JP2011155129A - Gold alloy bonding wire for high temperature semiconductor device - Google Patents

Gold alloy bonding wire for high temperature semiconductor device Download PDF

Info

Publication number
JP2011155129A
JP2011155129A JP2010015471A JP2010015471A JP2011155129A JP 2011155129 A JP2011155129 A JP 2011155129A JP 2010015471 A JP2010015471 A JP 2010015471A JP 2010015471 A JP2010015471 A JP 2010015471A JP 2011155129 A JP2011155129 A JP 2011155129A
Authority
JP
Japan
Prior art keywords
mass
gold
alloy
bonding
bonding wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010015471A
Other languages
Japanese (ja)
Inventor
Atsushi Chiba
淳 千葉
Fujio Amada
富士夫 天田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2010015471A priority Critical patent/JP2011155129A/en
Publication of JP2011155129A publication Critical patent/JP2011155129A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01064Gadolinium [Gd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01065Terbium [Tb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01066Dysprosium [Dy]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the high temperature reliability of the bonding part of a bonding pad and a ball of a gold alloy fine wire in a semiconductor device. <P>SOLUTION: The gold alloy fine wire for electrically connecting an external lead connected to a wiring board where silver (Ag) or gold (Au) or the like is plated and an electrode pad of a semiconductor chip comprising pure aluminum (Al) or an aluminum alloy whose purity is ≥99% comprises 0.5-0.7 mass% of palladium (Pd), 0.1-0.3 mass% of platinum (Pt), and gold (Au) for the remainder. Thus, the generation of microvoids (minute holes) and the growth and enlargement of an aluminum oxide (Al<SB>2</SB>O<SB>3</SB>) layer are prevented, and the stable bonding strength of a gold bonding wire is obtained for a long period of time on the bonding interface of the pad electrode and the gold alloy ball part even in a high temperature operation environment. Also, the gold alloy fine wire can be adapted to even a high temperature atmosphere (without resin sealing) and the sealing of a halogen-free resin at a high temperature. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体チップと外部リードとを電気的に接続するための高温半導体装置用金合金ワイヤに関する。   The present invention relates to a gold alloy wire for a high-temperature semiconductor device for electrically connecting a semiconductor chip and an external lead.

車載用などの高温で長期の信頼性を必要とする半導体装置でも、従来のシリコン(Si)などのICチップ(半導体チップ)が使用され、このICチップと配線基板等との外部接続用端子とを金合金細線で電気的に接続し、その後、ICチップや金合金細線を樹脂で封止するという従来の実装方法が使用されている。
すなわち、ワイヤ先端をアーク入熱で加熱溶融し、表面張力により溶融ボールを形成させた後に、150〜300℃の範囲内で加熱した半導体素子の電極上にボール部を圧着接合せしめる。その後の第二ボンドでは、直接ボンディングワイヤを外部リード側にウエッジ接合させる。トランジスタやIC等の半導体装置として使用するためには、前記のボンディングワイヤによるボンディングの後に、ボンディング箇所がエポキシ樹脂で封止され、半導体素子、ボンディングワイヤ、および外部リード等がエポキシ樹脂で保護される。これまで長期信頼性の要求温度と時間は、一般的に室温環境で使用される通常の家電等の民生品向けのデバイスで120〜150℃で1000時間程度、エンジンルーム内やその近傍で使用される車載用でも150〜170℃で1000時間程度であった。ところが、最近車載用についてこれらの温度と時間に対する耐久性の要求がより高度なものとなってきており、175℃で2000〜4000時間、さらに200℃で4000時間、さらには近い将来、要求温度が250℃になるともいわれてきている。
Conventional semiconductor chips (semiconductor chips) such as silicon (Si) are also used in semiconductor devices that require long-term reliability at high temperatures, such as in-vehicle use, and external connection terminals between the IC chip and a wiring board, etc. Are conventionally connected by a gold alloy fine wire, and thereafter, an IC chip or a gold alloy fine wire is sealed with a resin.
That is, after the wire tip is heated and melted by arc heat input to form a molten ball by surface tension, the ball portion is pressure bonded to the electrode of the semiconductor element heated within the range of 150 to 300 ° C. In the subsequent second bond, the direct bonding wire is wedge-bonded to the external lead side. For use as a semiconductor device such as a transistor or an IC, after bonding with the bonding wire, the bonding portion is sealed with epoxy resin, and the semiconductor element, bonding wire, external lead, and the like are protected with epoxy resin. . Until now, the required temperature and time for long-term reliability are generally used in consumer rooms such as ordinary home appliances that are used in a room temperature environment at 120 to 150 ° C for about 1000 hours in and around the engine room. Even for in-vehicle use, it was about 1000 hours at 150 to 170 ° C. However, recently, demands for durability for these temperatures and times have become more advanced for in-vehicle use, and the required temperatures will be 2,000-4000 hours at 175 ° C., 4000 hours at 200 ° C., and in the near future. It is said to be 250 ° C.

車載用半導体素子が使用される環境条件は通常の使用環境よりも高温度となる。自動車のエンジンルーム内やその近傍で使用されるためで、以前から通常の家電等の民生品向けに比べ高い信頼性が要求されてきた。最近はこれまで以上に多種の車載ICが使われるようになってきており、エンジンルーム内どころかエンジンそのもののかなり近くで使用されるケースも増えてきている。
このような用途の金合金ボンディングワイヤは、175℃の高温でも長時間の使用に耐える必要がある。このような実装環境下では、金合金ボンディングワイヤとパッド電極部との接合強度の長期間の確保が重要となる。従来は通常の民生品向けであれば、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、希土類元素(イットリウム(Y),ランタン(La)、セリウム(Ce),ユーロピウム(Eu),ガドリニウム(Gd)、ネオジム(Nd)、およびサマリウム(Sm)、シリコン(Si),ゲルマニウム(Ge),スズ(Sn),インジウム(In),ビスマス(Bi),またはホウ素(B)などの微量の添加元素を適宜調整した純度99.99質量%以上の金合金(「4NAu合金」という。)のボンディングワイヤを樹脂封止して使用したり、車載用等の高信頼性向けであれば、同様の微量の添加元素を適宜調整した金(Au)−1質量%パラジウム(Pd)合金(「2NAu合金」という。)のボンディングワイヤを使用したりして半導体ICとして既に実用化していた。そのため、2NAu合金や4NAu合金の溶融ボールがボールボンディングされてアルミニウム(Al)のパッド電極と接合されると、ボンディングワイヤとパッド電極との界面に金(Au)とアルミニウム(Al)の複合金属間化合物からなる中間層が形成され、2NAu合金の場合には、ボンディングワイヤのボール側界面にパラジウム(Pd)の濃化層が形成される。
The environmental condition in which the in-vehicle semiconductor element is used is higher than the normal usage environment. Since it is used in and near the engine room of automobiles, high reliability has been required for a long time compared to consumer products such as ordinary home appliances. Recently, a wider variety of in-vehicle ICs have been used than ever, and there are increasing cases of use in an engine room rather than in the engine room.
A gold alloy bonding wire for such an application needs to withstand long-term use even at a high temperature of 175 ° C. Under such a mounting environment, it is important to ensure the bonding strength between the gold alloy bonding wire and the pad electrode portion for a long period of time. For conventional consumer products, beryllium (Be), magnesium (Mg), calcium (Ca), rare earth elements (yttrium (Y), lanthanum (La), cerium (Ce), europium (Eu), gadolinium Addition of trace amounts of (Gd), neodymium (Nd), and samarium (Sm), silicon (Si), germanium (Ge), tin (Sn), indium (In), bismuth (Bi), or boron (B) If a bonding wire of a gold alloy (referred to as “4NAu alloy”) with a purity of 99.99% by mass or more adjusted appropriately is used for resin sealing or for high reliability such as in-vehicle use, the same A bonding wire of gold (Au) -1 mass% palladium (Pd) alloy (referred to as “2NAu alloy”) with a small amount of additive elements appropriately adjusted was used. Therefore, when a molten ball of 2NAu alloy or 4NAu alloy is ball-bonded and joined to an aluminum (Al) pad electrode, gold (on the interface between the bonding wire and the pad electrode) An intermediate layer made of a composite intermetallic compound of Au) and aluminum (Al) is formed. In the case of a 2NAu alloy, a concentrated layer of palladium (Pd) is formed at the ball side interface of the bonding wire.

他方、パッド電極側には、一般に純度99.99質量%以上のアルミニウム(Al)が用いられたり、シリコン(Si)や銅(Cu)を含む純度99%以上のアルミニウム(Al)合金が用いられたりする。パッド電極は、純アルミニウム(Al)または純度99%以上のアルミニウム(Al)合金から形成されているので、アルミニウム(Al)は大気中の酸素と直ちに反応してアルミナ(Al2)の薄い表面酸化膜を形成する。この酸化膜は強固であり、2NAu合金や4NAu合金の溶融ボールがボールボンディングされ、パッド電極と接合された場合にも、金(Au)とアルミニウム(Al)の複雑な金属間化合物の中間層中や界面にもアルミナ(Al2)粒子が島状に散在すると考えられる。また、金(Au)とアルミニウム(Au)の接合界面には拡散速度の差によりいわゆるカーケンダイルボイドと呼ばれる空孔、空隙が生成し、いずれも界面劣化の起点になると考えられる。 On the other hand, aluminum (Al) with a purity of 99.99% by mass or more is generally used on the pad electrode side, or an aluminum (Al) alloy with a purity of 99% or more containing silicon (Si) or copper (Cu). Or Since the pad electrode is made of pure aluminum (Al) or an aluminum (Al) alloy having a purity of 99% or more, the aluminum (Al) reacts immediately with oxygen in the atmosphere and is thin with alumina (Al 2 O 3 ). A surface oxide film is formed. This oxide film is strong, and even when a melted ball of 2NAu alloy or 4NAu alloy is ball bonded and bonded to a pad electrode, it is in an intermediate layer of a complex intermetallic compound of gold (Au) and aluminum (Al). It is considered that alumina (Al 2 O 3 ) particles are scattered in an island shape at the interface. Further, it is considered that pores and voids called so-called Kirkendall voids are generated at the bonding interface between gold (Au) and aluminum (Au) due to the difference in diffusion speed, and both of them are the starting points of interface deterioration.

半導体装置に使用される封止樹脂は、これまで難燃剤として臭素(Br)等のハロゲンを常時含有しており、その場合、通常使用環境やこれまでの車載用環境では2NAu合金の4NAu合金に対する信頼性の優位性は著しかった。しかし、最近の耐環境性が重視されるに伴い、ハロゲンやアンチモンを用いない難燃剤が開発されている。ハロゲン成分を用いない難燃剤は、4NAu合金のボンディングワイヤとAl合金電極との接合界面に生成される特定の金属間化合物の腐食が抑制される。この難燃剤を含有するエポキシ樹脂等は封止温度が比較的高くなるので、半導体素子上のパッド電極とボンディングワイヤとの接合部を封止樹脂で覆う補強構造とすることによりボンディングワイヤ接合部の接合信頼性を確保する技術が特許文献1の特許請求の範囲に記載されているように開発された。しかし、この半導体装置が使用される環境温度は150℃と175℃で1000時間の加熱試験で確認されているに過ぎず(段落0060、段落0061)、さらに過酷な175℃以上の高温で2000時間以上の長時間の動作環境にさらされると、パッド電極とボンディングワイヤとの接合部は容易に劣化していくものと思われる。また、難燃剤として意図的にハロゲン成分を使用しなくても、封止樹脂はその製造過程で塩素系のハロゲン成分を使うため、不可避的不純物としてハロゲン成分が残存してしまう。残存するとはいえ、微量であることから175℃、1000時間程度はそれほど腐食の発生率は見られない。しかし、より過酷な環境ではその影響が顕著になるため、4NAu合金とAl合金の接合界面を腐食する。さらに通常使用環境ではハロゲンの環境を受けにくい2NAu合金も過酷な環境では接合界面に微小なカーケンダイルボイド(マイクロボイド)が発生し、全体的な接合強度を下げることもわかった。   Sealing resins used in semiconductor devices have always contained a halogen such as bromine (Br) as a flame retardant, and in that case, in a normal use environment or a conventional in-vehicle environment, the 2NAu alloy is a 4NAu alloy. The superiority of reliability was remarkable. However, with recent emphasis on environmental resistance, flame retardants that do not use halogen or antimony have been developed. A flame retardant that does not use a halogen component suppresses corrosion of a specific intermetallic compound that is generated at the bonding interface between a 4NAu alloy bonding wire and an Al alloy electrode. Since the epoxy resin containing this flame retardant has a relatively high sealing temperature, a bonding structure of the bonding wire bonding portion is formed by using a sealing structure that covers the bonding portion between the pad electrode and the bonding wire on the semiconductor element with the sealing resin. A technique for ensuring the joining reliability has been developed as described in the claims of Patent Document 1. However, the environmental temperature in which this semiconductor device is used has only been confirmed by heating tests at 150 ° C. and 175 ° C. for 1000 hours (paragraphs 0060 and 0061), and 2000 hours at a severe temperature of 175 ° C. or higher. When exposed to the above long-time operating environment, it seems that the joint between the pad electrode and the bonding wire easily deteriorates. Even if the halogen component is not intentionally used as a flame retardant, the sealing resin uses a chlorine-based halogen component in the production process, and therefore the halogen component remains as an unavoidable impurity. Although it remains, the corrosion rate is not so high at 175 ° C. for about 1000 hours due to the small amount. However, since the influence becomes remarkable in a harsher environment, the joint interface between 4NAu alloy and Al alloy is corroded. Furthermore, it was also found that 2NAu alloy, which is less susceptible to the halogen environment in a normal use environment, generates minute Kirkendell voids (microvoids) at the bonding interface in a harsh environment and lowers the overall bonding strength.

なお、特許文献1の実施例22には、金(Au)−0.5%パラジウム(Pd)−0.2%白金(Pt)−0.2%亜鉛(Zn)−0.001%カルシウム(Ca)−0.001%ジスプロシウム(Dy)−0.001%ガドリニウム(Gd)−0.001%テルビウム−0.001%マグネシウム(Mg)合金が記載されている。この亜鉛(Zn)は、特開昭60−236252号公報の第2頁左上欄に記載されているように、ボンディングワイヤの表面に偏析して表層の亜鉛(Zn)分が優先的に酸化するため封止樹脂との化学結合の触媒作用を有し、かつ、アルミニウム(Al)パッド電極の金(Au)とアルミニウム(Al)の金属間化合物の形成に対しては抑止効果があるので、ボンディングワイヤと封止樹脂との接着力を高度に上げることができると推考される。   In Example 22 of Patent Document 1, gold (Au) -0.5% palladium (Pd) -0.2% platinum (Pt) -0.2% zinc (Zn) -0.001% calcium ( A Ca) -0.001% dysprosium (Dy) -0.001% gadolinium (Gd) -0.001% terbium-0.001% magnesium (Mg) alloy is described. This zinc (Zn) segregates on the surface of the bonding wire and preferentially oxidizes the zinc (Zn) content of the surface layer as described in the upper left column of page 2 of JP-A-60-236252. Therefore, it has a catalytic action of chemical bonding with the sealing resin and has a deterrent effect on the formation of intermetallic compounds of gold (Au) and aluminum (Al) on the aluminum (Al) pad electrode. It is estimated that the adhesive force between the wire and the sealing resin can be raised to a high degree.

他方、特許文献2の実施例14には、金(Au)−0.25%パラジウム)Pd)−0.25%白金(Pt)合金が記載され、段落0016等には200℃で100時間保持した後のプル試験を実施し、ボンディング接合信頼性も良好であったことが記載されている。
また、特許文献3の実施例28には、金(Au)−0.5%パラジウム(Pd)−0.5%白金(Pt)−0.007%マンガン(Mn)−0.05銅(Cu)−0.001%スカンジウム(Sc)−0.001%シリコン(Si)−0.001%アルミニウム(Al)合金が記載され、段落0028には、金合金細線をアルミニウム電極にウエッジ接合し、さらにエポキシ樹脂で封止した後に、窒素ガス中において200℃で300時間加熱処理した半導体素子を用いて、金とアルミニウムの金属間化合物の腐食が抑制されていることを確認している。しかし、窒素ガス中で200℃で300時間の加熱処理というのは実行程上現実的ではない。
On the other hand, Example 14 of Patent Document 2 describes a gold (Au) -0.25% palladium) Pd) -0.25% platinum (Pt) alloy, and paragraph 0016 and the like are held at 200 ° C. for 100 hours. After that, a pull test was carried out, and it was described that bonding bonding reliability was also good.
In Example 28 of Patent Document 3, gold (Au) -0.5% palladium (Pd) -0.5% platinum (Pt) -0.007% manganese (Mn) -0.05 copper (Cu ) -0.001% scandium (Sc) -0.001% silicon (Si) -0.001% aluminum (Al) alloy is described, and in paragraph 0028, a gold alloy fine wire is wedge-bonded to an aluminum electrode; After sealing with an epoxy resin, it has been confirmed that the corrosion of the intermetallic compound of gold and aluminum is suppressed using a semiconductor element that is heat-treated at 200 ° C. for 300 hours in nitrogen gas. However, the heat treatment in nitrogen gas at 200 ° C. for 300 hours is not practical as practical.

特開2003−133362号公報JP 2003-133362 A 特開平09−321075号公報JP 09-321075 A 特開平09−275119号公報JP 09-275119 A 特開昭60−236252号公報JP 60-236252 A

解決しようとする問題点は、175℃〜250℃の高温で長時間動作する高温半導体装置の場合、高温保持した後のボンディングワイヤの溶融ボールとパッド電極との接合界面における破断モードは、以前パープルプレークといわれていた金(Au)とアルミニウム(Al)の脆弱な金属間化合物の発達によるものではなく、接合界面でのカーケンダイルボイドと呼ばれる空孔・空隙や金(Au)とアルミニウム(Al)の金属間化合物のうち、特定のAu-Al比率の化合物のAl成分のみ酸化することにより生成したアルミナ(Al)によるものであることがわかった。175℃、1000時間程度の高温環境下では純アルミニウム(Al)または純度99%以上のアルミニウム(Al)合金から形成されているパッド電極とボンディングワイヤとの接合界面においては、2NAu合金の場合、金(Au)がアルミニウム(Al)パッド中へ拡散するのはパラジウム(Pd)によって制御できる。また、2NAu合金のボンディングワイヤは、4NAu合金のボンディングワイヤと同様にアルミニウム(Al)のパッド電極へボールボンディングした直後の初期接合強度は比較的安定している。しかし、その後に175℃〜250℃の高温で長時間放置したときの引っ張り試験した結果は、2NAu合金のボンディングワイヤと4NAu合金のボンディングワイヤとではあまり差が見られない。これは、パッド電極との接合界面において生成するアルミナ(Al2O3)層そのものの成長は4NAu合金のほうがやや早いものの、2NAu合金の方は接合界面に微小なカーケンダイルボイド(マイクロボイド)が発生し、全体的な接合強度を下げ、それを起点に4NAu合金と同様に金(Au)とアルミニウム(Al)の金属間化合物からなるパッド電極の中間層界面にアルミナ(Al2O3)の酸化物層が拡がり、空隙やクラックに発展して、最後にはアルミナ(Al23)の酸化物層が接合界面全体に拡がって行くため、結果的に差が小さくなるものと考えられる。 The problem to be solved is that, in the case of a high-temperature semiconductor device that operates at a high temperature of 175 ° C. to 250 ° C. for a long time, the fracture mode at the bonding interface between the molten ball of the bonding wire and the pad electrode after holding the high temperature It is not due to the development of a brittle intermetallic compound of gold (Au) and aluminum (Al), which was said to be flaky, but is a void, void, gold (Au) and aluminum (Al It was found that this was due to alumina (Al 2 O 3 ) produced by oxidizing only the Al component of the compound having a specific Au—Al ratio. In a high temperature environment of about 175 ° C. for about 1000 hours, at the bonding interface between the pad electrode formed of pure aluminum (Al) or an aluminum (Al) alloy with a purity of 99% or more and the bonding wire, The diffusion of (Au) into the aluminum (Al) pad can be controlled by palladium (Pd). Also, the 2NAu alloy bonding wire has a relatively stable initial bonding strength immediately after ball bonding to an aluminum (Al) pad electrode, like the 4NAu alloy bonding wire. However, the result of the tensile test when the sample is left for a long time at a high temperature of 175 ° C. to 250 ° C. does not show much difference between the 2NAu alloy bonding wire and the 4NAu alloy bonding wire. This is because the growth of the alumina (Al 2 O 3 ) layer itself generated at the bonding interface with the pad electrode is slightly faster with the 4NAu alloy, but the 2NAu alloy has a smaller Kirkendall void (microvoid) at the bonding interface. As a 4NAu alloy, the oxide of alumina (Al2O3) is formed at the interface between the pad electrodes made of an intermetallic compound of gold (Au) and aluminum (Al). The layer expands and develops into voids and cracks. Finally, the oxide layer of alumina (Al 2 O 3 ) spreads over the entire bonding interface, and as a result, the difference is considered to be small.

また、ハロゲンフリーのエポキシ樹脂等は、ボンディングワイヤを補強するというこれまでの封止樹脂の利点およびボンディングワイヤがハロゲンによって腐食されないという新たな利点があるものの、より過酷な環境では封止樹脂の製造工程上不可避に含まれるハロゲンそのものの影響とカーケンダイルボイドの影響とが顕著となるためボンディングワイヤの接合界面においてはやはり酸化物層が変わらず成長する。
ハロゲンフリーのエポキシ樹脂等を用いた場合、2NAu合金と4NAu合金のボンディングワイヤではより過酷な加速試験では抵抗上昇率に大差がなく、いずれも接合界面における酸化物層の拡がりを防止することはできなかった。
In addition, halogen-free epoxy resins, etc. have the advantage of the conventional sealing resin that reinforces the bonding wire and the new advantage that the bonding wire is not corroded by the halogen, but the manufacturing of the sealing resin in more severe environments Since the influence of halogen itself inevitably contained in the process and the influence of Kirkendall void become significant, the oxide layer also grows unchanged at the bonding interface of the bonding wire.
In the case of using halogen-free epoxy resin or the like, there is no large difference in the rate of increase in resistance in the more severe acceleration test between the bonding wires of 2NAu alloy and 4NAu alloy, and both can prevent the oxide layer from spreading at the bonding interface. There wasn't.

なお、特許文献1の実施例22の金(Au)−0.5%パラジウム(Pd)−0.2%白金(Pt)−0.2%亜鉛(Zn)−0.001カルシウム(Ca)−0.001%ジスプロシウム(Dy)−0.001%ガドリニウム(Gd)−0.001%テルビウム−0.001マグネシウム(Mg)合金を200〜400℃の高温で動作される高温半導体装置に用いた場合には、特許文献4(特開昭60−236252号公報)第3頁左上欄に記載されているように、金(Au)−パラジウム(Pd)合金のボンディングワイヤでは亜鉛(Zn)分が優先的に酸化するため、ボンディングワイヤとパッド電極との接合界面におけるアルミナ(Al2O3)等の酸化物層の拡がりがさらに加速されることになると考えられる。 In addition, gold (Au) -0.5% palladium (Pd) -0.2% platinum (Pt) -0.2% zinc (Zn) -0.001 calcium (Ca)-of Example 22 of Patent Document 1 When 0.001% dysprosium (Dy) -0.001% gadolinium (Gd) -0.001% terbium-0.001 magnesium (Mg) alloy is used in a high-temperature semiconductor device operated at a high temperature of 200 to 400 ° C. As described in Patent Document 4 (Japanese Patent Laid-Open No. 60-236252), page 3, upper left column, the gold (Au) -palladium (Pd) alloy bonding wire has priority to zinc (Zn) content. Therefore, it is considered that the expansion of an oxide layer such as alumina (Al 2 O 3 ) at the bonding interface between the bonding wire and the pad electrode is further accelerated.

本発明は、上述したような事情に鑑みてなされたものであり、その目的とするところは、175℃〜250℃の高温で長時間動作される環境で半導体装置に用いた場合でも、ボンディングワイヤとアルミニウム(Al)の金属または合金パッド電極との接合界面における微小なカーケンダイルボイド(マイクロボイド)やアルミナ(Al23)等の酸化物層の拡がりを防止することができる金(Au)合金ボンディングワイヤを提供することである。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a bonding wire even when used for a semiconductor device in an environment operated at a high temperature of 175 ° C. to 250 ° C. for a long time. Gold (Au) that can prevent the spread of minute oxide layers such as Kirkendyl void (micro void) and alumina (Al 2 O 3 ) at the interface between the metal and the alloy pad electrode of aluminum (Al) ) To provide an alloy bonding wire.

本発明者らは、上記の課題を解決するため鋭意研究を重ねた結果、特定の金(Au)−パラジウム(Pd)−白金(Pt)合金がボンディングワイヤとアルミニウム(Al)の金属または合金パッド電極との接合界面におけるアルミナ(Al23)等の酸化物層の拡がりを遅延させることができる効果があることを発見し、本発明を完成するに到った。すなわち、本発明によれば、175℃〜250℃の高温で長期間動作される高温半導体装置において、以下に示す金(Au)合金ボンディングワイヤが提供される。
(1)パラジウム(Pd)を0.5〜0.7質量%、白金(Pt)を0.1〜0.3質量%、及び残部金(Au)からなるアルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。
(2)パラジウム(Pd)を0.5〜0.7質量%、白金(Pt)を0.1〜0.3質量%、銅(Cu)を0.05〜0.1質量%及び残部金(Au)からなるアルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。
(3)さらに、微量元素として5〜50質量ppmのカルシウム(Ca)と5〜50質量ppmのマグネシウム(Mg)と5〜50質量ppmのランタン(La)を含有することを特徴とする(1)または(2)に記載のアルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。
(4)さらに、微量元素として1〜20質量ppmのベリリウム(Be)を含有することを特徴とする(1)または(2)または(3)に記載のアルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。
(5)さらに、微量元素として1〜30質量ppmのセリウム(Ce)と1〜30質量ppmのイットリウム(It)と1〜30質量ppmのユーロピウム(Eu)のうち少なくとも1種以上を含有していることを特徴とする(1)または(2)または(3)または(4)に記載のアルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。
(6)さらに、これらの微量元素の総計が100ppm以内である、(3)ないし(5)のアルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。
As a result of intensive studies to solve the above-described problems, the present inventors have found that a specific gold (Au) -palladium (Pd) -platinum (Pt) alloy is a bonding wire and an aluminum (Al) metal or alloy pad. It was discovered that there is an effect of delaying the expansion of an oxide layer such as alumina (Al 2 O 3 ) at the bonding interface with the electrode, and the present invention has been completed. That is, according to the present invention, the following gold (Au) alloy bonding wire is provided in a high-temperature semiconductor device that operates at a high temperature of 175 ° C. to 250 ° C. for a long period of time.
(1) Aluminum (Al) metal or alloy pad comprising 0.5 to 0.7% by mass of palladium (Pd), 0.1 to 0.3% by mass of platinum (Pt), and the balance gold (Au) A gold alloy bonding wire for high temperature semiconductor devices.
(2) 0.5 to 0.7% by mass of palladium (Pd), 0.1 to 0.3% by mass of platinum (Pt), 0.05 to 0.1% by mass of copper (Cu) and the balance gold A gold alloy bonding wire for high-temperature semiconductor devices, comprising an aluminum (Al) metal or alloy pad made of (Au).
(3) Furthermore, 5-50 mass ppm of calcium (Ca), 5-50 mass ppm of magnesium (Mg), and 5-50 mass ppm of lanthanum (La) are contained as trace elements (1). ) Or a gold alloy bonding wire for high-temperature semiconductor devices, comprising the aluminum (Al) metal or alloy pad described in (2).
(4) The aluminum (Al) metal or alloy pad according to (1), (2) or (3), further comprising 1 to 20 ppm by mass of beryllium (Be) as a trace element A gold alloy bonding wire for high-temperature semiconductor devices.
(5) Furthermore, it contains at least one or more of 1-30 mass ppm cerium (Ce), 1-30 mass ppm yttrium (It) and 1-30 mass ppm europium (Eu) as trace elements. A gold alloy bonding wire for a high-temperature semiconductor device, comprising the aluminum (Al) metal or alloy pad according to (1), (2), (3) or (4).
(6) A gold alloy bonding wire for high-temperature semiconductor devices, further comprising the aluminum (Al) metal or alloy pad of (3) to (5), wherein the total amount of these trace elements is within 100 ppm.

本発明の金(Au)−パラジウム(Pd)−白金(Pt)合金によれば、175〜250℃の高温で長期間動作される半導体装置においてアルミニウム(Al)の金属または合金パッド電極上のボンディングワイヤとの接合界面に点在したアルミナ(Al23)等の金属酸化物粒子群が成長するのを抑制することができる。
また、本発明の金(Au)−パラジウム(Pd)−白金(Pt)合金は、市販の金(純度99.99質量%以上のAu)、パラジウム(純度99.9質量%以上のPd)および白金(純度99.9質量%以上のPt)素材を利用することができるので、ワイヤの原材料費が大幅に削減できる。また、高純度素材(純度99.999質量%以上のAu、純度99.99質量%以上のPd及び純度99.99質量%以上のPt)を用いた場合には、これまでと同様の微量添加元素を用いてボンディングワイヤの諸特性をこれまでと同様に発揮させることができる。
According to the gold (Au) -palladium (Pd) -platinum (Pt) alloy of the present invention, bonding of aluminum (Al) on a metal or alloy pad electrode in a semiconductor device operated for a long time at a high temperature of 175 to 250 ° C. Growth of metal oxide particle groups such as alumina (Al 2 O 3 ) scattered at the bonding interface with the wire can be suppressed.
The gold (Au) -palladium (Pd) -platinum (Pt) alloy of the present invention is composed of commercially available gold (Au having a purity of 99.99% by mass or more), palladium (Pd having a purity of 99.9% by mass or more) and Since platinum (Pt having a purity of 99.9% by mass or more) material can be used, the raw material cost of the wire can be greatly reduced. Further, in the case of using a high-purity material (Au having a purity of 99.999% by mass or more, Pd having a purity of 99.99% by mass or more, and Pt having a purity of 99.99% by mass or more) Various characteristics of the bonding wire can be exhibited as before by using elements.

特に、所定量のカルシウム(Ca)とマグネシウム(Mg)とランタン(La)を併せて微量添加した場合は、さらにワイヤ強度、耐リーニング性、第二ボンド接合性、ネック強度、耐ワイヤ流れ性、連続ボンディング性をいずれも向上させる効果を有する。
また、所定量のベリリウム(Be)を微量添加した場合には、さらにワイヤ強度、圧着ボールの真円度、耐リーニング性を向上させる効果を有する。
また、所定量のセリウム(Ce)とイットリウム(Y)とユーロピウム(Eu)のうち少なくとも1種以上を微量添加した場合は、さらにワイヤ強度、耐ワイヤ流れ性、耐リーニング性を向上させる効果を有する。
In particular, when a predetermined amount of calcium (Ca), magnesium (Mg) and lanthanum (La) are added in a small amount, wire strength, leaning resistance, second bond bondability, neck strength, wire flow resistance, All have the effect of improving continuous bonding properties.
Further, when a small amount of a predetermined amount of beryllium (Be) is added, it has the effect of further improving the wire strength, the roundness of the press-bonded ball, and the leaning resistance.
Further, when a small amount of at least one of cerium (Ce), yttrium (Y), and europium (Eu) in a predetermined amount is added, it has the effect of further improving wire strength, wire flow resistance, and leaning resistance. .

図1は、本発明の実施例1及び比較例1〜3、及び従来例の未封止プル荷重試験結果を示す。FIG. 1 shows unsealed pull load test results of Example 1 of the present invention, Comparative Examples 1 to 3, and a conventional example.

本発明の高温半導体装置用金合金ボンディングワイヤは、パラジウム(Pd)を0.5〜0.7質量%、白金(Pt)を0.1〜0.4質量%、および残部金(Au)からなる。すなわち、金(Au)中に0.6質量%±0.1質量%のパラジウム(Pd)と0.2質量%±0.1質量%白金(Pt)との比がほぼ3:1の割合にあると、特定のAu−Al比率の金属間化合物の腐食の抑制と微小なカーケンダイルボイド(マイクロボイド)の発生が抑制できることがわかった。好ましくは、金(Au)中に0.6質量%±0.1質量%の(Pd)と0.2質量%±0.05質量%白金(Pt)との比がほぼ3:1の割合にあることが好ましい。
また、本発明の高温半導体装置用金合金ボンディングワイヤは、パラジウム(Pd)を0.5〜0.7質量%、白金(Pt)を0.1〜0.3質量%、銅(Cu)を0.05〜0.2質量%および残部金(Au)からなる。銅(Cu)が少量含まれていても、0.6質量%±0.1質量%のパラジウム(Pd)と0.2質量%±0.1質量%の白金との比がほぼ3:1の割合にあるので、金属酸化物粒子群の成長を抑制できる効果に変わりはなかった。この場合も、金(Au)中に0.6質量%±0.1質量%のパラジウム(Pd)と0.2質量%±0.05質量%白金(Pt)との比がほぼ3:1の割合にあることが好ましい。
The gold alloy bonding wire for high-temperature semiconductor devices of the present invention is composed of 0.5 to 0.7% by mass of palladium (Pd), 0.1 to 0.4% by mass of platinum (Pt), and the balance gold (Au). Become. That is, the ratio of 0.6 mass ± 0.1 mass% palladium (Pd) and 0.2 mass% ± 0.1 mass% platinum (Pt) in gold (Au) is approximately 3: 1. In this case, it was found that the corrosion of the intermetallic compound having a specific Au—Al ratio can be suppressed and the generation of minute Kirkendall voids (microvoids) can be suppressed. Preferably, the ratio of 0.6 mass% ± 0.1 mass% (Pd) and 0.2 mass% ± 0.05 mass% platinum (Pt) in gold (Au) is approximately 3: 1. It is preferable that it exists in.
The gold alloy bonding wire for high-temperature semiconductor devices of the present invention is made of 0.5 to 0.7% by mass of palladium (Pd), 0.1 to 0.3% by mass of platinum (Pt), and copper (Cu). It consists of 0.05 to 0.2 mass% and the balance gold (Au). Even if a small amount of copper (Cu) is contained, the ratio of 0.6 mass% ± 0.1 mass% palladium (Pd) to 0.2 mass% ± 0.1 mass% platinum is approximately 3: 1. Therefore, there was no change in the effect of suppressing the growth of the metal oxide particle group. Also in this case, the ratio of 0.6 mass% ± 0.1 mass% palladium (Pd) and 0.2 mass% ± 0.05 mass% platinum (Pt) in gold (Au) is approximately 3: 1. It is preferable that it is in the ratio.

本発明で用いる金(Au)−パラジウム(Pd)−白金(Pt)(−銅(Cu))合金において、その金(Au)は純度99.99質量%以上の市販の金(Au)を使用できる。また、パラジウム(Pd)、白金(Pt)および銅(Cu)も市販の素材を使用できる。ただし、特定の微量元素を金(Au)−パラジウム(Pd)−白金(Pt)(−銅(Cu))合金に添加する場合には、その金(Au)および銅(Cu)は好ましくは純度99.999質量%以上である。また、そのパラジウム(Pd)および白金(Pt)の純度は、好ましくは99.99質量%以上である。   In the gold (Au) -palladium (Pd) -platinum (Pt) (-copper (Cu)) alloy used in the present invention, the gold (Au) uses commercially available gold (Au) having a purity of 99.99% by mass or more. it can. Moreover, palladium (Pd), platinum (Pt), and copper (Cu) can use commercially available materials. However, when a specific trace element is added to a gold (Au) -palladium (Pd) -platinum (Pt) (-copper (Cu)) alloy, the gold (Au) and copper (Cu) are preferably purified. It is 99.999 mass% or more. The purity of the palladium (Pd) and platinum (Pt) is preferably 99.99% by mass or more.

本発明で用いる金(Au)−パラジウム(Pd)−白金(Pt)(−銅(Cu))合金において、所定量のパラジウム(Pd)は、第一ボンドにおける長期間の接合の信頼性を向上するという効果を発揮する。パラジウム(Pd)が0.5質量%以下では、特定のAu−Al比率の金属間化合物の腐食の抑制ができず、高温環境下で早期に第一ボンドにおけるパッド電極との界面の劣化が発生し、電気的特性が悪化する。 パラジウム(Pd)が0.7質量%を超えると、白金(Pt)と3:1の割合にあるパラジウム(Pd)以外のパラジウムが増えて第一ボンドにおけるパッド電極との界面に微量がカーケンダイルボイド(マイクロボイド)が多数発生し、接合強度のバラツキが大きくなる。   In the gold (Au) -palladium (Pd) -platinum (Pt) (-copper (Cu)) alloy used in the present invention, a predetermined amount of palladium (Pd) improves the long-term bonding reliability in the first bond. The effect of doing. When palladium (Pd) is 0.5 mass% or less, corrosion of intermetallic compounds with a specific Au-Al ratio cannot be suppressed, and the interface with the pad electrode in the first bond deteriorates early in a high-temperature environment. In addition, the electrical characteristics deteriorate. When palladium (Pd) exceeds 0.7 mass%, palladium other than platinum (Pt) and palladium (Pd) in a ratio of 3: 1 increases, and a trace amount is present at the interface with the pad electrode in the first bond. Many dile voids (micro voids) are generated, resulting in large variations in bonding strength.

本発明で用いる金(Au)−パラジウム(Pd)−白金(Pt)(−銅(Cu))合金において、所定量の白金(Pt)は、第一ボンドにおけるパッド電極との界面の微量なカーケンダイルボイド(マイクロボイド)の発生を抑制するという効果を発揮する。白金(Pt)はパラジウム(Pd)とできるだけ1:3の割合にあることが好ましい。
この割合以外の白金(Pt)が増えると、特定のAu−Al比率の金属間化合物の腐食を抑制することができなくなる。具体的には、白金(Pt)は0.1〜0.3質量%の範囲にあり、0.15〜0.25質量%の範囲にあることがより好ましい。
In the gold (Au) -palladium (Pd) -platinum (Pt) (-copper (Cu)) alloy used in the present invention, a predetermined amount of platinum (Pt) is a very small amount of car at the interface with the pad electrode in the first bond. It exhibits the effect of suppressing the generation of kendair voids (microvoids). Platinum (Pt) is preferably in a ratio of 1: 3 with palladium (Pd) as much as possible.
When platinum (Pt) other than this ratio increases, it becomes impossible to suppress corrosion of an intermetallic compound having a specific Au—Al ratio. Specifically, platinum (Pt) is in the range of 0.1 to 0.3% by mass, and more preferably in the range of 0.15 to 0.25% by mass.

本発明で用いる金(Au)−パラジウム(Pd)−白金(Pt)(−銅(Cu))合金において、所定量の銅(Cu)は、3:1の割合にあるパラジウム(Pd)と白金(Pt)との比に悪影響を与えない。また、パッド電極に純度99.999質量%以上の銅(Cu)が用いられたり、銅(Cu)合金が用いられたりした場合には、パッド電極上に点在する金属酸化物粒子群の成長を抑制するという効果を発揮する。具体的には、銅(Cu)含有量は0.05〜0.1質量%の範囲である。   In the gold (Au) -palladium (Pd) -platinum (Pt) (-copper (Cu)) alloy used in the present invention, a predetermined amount of copper (Cu) is palladium (Pd) and platinum in a ratio of 3: 1. The ratio with (Pt) is not adversely affected. Further, when copper (Cu) having a purity of 99.999 mass% or more is used for the pad electrode or a copper (Cu) alloy is used, the growth of metal oxide particle groups scattered on the pad electrode is performed. Demonstrate the effect of suppressing. Specifically, the copper (Cu) content is in the range of 0.05 to 0.1% by mass.

本発明で用いる高純度の金(Au)−パラジウム(Pd)−白金(Pt)(−銅(Cu))合金においては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、希土類元素(イットリウム(Y)、ランタン(La)、セリウム(Ce)、ユーロピウム(Eu)、ガドリニウム(Gd)、ネオジム、サマリウム(Sm)など)、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)、インジウム(In)、ビスマス(Bi)、ホウ素(B)などの微量元素を添加することができる。
これらの微量元素のうち、5〜50質量ppmのカルシウム(Ca)と5〜50質量ppmのマグネシウム(Mg)と5〜50質量ppmのランタン(La)とを同時に含有していることが好ましい。これらの元素が所定量含まれると、ワイヤ強度、耐リーニング性、第二ボンド接合性、ネック強度、耐ワイヤ流れ性、連続ボンディング性をいずれも向上させる効果を持つ。
これらの元素がそれぞれ50質量ppmを超えると溶融ボール表面に酸化物が生成しやすくなり、溶融ボールが硬くなりすぎて第一ボンドにおける接合性が悪くなる。さらに、これら3元素、もしくは他の微量元素も含めた合計の濃度が100質量ppm以下であることが好ましい。これらの元素が5質量ppm以下であると微量元素の添加効果がなく、敢えて添加する意味がなくなる。
また、1〜20質量ppmのベリリウム(Be)を含有していることが好ましい。ベリリウム(Be)が所定量含まれると、ワイヤ強度、圧着ボールの真円度、耐リーニング性を向上させる特徴を持ち、ワイヤの線径を20μm以下にしてもループ形成性を維持できるからである。
ベリリウム(Be)が20質量ppmを超えると、溶融ボール表面に酸化物が生成しやすくなり、溶融ボールが硬くなりすぎて第一ボンドにおける接合性が悪くなる。
一方、ベリリウム(Be)が5質量ppm以下であると、微量元素の添加効果がなく、敢えて高純度の金(Au)−パラジウム(Pd)−白金(Pt)(−銅(Cu))合金を使用する必要性はなくなる。
また、1〜30質量ppmのセリウム(Ce)と1〜30質量ppmのイットリウム(Y)、と1〜30質量ppmのユーロピウム(Eu)のうち少なくとも1種以上を含有していることが好ましい。これらの元素が所定量含まれていると、さらにワイヤ強度、耐ワイヤ流れ性、耐リーニング性を向上する特徴を持つ。これらの元素含有量が30質量ppmを超えると、ボンディングワイヤのループ形成性が悪くなり、ボンディングワイヤのリーニングを防止することができない。また、ワイヤ表面や溶融ボール表面の析出物やその酸化物がキャピラリーに堆積するので連続ボンディング性が悪くなる。また、これらの元素含有量が5質量ppm以下であると、微量元素の添加効果がなく、敢えて高純度の金(Au)−パラジウム(Pd)−白金(Pt)(−銅(Cu))合金を使用する意味はなくなる。
In the high purity gold (Au) -palladium (Pd) -platinum (Pt) (-copper (Cu)) alloy used in the present invention, beryllium (Be), magnesium (Mg), calcium (Ca), rare earth elements ( Yttrium (Y), lanthanum (La), cerium (Ce), europium (Eu), gadolinium (Gd), neodymium, samarium (Sm), etc.), silicon (Si), germanium (Ge), tin (Sn), indium Trace elements such as (In), bismuth (Bi), and boron (B) can be added.
Among these trace elements, it is preferable that 5-50 mass ppm of calcium (Ca), 5-50 mass ppm of magnesium (Mg), and 5-50 mass ppm of lanthanum (La) are contained at the same time. When these elements are contained in predetermined amounts, they have the effect of improving all of wire strength, leaning resistance, second bond bonding properties, neck strength, wire flow resistance, and continuous bonding properties.
When each of these elements exceeds 50 ppm by mass, an oxide is easily generated on the surface of the molten ball, the molten ball becomes too hard, and the bondability in the first bond is deteriorated. Furthermore, the total concentration including these three elements or other trace elements is preferably 100 mass ppm or less. If these elements are 5 ppm by mass or less, there is no effect of adding trace elements, and there is no point in intentionally adding them.
Moreover, it is preferable to contain 1-20 mass ppm beryllium (Be). This is because when a predetermined amount of beryllium (Be) is contained, it has the characteristics of improving wire strength, roundness of a press-bonded ball, and leaning resistance, and can maintain loop formation even when the wire diameter is 20 μm or less. .
If beryllium (Be) exceeds 20 ppm by mass, oxides are likely to be generated on the surface of the molten ball, the molten ball becomes too hard, and the bondability in the first bond is deteriorated.
On the other hand, if beryllium (Be) is 5 mass ppm or less, there is no effect of adding trace elements, and a high-purity gold (Au) -palladium (Pd) -platinum (Pt) (-copper (Cu)) alloy is used. There is no need to use it.
Moreover, it is preferable to contain at least 1 sort (s) among 1-30 mass ppm cerium (Ce), 1-30 mass ppm yttrium (Y), and 1-30 mass ppm europium (Eu). When these elements are contained in predetermined amounts, the wire strength, wire flow resistance, and leaning resistance are further improved. When the content of these elements exceeds 30 ppm by mass, the loop formability of the bonding wire is deteriorated and the bonding wire cannot be prevented from being leaned. In addition, since the deposits and oxides on the wire surface and the molten ball surface are deposited on the capillary, the continuous bonding property is deteriorated. Further, when the content of these elements is 5 mass ppm or less, there is no effect of adding trace elements, and a high-purity gold (Au) -palladium (Pd) -platinum (Pt) (-copper (Cu)) alloy. It makes no sense to use

以下に本発明を実施例により詳述する。
〔実施例:1〜20〕
表1に各実施例の合金の組成を示す。純度99.999質量%の高純度金(Au)と純度99.99質量%の高純度パラジウム(Pd)と純度99.99質量%の高純度白金(Pt)との合金、および純度99.999質量%の高純度金(Au)と純度99.99質量%の高純度パラジウム(Pd)と純度99.99質量%の高純度白金(Pt)と純度99.999質量%の高純度銅(Cu)との合金を表1に記載の数値(質量%)になるように作製し、併せて、微量元素が表1に記載の数値(質量ppm)になるように配合し、真空溶解炉で溶解鋳造した。これを伸線加工して、線径が20μmのところで最終熱処理し、伸び率を4%に調整した。
なお、各ボンディングワイヤの伸びと引っ張り強さは、10cm長に切り出したワイヤを各10本引っ張り試験し、その平均値を求めることで評価した。
この極細線を半導体チップ上(ヒートステージ温度200℃)の50μm角のAl−0.5%Cuパッド(膜厚約1μm)に大気中で溶融ボールを超音波併用熱圧着方式によって第一次ボンディングをし、その後、Agめっきされた200ピンのQFPパッケージ用のリードフレームにウエッジ・ボンディング法によって第二次ボンディングをして結線した。
その際、ループ・スパンは3mm、ループ高さは150μmとし、本数は200本とした。
第一本ボンドではすべてのボールが50μm角のパッド内に形成されていた。また、第二ボンドではすべてリード上に強固に接合されていた。なお、本評価に使用した半導体チップは隣り合うパッドが短絡したTEGと呼ばれる評価専用のICチップである。
このサンプルを高温放置後未封止プル荷重試験用のサンプルとした。また、高温放置後電気特性測定試験用のサンプルについては、さらに次のように樹脂で封止した。
上記サンプルを成型金型の上下金型間にセットし、金型間のキャビティーに180℃の溶融樹脂を注入し(トランスファーモールディング法)、樹脂はそのまま180℃に維持して硬化させて、高温放置後電気特性測定試験用サンプルとした。
これらの未封止プル荷重試験用のサンプルと電気的特性(電特)測定試験用のサンプルは、250℃の温風炉中に放置した。
これらの結果を表2に示す。
Hereinafter, the present invention will be described in detail with reference to examples.
[Examples: 1 to 20]
Table 1 shows the composition of the alloy of each example. An alloy of high-purity gold (Au) with a purity of 99.999% by mass, high-purity palladium (Pd) with a purity of 99.99% by mass and high-purity platinum (Pt) with a purity of 99.99% by mass, and a purity of 99.999 High-purity gold (Au) of mass%, high-purity palladium (Pd) of purity 99.99 mass%, high-purity platinum (Pt) of purity 99.99 mass%, and high-purity copper (Cu of purity 99.999 mass%) ) And an alloy with the numerical values (mass%) shown in Table 1 and blended so that the trace elements become the numerical values (mass ppm) shown in Table 1, and dissolved in a vacuum melting furnace. Casted. This was drawn and subjected to final heat treatment when the wire diameter was 20 μm, and the elongation was adjusted to 4%.
The elongation and tensile strength of each bonding wire were evaluated by conducting a tensile test on each of 10 wires cut to a length of 10 cm and obtaining the average value.
This ultra fine wire is first bonded to a 50 μm square Al-0.5% Cu pad (thickness: about 1 μm) on a semiconductor chip (heat stage temperature 200 ° C.) in the atmosphere by a thermocompression bonding method using ultrasonic waves. After that, secondary bonding was performed by a wedge bonding method to a lead frame for a 200-pin QFP package plated with Ag.
At that time, the loop span was 3 mm, the loop height was 150 μm, and the number was 200.
In the first bond, all the balls were formed in a 50 μm square pad. Further, all the second bonds were firmly bonded on the leads. The semiconductor chip used for this evaluation is an evaluation-dedicated IC chip called TEG in which adjacent pads are short-circuited.
This sample was used as a sample for an unsealed pull load test after being left at high temperature. Further, the sample for the electrical property measurement test after being left at high temperature was further sealed with resin as follows.
The above sample is set between the upper and lower molds of the molding mold, molten resin at 180 ° C. is injected into the cavity between the molds (transfer molding method), the resin is kept at 180 ° C. and cured as it is, and the high temperature It was set as the sample for an electrical property measurement test after standing.
These unsealed pull load test samples and electrical property (electric characteristics) measurement test samples were left in a hot air oven at 250 ° C.
These results are shown in Table 2.

〔比較例1〜3と従来例〕
表1に、上記実施例と成分組成が外れる各試料の合金組成(比較例1,2)、揮発性元素の亜鉛(Zn)(質量ppm)を含む試料の合金組成(比較例3)、および従来の金(Au)−1質量%パラジウム(Pd)合金の組成を示す。これらの比較例および従来例の(Au)合金極細線は、実施例と同様にして線径20μmのところで最終熱処理をして伸び率を4%に調整し、実施例と同様にして評価した。これらの結果を表2に併せて示す。

Figure 2011155129
Figure 2011155129
[Comparative Examples 1-3 and Conventional Example]
In Table 1, the alloy composition (Comparative Examples 1 and 2) of each sample deviating from the above Examples and component compositions, the alloy composition of a sample containing zinc (Zn) (mass ppm) of the volatile element (Comparative Example 3), and The composition of a conventional gold (Au) -1 mass% palladium (Pd) alloy is shown. These comparative examples and the conventional (Au) alloy ultrafine wires were evaluated in the same manner as in the examples, after final heat treatment was performed at a wire diameter of 20 μm and the elongation was adjusted to 4% in the same manner as in the examples. These results are also shown in Table 2.
Figure 2011155129
Figure 2011155129

実施例および比較例の各ボンディングワイヤの特性は、以下のようにして評価した。
〔プル荷重試験〕
実施例および比較例の各ボンディングワイヤは、前記のとおり作製した高温放置後未封止プル荷重試験用サンプルのプルテスト特性は、以下のようにして評価した。
DAGE社製の製品名「万能ボンドテスター(BT)(型式4000)」を用い、第一ボンドの直上付近のループ部分にフックを掛け、上方に持ち上げて破断したときの荷重値を測定した。評価結果を表2に示す。
プルテストは、高温放置前、および48、96、192時間後の各時間の間放置したサンプルについて行なった。なお、破断荷重値は、20本のサンプルについての破断荷重の平均値である。
〔電特測定試験〕
実施例および比較例の各ボンディングワイヤについて、前記のとおり作製した高温放置後電特測定用サンプルの電気抵抗の値は、以下のように行なった。
電気抵抗は、KEITHLEY社製の製品名「ソースメーター(型式2004)」を用い。専用のICソケットおよび専用に構築した自動測定システムで行なった。測定方法は、いわゆる直流四端子法で測定した。測定用プローブから隣接する外部リード間(ICチップ上のパッドが短絡した対を選択)に一定の電流を流し、プローブ間の電圧が測定される。
電気抵抗値は、外部リード100対(200ピン)について、高温放置前と高温放置時間が48時間に達するごとに測定した。高温放置前と比較して電気抵抗が20%以上になった対が発生した場合、故障発生時間とした。
The characteristics of the bonding wires in the examples and comparative examples were evaluated as follows.
[Pull load test]
Each of the bonding wires of Examples and Comparative Examples was evaluated as follows for the pull test characteristics of the samples for unsealed pull load test after standing at high temperature prepared as described above.
Using a product name “Universal Bond Tester (BT) (model 4000)” manufactured by DAGE, a hook was hooked on the loop portion immediately above the first bond, and the load value was measured by lifting upward and breaking. The evaluation results are shown in Table 2.
The pull test was performed on samples that had been left for a period of time before being allowed to stand at high temperature and after 48, 96, and 192 hours. The breaking load value is an average value of breaking loads for 20 samples.
[Electric special measurement test]
About each bonding wire of an Example and a comparative example, the value of the electrical resistance of the sample for electrical characteristics measurement after high temperature leaving produced as mentioned above was performed as follows.
For the electrical resistance, a product name “source meter (model 2004)” manufactured by KEITHLEY is used. The measurement was performed with a dedicated IC socket and a dedicated automatic measurement system. The measuring method was measured by a so-called DC four-terminal method. A constant current is passed from the measurement probe to adjacent external leads (a pair in which the pad on the IC chip is short-circuited), and the voltage between the probes is measured.
The electrical resistance value was measured for 100 pairs of external leads (200 pins) before leaving at a high temperature and whenever the high temperature storage time reached 48 hours. When a pair having an electrical resistance of 20% or more compared with that before standing at high temperature occurred, the failure occurrence time was defined.

〔未封止プル荷重試験結果〕
表2の結果から、0.6質量%±0.1質量%のパラジウム(Pd)と0.2質量%±0.1質量%の白金との比がほぼ3:1の割合にある基本組成の合金である実施例1〜12について、未封止プル荷重試験結果は、0時間から192時間後までほとんど低下しておらず、192時間後最大でも8.3%(実施例2)、10.9%(実施例11)の低下にとどまっている。また、これらの基本組成に加えて微量元素を本発明範囲添加した実施例13〜20についてもこれらの結果は変わらず、接合強度の低下は見られない。
これに対して、比較例1〜3、従来例は、ボンディング直後の接合強度は実施例と変わらないが、192時間後には比較例で最大42%(比較例2)、37.5%(従来例)に達しており、これらの高温環境下での接合特性の低下が著しい。
なお、比較例3については、比較的数値の低下が小さい(15%)が後述するように基本組成が本発明範囲に近いためと考えられる。
〔電気的特性試験結果〕
実施例1〜20はいずれも抵抗上昇率20%発生時間が336時間に達しており、一定であることから極めて安定した接合であることがわかる。これに対して比較例1,2、従来例はいずれも96時間であって、1/3以下であり、比較例3は144時間に達してかなりの向上を見せているが、これは表1に示すようにパラジウム(Pd)および白金(Pt)の含有量とその比率が本発明範囲に近く(Pd:0.5質量%、Pt:0.20質量%、比率、3:1.2)、図1のグラフと合わせて、その効果が若干表れたものと考えられる。
表2の結果について、未封止プル荷重試験の結果を、実施例1と対比して比較例1〜3および従来例を図1に示す。
図から明らかなように、比較例1,2および従来例は、接合当初は本発明の実施例とほとんど変わらないが、時間経過と共に下降し始め、192時間後には著しく低下することがわかる。比較例3については、亜鉛(Zn)添加の効果と共に上記したようにその基本成分組成は本発明範囲から大きく外れていないことが影響したものと考えられる。
[Unsealed pull load test results]
From the results in Table 2, the basic composition in which the ratio of 0.6 mass% ± 0.1 mass% palladium (Pd) and 0.2 mass% ± 0.1 mass% platinum is approximately 3: 1. As for Examples 1 to 12 which are alloys of the above, the unsealed pull load test result hardly decreased from 0 hour to 192 hours, and was 8.3% at the maximum after 192 hours (Example 2), 10 Only a decrease of 9% (Example 11). Further, in Examples 13 to 20 in which trace elements are added in the range of the present invention in addition to these basic compositions, these results are not changed, and no decrease in bonding strength is observed.
In contrast, in Comparative Examples 1 to 3 and the conventional example, the bonding strength immediately after bonding is the same as that of the example, but after 192 hours, the maximum is 42% (Comparative Example 2) and 37.5% (Conventional Example). Example) and the deterioration of the bonding characteristics under these high temperature environments is remarkable.
In Comparative Example 3, the decrease in numerical value is relatively small (15%), but it is considered that the basic composition is close to the scope of the present invention as described later.
[Electrical characteristics test results]
In each of Examples 1 to 20, the resistance increase rate of 20% occurs for 336 hours, and is constant, indicating that the bonding is extremely stable. On the other hand, the comparative examples 1 and 2 and the conventional example are both 96 hours and are 1/3 or less, and the comparative example 3 reaches 144 hours and shows a considerable improvement. As shown in FIG. 1, the content and ratio of palladium (Pd) and platinum (Pt) are close to the scope of the present invention (Pd: 0.5% by mass, Pt: 0.20% by mass, ratio, 3: 1.2). In combination with the graph of FIG.
About the result of Table 2, the result of an unsealed pull load test is shown in FIG.
As is apparent from the figure, Comparative Examples 1 and 2 and the conventional example are almost the same as the examples of the present invention at the beginning of joining, but begin to descend with the passage of time, and decline significantly after 192 hours. In Comparative Example 3, it is considered that the basic component composition was not greatly deviated from the scope of the present invention as described above together with the effect of adding zinc (Zn).

上記の表の結果から明らかなように、本発明の金(Au)−パラジウム(Pd)−白金(Pt)(−銅)Cu))合金のボンディングワイヤは、狭い範囲ながら規定数値範囲内であれば、高温動作条件下で満足の行くボンディング効果が得られることがわかる。これに対し、比較例および従来例の金(Au)合金ボンディングワイヤの場合は、第一ボンド直後の未封止プル荷重試験(0時間後)では満足の行くボンディング結果が得られているものの、その後の高温放置状態あるいは樹脂封止後の高温放置条件下では満足の行くボンディング効果が得られていないことがわかる。   As is clear from the results in the above table, the bonding wire of the gold (Au) -palladium (Pd) -platinum (Pt) (-copper) Cu) alloy according to the present invention should be within a specified numerical range although it is narrow. It can be seen that a satisfactory bonding effect can be obtained under high temperature operation conditions. On the other hand, in the case of the gold (Au) alloy bonding wires of the comparative example and the conventional example, although a satisfactory bonding result is obtained in the unsealed pull load test (after 0 hours) immediately after the first bond, It can be seen that a satisfactory bonding effect is not obtained under the subsequent high temperature standing condition or under the high temperature standing condition after resin sealing.

本発明の金(Au)合金は、高温環境下で用いられる半導体デバイス、特に自動車搭載用の半導体デバイス、高温になりやすい環境下で使用される半導体に用いられるボンディングワイヤに適しており、これらの環境下で使用される半導体分野で利用されて、その応用域を拡大、普及を図ることができる。     The gold (Au) alloy of the present invention is suitable for a semiconductor device used in a high-temperature environment, particularly a semiconductor device for mounting on an automobile, and a bonding wire used for a semiconductor used in an environment that tends to be high temperature. It can be used in the field of semiconductors used in the environment, and its application area can be expanded and spread.

Claims (6)

パラジウム(Pd)を0.5〜0.7質量%、白金(Pt)を0.1〜0.3質量%及び残部金(Au)からなる、アルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。   An aluminum (Al) metal or alloy pad comprising 0.5 to 0.7% by mass of palladium (Pd), 0.1 to 0.3% by mass of platinum (Pt) and the balance gold (Au) was provided. Gold alloy bonding wire for high-temperature semiconductor devices. パラジウム(Pd)を0.5〜0.7質量%、白金(Pt)を0.1〜0.3質量%、銅(Cu)を0.05〜0.1質量%および残部金(Au)からなる、アルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。   0.5 to 0.7% by mass of palladium (Pd), 0.1 to 0.3% by mass of platinum (Pt), 0.05 to 0.1% by mass of copper (Cu), and the balance gold (Au) A gold alloy bonding wire for high-temperature semiconductor devices, comprising an aluminum (Al) metal or alloy pad. さらに、微量元素として5〜50質量ppmのカルシウム(Ca)と5〜50質量ppmのマグネシウム(Mg)と5〜50質量ppmのランタン(La)とからなることを特徴とする請求項1または2記載の、アルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。   Furthermore, it consists of 5-50 mass ppm calcium (Ca), 5-50 mass ppm magnesium (Mg), and 5-50 mass ppm lanthanum (La) as trace elements. A gold alloy bonding wire for high-temperature semiconductor devices, comprising a metal or alloy pad of aluminum (Al) as described. さらに、微量元素として1〜20質量ppmのベリリウム(Be)を含有することを特徴とする請求項1または請求項2または請求項3記載の、アルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。   The high temperature comprising an aluminum (Al) metal or alloy pad according to claim 1, further comprising 1 to 20 ppm by mass of beryllium (Be) as a trace element. Gold alloy bonding wire for semiconductor devices. さらに、微量元素として1〜30質量ppmのセリウム(Ce)と1〜30質量ppmのイットリウム(Y)と1〜30質量ppmのユーロピウム(Eu)のうち少なくとも1種以上含有することを特徴とする請求項1または請求項2または請求項3または請求項4記載の、アルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。   Furthermore, it contains at least one or more of 1-30 mass ppm of cerium (Ce), 1-30 mass ppm of yttrium (Y), and 1-30 mass ppm of europium (Eu) as trace elements. 5. A gold alloy bonding wire for high-temperature semiconductor devices, comprising an aluminum (Al) metal or alloy pad according to claim 1 or claim 2, or claim 3 or claim 4. 上記微量元素が総計100質量ppm以内であることを特徴とする請求項3ないし5記載のアルミニウム(Al)の金属または合金パッドを備えた高温半導体装置用金合金ボンディングワイヤ。     6. The gold alloy bonding wire for a high-temperature semiconductor device comprising an aluminum (Al) metal or alloy pad according to claim 3, wherein the total amount of the trace elements is within 100 ppm by mass.
JP2010015471A 2010-01-27 2010-01-27 Gold alloy bonding wire for high temperature semiconductor device Pending JP2011155129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015471A JP2011155129A (en) 2010-01-27 2010-01-27 Gold alloy bonding wire for high temperature semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015471A JP2011155129A (en) 2010-01-27 2010-01-27 Gold alloy bonding wire for high temperature semiconductor device

Publications (1)

Publication Number Publication Date
JP2011155129A true JP2011155129A (en) 2011-08-11

Family

ID=44540892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015471A Pending JP2011155129A (en) 2010-01-27 2010-01-27 Gold alloy bonding wire for high temperature semiconductor device

Country Status (1)

Country Link
JP (1) JP2011155129A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080851A1 (en) * 2011-12-02 2013-06-06 田中電子工業株式会社 Gold-platinum-palladium alloy bonding wire
CN113584354A (en) * 2021-08-03 2021-11-02 上杭县紫金佳博电子新材料科技有限公司 Bonding aluminum alloy wire and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080851A1 (en) * 2011-12-02 2013-06-06 田中電子工業株式会社 Gold-platinum-palladium alloy bonding wire
JP2013118259A (en) * 2011-12-02 2013-06-13 Tanaka Electronics Ind Co Ltd Gold-platinum-palladium alloy bonding wire
TWI415957B (en) * 2011-12-02 2013-11-21 Tanaka Electronics Ind Gold - platinum - palladium alloy lap line
CN113584354A (en) * 2021-08-03 2021-11-02 上杭县紫金佳博电子新材料科技有限公司 Bonding aluminum alloy wire and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101583865B1 (en) Alloy Bonding Wire Based on Ag-Au-Pd
JP3969671B2 (en) Au alloy bonding wire
KR101536554B1 (en) Bonding wire
JP5671512B2 (en) Bonding wire
WO2013018238A1 (en) Ball bonding wire
JP2006351699A (en) Gold alloy wire for bonding wire having high junction reliability, high circularity of compression bonding ball, high linearity and high resin flow resistance
JP4130843B1 (en) High reliability gold alloy bonding wire and semiconductor device
JP2011155129A (en) Gold alloy bonding wire for high temperature semiconductor device
JP6103806B2 (en) Ball bonding wire
WO2006134825A1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property, high resin flow resistance and low specific resistance
JP5996853B2 (en) Ball bonding wire
WO2006134824A1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property and high resin flow resistance
JP6343197B2 (en) Bonding wire
JP5080682B1 (en) Gold-platinum-palladium alloy bonding wire
JP3673366B2 (en) Semiconductor element
JP2008251635A (en) GOLD ALLOY WIRE FOR BONDING WIRE HAVING HIGH JUNCTION RELIABILITY AND HIGH CIRCULARITY OF COMPRESSION BONDING BALL, PREVENTING EASY DAMAGE OF Al PAD AND ITS LOWER PORTION, AND HAVING STILL HIGHER RESIN FLOW PERFORMANCE
JP2003133362A (en) Semiconductor device and bonding wire for the same
JPH09272930A (en) Fine gold alloy wire for bump, and gold alloy bump
JP2008251634A (en) GOLD ALLOY WIRE FOR BONDING WIRE HAVING HIGH JUNCTION RELIABILITY AND HIGH CIRCULARITY OF COMPRESSION BONDING BALL, PREVENTING EASY DAMAGE OF Al PAD AND ITS LOWER PORTION, AND HAVING STILL HIGHER RESIN FLOW PERFORMANCE
JPH0346974B2 (en)
JP2006100720A (en) Au-ALLOY BONDING WIRE