JP5000811B2 - Lithium titanate powder and its use - Google Patents

Lithium titanate powder and its use Download PDF

Info

Publication number
JP5000811B2
JP5000811B2 JP2001131054A JP2001131054A JP5000811B2 JP 5000811 B2 JP5000811 B2 JP 5000811B2 JP 2001131054 A JP2001131054 A JP 2001131054A JP 2001131054 A JP2001131054 A JP 2001131054A JP 5000811 B2 JP5000811 B2 JP 5000811B2
Authority
JP
Japan
Prior art keywords
lithium titanate
lithium
powder
titanate powder
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001131054A
Other languages
Japanese (ja)
Other versions
JP2002324551A (en
Inventor
守 久保田
清 中原
良介 中島
朋子 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP2001131054A priority Critical patent/JP5000811B2/en
Publication of JP2002324551A publication Critical patent/JP2002324551A/en
Application granted granted Critical
Publication of JP5000811B2 publication Critical patent/JP5000811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池の活物質として有用なチタン酸リチウム粉体及びそれを用いたリチウム二次電池に関するものである。
【0002】
【従来の技術】
リチウム二次電池は、そのエネルギー密度の高さから携帯電話やノートパソコン用の電源として進歩してきたが、近年のIT技術の進歩により携帯端末機器の小型、軽量化に伴って、その電源である電池にも更に小型、高容量化が求められるようになってきた。
【0003】
リチウムチタン複合酸化物であるチタン酸リチウムは、代表的なものにLi4Ti512があり、リチウム二次電池の活物質とした場合、リチウム基準で1.5Vの電圧を有し、サイクル劣化が小さく長寿命であることが特徴である。また、時計用小型リチウム二次電池の活物質として実績を持ち、充放電に際して膨張・収縮が無視できるという特徴から大型電池用の活物質としても注目されている。この材料は正極活物質としての利用の他、負極活物質としての利用面も開けており、その将来が期待されるものである。
【0004】
電池の小型、高容量化のためには活物質自体の電気容量を大きくする方法があり、例えばWO99/03784にはチタン酸リチウムの一部をプロトンで置換して水素化することにより、理論容量を上回る充放電容量が得られることが提案されている。しかしながら活物質の充填密度を向上させて電気容量を大きくする方法については未だに報告がなされていない。
【0005】
【発明が解決しようとする課題】
本発明は、チタン酸リチウムを用いるリチウム二次電池特性を改良する為に、ポリオール及び/又はカップリング剤で表面被覆されたチタン酸リチウム粉体を製造すること、及び該チタン酸リチウム粉体を用いたリチウム二次電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、ポリオール及び/又はカップリング剤で表面被覆したチタン酸リチウム粉体はタップ密度が向上し、電極合剤を混練したときの塗料粘度を低減させることができると判った。また、このチタン酸リチウムの粉体を活物質として使用したリチウム二次電池は、優れた充放電特性を示すことを見出し、本発明を完成させた。
【0007】
すなわち、本発明のチタン酸リチウム粉体は、Li4Ti512を主成分とする粉体であって、該粉体の表面が、ポリオール及び/又はカップリング剤で被覆されていることを特徴とする。
【0008】
また、本発明のチタン酸リチウムにおいて、その粉体のタップ密度が0.75g/ml以上であっても良い。
【0009】
また、前記チタン酸リチウム粉体を正極又は負極活物質として用いた電池用電極を提供することができる。
【0010】
また、前記電池用電極を用いたリチウム二次電池を提供することができる。
【0011】
更に、前記チタン酸リチウム粉体を正極活物質とし、金属Liを負極とするリチウム二次電池であって、充・放電電圧が1.4〜1.6V、初期放電容量が150mAh/g以上であるリチウム二次電池を提供することができる。
【0012】
【発明の実施の形態】
本発明のチタン酸リチウム粉体は、各粒子がポリオール及び/又はカップリング剤で表面被覆され、Li4Ti512を主成分とすることを特徴とし、好ましくは、タップ密度が0.75g/ml以上である。このタップ密度の範囲内で、後述する優れた充放電特性を示すリチウム二次電池用の電極活物質を調製することができる。
【0013】
表面被覆する前の基体となるチタン酸リチウム粉体は、代表的には原料を水中で均一に混合する工程、該混合物を乾燥する工程及び熱処理する工程により製造できる。
【0014】
まず、リチウム原料として水酸化リチウム、水酸化リチウム・一水和物、酸化リチウム、炭酸水素リチウム、炭酸リチウム等を水に混合又は溶解する。この液にLiとTiの原子比が4:5となるように酸化チタンを混合する。使用する酸化チタンはアナターゼ型二酸化チタン又は含水酸化チタンが好ましい。アナターゼ型二酸化チタンについては、純度が少なくとも95%以上が必要であり、好ましくは98%以上のものである。純度が95%未満の場合、単位活物質当たりの容量が下がってしまうため好ましくない。含水酸化チタンについては、焼成してアナターゼ型二酸化チタンとしたときに上記範囲の純度となるものであり、この場合、焼成前における含水酸化チタンの純度の目安は90%以上である。
【0015】
前記の原子比の条件を満たすと共に、混合液のスラリー濃度は、Li原料が0.48〜4.8モル/L、酸化チタンが0.60〜6.00モル/Lであることが好ましい。これらの範囲より濃度が高いと均一混合に強い撹拌力が必要となり、また乾燥時における配管閉塞等のトラブルの原因となり好ましくない。前記の範囲より濃度が低いと蒸発水分量が増加し、乾燥コストが上がるので好ましくない。乾燥方法はそのまま乾燥しても良いし、噴霧乾燥、流動層乾燥、転動造粒乾燥あるいは凍結乾燥を単独又は組み合わせて使用しても良い。
【0016】
得られた乾燥物を大気中で熱処理し、平均粒径が0.1〜50μmであるチタン酸リチウム粒子を得る。熱処理条件は、700〜1000℃で1〜10時間、好ましくは800〜900℃で5〜10時間である。700℃未満では酸化チタンとリチウム化合物の反応が不十分となり、1000℃を超えた場合、チタン酸リチウムの焼結が顕著に起こり、電池特性が悪くなるので好ましくない。
【0017】
前記のようにして造粒したチタン酸リチウムに対して、ポリオール及び/又はカップリング剤による表面被覆処理を行う。
【0018】
ポリオールの種類は特に限定されないが、ペンタエリトリトール、トリエチロールエタン、トリメチロールプロパン等を単独又は組み合わせて使用できる。処理方法は前記ポリオールを可溶な溶媒に溶解後、その溶液と前記粒状チタン酸リチウムとを混合する。ポリオールの添加量は、基体となるチタン酸リチウムに対して0.2〜2.0質量%、好ましくは0.5〜1.5質量%である。添加量が0.2質量%より少ないと十分なタップ密度の向上が得られず、また塗料粘度の低減効果も少ないので好ましくない。また、2.0質量%より多いと放電容量の低下をもたらし好ましくない。
【0019】
混合後は50〜200℃、好ましくは80〜150℃で熱処理を行う。熱処理時間は、30分〜24時間、好ましくは1〜10時間である。これによりチタン酸リチウムの各粒子表面の水酸基とポリオール中の水酸基とが反応し、チタン酸リチウム粒子表面に有機層が形成される。ポリオール由来の有機層が形成されたチタン酸リチウム粉体は、被覆有機層の有機官能基により粒子間の相互作用が減少し、タップ密度を向上させることが可能となる。前記熱処理温度が50℃より低いと有機層形成の反応が進行せず、また200℃より高いとポリオールが分解し所望の有機層が形成されず、タップ密度向上の効果が得られないので好ましくない。
【0020】
また、前記基体となるチタン酸リチウムの焼結に対して粉砕処理が必要である場合は、その粉砕前にポリオールは溶解せずに固体のまま添加することができ、粉砕処理がポリオールの融解及び被覆を兼ねる。この方式によれば、粉砕効率の向上、粉砕時の凝結や塊状化を抑制する効果がある。
【0021】
カップリング剤の種類は特に限定されないが、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤等が使用でき、中でもシランカップリング剤が好ましい。シランカップリング剤としては、例えばビニルトリクロルシラン、ビニルトリスシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン等を単独又は組み合わせて使用できる。処理方法は前記カップリング剤を前記チタン酸リチウムと混合する。カップリング剤の添加量は基体となるチタン酸リチウムに対して、0.2〜2.0質量%、好ましくは0.5〜1.5質量%である。添加量が0.2質量%より少ないと十分なタップ密度の向上が得られず、また塗料粘度の低減効果も少ないので好ましくない。また2.0質量%より多いと放電容量の低下をもたらし好ましくない。
【0022】
混合後は、50〜200℃、好ましくは80〜150℃で熱処理を行う。熱処理時間は30分〜24時間、好ましくは1〜10時間である。これによりチタン酸リチウム粒子表面の水酸基とカップリング剤の官能基とが反応し、粒子表面にカップリング剤が被覆される。この結果、チタン酸リチウム粉体における粒子間の相互作用が減少しタップ密度を上げることができる。前記熱処理温度が50℃より低いと未反応のカップリング剤が残存し十分な効果が得られず、また200℃より高いとカップリング剤が分解するので好ましくない。
【0023】
また、前記ポリオールと前記カップリング剤を適宜組み合わせて使用することもできる。
【0024】
本発明の表面被覆処理されたチタン酸リチウム粉体は、電極作製時に一般的に用いられるn−メチル−2−ピロリドン中への分散性が向上し、塗料粘度を低減させることができる。塗料粘度が下がる結果、高濃度で塗料の作製が可能となる為、集電体上への充填密度が向上する。
【0025】
上記のように合成したチタン酸リチウム粉体を正極活物質として使用し、負極にLi金属を使用したリチウム二次電池としてコイン型二次電池を作製し、充・放電試験を行った。その結果、本発明のチタン酸リチウム粉体を用いた場合には、充放電での電圧が1.4〜1.6Vを満足し、初期放電容量が150mAh/g以上と高い値を得ることができた。また放電レート3.0Cの容量は110mAh/g以上であり、無処理の場合の105mAh/gに比べて大きいことが見出された。
【0026】
【実施例】
以下、実施例及び比較例を基に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0027】
【実施例1】
水酸化リチウム(LiOH・H2O)を12%濃度で水に溶解し、該溶解液にアナターゼ型二酸化チタンをLiとTiの原子比が4:5となる量を添加し混合した。混合物を110℃で噴霧乾燥し、875℃で6時間熱処理を行いチタン酸リチウムを作製した。このチタン酸リチウムにトリメチロールプロパンのエタノール溶液を添加し、110℃で1.5時間の熱処理を行い粉体試料を作製した。トリメチロールプロパンの添加量は1.0質量%とした。本試料のタップ密度をJIS−K−5101タップ法により測定した。また本試料82重量部とアセチレンブラック9重量部及びポリフッ化ビニリデン9重量部とを混合後、N−メチル−2−ピロリドンに固形分濃度46.5%でハイシェアーミキサーにより5分間混練し、塗料を作製した。この塗料の粘度をB型粘度計により測定した。
【0028】
次に上記塗料をアルミ箔上にドクターブレード法で乾燥後の厚みが0.01g/cm2になるように塗布した。110℃で真空乾燥後、初期電極合剤の厚みに対して80%にロールプレスした。1cm2に打ち抜き後、図1に示すコイン電池の正極3とした。図1において負極4は金属リチウム板を、電解液はエチレンカーボネートとジメチルカーボネートの等容量混合物にLiPF6を1mol/Lで溶解したものを、セパレーター5はポリプロピレン多孔膜を使用した。上記により作製したコイン電池を用いて電流密度0.2mA/cm2で1.0Vまで放電後、同電流密度で3.0Vまで充電し、このサイクルを3回繰り返した。その後、放電レートが3.0Cとなる電流密度で放電を行った。表1にタップ密度、塗料粘度及び放電容量の測定結果を示す。
【0029】
【実施例2】
チタン酸リチウムにビニルトリエトキシシランを0.5質量%混合した以外は実施例1と同様に行い、タップ密度、塗料粘度及び放電容量を測定した。結果を表1に示す。
【0030】
【実施例3】
チタン酸リチウムにビニルトリエトキシシランを1.0質量%混合した以外は実施例1と同様に行い、タップ密度、塗料粘度及び放電容量を測定した。結果を表1に示す。
【0031】
【実施例4】
チタン酸リチウムにビニルトリエトキシシランを1.5質量%混合した以外は実施例1と同様に行い、タップ密度、塗料粘度及び放電容量を測定した。結果を表1に示す。
【0032】
【実施例5】
チタン酸リチウムにビニルトリエトキシシランを2.0質量%混合した以外は実施例1と同様に行い、タップ密度、塗料粘度及び放電容量を測定した。結果を表1に示す。
【0033】
【実施例6】
チタン酸リチウムにγ−メタクリロキシプロピルトリメトキシシランを1.5質量%混合した以外は実施例1と同様に行い、タップ密度、塗料粘度及び放電容量を測定した。結果を表1に示す。
【0034】
【実施例7】
チタン酸リチウムにγ−アミノプロピルトリエトキシシランを1.5質量%混合した以外は実施例1と同様に行い、タップ密度、塗料粘度及び放電容量を測定した。結果を表1に示す。
【0035】
【比較例1】
チタン酸リチウムにポリオール又はカップリング剤のいずれも混合しなかった以外は実施例1と同様に行い、タップ密度、塗料粘度及び放電容量を測定した。結果を表1に示す。
【0036】
表1に示されるように実施例1〜4は比較例1に対してタップ密度が向上し塗料粘度も低下している。また実施例1〜3はローレート(0.15C)放電容量を維持しながら、ハイレート(3.0C)放電容量を向上させることができた。
【0037】
【表1】

Figure 0005000811
【0038】
【発明の効果】
以上説明したように、本発明のチタン酸リチウム粉体は、その粉体表面がポリオール及び/又はカップリング剤で被覆されているので、被覆しないものに比べタップ密度の向上、塗料粘度の低下及びハイレートの放電特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施例及び比較例のチタン酸リチウム粉体を正極に使用したコイン電池の断面図である。
【符号の説明】
正極 3
負極 4[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium titanate powder useful as an active material for a lithium secondary battery and a lithium secondary battery using the same.
[0002]
[Prior art]
Lithium secondary batteries have made progress as power sources for mobile phones and notebook PCs due to their high energy density. However, with the recent advances in IT technology, the power source has become smaller and lighter. Batteries are also required to be smaller and have higher capacity.
[0003]
Lithium titanate which is a lithium-titanium composite oxide is typically Li 4 Ti 5 O 12 , and has a voltage of 1.5 V based on lithium when used as an active material for a lithium secondary battery. It is characterized by small deterioration and long life. In addition, it has a track record as an active material for small lithium secondary batteries for watches, and has attracted attention as an active material for large batteries due to the feature that expansion and contraction can be ignored during charging and discharging. In addition to being used as a positive electrode active material, this material is also open to use as a negative electrode active material, and its future is expected.
[0004]
In order to reduce the size and increase the capacity of the battery, there is a method of increasing the electric capacity of the active material itself. For example, WO99 / 03784 has a theoretical capacity by substituting a part of lithium titanate with a proton and hydrogenating it. It has been proposed that a charge / discharge capacity greater than 1 can be obtained. However, no report has yet been made on a method for increasing the electric capacity by increasing the packing density of the active material.
[0005]
[Problems to be solved by the invention]
The present invention provides a lithium titanate powder whose surface is coated with a polyol and / or a coupling agent in order to improve the characteristics of a lithium secondary battery using lithium titanate, and the lithium titanate powder It is in providing the used lithium secondary battery.
[0006]
[Means for Solving the Problems]
As a result of intensive research to achieve the above object, the inventors of the present invention have improved the tap density of the lithium titanate powder surface-coated with a polyol and / or a coupling agent, and the paint when the electrode mixture is kneaded. It has been found that the viscosity can be reduced. Further, the present inventors have found that a lithium secondary battery using the lithium titanate powder as an active material exhibits excellent charge / discharge characteristics and completed the present invention.
[0007]
That is, the lithium titanate powder of the present invention is a powder mainly composed of Li 4 Ti 5 O 12 , and the surface of the powder is coated with a polyol and / or a coupling agent. Features.
[0008]
Moreover, in the lithium titanate of the present invention, the tap density of the powder may be 0.75 g / ml or more.
[0009]
Moreover, the battery electrode using the said lithium titanate powder as a positive electrode or a negative electrode active material can be provided.
[0010]
Moreover, the lithium secondary battery using the said battery electrode can be provided.
[0011]
Furthermore, a lithium secondary battery using the lithium titanate powder as a positive electrode active material and a metal Li as a negative electrode with a charge / discharge voltage of 1.4 to 1.6 V and an initial discharge capacity of 150 mAh / g or more. A lithium secondary battery can be provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The lithium titanate powder of the present invention is characterized in that each particle is surface-coated with a polyol and / or a coupling agent, and is mainly composed of Li 4 Ti 5 O 12. Preferably, the tap density is 0.75 g. / Ml or more. Within this tap density range, an electrode active material for a lithium secondary battery exhibiting excellent charge / discharge characteristics described later can be prepared.
[0013]
The lithium titanate powder as a base before surface coating can be typically produced by a step of uniformly mixing raw materials in water, a step of drying the mixture, and a step of heat treatment.
[0014]
First, lithium hydroxide, lithium hydroxide monohydrate, lithium oxide, lithium hydrogen carbonate, lithium carbonate or the like is mixed or dissolved in water as a lithium raw material. Titanium oxide is mixed with this liquid so that the atomic ratio of Li and Ti is 4: 5. The titanium oxide used is preferably anatase type titanium dioxide or hydrous titanium oxide. The anatase-type titanium dioxide needs to have a purity of at least 95%, preferably 98% or more. When the purity is less than 95%, the capacity per unit active material decreases, which is not preferable. The hydrous titanium oxide has a purity in the above range when calcined to obtain anatase type titanium dioxide. In this case, the standard of the hydrous titanium oxide purity before firing is 90% or more.
[0015]
While satisfy | filling the said atomic ratio, it is preferable that the slurry density | concentrations of a liquid mixture are 0.48-4.8 mol / L of Li raw materials, and 0.60-6.00 mol / L of titanium oxide. If the concentration is higher than these ranges, a strong stirring force is required for uniform mixing, and troubles such as piping clogging during drying are undesirable. If the concentration is lower than the above range, the amount of evaporated water increases and the drying cost increases, which is not preferable. As the drying method, it may be dried as it is, or spray drying, fluidized bed drying, rolling granulation drying or freeze drying may be used alone or in combination.
[0016]
The obtained dried product is heat-treated in the atmosphere to obtain lithium titanate particles having an average particle size of 0.1 to 50 μm. The heat treatment conditions are 700 to 1000 ° C. for 1 to 10 hours, preferably 800 to 900 ° C. for 5 to 10 hours. When the temperature is lower than 700 ° C., the reaction between titanium oxide and the lithium compound becomes insufficient, and when the temperature exceeds 1000 ° C., lithium titanate is significantly sintered and battery characteristics are deteriorated.
[0017]
The lithium titanate granulated as described above is subjected to a surface coating treatment with a polyol and / or a coupling agent.
[0018]
Although the kind of polyol is not particularly limited, pentaerythritol, triethylolethane, trimethylolpropane and the like can be used alone or in combination. In the treatment method, the polyol is dissolved in a soluble solvent, and then the solution and the granular lithium titanate are mixed. The addition amount of the polyol is 0.2 to 2.0% by mass, preferably 0.5 to 1.5% by mass with respect to lithium titanate serving as the base. If the addition amount is less than 0.2% by mass, a sufficient tap density improvement cannot be obtained, and the effect of reducing the viscosity of the paint is small, which is not preferable. On the other hand, if it is more than 2.0% by mass, the discharge capacity is lowered, which is not preferable.
[0019]
After mixing, heat treatment is performed at 50 to 200 ° C., preferably 80 to 150 ° C. The heat treatment time is 30 minutes to 24 hours, preferably 1 to 10 hours. Thereby, the hydroxyl group on the surface of each particle of lithium titanate reacts with the hydroxyl group in the polyol to form an organic layer on the surface of the lithium titanate particle. In the lithium titanate powder in which the polyol-derived organic layer is formed, the interaction between particles is reduced by the organic functional group of the coated organic layer, and the tap density can be improved. If the heat treatment temperature is lower than 50 ° C., the reaction for forming the organic layer does not proceed, and if it is higher than 200 ° C., the polyol is decomposed and the desired organic layer is not formed, and the effect of improving the tap density is not preferable. .
[0020]
In addition, when a pulverization process is required for the sintering of the lithium titanate serving as the substrate, the polyol can be added as a solid without being dissolved before the pulverization. Also serves as a coating. According to this method, there is an effect of improving the pulverization efficiency and suppressing condensation and agglomeration during pulverization.
[0021]
Although the kind of coupling agent is not specifically limited, A silane coupling agent, a titanium coupling agent, an aluminum coupling agent, etc. can be used, and a silane coupling agent is especially preferable. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltrissilane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-aminopropyltri Ethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane and the like can be used alone or in combination. In the treatment method, the coupling agent is mixed with the lithium titanate. The addition amount of the coupling agent is 0.2 to 2.0% by mass, preferably 0.5 to 1.5% by mass with respect to the lithium titanate serving as the base. If the addition amount is less than 0.2% by mass, a sufficient tap density improvement cannot be obtained, and the effect of reducing the viscosity of the paint is small, which is not preferable. On the other hand, if it is more than 2.0% by mass, the discharge capacity is lowered, which is not preferable.
[0022]
After mixing, heat treatment is performed at 50 to 200 ° C, preferably 80 to 150 ° C. The heat treatment time is 30 minutes to 24 hours, preferably 1 to 10 hours. As a result, the hydroxyl group on the surface of the lithium titanate particle reacts with the functional group of the coupling agent, and the particle surface is coated with the coupling agent. As a result, the interaction between particles in the lithium titanate powder can be reduced and the tap density can be increased. If the heat treatment temperature is lower than 50 ° C, an unreacted coupling agent remains and a sufficient effect cannot be obtained, and if it is higher than 200 ° C, the coupling agent is decomposed, which is not preferable.
[0023]
Moreover, the said polyol and the said coupling agent can also be used in combination as appropriate.
[0024]
The surface-coated lithium titanate powder of the present invention has improved dispersibility in n-methyl-2-pyrrolidone that is generally used during electrode production, and can reduce paint viscosity. As a result of the lowering of the viscosity of the paint, it becomes possible to produce the paint at a high concentration, so that the packing density on the current collector is improved.
[0025]
A coin-type secondary battery was produced as a lithium secondary battery using the lithium titanate powder synthesized as described above as the positive electrode active material and Li metal as the negative electrode, and a charge / discharge test was performed. As a result, when the lithium titanate powder of the present invention is used, the charge / discharge voltage satisfies 1.4 to 1.6 V, and the initial discharge capacity is as high as 150 mAh / g or higher. did it. Moreover, the capacity | capacitance of the discharge rate 3.0C was 110 mAh / g or more, and it was found that it was large compared with 105 mAh / g in the case of no process.
[0026]
【Example】
Hereinafter, although concretely demonstrated based on an Example and a comparative example, this invention is not limited to these Examples.
[0027]
[Example 1]
Lithium hydroxide (LiOH.H 2 O) was dissolved in water at a concentration of 12%, and an anatase-type titanium dioxide was added to the solution in an amount such that the atomic ratio of Li and Ti was 4: 5. The mixture was spray-dried at 110 ° C. and heat-treated at 875 ° C. for 6 hours to produce lithium titanate. An ethanol solution of trimethylolpropane was added to this lithium titanate, followed by heat treatment at 110 ° C. for 1.5 hours to prepare a powder sample. The amount of trimethylolpropane added was 1.0% by mass. The tap density of this sample was measured by the JIS-K-5101 tap method. Also, 82 parts by weight of this sample, 9 parts by weight of acetylene black and 9 parts by weight of polyvinylidene fluoride were mixed and then kneaded with N-methyl-2-pyrrolidone at a solid content concentration of 46.5% for 5 minutes using a high shear mixer. Was made. The viscosity of this paint was measured with a B-type viscometer.
[0028]
Next, the paint was applied onto an aluminum foil by a doctor blade method so that the thickness after drying was 0.01 g / cm 2 . After vacuum drying at 110 ° C., roll pressing was performed to 80% with respect to the thickness of the initial electrode mixture. After punching out to 1 cm 2 , the positive electrode 3 of the coin battery shown in FIG. 1 was obtained. In FIG. 1, the negative electrode 4 was a metal lithium plate, the electrolyte was a solution of LiPF 6 dissolved in an equal volume mixture of ethylene carbonate and dimethyl carbonate at 1 mol / L, and the separator 5 was a polypropylene porous membrane. Using the coin battery produced as described above, the battery was discharged to 1.0 V at a current density of 0.2 mA / cm 2 and then charged to 3.0 V at the same current density, and this cycle was repeated three times. Thereafter, discharge was performed at a current density at which the discharge rate was 3.0C. Table 1 shows the measurement results of tap density, paint viscosity, and discharge capacity.
[0029]
[Example 2]
The tap density, paint viscosity, and discharge capacity were measured in the same manner as in Example 1 except that 0.5% by mass of vinyl triethoxysilane was mixed with lithium titanate. The results are shown in Table 1.
[0030]
[Example 3]
The tap density, coating viscosity, and discharge capacity were measured in the same manner as in Example 1 except that 1.0% by mass of vinyl triethoxysilane was mixed with lithium titanate. The results are shown in Table 1.
[0031]
[Example 4]
The tap density, paint viscosity, and discharge capacity were measured in the same manner as in Example 1 except that 1.5% by mass of vinyltriethoxysilane was mixed with lithium titanate. The results are shown in Table 1.
[0032]
[Example 5]
The tap density, paint viscosity, and discharge capacity were measured in the same manner as in Example 1 except that 2.0% by mass of vinyl triethoxysilane was mixed with lithium titanate. The results are shown in Table 1.
[0033]
[Example 6]
The tap density, paint viscosity, and discharge capacity were measured in the same manner as in Example 1 except that 1.5% by mass of γ-methacryloxypropyltrimethoxysilane was mixed with lithium titanate. The results are shown in Table 1.
[0034]
[Example 7]
The tap density, paint viscosity, and discharge capacity were measured in the same manner as in Example 1 except that 1.5% by mass of γ-aminopropyltriethoxysilane was mixed with lithium titanate. The results are shown in Table 1.
[0035]
[Comparative Example 1]
The tap density, paint viscosity, and discharge capacity were measured in the same manner as in Example 1 except that neither lithium nor a coupling agent was mixed with lithium titanate. The results are shown in Table 1.
[0036]
As shown in Table 1, in Examples 1 to 4, the tap density was improved and the paint viscosity was also reduced as compared with Comparative Example 1. In Examples 1 to 3, the high rate (3.0 C) discharge capacity could be improved while maintaining the low rate (0.15 C) discharge capacity.
[0037]
[Table 1]
Figure 0005000811
[0038]
【Effect of the invention】
As described above, since the lithium titanate powder of the present invention has a powder surface coated with a polyol and / or a coupling agent, the tap density is improved, the paint viscosity is reduced, and the powder is not coated. High rate discharge characteristics can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a coin battery using lithium titanate powders of Examples and Comparative Examples of the present invention as a positive electrode.
[Explanation of symbols]
Positive electrode 3
Negative electrode 4

Claims (3)

液体電解質を使用するリチウム二次電池において正極又は負極の活物質として用いる、LiTi12を主成分とするチタン酸リチウム粉体であって、該粉体の表面が、チタン酸リチウムに対して0.5〜2.0重量%のポリオール及び/又はシランカップリング剤で被覆されており、該粉体のタップ密度が、0.75g/ml以上であることを特徴とするチタン酸リチウム粉体。Lithium titanate powder mainly composed of Li 4 Ti 5 O 12 used as an active material for a positive electrode or a negative electrode in a lithium secondary battery using a liquid electrolyte, and the surface of the powder is made of lithium titanate Lithium titanate, characterized in that it is coated with 0.5 to 2.0% by weight of polyol and / or silane coupling agent, and the tap density of the powder is 0.75 g / ml or more powder. 請求項1に記載のチタン酸リチウム粉体を正極活物質とし、金属Liを負極とするリチウム二次電池であって、充放電試験における充・放電電圧が1.4〜1.6V、初期放電容量が150mAh/g以上であることを特徴とするリチウム二次電池。  A lithium secondary battery using the lithium titanate powder according to claim 1 as a positive electrode active material and a metal Li as a negative electrode, wherein a charge / discharge voltage in a charge / discharge test is 1.4 to 1.6V, initial discharge A lithium secondary battery having a capacity of 150 mAh / g or more. チタン酸リチウム粉体の原料を水中で均一に混合する工程、
前記混合水溶液を乾燥させて乾燥物を得る工程、
前記乾燥物を大気中で熱処理してチタン酸リチウム粉体を得る工程、
ポリオールの溶液及び/又はシランカップリング剤と前記チタン酸リチウム粉体とを混合する工程、及び
前記混合物を熱処理してチタン酸リチウム粉体を前記ポリオール及び/又はシランカップリング剤で被覆する工程、
を含む、Li Ti 12 を主成分とする、液体電解質を使用するリチウム二次電池において正極又は負極の活物質として用いるチタン酸リチウム粉体を製造する方法。
A step of uniformly mixing raw materials of lithium titanate powder in water;
Drying the mixed aqueous solution to obtain a dried product;
A step of heat-treating the dried product in the air to obtain a lithium titanate powder;
A step of mixing a solution of a polyol and / or a silane coupling agent and the lithium titanate powder, and a step of heat-treating the mixture to coat the lithium titanate powder with the polyol and / or silane coupling agent,
A lithium titanate powder used as an active material for a positive electrode or a negative electrode in a lithium secondary battery using a liquid electrolyte , the main component of which is Li 4 Ti 5 O 12 .
JP2001131054A 2001-04-27 2001-04-27 Lithium titanate powder and its use Expired - Lifetime JP5000811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001131054A JP5000811B2 (en) 2001-04-27 2001-04-27 Lithium titanate powder and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001131054A JP5000811B2 (en) 2001-04-27 2001-04-27 Lithium titanate powder and its use

Publications (2)

Publication Number Publication Date
JP2002324551A JP2002324551A (en) 2002-11-08
JP5000811B2 true JP5000811B2 (en) 2012-08-15

Family

ID=18979307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001131054A Expired - Lifetime JP5000811B2 (en) 2001-04-27 2001-04-27 Lithium titanate powder and its use

Country Status (1)

Country Link
JP (1) JP5000811B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008334A1 (en) * 2001-07-20 2003-01-30 Altair Nanomaterials Inc. Process for making lithium titanate
JP4237074B2 (en) * 2004-02-16 2009-03-11 ソニー株式会社 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4941623B2 (en) * 2004-07-28 2012-05-30 株式会社Gsユアサ Electrode material for electrochemical device, method for producing the same, electrode for electrochemical device, and electrochemical device
JP5083743B2 (en) * 2005-07-06 2012-11-28 株式会社 東北テクノアーチ Lithium battery
CN1305166C (en) * 2005-07-28 2007-03-14 黑龙江中强能源科技有限公司 Nano-lithium ion cell and mfg. method thereof
JP4826199B2 (en) * 2005-10-14 2011-11-30 株式会社豊田中央研究所 Water-based lithium secondary battery
KR100749486B1 (en) 2005-10-31 2007-08-14 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
KR100778450B1 (en) 2006-11-22 2007-11-28 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery comprising same
KR100814880B1 (en) 2006-11-22 2008-03-18 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery comprising the same
JP2010177030A (en) * 2009-01-29 2010-08-12 Nippon Chem Ind Co Ltd Surface treating agent of lithium based composite oxide, surface treating liquid of lithium based composite oxide, electrolyte for lithium-ion secondary battery, positive electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, negative electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery and method of manufacturing the same
CA2769178A1 (en) * 2009-07-31 2011-02-03 Toda Kogyo Corporation Positive electrode active substance for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
KR101134474B1 (en) 2009-12-03 2012-04-13 전남대학교산학협력단 Anode material with high rate-capability and high Capacity for Lithium secondary battery and Process for synthesizing the same
JP5717461B2 (en) 2011-02-17 2015-05-13 株式会社東芝 Battery electrode and method for manufacturing the same, non-aqueous electrolyte battery, battery pack and active material
CN102800862A (en) * 2012-07-30 2012-11-28 彩虹集团公司 Titanium composite material, preparation method thereof and method for preparing cathode using composite material
KR101481546B1 (en) 2012-12-21 2015-01-13 주식회사 코캄 Electrode active material composite, electrode and lithium secondary battery comprising the same
KR20160063332A (en) * 2013-09-30 2016-06-03 도판 인사츠 가부시키가이샤 Electrode for secondary batteries, and secondary battery
JP5790745B2 (en) * 2013-11-28 2015-10-07 住友大阪セメント株式会社 ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
WO2015166620A1 (en) * 2014-05-02 2015-11-05 ソニー株式会社 Battery, battery pack, battery module, electronic device, electric vehicle, electricity storage device and electric power system
CN106450262B (en) * 2016-10-28 2019-04-16 上海纳米技术及应用国家工程研究中心有限公司 A kind of hollow sphere pattern lithium titanate anode material and preparation method and application
JP6833752B2 (en) 2018-03-23 2021-02-24 株式会社東芝 Rechargeable batteries, battery packs, vehicles and stationary power supplies

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272668A (en) * 1991-02-27 1992-09-29 Sony Corp Organic electrolyte secondary battery
JP2000156245A (en) * 1998-11-19 2000-06-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2000223147A (en) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2000311708A (en) * 1999-04-27 2000-11-07 Kyocera Corp Manufacture of battery formed entirely of solid lithium
JP4228163B2 (en) * 1999-05-14 2009-02-25 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP2002324551A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP5000811B2 (en) Lithium titanate powder and its use
JP4768901B2 (en) Lithium titanium composite oxide, method for producing the same, and use thereof
JP6601500B2 (en) Positive electrode material, method for producing the same, and lithium ion secondary battery
JP5742935B2 (en) Positive electrode active material particles, and positive electrode and all solid state battery using the same
JP5180643B2 (en) Reaction method and metal oxide nanoparticles obtained by the method, or carbon carrying the metal oxide nanoparticles, an electrode containing the carbon, and an electrochemical device using the electrode
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
WO2011155523A1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
EP2760069B1 (en) Electrode material and electrode
TW201232905A (en) Electrode material and production method thereof
JP2014075177A (en) Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
EP3878814A1 (en) Lithium compound, nickel-based cathode active material, method for preparing lithium oxide, method for preparing nickel-based cathode active material, and secondary battery using same
CN114094068B (en) Cobalt-coated positive electrode material, preparation method thereof, positive electrode plate and lithium ion battery
WO2014030691A1 (en) Electrode material, electrode paste for lithium ion cell, electrode for lithium ion cell, and lithium ion cell
JP6568333B1 (en) Positive electrode active material, method for producing the same, positive electrode, and lithium ion battery
WO2024093074A1 (en) Composite-coated modified positive electrode material, preparation method therefor and use thereof
JP4153192B2 (en) Lithium titanate for electrodes and uses thereof
JP5790745B2 (en) ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JPH11149926A (en) Lithium manganese oxide fine powder, production lithium manganese fine powder, and lithium ion secondary battery employing positive electrode containing lithium manganese fine powder as active material
JP2021516208A (en) Lithium-titanium composite oxide containing primary particles coated with aluminum and its manufacturing method
JP2017010842A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP6725022B1 (en) Positive electrode material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Ref document number: 5000811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term