWO2010106851A1 (en) Bonding wire for semiconductor
JP2010245390A (en) Bonding wire
JP2010225722A (en) Coated copper wire for ball bonding
US11289442B2 (en) Gold-coated silver bonding wire and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP2007012776A (en) Bonding wire for semiconductor device
WO2013018238A1 (en) Ball bonding wire
WO2011129256A1 (en) Bonding wire
JP2004014884A (en) Bonding wire
JP2014096403A (en) Bonding wire
JP4860004B1 (en) Bonding wire and manufacturing method thereof
TWI553130B (en) Copper wire for ball bonding and palladium plating
JP5001455B1 (en) Bonding wire and manufacturing method thereof
JP6410692B2 (en) Copper alloy bonding wire
JP2010272884A (en) Bonding wire for semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Ref document number: 5001455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250