JP2014096403A - Bonding wire - Google Patents

Bonding wire Download PDF

Info

Publication number
JP2014096403A
JP2014096403A JP2012245424A JP2012245424A JP2014096403A JP 2014096403 A JP2014096403 A JP 2014096403A JP 2012245424 A JP2012245424 A JP 2012245424A JP 2012245424 A JP2012245424 A JP 2012245424A JP 2014096403 A JP2014096403 A JP 2014096403A
Authority
JP
Japan
Prior art keywords
wire
bonding
mass
kgf
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012245424A
Other languages
Japanese (ja)
Other versions
JP2014096403A5 (en
JP5671512B2 (en
Inventor
Takeshi Hasegawa
剛 長谷川
Yuji Kurosaki
裕司 黒▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2012245424A priority Critical patent/JP5671512B2/en
Priority to PCT/JP2013/079980 priority patent/WO2014073555A1/en
Priority to KR1020157014935A priority patent/KR101905942B1/en
Publication of JP2014096403A publication Critical patent/JP2014096403A/en
Publication of JP2014096403A5 publication Critical patent/JP2014096403A5/ja
Application granted granted Critical
Publication of JP5671512B2 publication Critical patent/JP5671512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05164Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bonding wire good in bondability with an Ni/Pd/Au covered electrode (a) or an Au covered electrode (a), excellent in thermal shock resistance, and having an inexpensive price as compared with a gold bonding wire.SOLUTION: A bonding wire W for performing connection by means of a ball bonding method contains 1.0 mass% or more and 4.0 mass% or less in total of one or more elements selected from Pd and Au, and 20 mass ppm or more and 500 mass ppm or less in total of one or more elements selected from among Ca, Y, La, Sm and Ce, with the remainder consisting of Ag and inevitable impurities, and has a tensile strength at room temperatures of 18-32 kgf/mmand a tensile strength in a furnace at 250°C of 14 kgf/mmor more. With the constitution, there is no practical problem in each evaluation of continuous bondability, thermal cycle tests, an evaluation of damages of a chip immediately below a first junction, electrical resistivity, an evaluation of wire flow in resin sealing, and sulfur resistance of a wire.

Description

この発明は、パワーIC、LSI、トランジスタ、BGA(Ball Grid Array package)、QFN(Quad Flat Non lead package)、LED(発光ダイオード)等の半導体パッケージにおける半導体素子上のニッケル・パラジウム・金(Ni/Pd/Au)被覆電極又はAu被覆電極と、リードフレーム、セラミック基板、プリント基板等の回路配線基板の導体配線とをボールボンディング法によって接続するためのボンディング用ワイヤに関するものである。   The present invention relates to nickel, palladium, and gold (Ni / Ni) on a semiconductor element in a semiconductor package such as a power IC, LSI, transistor, BGA (Ball Grid Array package), QFN (Quad Flat Non lead package), and LED (Light Emitting Diode). The present invention relates to a bonding wire for connecting a (Pd / Au) coated electrode or an Au coated electrode and a conductor wiring of a circuit wiring board such as a lead frame, a ceramic substrate, or a printed board by a ball bonding method.

上記BGA等の半導体パッケージは、例えば、図1に示すように、配線板1上にはんだボール2を介してパッケージ基板3を設け、さらに、そのパッケージ基板3にダイボンディング材4を介して半導体素子(チップ)5を設けて、その半導体素子5を封止材6によって封止した構造である。この半導体パッケージにおける半導体素子5の電極aとパッケージ基板3の導体配線(端子)cとの電気接続は、上記ボールボンディング法によって行われる。   In the semiconductor package such as the BGA, for example, as shown in FIG. 1, a package substrate 3 is provided on a wiring board 1 via solder balls 2, and a semiconductor element is further provided on the package substrate 3 via a die bonding material 4. A (chip) 5 is provided and the semiconductor element 5 is sealed with a sealing material 6. The electrical connection between the electrode a of the semiconductor element 5 and the conductor wiring (terminal) c of the package substrate 3 in this semiconductor package is performed by the ball bonding method.

また、上記半導体素子の一つであるLEDのパッケージにおいては、例えば、図2に示すように、ケースヒートシンク11にダイボンディング材12を介してLED13を設けて、蛍光体eを混ぜ合わせた封止材14によってLED13を封止した構造である。このパッケージにおけるLED13の電極aとケース電極15の導体配線(端子)cとの電気接続は、BGA等の半導体パッケージと同様に上記ボールボンディング法によって行われる。図中、16は樹脂製ケースボディである。   Further, in the package of the LED which is one of the semiconductor elements, for example, as shown in FIG. 2, the LED 13 is provided on the case heat sink 11 via the die bonding material 12 and the phosphor e is mixed. The LED 13 is sealed with the material 14. The electrical connection between the electrode a of the LED 13 and the conductor wiring (terminal) c of the case electrode 15 in this package is performed by the ball bonding method as in the case of a semiconductor package such as BGA. In the figure, 16 is a resin case body.

これらのボールボンディング法による接続方法は、図3(a)〜(h)に示す態様が一般的であり、同図(a)に示す、ワイヤWがキャピラリー10aに挿通されてその先端にボール(FAB:Free Air Ball)bが形成された状態から、クランプ10bが開いて、キャピラリー10aが集積回路素子上の電極aに向かって降下する。このとき、ボール(FAB)bはキャピラリー10a内に捕捉される。   The connection methods by these ball bonding methods are generally in the form shown in FIGS. 3A to 3H. The wire W shown in FIG. 3A is inserted into the capillary 10a and a ball ( From the state where FAB (Free Air Ball) b is formed, the clamp 10b is opened, and the capillary 10a is lowered toward the electrode a on the integrated circuit element. At this time, the ball (FAB) b is captured in the capillary 10a.

ターゲットである電極aに溶融ボールbが接触すると(キャピラリー10aが電極aに至ると)キャピラリー10aが溶融ボールbをグリップし、溶融ボールbに熱・荷重・超音波を与え、それによって溶融ボールbが圧着されて(圧着ボールb’となって)電極aと固相接合され、1stボンドが形成されて電極aと接着する(1st接合、図3(b))。
1stボンドが形成されれば、キャピラリー10aは、一定高さまで上昇した後(同図(c))、導体配線cの真上まで移動する(同図(d)〜(e))。このとき、安定したループを形成するため、キャピラリー10aに特殊な動きをさせてワイヤWに「くせ」を付ける動作をする場合がある(同図(d)の鎖線から実線参照)。
When the molten ball b comes into contact with the target electrode a (when the capillary 10a reaches the electrode a), the capillary 10a grips the molten ball b and applies heat / load / ultrasonic waves to the molten ball b, whereby the molten ball b Is bonded to the electrode a by solid phase bonding to form a 1st bond and bonded to the electrode a (1st bonding, FIG. 3B).
If the 1st bond is formed, the capillary 10a moves up to a certain height (FIG. (C)) and then moves to a position directly above the conductor wiring c (FIGs. (D) to (e)). At this time, in order to form a stable loop, there is a case where a special movement is performed on the capillary 10a so that the wire W is attached with a “string” (see the solid line from the chain line in FIG. 4D).

導体配線cの真上に至ったキャピラリー10aは、導体配線cに向かって降下し、ワイヤWを導体配線(2ndターゲット)cに押付ける(同図(e)〜(f))。これと同時に、その押付け部位に熱・荷重・超音波を与え、それによってワイヤWを変形させ、ワイヤWを導体配線c上に接合させるためのステッチボンドと、次のステップでテイルを確保するテイルボンドを形成する(2nd接合、同図(f))。   The capillary 10a that has reached directly above the conductor wiring c descends toward the conductor wiring c and presses the wire W against the conductor wiring (2nd target) c (FIGS. (E) to (f)). At the same time, heat, a load, and an ultrasonic wave are applied to the pressed portion, thereby deforming the wire W and joining the wire W onto the conductor wiring c, and a tail that secures the tail in the next step. A bond is formed (2nd junction, FIG. 5F).

その両ボンドを形成した後、キャピラリー10aはワイヤWを残したまま上昇し、キャピラリー10aの先端に一定の長さのテイルを確保した後、クランプ10bを閉じて(ワイヤWをつかんで)、テイルボンドの部分からワイヤWを引きちぎる(同図(g))。   After forming both the bonds, the capillary 10a rises with the wire W remaining, and after securing a tail of a certain length at the tip of the capillary 10a, the clamp 10b is closed (by grabbing the wire W), and the tail The wire W is torn off from the bond portion ((g) in the figure).

キャピラリー10aは、所要の高さまで上昇すると停止し、そのキャピラリー10aの先端に確保されたワイヤWの先端部分に、放電棒gでもって高電圧を掛けて放電し(スパークし)、その熱でワイヤWを溶かし、この溶けたワイヤ素材は表面張力によって球状に近い溶融ボールbになって固まる(同図(h))。   The capillary 10a stops when it rises to the required height, and the tip of the wire W secured at the tip of the capillary 10a is discharged (sparked) by applying a high voltage with the discharge rod g, and the wire is heated by the heat. W is melted, and the melted wire material is turned into a spherical ball b by the surface tension and hardens (FIG. 11 (h)).

以上の作用で一サイクルが終了し、以後、同様な作用によって、電極aと導体配線cとのボールボンディング法による接続がなされる。   One cycle is completed by the above operation, and thereafter, the electrode a and the conductor wiring c are connected by the ball bonding method by the same operation.

このボールボンディング法に使用されるボンディング線(ワイヤ)Wの材質としては、4N(純度:99.99質量%以上)〜2Nの金が使用されている。このように金が多用されるのは金ボールbの形状が真球状となるとともに、形成される金ボールbの硬さが適切であって、接合時の荷重、超音波によってチップ5を損傷することがなく、確実な接合ができ、その信頼性が高いからである。
一方、BGA等の半導体パッケージにおいては、金ボンディングワイヤWは高価であることから、安価な銅(Cu)ボンディングワイヤへの置き換えもなされている。さらに、その銅ボンディングワイヤ表面にパラジウム(Pd)等を被覆することによって、銅ボンディングワイヤで課題となる2nd接合性を高め、生産性を改善したPd表面被覆銅ボンディングワイヤが開発され、一部では使用されている(特許文献1)。また、銀(Ag)ボンディングワイヤについても開発され、一部では使用されている。(特許文献2、3、4)
As a material of the bonding wire (wire) W used in this ball bonding method, gold of 4N (purity: 99.99 mass% or more) to 2N is used. As described above, gold is frequently used because the shape of the gold ball b is a perfect sphere and the hardness of the gold ball b to be formed is appropriate, and the chip 5 is damaged by the load and ultrasonic wave during bonding. This is because reliable bonding is possible and the reliability is high.
On the other hand, in a semiconductor package such as a BGA, since the gold bonding wire W is expensive, it is replaced with an inexpensive copper (Cu) bonding wire. Furthermore, by covering the surface of the copper bonding wire with palladium (Pd) or the like, a Pd surface-coated copper bonding wire has been developed, which improves the 2nd bondability, which is a problem with the copper bonding wire, and improves the productivity. (Patent Document 1). Silver (Ag) bonding wires have also been developed and used in part. (Patent Documents 2, 3, and 4)

特開2007−123597号公報JP 2007-123597 A 特開昭57−194232号公報JP-A-57-194232 特開昭58−6948号公報JP 58-6948 A 特開平11−288962号公報JP-A-11-288896

金ボンディングワイヤは高価である。その代替材である銅ボンディングワイヤは安価ではあるが、金ボンディングワイヤに比べてFABが硬く、電極aのチップが脆弱であるとチップダメージ発生の恐れが高くなる。また、金ボンディングワイヤに比べて2nd接合性が悪く、連続ボンディング性に問題がある。
Pd表面被覆銅ボンディングワイヤは、銅ボンディングワイヤに比べて2nd接合性がよく、連続ボンディング性がよいが、FABが銅ボンディングワイヤよりもさらに硬くなるため、チップダメージ発生の問題がある。
Gold bonding wires are expensive. The copper bonding wire that is an alternative material is inexpensive, but the FAB is harder than the gold bonding wire, and if the tip of the electrode a is fragile, the risk of chip damage increases. In addition, the 2nd bondability is poor as compared with the gold bonding wire, and there is a problem in the continuous bonding property.
The Pd surface-coated copper bonding wire has better 2nd bondability and better continuous bondability than the copper bonding wire, but the FAB is harder than the copper bonding wire, which causes a problem of chip damage.

また、従来、BGA等の半導体パッケージの電極aにはAl合金(Al−Si−Cu等)パッドが用いられていたが、高温信頼性、例えば150℃以上における信頼性が求められる車載などの用途ではNi/Pd/Au(ニッケル/パラジウム/金)被覆した電極aが検討されている。さらに脆弱なチップ5に対するダメージ低減の必要もある。
このNi/Pd/Au被覆電極aに対し、上記Pd表面被覆銅ボンディングワイヤは接合し難いという問題があり、銅ボンディングワイヤは、脆弱なチップ5に対してダメージを与えないような条件でボンディングしようとすると、十分な接合ができないという問題がある。
Conventionally, an Al alloy (Al-Si-Cu etc.) pad has been used for the electrode a of a semiconductor package such as a BGA. However, high temperature reliability, for example, reliability at 150 ° C. or higher is required. Have studied an electrode a coated with Ni / Pd / Au (nickel / palladium / gold). Further, it is necessary to reduce damage to the fragile chip 5.
There is a problem that the Pd surface-coated copper bonding wire is difficult to bond to the Ni / Pd / Au coated electrode a, and the copper bonding wire should be bonded under conditions that do not damage the fragile chip 5. Then, there is a problem that sufficient joining cannot be performed.

さらに、従来、LEDパッケージにおいてはAu被覆した電極aのLED13が用いられ、電極aとの接続には金ボンディングワイヤが用いられている。この金を用いた組み合わせではコストダウンができないため、LED13用にも安価なボンディングワイヤが望まれている。しかし、銅ボンディングワイヤは連続ボンディング性に難があり、Pd表面被覆銅ボンディングワイヤではFABが硬くなるため、チップダメージが発生する恐れがある。また、銅ボンディングワイヤ又はPd表面被覆銅ボンディングワイヤを用いると、ボンディングワイヤ自体の反射率が低いため、ワイヤ部分が影になることからLED13の種類によってはLED13そのものの輝度を低下させることもある。   Furthermore, conventionally, an LED 13 having an electrode a coated with Au is used in an LED package, and a gold bonding wire is used for connection to the electrode a. Since the cost cannot be reduced with this combination using gold, an inexpensive bonding wire is also desired for the LED 13. However, the copper bonding wire has difficulty in continuous bonding, and the Pd surface-coated copper bonding wire has a hard FAB, which may cause chip damage. Further, when a copper bonding wire or a Pd surface-coated copper bonding wire is used, since the bonding wire itself has a low reflectance, the wire portion becomes a shadow, so the brightness of the LED 13 itself may be lowered depending on the type of the LED 13.

また、従来の銀ボンディングワイヤでは、ボールbを形成する際に窒素(N)ガスを吹き付けて不活性雰囲気で放電するのが一般的である。これに対し、特許文献2、3に、Ag(銀)にAl(アルミニウム)もしくはMg(マンガン)を添加することにより、Nガスを吹き付けることなく大気中で放電しても形状のよいボールbを得ることができることが記載されている。
しかし、近年、BGAの半導体パッケージでは、電極aが小さくなり、また、電極a同士の距離も近くなっているので、より安定した真球状のボールbを得る必要があるため、銀ボンディングワイヤにおいても、一般的なNガスを吹き付けて放電する方が好ましくなっている。このNガスを吹き付けて放電した場合、周囲からの酸素の侵入は防ぐことができるが、ワイヤ先端が溶融した際にワイヤ表面の酸化銀から上記添加したAlもしくはMgが酸素を奪い、AlもしくはMgOができる。このとき、AlもしくはMgを多量に含有していると、このAlもしくはMgOがボールb表面に大量に生成してしまい、電極aとの接合の際に硬質なAlもしくはMgOが電極aを損傷する問題がある。
Further, in the conventional silver bonding wire, it is common to discharge in an inert atmosphere by blowing nitrogen (N 2 ) gas when forming the ball b. On the other hand, in Patent Documents 2 and 3, by adding Al (aluminum) or Mg (manganese) to Ag (silver), a ball b having a good shape even if discharged in the air without blowing N 2 gas. It is described that can be obtained.
However, in recent years, in the BGA semiconductor package, since the electrodes a are smaller and the distance between the electrodes a is closer, it is necessary to obtain a more stable true spherical ball b. It is more preferable to discharge by blowing a general N 2 gas. When this N 2 gas is blown to discharge, the intrusion of oxygen from the surroundings can be prevented, but when the wire tip is melted, the added Al or Mg deprives oxygen from the silver oxide on the wire surface, and Al 2 O 3 or MgO can be formed. At this time, if a large amount of Al or Mg is contained, a large amount of this Al 2 O 3 or MgO is generated on the surface of the ball b, and hard Al 2 O 3 or MgO is formed during bonding with the electrode a. Has a problem of damaging the electrode a.

同様に、特許文献4にワイヤ強度や耐熱性を向上させるために、Ca(カルシウム)、Sr(ストロンチウム)、Y(イットリウム)、La(ランタン)、Ce(セリウム)、Eu(ユウロピウム)、Be(ベリリウム)、Ge(ゲルマニウム)、In(インジウム)、Sn(スズ)等の元素を添加することが記載されているが、これらの元素については多量に添加すると、ボールbの硬度が上がって電極aを損傷する問題がある。
また、特許文献4にはワイヤの接合信頼性を高めるために、Pt(白金)、Pd、Cu、Ru(ルテニウム)、Os(オスミウム)、Rh(ロジウム)、Ir(イリジウム)、Auを添加することが記載されている。しかし、このような元素を多量に添加すれば、ワイヤ自体の電気抵抗が上がり、ボンディングワイヤWとしての性能を損なう問題が生じる。すなわち、上述のとおりBGA等の半導体パッケージでは、電極aはより小さく、その電極a間の距離もより近くなっているため、1st接合部を小さくすることが求められている。そのためには、ボンディングワイヤの直径を小さくする必要があるが、ワイヤの電気抵抗が高くなると、ワイヤの直径を小さくすることができなくなる問題がある。また、LED13においては、輝度を上げるために動作電流が高くなってきているが、ワイヤの電気抵抗が高いと発熱の問題が生じ、封止樹脂の寿命を縮める不具合が生じる。
Similarly, in Patent Document 4, in order to improve wire strength and heat resistance, Ca (calcium), Sr (strontium), Y (yttrium), La (lanthanum), Ce (cerium), Eu (europium), Be ( It is described that elements such as beryllium), Ge (germanium), In (indium), and Sn (tin) are added. However, when these elements are added in a large amount, the hardness of the ball b increases and the electrode a Have problems to damage.
In Patent Document 4, Pt (platinum), Pd, Cu, Ru (ruthenium), Os (osmium), Rh (rhodium), Ir (iridium), and Au are added in order to increase the bonding reliability of the wire. It is described. However, if such an element is added in a large amount, the electric resistance of the wire itself is increased, resulting in a problem that the performance as the bonding wire W is impaired. That is, as described above, in a semiconductor package such as a BGA, the electrodes a are smaller and the distance between the electrodes a is closer, so that it is required to reduce the first junction. For this purpose, it is necessary to reduce the diameter of the bonding wire. However, if the electric resistance of the wire increases, there is a problem that the diameter of the wire cannot be reduced. In the LED 13, the operating current is increased to increase the luminance. However, if the electric resistance of the wire is high, a problem of heat generation occurs and a problem of shortening the life of the sealing resin occurs.

さらに、昨今、車載用途を中心にして、半導体パッケージの信頼性評価の基準は厳しくなってきており、特に低温・高温保持を繰り返す耐熱衝撃性についてはその要求が高くなってきたりしている。
上記の銀ワイヤを用いて組み上げた半導体パッケージをより厳しい熱サイクル試験にかけると、基板の反りや樹脂の膨張収縮の影響でワイヤが破断する場合があった。
Furthermore, recently, the standard for reliability evaluation of semiconductor packages has become stricter, mainly for in-vehicle applications, and the demand for thermal shock resistance that repeats holding at low and high temperatures has been increasing.
When a semiconductor package assembled using the above-described silver wire is subjected to a more severe thermal cycle test, the wire may break due to the warpage of the substrate or the expansion and contraction of the resin.

因みに、金ボンディングワイヤとNi/Pd/Au被覆電極a又はAu被覆電極aとの接合であれば、高い耐熱衝撃性は得られるが、材料費が高価になるという問題がある。   Incidentally, if the gold bonding wire is bonded to the Ni / Pd / Au coated electrode a or the Au coated electrode a, high thermal shock resistance can be obtained, but there is a problem that the material cost becomes expensive.

この発明は、以上の実状の下、Ni/Pd/Au被覆電極a又はAu被覆電極aとの接合性がよく、耐熱衝撃性に優れ、金ボンディングワイヤより安価なボンディング用ワイヤとすることを課題とする。   The present invention has an object to provide a bonding wire that has good bonding properties with Ni / Pd / Au coated electrode a or Au coated electrode a, has excellent thermal shock resistance, and is cheaper than a gold bonding wire. And

上記課題を達成するため、この発明は、半導体素子のNi/Pd/Au被覆電極又はAu被覆電極と回路配線基板の導体配線とをボールボンディング法によって接続するためのボンディング用ワイヤにおいて、Pd、Auから選ばれる1種以上の元素を合計で1.0質量%以上、4.0質量%以下、Ca、希土類元素から選ばれる1種以上の元素を合計で20質量ppm以上、500質量ppm以下含み、残部がAgおよび不可避不純物からなり、そのワイヤ(W)の常温での引張強度が18kgf/mm以上32kgf/mm以下、好ましくは18kgf/mm以上25kgf/mm以下とし、ワイヤを250℃炉中で引張試験を行う高温引張試験での引張強度が14kgf/mm以上、より好ましくは15kgf/mm以上とした。このとき、その250℃炉中の高温引張試験は、ワイヤを250℃で20秒間加熱した後、そのまま250℃で行なうことが好ましい。 To achieve the above object, the present invention provides a bonding wire for connecting a Ni / Pd / Au coated electrode of a semiconductor element or an Au coated electrode and a conductor wiring of a circuit wiring board by a ball bonding method. One or more elements selected from the group consisting of 1.0% by mass or more and 4.0% by mass or less, including one or more elements selected from Ca and rare earth elements in total of 20 mass ppm or more and 500 mass ppm or less. The balance is made of Ag and inevitable impurities, and the tensile strength of the wire (W) at room temperature is 18 kgf / mm 2 or more and 32 kgf / mm 2 or less, preferably 18 kgf / mm 2 or more and 25 kgf / mm 2 or less. tensile strength at high temperature tensile test of performing a tensile test at ℃ oven is 14 kgf / mm 2 or more, more preferably 15 kgf / mm 2 or more It was. At this time, the high-temperature tensile test in the 250 ° C. furnace is preferably performed at 250 ° C. as it is after heating the wire at 250 ° C. for 20 seconds.

Agを主体とするボンディングワイヤは、Auを主体とするボンディングワイヤに比べれば、安価なものとし得る。
因みに、Agを主体とするボンディングワイヤは、Ni/Pd/Au被覆電極又はAu被覆電極との接合箇所の耐食性は高いが、Al電極との接合箇所は耐食性が低い。
The bonding wire mainly composed of Ag can be made cheaper than the bonding wire mainly composed of Au.
Incidentally, the bonding wire mainly composed of Ag has high corrosion resistance at the joint portion with the Ni / Pd / Au coated electrode or Au coated electrode, but the joint portion with the Al electrode has low corrosion resistance.

Pd、Auから選ばれる1種以上の元素は、耐食性及び良好な電気特性を得るために添加する。Pd、Auから選ばれる1種以上の元素が1.0質量%未満であると、ワイヤの耐硫化性が問題になることがあり、大気中もしくは封止樹脂中に硫化を促進する物質(硫化水素等)が存在すると、ワイヤ表面に硫化銀が生成することで、接続部の信頼性が低下する。
一方、4.0質量%を超えた量を添加すると、ワイヤの電気抵抗が高くなりすぎるため、ワイヤの直径を小さくすることが難しくなる。
One or more elements selected from Pd and Au are added in order to obtain corrosion resistance and good electrical characteristics. If at least one element selected from Pd and Au is less than 1.0% by mass, the resistance to sulfidation of the wire may become a problem, and a substance that promotes sulfidation in the atmosphere or in the sealing resin (sulfurization) When hydrogen or the like is present, silver sulfide is generated on the surface of the wire, thereby reducing the reliability of the connection portion.
On the other hand, if an amount exceeding 4.0% by mass is added, the electric resistance of the wire becomes too high, and it becomes difficult to reduce the diameter of the wire.

Ca、希土類元素から選ばれる1種以上の元素は、ワイヤ強度や耐熱性を向上させるために添加するが、20質量ppm未満であると、そのワイヤの耐熱性が低くなって実用上の問題が生じる。また、500質量ppmを超えて添加すると、ボールbの硬度が高くなり、1st接合時に電極aが損傷する。よって、Ca、希土類元素から選ばれる1種以上の元素の合計添加量は20質量ppm以上500質量ppm以下とする。また、より好ましくは20質量ppm以上100質量ppm以下であり、この範囲であれば、ワイヤの耐熱性が高く、1st接合時の電極aの損傷の度合いもより低く抑えることができる。
ここで、希土類元素は入手性に難があるため、Caの添加が最も好ましい。
One or more elements selected from Ca and rare earth elements are added in order to improve wire strength and heat resistance. However, if the content is less than 20 ppm by mass, the heat resistance of the wire is lowered and there is a practical problem. Arise. Moreover, when added exceeding 500 mass ppm, the hardness of the ball | bowl b will become high and the electrode a will be damaged at the time of 1st joining. Therefore, the total addition amount of at least one element selected from Ca and rare earth elements is 20 mass ppm or more and 500 mass ppm or less. More preferably, it is 20 mass ppm or more and 100 mass ppm or less, and if it is this range, the heat resistance of a wire is high and the damage degree of the electrode a at the time of 1st joining can also be restrained lower.
Here, since rare earth elements are difficult to obtain, addition of Ca is most preferable.

このワイヤWの線径はボンディングワイヤとして使用し得れば任意であるが、例えば、12μm以上50.8μm以下とする。50.8μm以下とすると溶融ボールbをより小さくでき、12μm未満であると、ボンディング前にオペレータがワイヤWをキャピラリー10aに通すのが困難になり、作業性が悪くなるうえに、空気圧によりワイヤに十分な張力をかけることができなくなり、ループ制御が困難になる恐れがある。   The wire diameter of the wire W is arbitrary as long as it can be used as a bonding wire. If it is 50.8 μm or less, the molten ball b can be made smaller, and if it is less than 12 μm, it becomes difficult for an operator to pass the wire W through the capillary 10a before bonding, workability is deteriorated, and air pressure is applied to the wire by air pressure. Sufficient tension cannot be applied, and loop control may be difficult.

上述のボンディングワイヤWの製造方法には種々のものが採用できるが、例えば、純度99.99質量%以上のAgにPd、Auから選ばれる1種以上の元素を1.0〜4.0質量%、Ca、希土類から選ばれる1種以上の元素を合計で20〜500質量ppm添加し、連続鋳造法で大きな線径のその化学組成のロッドを作製し、線径50.8μm以下までダイスに順次貫通させていくことにより、所定の線径に伸線する。その後、ワイヤWに調質熱処理を施す。   Various methods can be adopted as the method for manufacturing the bonding wire W. For example, Ag having a purity of 99.99% by mass or more contains 1.0 to 4.0% by mass of one or more elements selected from Pd and Au. %, Ca, and one or more elements selected from rare earths are added in a total of 20 to 500 ppm by mass, and a rod having the chemical composition with a large wire diameter is produced by a continuous casting method, and the wire diameter is reduced to 50.8 μm or less. By sequentially penetrating, the wire is drawn to a predetermined wire diameter. Thereafter, the wire W is subjected to a tempering heat treatment.

その調質熱処理は、所定の線径まで伸線を行いリールに巻きとられたワイヤWを、巻き戻して管状の熱処理炉中に走行させ、再び巻き取りリールで巻き取ることによって連続熱処理を行う。管状の熱処理炉中にはNガスもしくはNに微量の水素を混合させたガスを流す。また、その炉温度は350℃以上600℃以下として、ワイヤ走行速度は30〜90m/分で熱処理を行う。このとき、例えば、炉長:50cmであれば、ワイヤ走行速度:30〜90m/分の場合、調質熱処理時間は0.33〜1秒となる。 The tempering heat treatment is a continuous heat treatment by drawing the wire W to a predetermined wire diameter and winding the wire W around the reel, running it in a tubular heat treatment furnace, and winding it again with a take-up reel. . In the tubular heat treatment furnace, N 2 gas or a gas obtained by mixing a small amount of hydrogen with N 2 is allowed to flow. The furnace temperature is 350 ° C. or more and 600 ° C. or less, and the heat treatment is performed at a wire traveling speed of 30 to 90 m / min. At this time, for example, if the furnace length is 50 cm, the tempering heat treatment time is 0.33 to 1 second when the wire traveling speed is 30 to 90 m / min.

ボンディングワイヤWの「常温引張強度」は、15〜25℃の室温中で長さ100mmの試料を引張試験し、ワイヤWの破断した荷重を断面積で除した値を示す。
また、ボンディングワイヤWの「高温引張強度」は長さ100mmの試料を250℃の炉中で加熱し、その後250℃の炉中で引張試験し、ワイヤWの破断した荷重を断面積で除した値を示す。
ここで、常温引張強度が18kgf/mm未満であるとワイヤ強度が不足して、ワイヤボンディング後の樹脂封止の際に流入してきた樹脂によってワイヤループが変形するワイヤフローが発生する。また、32kgf/mmを超えると、2nd接合性が悪くなり、マシンストップの原因となる。さらに好ましくは、25kgf/mm以下であると、2nd接合性が高く、ステージ温度が150℃のような低温設定でも安定した生産が可能になる。
また、高温引張強度が14kgf/mm未満であると、樹脂封止後の製品を熱サイクル試験に曝した時の寿命に問題が生じるが、より好ましくは15kgf/mm以上であるとより高い熱サイクル特性が得られる。
The “room temperature tensile strength” of the bonding wire W is a value obtained by subjecting a sample having a length of 100 mm to a tensile test at room temperature of 15 to 25 ° C. and dividing the broken load of the wire W by the cross-sectional area.
The “high temperature tensile strength” of the bonding wire W is a sample having a length of 100 mm heated in a furnace at 250 ° C. and then subjected to a tensile test in a furnace at 250 ° C., and the broken load of the wire W is divided by the cross-sectional area. Indicates the value.
Here, if the room temperature tensile strength is less than 18 kgf / mm 2 , the wire strength is insufficient, and a wire flow is generated in which the wire loop is deformed by the resin flowing in during resin sealing after wire bonding. Moreover, when it exceeds 32 kgf / mm < 2 >, 2nd bondability will worsen and will cause a machine stop. More preferably, if it is 25 kgf / mm 2 or less, 2nd bondability is high, and stable production is possible even at a low temperature setting such as a stage temperature of 150 ° C.
Further, if the high-temperature tensile strength is less than 14 kgf / mm 2 , there is a problem in the life when the product after resin sealing is exposed to a thermal cycle test, but it is more preferably 15 kgf / mm 2 or more. Thermal cycling characteristics are obtained.

なお、調質熱処理において、炉温度を350℃以上600℃以下、ワイヤ走行速度を30〜90m/分としたのは、その熱処理温度とワイヤ走行速度の範囲内であると、上記Pd、Au:1.0〜4.0質量%等の化学組成のワイヤWにおいて、常温引張強度が18〜32kgf/mm、高温引張強度が14kgf/mm以上となるように調整することができたからである。 In the tempering heat treatment, the furnace temperature was set to 350 ° C. or more and 600 ° C. or less, and the wire traveling speed was set to 30 to 90 m / min. This is because the wire W having a chemical composition such as 1.0 to 4.0% by mass can be adjusted so that the normal temperature tensile strength is 18 to 32 kgf / mm 2 and the high temperature tensile strength is 14 kgf / mm 2 or more. .

この発明は、以上のようにAgを主体としたので、Auを主体としたボンディングワイヤに比べれば、安価なものとし得て、かつ、Pd、Au、Ca、希土類元素の適量の添加によって、適度な強度のワイヤとなってNi/Pd/Au被覆電極又はAu電極との接合性が良いものとすることができる。   Since the present invention is mainly composed of Ag as described above, it can be made cheaper than bonding wires mainly composed of Au, and can be appropriately added by adding appropriate amounts of Pd, Au, Ca, and rare earth elements. It becomes a wire of sufficient strength and can have good bondability with the Ni / Pd / Au coated electrode or Au electrode.

半導体パッケージの概略図Schematic diagram of semiconductor package LEDパッケージの概略図Schematic diagram of LED package ボールボンディング法の説明図であり、(a)〜(h)はその途中図It is explanatory drawing of a ball bonding method, (a)-(h) is the middle figure

純度が99.99質量%以上(4N)の高純度Agを用いて、表1に示す化学成分の銀合金を鋳造し、8mmφのワイヤロッドを作成した。そのワイヤロッドを伸線加工し所定の最終線径(12〜50μmφ)の銀合金線とし、窒素雰囲気中で種々の加熱温度・加熱時間にて連続焼鈍した。その連続焼鈍による調質熱処理は、炉長:50cmの炉において、その炉温度を350℃以上600℃以下、ワイヤ走行速度を30〜90m/分で行なった。なお、化学成分の定量はICP−OES(高周波誘導結合プラズマ発光分光分析法)により行った。   A silver alloy having a chemical composition shown in Table 1 was cast using high-purity Ag having a purity of 99.99% by mass or more (4N) to prepare an 8 mmφ wire rod. The wire rod was drawn into a silver alloy wire having a predetermined final wire diameter (12 to 50 μmφ) and continuously annealed at various heating temperatures and heating times in a nitrogen atmosphere. The tempering heat treatment by the continuous annealing was performed in a furnace having a furnace length of 50 cm at a furnace temperature of 350 ° C. or more and 600 ° C. or less and a wire traveling speed of 30 to 90 m / min. The chemical components were quantified by ICP-OES (high frequency inductively coupled plasma emission spectroscopy).

その連続焼鈍した各ワイヤWを15〜25℃の常温で引張試験を行なって常温引張強度(kgf/mm)を測定した。その引張試験は試料長さ:100mmのワイヤWを引張速度10m/分の速度で引張り、破断に至る時の破断荷重を測定し、その破断荷重/断面積として算出した。表1においては、その常温引張強度を「常温破断荷重」としている。
また、250℃での引張強度についてはワイヤWを250℃の炉中で20秒間加熱し、そのまま250℃に保持した状態で引張速度10m/分の速度で引張り、破断に至る時の破断荷重を測定し、その破断荷重/断面積として算出した。表1においては、その引張強度を「高温破断荷重」としている。
Each of the continuously annealed wires W was subjected to a tensile test at a room temperature of 15 to 25 ° C. to measure a room temperature tensile strength (kgf / mm 2 ). In the tensile test, a wire W having a sample length of 100 mm was pulled at a tensile speed of 10 m / min, the breaking load at the time of breaking was measured, and the breaking load / cross-sectional area was calculated. In Table 1, the room temperature tensile strength is “room temperature breaking load”.
As for the tensile strength at 250 ° C., the wire W was heated in a furnace at 250 ° C. for 20 seconds, and kept at 250 ° C. as it was, pulled at a rate of 10 m / min. Measured and calculated as the breaking load / cross-sectional area. In Table 1, the tensile strength is “high temperature breaking load”.

Figure 2014096403
Figure 2014096403

この各実施例及び各比較例に対し、それぞれ下記の試験を行った。
『評価項目』
各ワイヤWについて、自動ワイヤボンダで、図3に示すボールボンディング法による接続を行った。すなわち、放電棒gによるアーク放電によりワイヤW先端にFAB(ボールb)を作製し、それを半導体素子(チップ)5、13上のNi/Pd/Au被覆電極a又はAu被覆電極aに接合し、ワイヤ他端をリード端子(導体配線)cに接合した(図1、図2参照)。なお、FAB作製時にはワイヤW先端部に窒素(N)ガスを流しながらアーク放電を行った。リード端子cにはAg被覆42%Ni−Fe合金を使用した。
評価に用いたボンディング試料における連続ボンディング性、熱サイクル試験、1st接合部のチップ損傷、電気抵抗、樹脂封止時のワイヤフロー、ワイヤの耐硫化性及び総合評価を表2に示す。それらの評価方法等は以下の通りである。
The following tests were performed on each of the examples and comparative examples.
"Evaluation item"
About each wire W, the connection by the ball bonding method shown in FIG. 3 was performed with the automatic wire bonder. That is, an FAB (ball b) is produced at the tip of the wire W by arc discharge with the discharge rod g, and is bonded to the Ni / Pd / Au coated electrode a or the Au coated electrode a on the semiconductor elements (chips) 5 and 13. The other end of the wire was joined to a lead terminal (conductor wiring) c (see FIGS. 1 and 2). In addition, at the time of FAB production, arc discharge was performed while flowing nitrogen (N 2 ) gas at the tip of the wire W. For the lead terminal c, an Ag-coated 42% Ni—Fe alloy was used.
Table 2 shows the continuous bonding property, thermal cycle test, chip damage at the first joint, electrical resistance, wire flow during resin sealing, sulfidation resistance of the wire, and overall evaluation in the bonding sample used for the evaluation. Their evaluation methods are as follows.

『評価方法』
(1)「連続ボンディング性」
ボンディングマシンで10,000回の連続ボンディングを行い、マシンストップが発生しなければ「A」、1回のマシンストップが発生すれば「B」、2回以上のマシンストップが起これば「D」とした。このとき、ステージ温度が低くなれば、その連続ボンディングが困難になることから、175℃(±5℃)、150℃(±5℃)の2水準で行った。
"Evaluation method"
(1) “Continuous bonding”
Bonding machine performs 10,000 continuous bonding, "A" if no machine stop occurs, "B" if one machine stop occurs, "D" if more than one machine stop occurs It was. At this time, if the stage temperature is lowered, the continuous bonding becomes difficult. Therefore, it was performed at two levels of 175 ° C. (± 5 ° C.) and 150 ° C. (± 5 ° C.).

(2)「熱サイクル試験」
ボンディングを行った後、樹脂封止をした半導体試料を市販の熱サイクル試験装置を用いて評価した。温度履歴は−40℃/30分〜125℃/30分を1サイクルとして、1000サイクルの試験を行った。試験後に電気的測定を行い、導通評価をした。評価したワイヤ数は500本であり、不良率が0の場合は熱サイクルへの耐性が高いことから「A」、不良率が1%以下の場合は「B」、1%を超える場合は耐性が低いことから「D」とした。
(2) “Thermal cycle test”
After bonding, the resin-sealed semiconductor sample was evaluated using a commercially available thermal cycle test apparatus. The temperature history was 1000 cycles, with -40 ° C / 30 minutes to 125 ° C / 30 minutes as one cycle. Electrical tests were performed after the test to evaluate continuity. The number of wires evaluated is 500, and when the defect rate is 0, the resistance to the thermal cycle is high, so “A”, when the defect rate is 1% or less, “B”, when it exceeds 1%, it is resistant Is “D” because of low.

(3)「ボンディング後、1st接合部直下のチップ損傷の評価」
1st接合部および電極膜を王水で溶解し、半導体素子5、13のクラックを光学顕微鏡と走査型電子顕微鏡(SEM)で観察した。100個の接合部を観察して3μm未満の微小なピットが1個もしくはまったく見られない場合は「A」、3μm以上のクラックが2個以上5個未満認められた場合は使用上問題はないと考えて「B」、3μm以上のクラックが5個以上認められた場合は「D」とした。
(3) “Evaluation of chip damage immediately after first bonding after bonding”
The 1st junction and the electrode film were dissolved with aqua regia, and the cracks of the semiconductor elements 5 and 13 were observed with an optical microscope and a scanning electron microscope (SEM). When 100 or less joints are observed and one or less minute pits of less than 3 μm are not found, “A”, and when 2 to 5 cracks of 3 μm or more are recognized, there is no problem in use. “B”, and when 5 or more cracks of 3 μm or more were observed, “D” was assigned.

(4)「電気抵抗」
4端子法を用いて室温での電気抵抗を測定した。3試料の固有抵抗の平均が4.0μΩ・cm以下であれば「A」、4.0μΩ・cmを超えれば「D」とした。
(4) “Electric resistance”
The electric resistance at room temperature was measured using a four-terminal method. If the average of the resistivity of the three samples was 4.0 μΩ · cm or less, “A” was given, and if it exceeded 4.0 μΩ · cm, “D” was given.

(5)「樹脂封止時のワイヤフローの評価」
ワイヤ長:5mmのボンディング試料をエポキシ樹脂で封止した後で、X線非破壊観察装置にて最大ワイヤフロー量を測定した。測定は20本行い、その平均値をワイヤ長5mmで除した割合をワイヤフロー率とした。このワイヤフロー率が7%未満なら「A」、7%以上では実用上の問題があると考えて評価を「D」とした。
(5) "Evaluation of wire flow during resin sealing"
Wire length: After a 5 mm bonding sample was sealed with an epoxy resin, the maximum wire flow amount was measured with an X-ray non-destructive observation apparatus. Twenty measurements were made, and the ratio of the average value divided by the wire length of 5 mm was taken as the wire flow rate. When the wire flow rate was less than 7%, “A” was evaluated, and when the wire flow rate was 7% or more, there was a practical problem, and the evaluation was “D”.

(6)「ワイヤの耐硫化性」
容器中で5%硫化アンモニウム溶液を60℃に加熱し、気化させた環境下にワイヤサンプルを放置し、5分間経過後の表面分析をオージェ分光分析法(AES)で測定した。
オージェ分光分析法はArイオンで深さ方向に単位時間のスパッタを行い、その都度硫黄濃度を測定していき、最外層の硫黄濃度の1/2の濃度になったところまでを硫化層の厚みとした。厚さの換算には一般的なSiO換算を用いた。ここで、硫化層の厚みが200Å以下なら「A」、200Åを超えると実用上の問題があると考えて評価を「D」とした。
(6) “Sulfur resistance of wire”
A 5% ammonium sulfide solution was heated to 60 ° C. in a container, and the wire sample was left in a vaporized environment, and surface analysis after 5 minutes was measured by Auger spectroscopy (AES).
Auger spectroscopic analysis is performed by sputtering with Ar ions in the depth direction for a unit time, and the sulfur concentration is measured each time, and the thickness of the sulfide layer is reached until it reaches half the sulfur concentration of the outermost layer. It was. For the conversion of thickness, general SiO 2 conversion was used. Here, when the thickness of the sulfide layer was 200 mm or less, “A” was evaluated, and when it exceeded 200 mm, there was a practical problem, and the evaluation was set to “D”.

「総合評価」
各評価において、すべてが「A」であるものを「A」、「A」と「B」が混在するものを「B」、一つでも「D」があるものは「D」とした。
"Comprehensive evaluation"
In each evaluation, “A” indicates that all are “A”, “B” indicates that “A” and “B” are mixed, and “D” indicates that there is at least “D”.

Figure 2014096403
Figure 2014096403

この表1、2において、Ca、Y、Sm、La、Ceから選ばれる1種以上の元素の合計が500質量ppmを超えると、比較例8、10からFAB表面に析出物の生成が確認され、1st接合部のチップ損傷が発生するために「1st接合部のチップ損傷」が「D」となり、総合評価でも「D」となっている。一方、これらの元素合計が20質量%ppm未満であると、比較例5、6、9から、耐熱性が低くなり、熱サイクル試験で「D」となって総合評価で「D」となっている。   In Tables 1 and 2, when the total of one or more elements selected from Ca, Y, Sm, La, and Ce exceeds 500 ppm by mass, the formation of precipitates on the FAB surface was confirmed from Comparative Examples 8 and 10. Since chip damage at the 1st joint occurs, “Chip damage at 1st joint” becomes “D”, and “D” also in the overall evaluation. On the other hand, if the total of these elements is less than 20 mass% ppm, the heat resistance is reduced from Comparative Examples 5, 6, and 9, and becomes “D” in the thermal cycle test and becomes “D” in the comprehensive evaluation. Yes.

また、Pd、Auの合計が1.0質量%未満であると、比較例1から、ワイヤの耐硫化性において「D」、4.0質量%を超えると、比較例8〜10から、電気抵抗の評価において「D」となって、共に、総合評価で「D」となっている。   When the total of Pd and Au is less than 1.0% by mass, Comparative Example 1 indicates that the wire has a resistance to sulfidation of “D” and when 4.0% by mass is exceeded, Comparative Examples 8 to 10 indicate that In the evaluation of resistance, it is “D”, and both are “D” in the overall evaluation.

さらに、常温での引張強度(常温破断荷重)が18kgf/mm未満であると、比較例1、4、7から、樹脂封止時のワイヤフローの評価において「D」となって総合評価で「D」となっている。一方、32kgf/mmを超えると、比較例8〜10から、2nd接合性が悪化するため、連続ボンディング性が「D」となって総合評価で「D」となっている。
また、250℃炉中で試験を行う引張試験での引張強度(高温破断荷重)が14kgf/mm未満であると、比較例2、3、5、6、9から、熱サイクルへの耐性が低く、熱サイクル試験で「D」となって総合評価で「D」となっている。
Furthermore, when the tensile strength at normal temperature (room temperature breaking load) is less than 18 kgf / mm 2 , from Comparative Examples 1, 4, and 7, the evaluation of wire flow at the time of resin sealing becomes “D”, which is a comprehensive evaluation. “D”. On the other hand, if it exceeds 32 kgf / mm 2 , the 2nd bondability deteriorates from Comparative Examples 8 to 10, and the continuous bondability becomes “D”, which is “D” in the comprehensive evaluation.
Further, when the tensile strength (high temperature breaking load) in the tensile test in which the test is performed in a 250 ° C. furnace is less than 14 kgf / mm 2 , the resistance to thermal cycle is obtained from Comparative Examples 2, 3, 5, 6, and 9. Low, “D” in the thermal cycle test and “D” in the overall evaluation.

これに対し、各実施例1〜10は、いずれも、Pd、Auの合計が1.0〜4.0質量%、Ca、Y、Sm、La、Ceから選ばれる1種以上の元素の合計が20質量ppm以上、500質量ppm以下含み、常温での引張強度が18〜32kgf/mm、250℃炉中で試験を行う引張試験での引張強度が14kgf/mm以上であることから、連続ボンディング性、熱サイクル試験、1st接合部直下のチップ損傷の評価、電気抵抗、樹脂封止時のワイヤフローの評価、ワイヤの耐硫化性の各評価において、「A」又は「B」を得ており、総合評価においては、「B」以上を得て、実用上問題ないことがわかる。 On the other hand, in each of Examples 1 to 10, the total of Pd and Au is 1.0 to 4.0% by mass, and the total of one or more elements selected from Ca, Y, Sm, La, and Ce. since but 20 mass ppm or more, including 500 mass ppm or less, and the tensile strength at tensile test tensile strength at room temperature is carried out a test in 18~32kgf / mm 2, 250 ℃ oven is 14 kgf / mm 2 or more, Obtain "A" or "B" in continuous bonding, thermal cycle test, evaluation of chip damage just below the 1st junction, electrical resistance, evaluation of wire flow during resin sealing, and evaluation of sulfidation resistance of wires. In the comprehensive evaluation, “B” or more is obtained, and it is understood that there is no practical problem.

また、Ca、Y、Sm、La、Ceから選ばれる1種以上の元素を含み、その合計が100質量ppm以下であれば、実施例1〜3、5〜7、9、比較例1〜3、6、7、9から、1st接合部直下のチップ損傷の評価において「A」となり、高い信頼性を有することが理解できる。さらに、常温での引張強度が18〜25kgf/mmであると、実施例1、2、5〜7、比較例2、3、5、6から、150℃における連続ボンディング性評価において「A」となり、低いステージ温度での良好な作業性を得られることが理解できる。また、250℃炉中での引張強度が15kgf/mm以上であると、実施例2、4、5、7、9、10、比較例1、7、8、10から、熱サイクル試験において「A」となっている。 Moreover, if it contains 1 or more types of elements chosen from Ca, Y, Sm, La, and Ce and the sum total is 100 mass ppm or less, Examples 1-3, 5-7, 9, and Comparative Examples 1-3 , 6, 7, and 9 are “A” in the evaluation of chip damage immediately below the 1st junction, and it can be understood that the chip has high reliability. Furthermore, when the tensile strength at room temperature is 18 to 25 kgf / mm 2 , “A” in continuous bonding property evaluation at 150 ° C. from Examples 1, 2, 5 to 7 and Comparative Examples 2, 3, 5, and 6. Thus, it can be understood that good workability at a low stage temperature can be obtained. Further, when the tensile strength in a 250 ° C. furnace is 15 kgf / mm 2 or more, from Examples 2, 4, 5, 7, 9, 10, and Comparative Examples 1, 7, 8, 10, A ”.

以上から、Pd、Auから選ばれる1種以上の元素を合計で1.0質量%以上、4.0質量%以下、Ca、希土類元素から選ばれる1種以上の元素を合計で20質量ppm以上、500質量ppm以下含み、残部がAgおよび不可避不純物からなり、ワイヤWの常温での引張強度が18〜32kgf/mmであり、ワイヤを250℃の炉中で20秒間加熱した後、そのまま250℃炉中で試験を行う引張試験での引張強度が14kgf/mm以上であると、連続ボンディング性、熱サイクル試験、1st接合部直下のチップ損傷の評価、電気抵抗、樹脂封止時のワイヤフローの評価、ワイヤの耐硫化性の各評価において、実用上問題ないものとなり、また、そのCa、希土類元素から選ばれる1種以上の元素の含有量が20質量ppm以上、100質量ppm以下であると、1st接合部直下のチップ損傷の評価において「A」となって高い信頼性を有するものとなり、常温での引張強度が18〜25kgf/mmであると、150℃における連続ボンディング性評価において「A」となり、良好な作業性を得られるものとなり、さらに、250℃炉中での引張強度が15kgf/mm以上であると、熱サイクルへの耐性が高いものとなる。 From the above, one or more elements selected from Pd and Au in total are 1.0 mass% or more and 4.0 mass% or less, and one or more elements selected from Ca and rare earth elements are total 20 mass ppm or more. , 500 ppm by mass or less, the balance is made of Ag and inevitable impurities, the tensile strength of the wire W at room temperature is 18 to 32 kgf / mm 2 , and the wire is heated as it is for 20 seconds in a furnace at 250 ° C. When the tensile strength in a tensile test conducted in a furnace at 14 ° C. is 14 kgf / mm 2 or more, continuous bonding property, thermal cycle test, evaluation of chip damage immediately below the 1st joint, electrical resistance, wire during resin sealing In each evaluation of flow and sulfidation resistance of the wire, there is no practical problem, and the content of one or more elements selected from Ca and rare earth elements is 20 mass ppm. On, if it is 100 mass ppm or less, it becomes to have high reliability is "A" in the evaluation of the chip damage just below 1st junction, the tensile strength at room temperature is at 18~25kgf / mm 2, In continuous bondability evaluation at 150 ° C., “A” is obtained, and good workability can be obtained. Further, when the tensile strength in a 250 ° C. furnace is 15 kgf / mm 2 or more, resistance to thermal cycle is high. It will be a thing.

3、15 回路配線基板
5 半導体素子
13 LED
W ボンディング用ワイヤ
a 半導体素子(LED)の電極
b 溶融ボール
b’ 圧着ボール
c 回路配線基板の導体配線(リード端子)
3, 15 Circuit wiring board 5 Semiconductor element 13 LED
W Bonding wire a Semiconductor element (LED) electrode b Molten ball b ′ Crimp ball c Circuit wiring board conductor wiring (lead terminal)

Claims (4)

半導体素子(5、13)のNi/Pd/Au被覆電極(a)又はAu被覆電極(a)と回路配線基板(3、15)の導体配線(c)とをボールボンディング法によって接続するためのボンディング用ワイヤ(W)であって、
Pd、Auから選ばれる1種以上の元素を合計で1.0質量%以上、4.0質量%以下、Ca、希土類元素から選ばれる1種以上の元素を合計で20質量ppm以上、500質量ppm以下含み、
残部がAgおよび不可避不純物からなり、
そのワイヤ(W)の常温での引張強度が18〜32kgf/mmであり、ワイヤを250℃の炉中で加熱した後、そのまま250℃炉中で試験を行う引張試験での引張強度が14kgf/mm以上であることを特徴とするボンディング用ワイヤ。
For connecting the Ni / Pd / Au coated electrode (a) or the Au coated electrode (a) of the semiconductor element (5, 13) and the conductor wiring (c) of the circuit wiring board (3, 15) by a ball bonding method. A bonding wire (W),
A total of one or more elements selected from Pd and Au is 1.0% by mass or more and 4.0% by mass or less, and a total of one or more elements selected from Ca and rare earth elements is 20% by mass or more and 500% by mass. Contains ppm or less,
The balance consists of Ag and inevitable impurities,
The wire (W) has a tensile strength at room temperature of 18 to 32 kgf / mm 2 , and after heating the wire in a 250 ° C. furnace, the tensile strength in a tensile test in which the test is performed in a 250 ° C. furnace is 14 kgf. / Mm 2 or more of bonding wire,
上記ワイヤ(W)のCa、希土類元素から選ばれる1種以上の元素の含有量が20質量ppm以上、100質量ppm以下であることを特徴とする請求項1に記載のボンディング用ワイヤ。   2. The bonding wire according to claim 1, wherein the content of one or more elements selected from Ca and rare earth elements in the wire (W) is 20 mass ppm or more and 100 mass ppm or less. 上記ワイヤ(W)の常温での引張強度が18〜25kgf/mmであることを特徴とする請求項1または2に記載のボンディング用ワイヤ。 The bonding wire according to claim 1 or 2, wherein the wire (W) has a tensile strength at room temperature of 18 to 25 kgf / mm 2 . 上記ワイヤ(W)の250℃炉中での引張強度が15kgf/mm以上であることを特徴とする請求項1〜3のいずれか1項に記載のボンディング用ワイヤ。 The bonding wire according to any one of claims 1 to 3, wherein the wire (W) has a tensile strength in a furnace at 250 ° C of 15 kgf / mm 2 or more.
JP2012245424A 2012-11-07 2012-11-07 Bonding wire Active JP5671512B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012245424A JP5671512B2 (en) 2012-11-07 2012-11-07 Bonding wire
PCT/JP2013/079980 WO2014073555A1 (en) 2012-11-07 2013-11-06 Bonding wire
KR1020157014935A KR101905942B1 (en) 2012-11-07 2013-11-06 Bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012245424A JP5671512B2 (en) 2012-11-07 2012-11-07 Bonding wire

Publications (3)

Publication Number Publication Date
JP2014096403A true JP2014096403A (en) 2014-05-22
JP2014096403A5 JP2014096403A5 (en) 2014-11-13
JP5671512B2 JP5671512B2 (en) 2015-02-18

Family

ID=50684657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012245424A Active JP5671512B2 (en) 2012-11-07 2012-11-07 Bonding wire

Country Status (3)

Country Link
JP (1) JP5671512B2 (en)
KR (1) KR101905942B1 (en)
WO (1) WO2014073555A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025114A (en) * 2014-07-16 2016-02-08 タツタ電線株式会社 Bonding wire
WO2017154453A1 (en) * 2016-03-11 2017-09-14 タツタ電線株式会社 Bonding wire
WO2024014268A1 (en) * 2022-07-14 2024-01-18 田中電子工業株式会社 Bonding wire for light-emitting diode (led) and manufacturing method for bonding wire for led

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104593634B (en) * 2014-12-31 2016-11-02 北京达博有色金属焊料有限责任公司 A kind of chemical gilding palladium bonding Silver alloy wire and preparation method thereof
CN109983544A (en) * 2017-03-23 2019-07-05 积水化学工业株式会社 Electroconductive particle, conductive material and connection structural bodies
CN109182826B (en) * 2018-09-18 2021-05-04 重庆材料研究院有限公司 High-strength-toughness low-resistivity silver-gold alloy bonding wire
CN110699569A (en) * 2019-09-18 2020-01-17 广东佳博电子科技有限公司 Bonded silver wire material with stably distributed crystal grains and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288962A (en) * 1998-04-01 1999-10-19 Sumitomo Metal Mining Co Ltd Bonding wire
JP2003059964A (en) * 2001-08-10 2003-02-28 Tanaka Electronics Ind Co Ltd Bonding wire and manufacturing method therefor
JP2012151350A (en) * 2011-01-20 2012-08-09 Tatsuta Electric Wire & Cable Co Ltd Ball bonding wire
JP2012182205A (en) * 2011-02-28 2012-09-20 Tatsuta Electric Wire & Cable Co Ltd Bonding wire and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821395C2 (en) * 1998-05-13 2000-06-29 Heraeus Gmbh W C Use of a fine wire made of a nickel-containing gold alloy
JP5996853B2 (en) * 2011-08-29 2016-09-21 タツタ電線株式会社 Ball bonding wire
JP6103806B2 (en) * 2011-12-26 2017-03-29 タツタ電線株式会社 Ball bonding wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288962A (en) * 1998-04-01 1999-10-19 Sumitomo Metal Mining Co Ltd Bonding wire
JP2003059964A (en) * 2001-08-10 2003-02-28 Tanaka Electronics Ind Co Ltd Bonding wire and manufacturing method therefor
JP2012151350A (en) * 2011-01-20 2012-08-09 Tatsuta Electric Wire & Cable Co Ltd Ball bonding wire
JP2012182205A (en) * 2011-02-28 2012-09-20 Tatsuta Electric Wire & Cable Co Ltd Bonding wire and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025114A (en) * 2014-07-16 2016-02-08 タツタ電線株式会社 Bonding wire
WO2017154453A1 (en) * 2016-03-11 2017-09-14 タツタ電線株式会社 Bonding wire
JPWO2017154453A1 (en) * 2016-03-11 2018-08-09 タツタ電線株式会社 Bonding wire
KR20180123472A (en) 2016-03-11 2018-11-16 타츠타 전선 주식회사 Bonding wire
KR102455208B1 (en) 2016-03-11 2022-10-14 타츠타 전선 주식회사 bonding wire
WO2024014268A1 (en) * 2022-07-14 2024-01-18 田中電子工業株式会社 Bonding wire for light-emitting diode (led) and manufacturing method for bonding wire for led

Also Published As

Publication number Publication date
WO2014073555A1 (en) 2014-05-15
JP5671512B2 (en) 2015-02-18
KR101905942B1 (en) 2018-10-08
KR20150082518A (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5671512B2 (en) Bonding wire
KR101536554B1 (en) Bonding wire
TWI428455B (en) Silver-gold-palladium ternary alloy bonding wire
KR101707244B1 (en) Bonding wire for semiconductor
JP5064577B2 (en) Ball bonding wire
WO2013018238A1 (en) Ball bonding wire
WO2010087053A1 (en) Bonding wire
JP4637256B1 (en) Bonding wire for semiconductor
JP5497360B2 (en) Bonding wire for semiconductor
JP2010245390A (en) Bonding wire
JP6103806B2 (en) Ball bonding wire
JP4726206B2 (en) Gold alloy wire for bonding wire with high initial bondability, high bond reliability, high roundness of crimped ball, high straightness, high resin flow resistance and low specific resistance
JP5996853B2 (en) Ball bonding wire
JP6343197B2 (en) Bonding wire
JPH10326803A (en) Gold and silver alloy thin wire for semiconductor element
JP4860004B1 (en) Bonding wire and manufacturing method thereof
WO2006134824A1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property and high resin flow resistance
WO2018180189A1 (en) Bonding wire and semiconductor device
JP7542583B2 (en) Bonding wire and semiconductor device
JP2011155129A (en) Gold alloy bonding wire for high temperature semiconductor device
JP2013042105A (en) Bonding wire
CN115398607A (en) Jin Beifu bonding wire, method for manufacturing the same, semiconductor wire bonding structure, and semiconductor device
Cao et al. Effect of Pd thickness on bonding reliability of Pd coated copper wire
JP2008038201A (en) Gold alloy wire for bonding wire having high initial bondability, high bonding reliability, high circularity of compression bonding ball, high loop controllability and low specific resistance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140930

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140930

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141219

R150 Certificate of patent or registration of utility model

Ref document number: 5671512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250