WO2015166620A1 - Battery, battery pack, battery module, electronic device, electric vehicle, electricity storage device and electric power system - Google Patents

Battery, battery pack, battery module, electronic device, electric vehicle, electricity storage device and electric power system Download PDF

Info

Publication number
WO2015166620A1
WO2015166620A1 PCT/JP2015/001283 JP2015001283W WO2015166620A1 WO 2015166620 A1 WO2015166620 A1 WO 2015166620A1 JP 2015001283 W JP2015001283 W JP 2015001283W WO 2015166620 A1 WO2015166620 A1 WO 2015166620A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
negative electrode
compound
positive electrode
electrolyte
Prior art date
Application number
PCT/JP2015/001283
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 浅川
卓誠 坂本
翔 高橋
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014095261A external-priority patent/JP2015213014A/en
Priority claimed from JP2014095262A external-priority patent/JP2015213015A/en
Priority claimed from JP2014095263A external-priority patent/JP2015213016A/en
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015166620A1 publication Critical patent/WO2015166620A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to a battery, a battery pack, a battery module, an electronic device, an electric vehicle, a power storage device, and a power system.
  • a negative electrode material used for the negative electrode of the secondary battery a high potential negative electrode material such as lithium titanate (Li 4 Ti 5 O 12 ) is used in addition to the carbon-based negative electrode material.
  • a high potential negative electrode material such as lithium titanate (Li 4 Ti 5 O 12 ) is used in addition to the carbon-based negative electrode material.
  • secondary batteries using high-potential negative electrode materials and the like have been actively developed.
  • Patent Documents 1 to 9 and Non-Patent Document 1 disclose technologies related to secondary batteries.
  • Batteries are required to improve high-temperature cycle characteristics and suppress gas generation during high-temperature storage.
  • an object of the present technology is to provide a battery, a battery pack, a battery module, an electronic device, an electric vehicle, a power storage device, and a power system that can improve high-temperature cycle characteristics and suppress gas generation during high-temperature storage. .
  • Batteries are required to have operational stability over a wide temperature range that can withstand use in regions with large differences in temperature and in cold regions. Accordingly, there is a demand for improving low temperature characteristics and suppressing high temperature cycle characteristics and gas generation during high temperature storage.
  • an object of the present technology is to provide a battery, a battery pack, a battery module, an electronic device, an electric vehicle, a power storage device, and a power system that can improve low temperature characteristics and suppress gas generation during high temperature storage.
  • Batteries are required to have operational stability over a wide temperature range that can withstand use in regions with large differences in temperature and in cold regions. Accordingly, there is a demand for improving low temperature characteristics and suppressing high temperature cycle characteristics and gas generation during high temperature storage.
  • an object of the present technology is to provide a battery, a battery pack, a battery module, an electronic device, an electric vehicle, a power storage device, and a power system that can improve high-temperature cycle characteristics and low-temperature characteristics and can suppress gas generation during high-temperature storage.
  • the present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive.
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements
  • the non-aqueous solvent includes a chain sulfone compound
  • the additive includes at least a silane coupling agent and a siloxane compound. It is a battery containing any one compound.
  • the present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte containing a nonaqueous solvent and an electrolyte salt, and the negative electrode active material includes at least titanium and oxygen as constituent elements.
  • the negative electrode is a battery including a first compound derived from a silane coupling agent or a siloxane compound and a chain sulfone compound.
  • the present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive.
  • the negative electrode active material includes at least titanium.
  • the battery includes a titanium-containing inorganic oxide containing oxygen as a constituent element, the non-aqueous solvent includes a carbonate compound, and the additive includes at least one of a silane coupling agent and a siloxane compound.
  • the present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte containing a nonaqueous solvent and an electrolyte salt, and the negative electrode active material includes at least titanium and oxygen as constituent elements.
  • the negative electrode is a battery including a third compound derived from a silane coupling agent or a siloxane compound and a carbonate compound.
  • the present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive.
  • the negative electrode active material includes at least titanium.
  • the battery includes at least one of a coupling agent and a siloxane compound.
  • the present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte containing a nonaqueous solvent and an electrolyte salt, and the negative electrode active material includes at least titanium and oxygen as constituent elements.
  • the negative electrode is a fourth compound derived from a silane coupling agent or a siloxane compound, and a fifth derived from a silane coupling agent or a siloxane compound and a cyclic carboxylic acid ester compound.
  • a battery comprising at least one of the compounds.
  • the battery module, battery pack, electronic device, electric vehicle, power storage device, and power system of the present technology include the above-described battery.
  • any of the following effects can be achieved. According to the present technology, it is possible to improve the high temperature cycle characteristics and to suppress the generation of gas during high temperature storage. According to the present technology, it is possible to improve the low temperature characteristics and to suppress the generation of gas during high temperature storage. According to the present technology, it is possible to improve the high-temperature cycle characteristics and the low-temperature characteristics and to suppress the generation of gas during high-temperature storage.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of a battery according to an embodiment of the present technology.
  • FIG. 2 is an enlarged cross-sectional view of a part of the spirally wound electrode body in FIG.
  • FIG. 3 is an exploded perspective view showing a configuration example of the battery according to the embodiment of the present technology.
  • 4 is a cross-sectional view taken along the line II of the spirally wound electrode body in FIG.
  • FIG. 5A is a perspective view showing the appearance of the battery of the present technology.
  • FIG. 5B is a perspective exploded view showing a structural example of a battery.
  • FIG. 5C is a perspective view showing a configuration example of the lower surface of the battery shown in FIG. 5A.
  • FIG. 6A and 6B are perspective views showing a configuration of a battery unit using a battery of the present technology.
  • FIG. 7 is an exploded perspective view showing a configuration of a battery unit using the battery of the present technology.
  • FIG. 8 is an exploded perspective view showing a configuration of a battery module using the battery of the present technology.
  • FIG. 9 is a perspective view illustrating a configuration of an application example of a battery (battery pack: single battery).
  • FIG. 10 is a block diagram showing the configuration of the battery pack shown in FIG.
  • FIG. 11 is a block diagram illustrating a circuit configuration example of the battery pack according to the embodiment of the present technology.
  • FIG. 12 is a schematic diagram illustrating an example applied to a residential power storage system using the battery of the present technology.
  • FIG. 13 is a schematic diagram schematically illustrating an example of a configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied.
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-222450
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-222450
  • it is proposed to suppress high-temperature deterioration by using a silane compound having a fluoro group when nickel or an iron-based compound is used for the positive electrode.
  • Patent Document 1 describes that the electrolyte solution contains a sulfone compound.
  • Non-Patent Document 1 Joint of The Electrochemical Society, 149 7 A920-A926 2002
  • the sulfone compound causes reductive decomposition, resulting in insufficient long-term reliability.
  • Patent Document 1 does not suggest any effect when the lithium titanium composite acid compound is used for the negative electrode.
  • the reaction potential is 1.55 Vvs.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2011-77029
  • a reaction at a high temperature is suppressed, and a decomposition reaction at a high temperature storage or a high temperature charge / discharge is suppressed. It has been proposed to obtain internal resistance and high electrical capacity.
  • FIG. 1 shows a cross-sectional configuration of a battery according to the first embodiment of the present technology.
  • FIG. 2 shows an enlarged part of the spirally wound electrode body 20 shown in FIG.
  • This battery is a secondary battery that can be charged and discharged, for example, a non-aqueous electrolyte battery, for example, a lithium ion secondary battery, and the like.
  • This non-aqueous electrolyte battery mainly includes a wound electrode body 20 in which a positive electrode 21 and a negative electrode 22 are laminated and wound through a separator 23 inside a substantially hollow cylindrical battery can 11, and a pair of insulations.
  • the plates 12 and 13 are accommodated.
  • the battery structure using the cylindrical battery can 11 is called a cylindrical type.
  • the battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened, and is made of iron (Fe), aluminum (Al), or an alloy thereof.
  • the battery can 11 is made of iron, for example, nickel (Ni) or the like may be plated on the surface of the battery can 11.
  • the pair of insulating plates 12 and 13 are arranged so as to sandwich the wound electrode body 20 from above and below and to extend perpendicularly to the wound peripheral surface.
  • a battery lid 14, a safety valve mechanism 15, and a heat sensitive resistance element (Positive Temperature Coefficient: PTC element) 16 are caulked through a gasket 17 at the open end of the battery can 11, and the battery can 11 is sealed. ing.
  • the battery lid 14 is made of, for example, the same material as the battery can 11.
  • the safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14.
  • the safety valve mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16.
  • the disk plate 15 ⁇ / b> A is reversed and the electric power between the battery lid 14 and the wound electrode body 20 is reversed. Connection is cut off.
  • the heat-sensitive resistance element 16 prevents abnormal heat generation caused by a large current by increasing resistance (limiting current) as the temperature rises.
  • the gasket 17 is made of, for example, an insulating material, and for example, asphalt is applied to the surface thereof.
  • the wound electrode body 20 is obtained by laminating and winding a positive electrode 21 and a negative electrode 22 via a separator 23.
  • a center pin 24 may be inserted in the center of the wound electrode body 20.
  • a positive electrode lead 25 made of aluminum or the like is connected to the positive electrode 21, and a negative electrode lead 26 made of nickel or the like is connected to the negative electrode 22.
  • the positive electrode lead 25 is welded to the safety valve mechanism 15 and electrically connected to the battery lid 14, and the negative electrode lead 26 is welded to the battery can 11 and electrically connected thereto.
  • the positive electrode 21 is obtained by providing a positive electrode active material layer 21B on both surfaces of a positive electrode current collector 21A having a pair of surfaces.
  • the positive electrode 21 may have the area
  • the positive electrode current collector 21A is made of, for example, a metal material such as aluminum, nickel, or stainless steel.
  • the positive electrode active material layer 21 ⁇ / b> B contains one or more positive electrode materials capable of inserting and extracting lithium as a positive electrode active material.
  • the positive electrode active material layer 21 ⁇ / b> B may contain other materials such as a binder and / or a conductive agent as necessary.
  • a lithium-containing compound As a positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing compound is preferable. This is because a high energy density can be obtained.
  • the lithium-containing compound include a phosphate compound containing lithium and a transition metal element, and a composite oxide containing lithium and a transition metal element.
  • the group which consists of cobalt, nickel, manganese, and iron as a transition metal element is preferable. This is because a higher voltage can be obtained.
  • a phosphoric acid compound containing lithium and a transition metal element for example, a lithium iron phosphate compound having an olivine structure containing at least lithium, phosphorus (P) and iron (Fe), lithium, phosphorus (P) and manganese ( And a lithium manganese phosphate compound having an olivine structure containing at least Mn).
  • the lithium iron phosphate compound having an olivine structure, lithium iron phosphate compound (LiFePO 4), or lithium iron composite phosphate compound containing the different element LiFe x M 1-x O 4: M is other than iron 1 or more types of metal elements, x is 0 ⁇ x ⁇ 1, etc.).
  • M is at least one of cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), aluminum (Al), vanadium (V), and titanium (Ti) as a transition metal element.
  • cobalt Co
  • Ni nickel
  • Mn manganese
  • Fe iron
  • Al aluminum
  • V vanadium
  • Ti titanium
  • Examples of the lithium manganese phosphate compound having an olivine structure include a lithium manganese phosphate compound (LiMnPO 4 ).
  • a typical example of the lithium iron phosphate compound having an olivine structure is a lithium phosphate compound represented by (Chemical Formula 1).
  • (Chemical formula 1) Li u Fe r M1 (1- r) PO 4
  • M1 is cobalt (Co), manganese (Mn), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium (Nb ), Copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr), at least one selected from the group consisting of r.
  • u is a value within the range of 0.9 ⁇ u ⁇ 1.1 Note that the composition of lithium varies depending on the state of charge and discharge, and the value of u Represents the value in the fully discharged state.
  • lithium phosphate compound represented by (Chemical Formula 1) typically, for example, Li u FePO 4 (u is as defined above), Li u Fe r Mn (1-r) PO 4 (u Is as defined above, and r is as defined above.
  • composite oxide containing lithium and transition metal element examples include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide (Li x Ni). 1-z Co z O 2 (z ⁇ 1)), lithium nickel cobalt manganese composite oxide (Li x Ni (1-vw) Co v Mn w O 2 (v + w ⁇ 1)) and other lithium transitions having a layered structure Examples thereof include metal composite oxides, lithium manganese composite oxides having a spinel structure and containing at least lithium and manganese.
  • Examples of the spinel structure lithium manganese composite oxide include a lithium composite oxide represented by (Chemical Formula 2).
  • M2 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe ), Copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), at least one selected from the group consisting of v, w and s are values within the range of 0.9 ⁇ v ⁇ 1.1, 0 ⁇ w ⁇ 0.6, 3.7 ⁇ s ⁇ 4.1, where the composition of lithium is the state of charge and discharge. And the value of v represents a value in a fully discharged state.
  • lithium composite oxide represented by (Chemical Formula 2) for example, Li v Mn 2 O 4 (v is as defined above), lithium manganese nickel composite oxide (LiMn 2 ⁇ t Ni t O 4 (t ⁇ 2)) and the like.
  • the positive electrode material may be one in which a coating layer is formed on at least a part of the surface of the core particle made of the lithium-containing compound described above.
  • the coating layer is provided on at least a part of the surface of the core particle of the lithium-containing compound as the base material, and has a composition element or composition ratio different from that of the lithium-containing compound particle as the base material.
  • another lithium-containing compound for example, Ni, Mn, Li
  • a coating layer containing a phosphate compound for example, lithium phosphate
  • the covering layer may be a carbon material or the like.
  • positive electrode materials capable of inserting and extracting lithium include oxides such as titanium oxide, vanadium oxide and manganese dioxide, disulfides such as titanium disulfide and molybdenum sulfide, and niobium selenide. And chalcogenides such as sulfur, polyaniline or polythiophene, and other conductive polymers.
  • the conductive agent examples include carbon black produced by furnace method, acetylene method, contact method, thermal method, etc., carbon materials such as vapor-grown carbon, activated carbon, activated carbon fiber cloth, single wall or multi-wall carbon nanotube, carbon nanohorn, etc.
  • carbon materials such as vapor-grown carbon, activated carbon, activated carbon fiber cloth, single wall or multi-wall carbon nanotube, carbon nanohorn, etc.
  • those obtained by surface modification of these carbon materials by acid / alkali treatment or the like, or those obtained by physically or chemically bonding other elements can be used.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resins. At least one selected from a copolymer mainly composed of materials is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a negative electrode active material layer 22B is provided on both surfaces of a negative electrode current collector 22A having a pair of surfaces. Although illustration is omitted, the negative electrode 22 may have a region where the negative electrode active material layer 22B is provided only on one surface of the negative electrode current collector 22A.
  • the negative electrode current collector 22A is made of a metal material such as aluminum foil, copper, nickel, or stainless steel, for example.
  • the negative electrode active material layer 22B contains one or more negative electrode materials capable of inserting and extracting lithium as a negative electrode active material.
  • the negative electrode active material layer 22B may contain other materials such as at least one of a binder and a conductive agent as necessary. Note that the same binder and conductive agent as those described for the positive electrode can be used.
  • a negative electrode material capable of inserting and extracting lithium for example, a titanium-containing inorganic oxide containing at least titanium (Ti) and oxygen (O) as constituent elements, or a metal sulfide can be used.
  • the reaction potential of the negative electrode is 1.0 Vvs. More than Li / Li + , preferably 1.0 Vvs. Li / Li + more than 1.9Vvs. The material etc. which become Li / Li + or less are preferable.
  • titanium-containing inorganic oxide examples include composite oxides having at least lithium and titanium as constituent elements (referred to as titanium-containing lithium composite oxides), and metal oxides having titanium and oxygen as constituent elements (referred to as titanium oxides). Etc. Among these, titanium-containing lithium composite oxide or titanium oxide is preferable.
  • titanium-containing lithium composite oxide typically, for example, Li x Ti y O z having a spinel structure (x represents a composition ratio of Li, y represents a composition ratio of Ti, and z represents a composition of O).
  • Li x Ti y O z having a spinel structure examples include Li 4 Ti 5 O 12 .
  • the potential (V vs. Li / Li + ) for occluding and releasing lithium ions of Li x Ti y O z having a spinel structure is, for example, about 1.55 V in the flat portion in the potential change pattern during charge / discharge of the battery. It is. Note that Li in Li x Ti y O z may be Na, K, or the like.
  • titanium-containing lithium composite oxide As a titanium-containing lithium composite oxide, in addition, from the viewpoint that higher potential flatness and rate characteristics can be obtained, some of the constituent elements lithium, titanium, and oxygen are replaced with other elements such as Al and Mg. A substituted one may be used.
  • Examples of other elements that substitute a part of titanium include metal elements and metalloid elements capable of forming an alloy with lithium.
  • Examples thereof include bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd), and platinum (Pt).
  • Typical examples of the titanium-containing lithium composite oxide in which a part of lithium, titanium, and oxygen are substituted with other elements include Li 3.75 Ti 4.875 Mg 0.375 O 12 , Li 3.75 Ti 4.50 Al 0.75 O 12, and the like. Is mentioned.
  • TiO 2 The titanium oxide (which is p> 0, q> 0. ) Ti p O q a compound represented by (titanium oxide) and the like. Specific examples of this compound include TiO 2 and the like.
  • the TiO 2 may be any of anatase TiO 2 [TiO 2 (anatase)], rutile TiO 2 [TiO 2 (rutile)], B-type TiO 2 [TiO 2 (B)], and the like.
  • the titanium-containing inorganic oxide such as the titanium-containing lithium composite oxide may be coated with carbon.
  • CVD chemical vapor deposition
  • hydrocarbons are decomposed and a carbon film is grown on the surface of the titanium-containing lithium composite oxide, whereby a titanium-containing inorganic oxide coated with carbon is obtained.
  • the carbon coating method is not limited to the above.
  • the negative electrode 22 contains a compound derived from a chain sulfone compound and a silane coupling agent or a siloxane compound (hereinafter sometimes referred to as a silane / siloxane compound) contained in an electrolyte solution described later.
  • the negative electrode 22 may further include a compound derived from a chain sulfone compound.
  • the negative electrode 22 includes at least one disulfide compound having a disulfide bond (—SS—) represented by the formula (1) as a compound derived from a chain sulfone compound and a silane / siloxane compound. ing.
  • the negative electrode 22 includes at least one disulfide compound having a disulfide bond (—SS—) represented by the formula (1) and a sulfonyl bond (—S ( ⁇ O) 2 represented by the formula (2). At least one of sulfonyl compounds having-) may be included.
  • at least one disulfide compound represented by the formula (1) and at least one sulfonyl compound represented by the formula (2) are typically active in the negative electrode active material layer 22B during charge / discharge. It is contained in a film formed on the surface of the substance particles. Side reactions can be suppressed by wrapping the active site of the negative electrode 22 with the coating. As a result, it is possible to suppress gas generation and improve cycle characteristics in a high temperature environment.
  • n is an integer of 1 to 8.
  • R1, R2, R3 and R4 each independently represents a halogen group, an alkyl group, a halogenated alkyl group, an alkoxy group or a siloxane group.
  • R5 is a halogen group, an alkyl group, a halogenated alkyl group or an alkoxy group.
  • R6 is H or Li.
  • a negative electrode material in which the reaction potential of the negative electrode becomes a noble potential is used as the negative electrode active material.
  • a carbon-based negative electrode active material having a low negative electrode reaction potential is used, a solvent that decomposes and is not effective can be used effectively.
  • Examples of the disulfide compound represented by the formula (1) include compounds represented by the following formulas (1-1) to (1-25). Among these, from the viewpoint of battery characteristics, a compound represented by the formula (1-2) and a compound represented by the formula (1-4) are preferable.
  • Examples of the sulfonyl compound represented by the formula (2) include compounds represented by the following formulas (2-1) to (2-8). Among these, from the viewpoint of battery characteristics, a compound represented by the formula (2-2) and a compound represented by the formula (2-4) are preferable.
  • the negative electrode containing at least one compound represented by the formula (1) includes, for example, one produced from a silane / siloxane compound and a chain sulfone compound contained in the electrolytic solution impregnated in the negative electrode It is.
  • the negative electrode containing at least one of the compounds represented by (2) includes, for example, one produced from a decomposition product of a chain sulfone compound contained in the electrolyte solution impregnated in the negative electrode.
  • the compound represented by the formula (1) is derived from a silane / siloxane compound and a chain sulfone compound. Typically, for example, it is produced by a reaction between a silane / siloxane compound and a decomposition product of a chain sulfone compound at the time of charge / discharge of the battery.
  • the silane-siloxane compound is typically a silane coupling agent having a mercapto group (—SH), for example.
  • the compound represented by the formula (2) is derived from a chain sulfone compound. Typically, for example, a decomposition product produced by the decomposition of a chain sulfone compound.
  • the battery is disassembled and the negative electrode is removed.
  • the formation ratio of the active material surface may be analyzed by observing the element distribution by an existing elemental analysis method, that is, energy dispersive X-ray spectroscopy (SEM-EDX).
  • SEM-EDX energy dispersive X-ray spectroscopy
  • the electrode surface may be washed after being washed with an organic solvent such as dimethyl carbonate (DMC). preferable.
  • DMC dimethyl carbonate
  • the washed extract of the electrode body taken out was subjected to existing structural analysis methods, that is, infrared spectroscopy (IR), nuclear magnetic resonance (1H / 13C-NMR), gas or liquid chromatography mass spectrometry (GC /
  • IR infrared spectroscopy
  • GC gas or liquid chromatography mass spectrometry
  • the formation ratio of each compound may be analyzed by analyzing the structure of the compound contained by LC-MS) or the like.
  • the surface of the electrode is washed with an organic solvent such as dimethyl carbonate (DMC) in order to prevent unintentional analysis of unnecessary components in the electrolyte, and then each compound is extracted. And analyzing.
  • DMC dimethyl carbonate
  • the compound represented by the formula (1) may be contained in the negative electrode and also in the electrolytic solution.
  • the preferable content of the compound represented by the formula (1) is defined by the content of the compound represented by the formula (1) in the electrolytic solution.
  • content of the compound represented by Formula (1) it is preferable that it is 0.05 mass% or more and 0.5 mass% or less with respect to the mass of electrolyte solution from a viewpoint from which the more outstanding effect is acquired. .
  • the compound in the electrolytic solution can be confirmed by applying the disassembled battery to a centrifuge and analyzing the extracted electrolytic solution.
  • NMR Nuclear magnetic resonance
  • IR infrared absorption absorption spectrometry
  • Raman Raman spectroscopy
  • GC-MS Gas chromatography, mass spectrometry, LC-MS (Liquid chromatography, Mass spectrometry), etc.
  • LC-MS Liquid chromatography, Mass spectrometry
  • the separator 23 is a porous film composed of an insulating film having a high ion permeability and a predetermined mechanical strength.
  • the separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte. The electrolyte solution is held in the pores of the separator 23.
  • a polyolefin resin such as polypropylene or polyethylene, an acrylic resin, a styrene resin, a polyester resin, or a nylon resin is preferably used as the resin material constituting the separator 23.
  • polyethylene such as low density polyethylene, high density polyethylene and linear polyethylene, or their low molecular weight wax content, or polyolefin resin such as polypropylene is suitable because it has an appropriate melting temperature and is easily available.
  • a material including a porous film made of a polyolefin resin is excellent in separability between the positive electrode 21 and the negative electrode 22 and can further reduce a decrease in internal short circuit.
  • a nonwoven fabric as the separator 23.
  • Nonwoven fabrics have the feature that it is easy to ensure a sufficient pore diameter that is optimal for the permeation of Li ions, and high input / output can be obtained as a battery.
  • the thickness of the separator 23 can be arbitrarily set as long as it is equal to or greater than the thickness that can maintain the required strength.
  • the separator 23 insulates between the positive electrode 21 and the negative electrode 22 to prevent a short circuit and the like, and has ion permeability for suitably performing a battery reaction via the separator 23, and the battery reaction in the battery. It is preferable to set the thickness so that the volumetric efficiency of the active material layer that contributes to the maximum can be increased.
  • the electrolytic solution includes an electrolyte salt, a nonaqueous solvent that dissolves the electrolyte salt, and a silane coupling agent or a siloxane compound as an additive.
  • the electrolytic solution may contain both a silane coupling agent and a siloxane compound as additives.
  • Non-aqueous solvent a solvent containing a main solvent and a chain sulfone compound is used.
  • cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC)
  • chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC)
  • Unsaturated carbonates having unsaturated bonds such as carbon-carbon double bonds such as vinylethylene carbonate (VC), 4-fluoro-1,3-dioxolan-2-one (FEC; fluoroethylene carbonate), 4,5 Halogenated carbonates such as difluoro-1,3-dioxolan-2-one (DFEC; difluoroethylene carbonate), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran (Me-THF), 1,3-Geo Solan (DOL), 4-methyl-1,3-dioxolane (Me-DOL), diethyl ether (DEE), ⁇ -buty
  • a chain carbonate and a cyclic carbonate, or a chain carboxylic acid ester and a cyclic carboxylic acid ester are preferable because they have various characteristics in a non-aqueous electrolyte secondary battery.
  • ethylene carbonate and propylene carbonate are preferable.
  • Dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone are more preferable, and ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and ⁇ -butyrolactone are further included.
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and ⁇ -butyrolactone are further included. preferable.
  • the electrolytic solution contains a chain sulfone compound as a solvent.
  • the chain sulfone compound refers to a compound having a chain structure and having a sulfonyl group (—S ( ⁇ O) 2 —).
  • chain sulfone compounds include dimethylsulfone [formula (3-1)], diethylsulfone [formula (3-2)], ethylmethylsulfone [formula (3-3)], methylisopropylsulfone [formula (3) -4)], ethyl isopropyl sulfone [formula (3-5)], ethyl isobutyl sulfone [formula (3-6)], isopropyl isobutyl sulfone [formula (3-7)], isopropyl s-butyl sulfone [formula (3 -8)] and butyl isobutyl sulfone [formula (3-9)] are preferred.
  • ethyl isopropyl sulfone (formula (3-5); EiPS) is most preferable from the viewpoint of battery characteristics.
  • a film containing a compound derived from the chain sulfone compound at the time of charge / discharge can be formed on the negative electrode using the titanium-containing inorganic oxide.
  • the electrolytic solution further contains a silane / siloxane compound as an additive, a coating derived from the silane / siloxane compound and the chain sulfone compound can be formed on the negative electrode using the titanium-containing inorganic oxide. it can.
  • strand-shaped sulfone compound in electrolyte solution is not specifically limited, 0.1 to 20 mass% is preferable with respect to the mass of electrolyte solution, and 0.3 to 8 mass% is preferable. More preferably, 0.5 mass% or more and 5 mass% or less is the most preferable. Within this range, the amount of gas generated from the carbonate, which is a solvent, is further reduced, and more excellent battery characteristics are exhibited at low and high temperatures.
  • the electrolytic solution contains a silane coupling agent or a siloxane compound (silane / siloxane compound) as an additive.
  • the electrolytic solution may contain both a silane coupling agent and a siloxane compound.
  • the electrolytic solution contains a silane / siloxane compound
  • silane coupling agent or siloxane compound As the silane coupling agent, for example, a silane coupling agent having a mercapto group (—SH), another silane coupling agent, or the like can be used.
  • silane coupling agents having a mercapto group (—SH) include 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH], 3-mercaptopropylmethyldimethoxysilane [(CH 3 ).
  • silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) ) -3-Aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-triethoxy Silyl-N- (1,3-dimethylbutylidene) propylamine, vinyltris (2-methoxyethoxy) silane, vinyltristrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, 3-acryloxypropyltrimethoxysilane, 3-methacryl
  • siloxane compound examples include decamethylcyclopentanesiloxane, decamethyltetrasiloxane, octamethylcyclotetrasiloxane, octamethyltrisiloxane, hexamethylcyclotrisiloxane, hexamethyldisiloxane and the like.
  • a silane coupling agent those having a structure [R x -Si (R y) n (OR z) 3-n R x reactive functional group, R y: hydrolyzable group: organic group, OR z] If so, it is not limited to these.
  • the siloxane compound is not limited to these as long as it has a siloxane structure.
  • the series of silane / siloxane compounds described above may be one kind, or two or more kinds may be mixed in any combination.
  • silane / siloxane compounds 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyldimethylmethoxysilane, 3-mercaptopropyltrimethylsilane, hexamethylcyclotrisiloxane, etc. are battery characteristics. From the viewpoint of obtaining
  • electrolyte salt examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate ( LiAsF 6 ), lithium tetraphenylborate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ), lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide (LiN (SO 2 F) (SO 2 CF 3 )), lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3) 2), lithium bis (trifluoromethylsulfonyl) imide (
  • lithium hexafluorophosphate LiPF 6
  • lithium tetrafluoroborate LiBF 4
  • lithium tetrafluoroborate LiBF 4
  • LiN (SO 2 F) 2 lithium bis (Fluorosulfonyl) imide
  • LiN (SO 2 CF 3 ) 2 lithium bis (trifluoromethanesulfonyl) imide
  • LiC 2 BO 4 F 2 lithium bis (oxalato) boric acid
  • the concentration of the lithium salt in the electrolytic solution is not particularly limited, but is usually 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more.
  • the upper limit is 2 mol / L or less normally, Preferably it is 1.8 mol / L or less, More preferably, it is 1.7 mol / L or less. If the concentration is too low, the electrical conductivity of the non-aqueous electrolyte may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity, and the performance of the battery decreases. There is a case.
  • the positive electrode 21 is produced. First, a positive electrode material, a binder, and a conductive agent are mixed to obtain a positive electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is uniformly applied to both surfaces of the positive electrode current collector 21A by a doctor blade or a bar coater and dried. Finally, the positive electrode active material layer 21B is formed by compressing and molding the coating film with a roll press or the like while heating as necessary. In this case, compression molding may be repeated a plurality of times.
  • the negative electrode 22 is produced. First, a negative electrode material, a binder, and a conductive agent as necessary are mixed to form a negative electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is uniformly applied to both surfaces of the negative electrode current collector 22A by a doctor blade or a bar coater and dried. Finally, the negative electrode active material layer 22B is formed by compression molding the coating film with a roll press or the like while heating as necessary.
  • the above-described electrolytic solution is prepared.
  • the electrolyte 22 is impregnated into the negative electrode 22 to form a compound derived from the chain sulfone compound and a compound derived from the chain sulfone compound and the silane / siloxane compound during charging and discharging of the battery. More specifically, for example, when the battery is charged and discharged, a decomposition product of the chain sulfone compound and a reaction product of the decomposition product of the chain sulfone compound and the silane / siloxane compound are formed.
  • the compound represented by the formula (1) as the above reaction product and the compound represented by the formula (2) as the above decomposition product are formed, These compounds can be contained in the negative electrode 22.
  • various methods can be taken. For example, when forming the negative electrode active material layer 22B, a negative electrode mixture is prepared by mixing a compound represented by the formula (1) and a compound represented by the formula (2) with a negative electrode material or the like.
  • the compounds represented by formula (1) and formula (2) may be contained in the negative electrode.
  • the non-aqueous electrolyte battery is assembled as follows. First, the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like. Subsequently, after the positive electrode 21 and the negative electrode 22 are stacked and wound through the separator 23 to produce the wound electrode body 20, the center pin 24 is inserted into the winding center. Subsequently, the wound electrode body 20 is housed in the battery can 11 while being sandwiched between the pair of insulating plates 12 and 13, and the tip of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the tip of the negative electrode lead 26 is attached to the tip of the negative electrode lead 26. Weld to battery can 11.
  • FIG. 3 illustrates an exploded perspective configuration of the nonaqueous electrolyte battery according to the second embodiment of the present technology
  • FIG. 4 is an enlarged cross-sectional view taken along line II of the spirally wound electrode body 30 illustrated in FIG. It shows.
  • This non-aqueous electrolyte battery is mainly one in which a wound electrode body 30 to which a positive electrode lead 31 and a negative electrode lead 32 are attached is housed in a film-shaped exterior member 40.
  • the battery structure using the film-shaped exterior member 40 is called a laminate film type.
  • This nonaqueous electrolyte battery is, for example, a secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
  • the positive electrode lead 31 and the negative electrode lead 32 are led out in the same direction from the inside of the exterior member 40 to the outside, for example.
  • the positive electrode lead 31 is made of, for example, a metal material such as aluminum
  • the negative electrode lead 32 is made of, for example, a metal material such as copper, nickel, or stainless steel. These metal materials are, for example, in a thin plate shape or a mesh shape.
  • the exterior member 40 has a configuration in which resin layers are provided on both surfaces of a metal layer made of metal foil, such as an aluminum laminate film in which a nylon film, an aluminum foil, and a polyethylene film are bonded in this order.
  • the general structure of the exterior member 40 has, for example, a laminated structure of an outer resin layer / a metal layer / an inner resin layer.
  • the exterior member 40 has a structure in which the outer edges of two rectangular aluminum laminate films are bonded to each other by fusion or an adhesive so that the inner resin layer faces the wound electrode body 30. Have.
  • Each of the outer resin layer and the inner resin layer may be composed of a plurality of layers.
  • the metal material constituting the metal layer only needs to have a function as a moisture-permeable barrier film, and includes aluminum (Al) foil, stainless steel (SUS) foil, nickel (Ni) foil, and plated iron ( Fe) foil or the like can be used.
  • Al aluminum
  • SUS stainless steel
  • Ni nickel
  • Fe plated iron
  • the aluminum foil which is thin and lightweight and excellent in workability.
  • annealed aluminum JIS A8021P-O
  • JIS A8079P-O JIS A8079P-O
  • JIS A1N30-O JIS A1N30-O
  • the thickness of the metal layer is typically preferably 30 ⁇ m or more and 150 ⁇ m or less, for example.
  • the thickness is less than 30 ⁇ m, the material strength tends to decrease.
  • it exceeds 150 micrometers while processing becomes remarkably difficult, the thickness of a laminate film will increase and it exists in the tendency for the volumetric efficiency of a nonaqueous electrolyte battery to reduce.
  • the inner resin layer is a part that is melted by heat and fused to each other, such as polyethylene (PE), non-axially oriented polypropylene (CPP), polyethylene terephthalate (PET), low density polyethylene (LDPE), high density polyethylene (HDPE), Linear low density polyethylene (LLDPE) or the like can be used, and a plurality of these can be selected and used.
  • PE polyethylene
  • CPP non-axially oriented polypropylene
  • PET polyethylene terephthalate
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE Linear low density polyethylene
  • polyolefin resin polyamide resin, polyimide resin, polyester, or the like is used because of its beautiful appearance, toughness, flexibility, and the like.
  • nylon polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and polybutylene naphthalate (PBN) are used. Is also possible.
  • the adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 to prevent intrusion of outside air.
  • the adhesion film 41 is made of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32. Examples of such a material include polyolefin resins such as polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
  • the exterior member 40 may be constituted by a laminated film having another laminated structure instead of the aluminum laminated film having the laminated structure described above, or may be constituted by a polymer film such as polypropylene or a metal film. It may be.
  • FIG. 4 shows a cross-sectional configuration along the II line of the spirally wound electrode body shown in FIG.
  • This wound electrode body 30 is formed by laminating and winding a belt-like positive electrode 33 and a belt-like negative electrode 34 via a belt-like separator 35 and an electrolyte 36, and the outermost periphery is protected by a protective tape 37. Has been.
  • the positive electrode 33 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a positive electrode current collector 33A having a pair of surfaces. Although not shown, the positive electrode 33 may have a region where the positive electrode active material layer 33B is formed only on one surface of the positive electrode current collector 33A.
  • the positive electrode current collector 33A and the positive electrode active material layer 33B are the same as the positive electrode current collector 21A and the positive electrode active material layer 21B in the first embodiment, respectively.
  • the negative electrode 34 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a negative electrode current collector 34A having a pair of surfaces. Although not shown, the negative electrode 34 may have a region where the negative electrode active material layer 34B is formed only on one surface of the negative electrode current collector 34A.
  • the negative electrode current collector 34A and the negative electrode active material layer 34B are the same as the negative electrode current collector 22A and the negative electrode active material layer 22B in the first embodiment, respectively.
  • the separator 35 is the same as the separator 23 in the first embodiment.
  • the electrolyte 36 includes a nonaqueous electrolytic solution (electrolytic solution) and a polymer compound (matrix polymer compound) that holds the nonaqueous electrolytic solution.
  • the electrolyte 36 is, for example, a so-called gel electrolyte.
  • a gel electrolyte is preferable because high ion conductivity (for example, 1 mS / cm or more at room temperature) is obtained and liquid leakage is prevented.
  • Nonaqueous electrolyte The nonaqueous electrolytic solution includes an electrolyte salt and a nonaqueous solvent that dissolves the electrolyte salt.
  • the non-aqueous electrolyte is the same as in the first embodiment.
  • Polymer compound As the polymer compound, those having a property compatible with a solvent can be used. Examples of such a polymer compound include polyacrylonitrile, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, and polyphosphazene.
  • Polysiloxane polyvinyl acetate, polyvinyl alcohol, polymethyl methacrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, or polycarbonate. These may be single and multiple types may be mixed. Among these, polyacrylonitrile, polyvinylidene fluoride, polyhexafluoropropylene, or polyethylene oxide is preferable. This is because it is electrochemically stable.
  • This nonaqueous electrolyte battery is manufactured, for example, by the following three manufacturing methods (first to third manufacturing methods).
  • the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A, for example, by the same procedure as the manufacturing procedure of the positive electrode 21 and the negative electrode 22 of the first embodiment described above. Thus, the positive electrode 33 is manufactured. Further, the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34.
  • a precursor solution containing an electrolytic solution, a polymer compound, and a solvent is prepared and applied to at least one of both surfaces of the positive electrode 33 and the negative electrode 34, and then the solvent is volatilized to form a gel electrolyte 36.
  • the positive electrode lead 31 is attached to the positive electrode current collector 33A
  • the negative electrode lead 32 is attached to the negative electrode current collector 34A.
  • the gel electrolyte 36 may be formed on at least one surface of both surfaces of the separator.
  • the positive electrode 33 and the negative electrode 34 on which the electrolyte 36 is formed are stacked via the separator 35 and then wound in the longitudinal direction, and a protective tape 37 is adhered to the outermost peripheral portion to produce the wound electrode body 30.
  • a protective tape 37 is adhered to the outermost peripheral portion to produce the wound electrode body 30.
  • the wound electrode body 30 is sandwiched between two film-shaped exterior members 40, the outer edge portions of the exterior member 40 are bonded to each other by heat fusion or the like, so that the wound electrode body 30 is Encapsulate.
  • the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40. Thereby, the nonaqueous electrolyte battery shown in FIGS. 3 and 4 is completed.
  • the positive electrode 33 and the negative electrode 34 are manufactured in the same manner as in the first manufacturing method.
  • the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34.
  • the positive electrode 33 and the negative electrode 34 are laminated and wound through a separator 35 coated with a polymer compound on both sides, and then a protective tape 37 is adhered to the outermost periphery thereof to form a wound electrode body.
  • a wound body that is a precursor of 30 is produced.
  • the remaining outer peripheral edge except for the outer peripheral edge on one side is bonded by thermal fusion or the like, so that the bag-shaped exterior is obtained.
  • the wound body is accommodated in the member 40.
  • Examples of the polymer compound applied to the separator 35 include a polymer containing vinylidene fluoride as a component, that is, a homopolymer, a copolymer, a multi-component copolymer, and the like. Specifically, polyvinylidene fluoride, binary copolymers containing vinylidene fluoride and hexafluoropropylene as components, and ternary copolymers containing vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components. A coalescence or the like is preferred.
  • the polymer compound may contain one or more other polymer compounds together with the polymer containing vinylidene fluoride as a component.
  • the polymer compound on the separator 35 may form a porous polymer compound as follows, for example. That is, first, a solution in which a polymer compound is dissolved in a first solvent composed of a polar organic solvent such as N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylacetamide, N, N-dimethylsulfoxide, etc. And this solution is applied onto the separator 35. Next, the separator 35 coated with the above solution is compatible with the above polar organic solvent such as water, ethyl alcohol, propyl alcohol, etc., and in the second solvent which is a poor solvent for the above polymer compound. Immerse. At this time, solvent exchange occurs, phase separation accompanied by spinodal decomposition occurs, and the polymer compound forms a porous structure. Thereafter, by drying, a porous polymer compound having a porous structure can be obtained.
  • a polar organic solvent such as N-methyl-2-pyrrolidone, ⁇
  • an electrolytic solution is prepared and injected into the bag-shaped exterior member 40, and then the opening of the exterior member 40 is sealed by heat fusion or the like. Thereby, the electrolytic solution is impregnated into the polymer compound, and the polymer compound is gelled to form the gel electrolyte 36, thereby completing the nonaqueous electrolyte battery shown in FIGS.
  • the third manufacturing method In the third manufacturing method, first, the positive electrode 33 and the negative electrode 34 are produced in the same manner as in the first manufacturing method. Next, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated and wound via the separator 35, a protective tape 37 is adhered to the outermost peripheral portion thereof, and a wound body that is a precursor of the wound electrode body 30. Is made.
  • the positive electrode lead 31 is attached to the end portion of the positive electrode current collector 33A by welding, and the negative electrode lead 32 is attached to the end portion of the negative electrode current collector 34A by welding.
  • the positive electrode 33 and the negative electrode 34 are laminated and wound with the separator 35 interposed therebetween, and a protective tape 37 is adhered to the outermost peripheral portion to form a wound body that is a precursor of the wound electrode body 30.
  • the wound body is sandwiched between the exterior members 40, and the outer peripheral edge except for one side is heat-sealed to form a bag shape, which is then stored inside the exterior member 40.
  • the opening of the exterior member 40 is heat-sealed in a vacuum atmosphere and sealed. As a result, the intended non-electrolyte secondary battery is obtained.
  • FIG. 5A is an external view of a nonaqueous electrolyte battery in which the laminated electrode body 70 is accommodated.
  • FIG. 5B is an exploded perspective view showing a state in which the laminated electrode body 70 is accommodated in the exterior member 60.
  • FIG. 5C is an external view showing the external appearance of the nonaqueous electrolyte battery shown in FIG. 5A from the bottom surface side.
  • the laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76.
  • the electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74.
  • an electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This electrolyte layer is the same as the electrolyte 36 described above.
  • a positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other.
  • a film 61 is provided.
  • the manufacturing method of a non-aqueous electrolyte battery produces a laminated electrode body in place of the wound electrode body 30, and a laminated body in place of the wound body (with an electrolyte layer omitted from the laminated electrode body 70). Is the same as the manufacturing method of the nonaqueous electrolyte battery of the example of the second embodiment and the modified example 1 except that is manufactured.
  • Patent Document 3 Japanese Patent Laid-Open No. 2013-97993
  • the object is to improve low-temperature characteristics, but the silane compound does not contain an amino group and a carbonate structure, and the structure is greatly different from the compound shown in the present technology. Moreover, the improvement of the low temperature characteristics was not sufficient.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2012-199145 has a lithium titanate in the negative electrode and a compound having a SiR structure in the battery. The purpose of improvement is to suppress resistance increase and self-discharge. Is different.
  • the prior art does not include a sulfonic solvent. Although the resistance rise can be suppressed, the initial resistance is high.
  • Patent Document 5 Japanese Patent Laid-Open No. 2013-4215 attempts to improve the characteristics with a carbonate-structured coating, but the structure is different from the compound of the present technology and the purpose of the improvement is not to improve the low-temperature characteristics, but the low-temperature characteristics are improved. Not done.
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-93583
  • the purpose of improvement is different from the present technology for the purpose of preventing an internal short circuit.
  • it has a crosslinking agent in the negative electrode and a silane coupling agent is mentioned as a candidate for this, it is different from the compound shown in the present technology.
  • Patent Document 4 the negative electrode does not have lithium titanate, but in the present technology, the negative electrode has lithium titanate.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 11-287441
  • the negative electrode does not have lithium titanate, but the present technology has negative electrode lithium titanate.
  • a silane coupling agent is used for the negative electrode, the chemical structure is different from the compound represented by the present technology.
  • cyclic sulfolane is contained in the electrolytic solution, the cyclic sulfolane has a high viscosity, so that the input / output characteristics including high resistance and low temperature are impaired.
  • a low-viscosity chain sulfolane when a low-viscosity chain sulfolane is used, low resistance and low temperature characteristics can be improved without deteriorating input / output characteristics.
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-222450
  • Patent Document 6 Japanese Patent Laid-Open No. 2011-222450
  • the electrolyte solution contains a sulfone compound.
  • the negative electrode has 0 Vvs.
  • the sulfone compound undergoes reductive decomposition as described in Non-Patent Document 1 (Journal of The Electrochemical Society, 149 7 A920-A926 2002). Long-term reliability will be insufficient.
  • FIG. 1 shows a cross-sectional configuration of a battery according to a third embodiment of the present technology.
  • FIG. 2 shows an enlarged part of the spirally wound electrode body 20 shown in FIG.
  • This battery is a secondary battery that can be charged and discharged, for example, a non-aqueous electrolyte battery, for example, a lithium ion secondary battery, and the like.
  • This non-aqueous electrolyte battery mainly includes a wound electrode body 20 in which a positive electrode 21 and a negative electrode 22 are laminated and wound through a separator 23 inside a substantially hollow cylindrical battery can 11, and a pair of insulations.
  • the plates 12 and 13 are accommodated.
  • the battery structure using the cylindrical battery can 11 is called a cylindrical type.
  • the battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened, and is made of iron (Fe), aluminum (Al), or an alloy thereof.
  • the battery can 11 is made of iron, for example, nickel (Ni) or the like may be plated on the surface of the battery can 11.
  • the pair of insulating plates 12 and 13 are arranged so as to sandwich the wound electrode body 20 from above and below and to extend perpendicularly to the wound peripheral surface.
  • a battery lid 14, a safety valve mechanism 15, and a heat sensitive resistance element (Positive Temperature Coefficient: PTC element) 16 are caulked through a gasket 17 at the open end of the battery can 11, and the battery can 11 is sealed. ing.
  • the battery lid 14 is made of, for example, the same material as the battery can 11.
  • the safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14.
  • the safety valve mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16.
  • the disk plate 15 ⁇ / b> A is reversed and the electric power between the battery lid 14 and the wound electrode body 20 is reversed. Connection is cut off.
  • the heat-sensitive resistance element 16 prevents abnormal heat generation caused by a large current by increasing resistance (limiting current) as the temperature rises.
  • the gasket 17 is made of, for example, an insulating material, and for example, asphalt is applied to the surface thereof.
  • the wound electrode body 20 is obtained by laminating and winding a positive electrode 21 and a negative electrode 22 via a separator 23.
  • a center pin 24 may be inserted in the center of the wound electrode body 20.
  • a positive electrode lead 25 made of aluminum or the like is connected to the positive electrode 21, and a negative electrode lead 26 made of nickel or the like is connected to the negative electrode 22.
  • the positive electrode lead 25 is welded to the safety valve mechanism 15 and electrically connected to the battery lid 14, and the negative electrode lead 26 is welded to the battery can 11 and electrically connected thereto.
  • the positive electrode 21 is obtained by providing a positive electrode active material layer 21B on both surfaces of a positive electrode current collector 21A having a pair of surfaces.
  • the positive electrode 21 may have the area
  • the positive electrode current collector 21A is made of, for example, a metal material such as aluminum, nickel, or stainless steel.
  • the positive electrode active material layer 21 ⁇ / b> B contains one or more positive electrode materials capable of inserting and extracting lithium as a positive electrode active material.
  • the positive electrode active material layer 21 ⁇ / b> B may contain other materials such as a binder and / or a conductive agent as necessary.
  • a lithium-containing compound As a positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing compound is preferable. This is because a high energy density can be obtained.
  • the lithium-containing compound include a phosphate compound containing lithium and a transition metal element, and a composite oxide containing lithium and a transition metal element.
  • the group which consists of cobalt, nickel, manganese, and iron as a transition metal element is preferable. This is because a higher voltage can be obtained.
  • a phosphoric acid compound containing lithium and a transition metal element for example, a lithium iron phosphate compound having an olivine structure containing at least lithium, phosphorus (P) and iron (Fe), lithium, phosphorus (P) and manganese ( And a lithium manganese phosphate compound having an olivine structure containing at least Mn).
  • the lithium iron phosphate compound having an olivine structure, lithium iron phosphate compound (LiFePO 4), or lithium iron composite phosphate compound containing the different element LiFe x M 1-x O 4: M is other than iron 1 or more types of metal elements, x is 0 ⁇ x ⁇ 1, etc.).
  • M is at least one of cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), aluminum (Al), vanadium (V), and titanium (Ti) as a transition metal element.
  • cobalt Co
  • Ni nickel
  • Mn manganese
  • Fe iron
  • Al aluminum
  • V vanadium
  • Ti titanium
  • Examples of the lithium manganese phosphate compound having an olivine structure include a lithium manganese phosphate compound (LiMnPO 4 ).
  • a typical example of the lithium iron phosphate compound having an olivine structure is a lithium phosphate compound represented by (Chemical Formula 1).
  • (Chemical formula 1) Li u Fe r M1 (1- r) PO 4
  • M1 is cobalt (Co), manganese (Mn), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium (Nb ), Copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr), at least one selected from the group consisting of r.
  • u is a value within the range of 0.9 ⁇ u ⁇ 1.1 Note that the composition of lithium varies depending on the state of charge and discharge, and the value of u Represents the value in the fully discharged state.
  • lithium phosphate compound represented by (Chemical Formula 1) typically, for example, Li u FePO 4 (u is as defined above), Li u Fe r Mn (1-r) PO 4 (u Is as defined above, and r is as defined above.
  • composite oxide containing lithium and transition metal element examples include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide (Li x Ni). 1-z Co z O 2 (z ⁇ 1)), lithium nickel cobalt manganese composite oxide (Li x Ni (1-vw) Co v Mn w O 2 (v + w ⁇ 1)) and other lithium transitions having a layered structure Examples thereof include metal composite oxides, lithium manganese composite oxides having a spinel structure and containing at least lithium and manganese.
  • Examples of the spinel structure lithium manganese composite oxide include a lithium composite oxide represented by (Chemical Formula 2).
  • M2 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe ), Copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), at least one selected from the group consisting of v, w and s are values within the range of 0.9 ⁇ v ⁇ 1.1, 0 ⁇ w ⁇ 0.6, 3.7 ⁇ s ⁇ 4.1, where the composition of lithium is the state of charge and discharge. And the value of v represents a value in a fully discharged state.
  • lithium composite oxide represented by (Chemical Formula 2) for example, Li v Mn 2 O 4 (v is as defined above), lithium manganese nickel composite oxide (LiMn 2 ⁇ t Ni t O 4 (t ⁇ 2)) and the like.
  • the positive electrode material may be one in which a coating layer is formed on at least a part of the surface of the core particle made of the lithium-containing compound described above.
  • the coating layer is provided on at least a part of the surface of the core particle of the lithium-containing compound as the base material, and has a composition element or composition ratio different from that of the lithium-containing compound particle as the base material.
  • another lithium-containing compound for example, Ni, Mn, Li
  • a coating layer containing a phosphate compound for example, lithium phosphate
  • the covering layer may be a carbon material or the like.
  • positive electrode materials capable of inserting and extracting lithium include oxides such as titanium oxide, vanadium oxide and manganese dioxide, disulfides such as titanium disulfide and molybdenum sulfide, and niobium selenide. And chalcogenides such as sulfur, polyaniline or polythiophene, and other conductive polymers.
  • the conductive agent examples include carbon black produced by furnace method, acetylene method, contact method, thermal method, etc., carbon materials such as vapor-grown carbon, activated carbon, activated carbon fiber cloth, single wall or multi-wall carbon nanotube, carbon nanohorn, etc.
  • carbon materials such as vapor-grown carbon, activated carbon, activated carbon fiber cloth, single wall or multi-wall carbon nanotube, carbon nanohorn, etc.
  • those obtained by surface modification of these carbon materials by acid / alkali treatment or the like, or those obtained by physically or chemically bonding other elements can be used.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resins. At least one selected from a copolymer mainly composed of materials is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a negative electrode active material layer 22B is provided on both surfaces of a negative electrode current collector 22A having a pair of surfaces. Although illustration is omitted, the negative electrode 22 may have a region where the negative electrode active material layer 22B is provided only on one surface of the negative electrode current collector 22A.
  • the negative electrode current collector 22A is made of a metal material such as aluminum foil, copper, nickel, or stainless steel, for example.
  • the negative electrode active material layer 22B contains one or more negative electrode materials capable of inserting and extracting lithium as a negative electrode active material.
  • the negative electrode active material layer 22B may contain other materials such as at least one of a binder and a conductive agent as necessary. Note that the same binder and conductive agent as those described for the positive electrode can be used.
  • a negative electrode material capable of inserting and extracting lithium for example, a titanium-containing inorganic oxide containing at least titanium (Ti) and oxygen (O) as constituent elements, or a metal sulfide can be used.
  • the reaction potential of the negative electrode is 1.0 Vvs. More than Li / Li + , preferably 1.0 Vvs. Li / Li + more than 1.9Vvs. The material etc. which become Li / Li + or less are preferable.
  • titanium-containing inorganic oxide examples include composite oxides having at least lithium and titanium as constituent elements (referred to as titanium-containing lithium composite oxides), and metal oxides having titanium and oxygen as constituent elements (referred to as titanium oxides). Etc. Among these, titanium-containing lithium composite oxide or titanium oxide is preferable.
  • titanium-containing lithium composite oxide typically, for example, Li x Ti y O z having a spinel structure (x represents a composition ratio of Li, y represents a composition ratio of Ti, and z represents a composition of O).
  • Li x Ti y O z having a spinel structure examples include Li 4 Ti 5 O 12 .
  • the potential (V vs. Li / Li + ) for occluding and releasing lithium ions of Li x Ti y O z having a spinel structure is, for example, about 1.55 V in the flat portion in the potential change pattern during charge / discharge of the battery. It is. Note that Li in Li x Ti y O z may be Na, K, or the like.
  • titanium-containing lithium composite oxide As a titanium-containing lithium composite oxide, in addition, from the viewpoint that higher potential flatness and rate characteristics can be obtained, some of the constituent elements lithium, titanium, and oxygen are replaced with other elements such as Al and Mg. A substituted one may be used.
  • Examples of other elements that substitute a part of titanium include metal elements and metalloid elements capable of forming an alloy with lithium.
  • Examples thereof include bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd), and platinum (Pt).
  • Typical examples of the titanium-containing lithium composite oxide in which a part of lithium, titanium, and oxygen are substituted with other elements include Li 3.75 Ti 4.875 Mg 0.375 O 12 , Li 3.75 Ti 4.50 Al 0.75 O 12, and the like. Is mentioned.
  • TiO 2 The titanium oxide (which is p> 0, q> 0. ) Ti p O q a compound represented by (titanium oxide) and the like. Specific examples of this compound include TiO 2 and the like.
  • the TiO 2 may be any of anatase TiO 2 [TiO 2 (anatase)], rutile TiO 2 [TiO 2 (rutile)], B-type TiO 2 [TiO 2 (B)], and the like.
  • the titanium-containing inorganic oxide such as the titanium-containing lithium composite oxide may be coated with carbon.
  • CVD chemical vapor deposition
  • hydrocarbons are decomposed and a carbon film is grown on the surface of the titanium-containing lithium composite oxide, whereby a titanium-containing inorganic oxide coated with carbon is obtained.
  • the carbon coating method is not limited to the above.
  • the negative electrode 22 contains a compound derived from a carbonate solvent and a silane coupling agent or a siloxane compound (sometimes abbreviated as a silane / siloxane compound) contained in an electrolyte solution described later.
  • the negative electrode 22 may further contain a compound derived from a chain sulfone compound.
  • the negative electrode 22 includes, as such a compound, at least one of a compound represented by the formula (1A), a compound represented by the formula (2A), and a compound represented by the formula (3A). It is.
  • the negative electrode 22 may further include a sulfonyl compound represented by the formula (4A) as a compound derived from the chain sulfone compound.
  • these compounds are contained in a film or the like formed on the surface of the active material particles in the negative electrode active material layer 22B during charge / discharge. Side reactions can be suppressed by wrapping the active site of the negative electrode 22 with the coating. As a result, suppression of gas generation can be suppressed.
  • the negative electrode 22 contains at least one of the compound represented by the formula (1A), the compound represented by the formula (2A), and the compound represented by the formula (3A), Li can be obtained even in a low temperature environment. Ion diffusion is stable and high input / output characteristics can be obtained.
  • R1, R2 and R3 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R4 is an alkali metal, alkaline earth metal, hydrogen group, halogen group or alkyl group.
  • R6, R7 and R8 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R9, R10 and R11 are each independently an alkali metal, an alkaline earth metal, An alkyl group, a halogen group, a halogenated alkyl group, or a hydrogen group
  • R12 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group;
  • R13, R14 and R15 each independently represents an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R16 represents an alkali metal, an alkaline earth metal, an alkyl group, a halogen group or a halogenated group.
  • R 17 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group.
  • R18 represents a halogen group, an alkyl group, a halogenated alkyl group or an alkoxy group.
  • R19 represents H or Li.
  • R20 is an alkali metal, alkaline earth metal, alkyl group, halogen group, halogenated alkyl group or hydrogen group.
  • a negative electrode material in which the reaction potential of the negative electrode becomes a noble potential is used as the negative electrode active material.
  • a carbon-based negative electrode active material having a low negative electrode reaction potential is used, a solvent that decomposes and is not effective can be used effectively.
  • Examples of the compound represented by the formula (1A) include compounds represented by the following formulas (1A-1) to (1A-78).
  • a compound represented by formula (1A-39), a compound represented by formula (1A-40), a compound represented by formula (1A-41), a formula (1A-42) are preferred.
  • Examples of the compound represented by the formula (2A) include compounds represented by the following formulas (2A-1) to (2A-12). Among these, from the viewpoint of battery characteristics, a compound represented by the formula (2A-10), a compound represented by the formula (2A-11), and a compound represented by the formula (2A-12) are preferable.
  • Examples of the compound represented by the formula (3A) include compounds represented by the following formulas (3A-1) to (3A-3).
  • the negative electrode including at least one of the compound represented by the formula (1A), the compound represented by the formula (2A), and the compound represented by the formula (3A) is included in, for example, an electrolytic solution impregnated in the negative electrode.
  • a silane coupling agent or a siloxane compound hereinafter referred to as a silane / siloxane compound
  • a carbonate solvent hereinafter referred to as a silane / siloxane compound
  • Each compound represented by Formula (1A), Formula (2A), and Formula (3A) is derived from a silane / siloxane compound and a carbonate solvent. Typically, for example, it is produced by a reaction between a silane / siloxane compound and a decomposition product of a carbonate solvent in charge / discharge of a battery.
  • the silane siloxane compound is typically a silane siloxane compound having amino (—NH 2 ).
  • the active material In order to confirm the silane / siloxane compound and the compound derived from the carbonate solvent formed in the battery such as in the negative electrode, for example, after disassembling the battery and taking out the electrode body including the negative electrode, the active material The formation ratio of the surface may be analyzed by observing the element distribution by an existing elemental analysis method, that is, energy dispersive X-ray spectroscopy (SEM-EDX).
  • SEM-EDX energy dispersive X-ray spectroscopy
  • the electrode surface may be washed after being washed with an organic solvent such as dimethyl carbonate (DMC). preferable.
  • DMC dimethyl carbonate
  • the washed extract of the electrode body taken out was subjected to existing structural analysis methods, that is, infrared spectroscopy (IR), nuclear magnetic resonance (1H / 13C-NMR), gas or liquid chromatography mass spectrometry (GC /
  • IR infrared spectroscopy
  • GC gas or liquid chromatography mass spectrometry
  • the formation ratio of each compound may be analyzed by analyzing the structure of the compound contained by LC-MS) or the like.
  • the surface of the electrode is washed with an organic solvent such as dimethyl carbonate (DMC) in order to prevent unintentional analysis of unnecessary components in the electrolyte, and then each compound is extracted. And analyzing.
  • DMC dimethyl carbonate
  • the negative electrode active material can be maintained while maintaining characteristics such as battery capacity.
  • the surface can be coated more effectively.
  • At least one of the compound represented by the formula (1A) to the compound represented by the formula (3A) may be contained in the negative electrode and also in the electrolytic solution.
  • a preferable content of at least one of the compound represented by the formula (1A) to the compound represented by the formula (3A) is represented by the compound represented by the formula (1A) to the formula (3A) in the electrolytic solution. Defined by the content of at least one compound.
  • the content of at least one of the compound represented by the formula (1A) to the compound represented by the formula (3A) is set to 0. 0 with respect to the total mass of the electrolytic solution from the viewpoint of obtaining a more excellent effect. More preferably, the content is from 05% by mass to 0.5% by mass.
  • Examples of the compound represented by the formula (4A) include compounds represented by the following formulas (4A-1) to (4A-8).
  • the compound in the electrolytic solution can be confirmed by applying the disassembled battery to a centrifuge and analyzing the extracted electrolytic solution.
  • NMR Nuclear magnetic resonance
  • IR infrared absorption spectroscopy
  • Raman Raman
  • GC-MS Gas chromatography, mass spectrometry
  • LC-MS Liquid chromatography, Mass spectrometry
  • the separator 23 is a porous film composed of an insulating film having a high ion permeability and a predetermined mechanical strength.
  • the separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte. The electrolyte solution is held in the pores of the separator 23.
  • a polyolefin resin such as polypropylene or polyethylene, an acrylic resin, a styrene resin, a polyester resin, or a nylon resin is preferably used as the resin material constituting the separator 23.
  • polyethylene such as low density polyethylene, high density polyethylene and linear polyethylene, or their low molecular weight wax content, or polyolefin resin such as polypropylene is suitable because it has an appropriate melting temperature and is easily available.
  • a material including a porous film made of a polyolefin resin is excellent in separability between the positive electrode 21 and the negative electrode 22 and can further reduce a decrease in internal short circuit.
  • a nonwoven fabric as the separator 23.
  • Nonwoven fabrics have the feature that it is easy to ensure a sufficient pore diameter that is optimal for the permeation of Li ions, and high input / output can be obtained as a battery.
  • the thickness of the separator 23 can be arbitrarily set as long as it is equal to or greater than the thickness that can maintain the required strength.
  • the separator 23 insulates between the positive electrode 21 and the negative electrode 22 to prevent a short circuit and the like, and has ion permeability for suitably performing a battery reaction via the separator 23, and the battery reaction in the battery. It is preferable to set the thickness so that the volumetric efficiency of the active material layer that contributes to the maximum can be increased.
  • the electrolytic solution includes an electrolyte salt, a nonaqueous solvent that dissolves the electrolyte salt, and a silane coupling agent or a siloxane compound as an additive.
  • the electrolytic solution may contain both a silane coupling agent and a siloxane compound as additives.
  • Non-aqueous solvent a solvent containing at least a carbonate solvent is used.
  • Carbonate solvent examples include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).
  • cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC)
  • chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).
  • Unsaturated carbonates having unsaturated bonds such as carbon-carbon double bonds such as vinyl ethylene carbonate (VC), 4-fluoro-1,3-dioxolan-2-one (FEC; fluoroethylene carbonate), 4,
  • Carbonate compounds such as halogenated carbonates such as 5-difluoro-1,3-dioxolan-2-one (DFEC; difluoroethylene carbonate) can be used.
  • the non-aqueous solvent may contain other solvents.
  • Other solvents include 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran (Me-THF), 1,3-dioxolane (DOL), 4-methyl-1,3-dioxolane (Me -DOL), diethyl ether (DEE), ⁇ -butyrolactone (GBL), ⁇ -valerolactone (GVL), 3-methyloxazolidinone (MOX), methyl formate (MF), sulfolane (SL), 3-methylsulfolane (3MS), Dimethyl sulfoxide (DMSO), acetonitrile (AN), dimethyl sulfoxide (DMSO), trimethyl phosphate (TMP), propionitrile (PN), glutaronitrile (GLN), adiponitrile (ADN), methoxyacetonitrile (MAN), 3 -Methoxypro Pi
  • a chain carbonate and a cyclic carbonate, or a chain carboxylic acid ester and a cyclic carboxylic acid ester are preferable because they have various characteristics in a non-aqueous electrolyte secondary battery.
  • ethylene carbonate and propylene carbonate are preferable.
  • Dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone are more preferable, and ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and ⁇ -butyrolactone are further included.
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and ⁇ -butyrolactone are further included. preferable.
  • the non-aqueous solvent may contain a chain sulfone compound as another solvent.
  • the chain sulfone compound refers to a compound having a chain structure and having a sulfonyl group (—S ( ⁇ O) 2 —).
  • chain sulfone compounds include dimethylsulfone [formula (5A-1)], diethylsulfone [formula (5A-2)], ethylmethylsulfone [formula (5A-3)], methylisopropylsulfone [formula (5A -4)], ethyl isopropyl sulfone [formula (5A-5)], ethyl isobutyl sulfone [formula (5A-6)], isopropyl isobutyl sulfone [formula (5A-7)], isopropyl s-butyl sulfone [formula (5A -8)] and butyl isobutyl sulfone [formula (5A-9)] are preferred.
  • ethyl isopropyl sulfone (formula (5A-5); EiPS) is most preferable from the viewpoint of battery characteristics.
  • a film containing a compound derived from the chain sulfone compound can be formed on the negative electrode during charging / discharging with respect to the negative electrode using a titanium-containing inorganic oxide.
  • strand-shaped sulfone compound in electrolyte solution is not specifically limited, 0.1 to 20 mass% is preferable with respect to the mass of electrolyte solution, and 0.3 to 8 mass% is preferable. More preferably, 0.5 mass% or more and 5 mass% or less is the most preferable. Within this range, the amount of gas generated from the carbonate, which is a solvent, is further reduced, and more excellent battery characteristics are exhibited at low and high temperatures.
  • the electrolytic solution contains a silane coupling agent or a siloxane compound (silane / siloxane compound) as an additive.
  • the electrolytic solution may contain both a silane coupling agent and a siloxane compound.
  • the electrolytic solution contains a silane / siloxane compound
  • silane coupling agent or siloxane compound As the silane coupling agent, for example, a silane coupling agent having an amino group (—NH 2 ), another silane coupling agent, or the like can be used.
  • the silane coupling agent having an amino group (—NH 2 ) include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 )], 3-amino Examples thereof include propyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 NH 2 ], 3-aminopropyltriethoxysilane,
  • silane coupling agents include 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH], 3-mercaptopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 SH], 3-mercaptopropyldimethylmethoxysilane [(CH 3 ) 2 (CH 3 O) Si (CH 2 ) 3 SH], 3-mercaptopropyltrimethylsilane [(CH 3 ) 3 Si ( CH 2 ) 3 SH], 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, vinyltris (2-methoxyethoxy) silane, vinyltristrimethoxysilane, vinyltriethoxysilane, vinyltrichloro Silane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysila 3-methacryloxypropyltrimethoxysilane,
  • siloxane compound examples include decamethylcyclopentanesiloxane, decamethyltetrasiloxane, octamethylcyclotetrasiloxane, octamethyltrisiloxane, hexamethylcyclotrisiloxane, hexamethyldisiloxane and the like.
  • a silane coupling agent those having a structure [R x -Si (R y) n (OR z) 3-n R x reactive functional group, R y: hydrolyzable group: organic group, OR z] If so, it is not limited to these.
  • the siloxane compound is not limited to these as long as it has a siloxane structure.
  • the series of silane / siloxane compounds described above may be one kind, or two or more kinds may be mixed in any combination.
  • Electrolyte salt examples of the electrolyte salt contained in the electrolyte include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), and lithium hexafluoroarsenate (LiAsF).
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • LiClO 4 lithium perchlorate
  • LiAsF lithium hexafluoroarsenate
  • lithium hexafluorophosphate LiPF 6
  • lithium tetrafluoroborate LiBF 4
  • lithium tetrafluoroborate LiBF 4
  • LiN (SO 2 F) 2 lithium bis (Fluorosulfonyl) imide
  • LiN (SO 2 CF 3 ) 2 lithium bis (trifluoromethanesulfonyl) imide
  • LiC 2 BO 4 F 2 lithium bis (oxalato) boric acid
  • the concentration of the lithium salt in the electrolytic solution is not particularly limited, but is usually 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more.
  • the upper limit is 2 mol / L or less normally, Preferably it is 1.8 mol / L or less, More preferably, it is 1.7 mol / L or less. If the concentration is too low, the electrical conductivity of the non-aqueous electrolyte may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity, and the performance of the battery decreases. There is a case.
  • the electrolyte salt preferably contains lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ) depending on the addition of the chain sulfone compound.
  • LiN (SO 2 F) 2 the ratio of the chain sulfone compound in the electrolyte solvent is X% and the total amount of the electrolyte salt is Ymol / L
  • ethyl isopropyl sulfone formula (5A-5); EiPS
  • the total amount of the electrolyte salt is 1.0 mol / L, 0.1 mol / L or more of lithium bis (fluorosulfonyl) ) Imide (LiN (SO 2 F) 2 ) is desirable.
  • LiN (SO 2 F) 2 lithium bis (fluorosulfonyl) ) Imide
  • the positive electrode 21 is produced. First, a positive electrode material, a binder, and a conductive agent are mixed to obtain a positive electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is uniformly applied to both surfaces of the positive electrode current collector 21A by a doctor blade or a bar coater and dried. Finally, the positive electrode active material layer 21B is formed by compressing and molding the coating film with a roll press or the like while heating as necessary. In this case, compression molding may be repeated a plurality of times.
  • the negative electrode 22 is produced. First, a negative electrode material, a binder, and a conductive agent as necessary are mixed to form a negative electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is uniformly applied to both surfaces of the negative electrode current collector 22A by a doctor blade or a bar coater and dried. Finally, the negative electrode active material layer 22B is formed by compression molding the coating film with a roll press or the like while heating as necessary.
  • the above-described electrolytic solution is prepared.
  • the electrolyte is impregnated in the negative electrode, and a compound derived from a carbonate solvent (carbonate compound) and a silane / siloxane compound is formed during charging and discharging of the battery. More specifically, for example, a reaction product of a decomposition product of a carbonate solvent and a silane / siloxane compound is formed during charge / discharge of a battery.
  • the compound represented by the formula (1A), the compound represented by the formula (2A), and the compound represented by the formula (3A) as the above-described reaction product can be contained in the negative electrode 22.
  • Various methods can be used as a method for causing the anode 22 to contain at least one of these compounds.
  • At least one of a compound represented by the formula (1A), a compound represented by the formula (2A), and a compound represented by the formula (3A), and a negative electrode material At least one of a compound represented by the formula (1A), a compound represented by the formula (2A), and a compound represented by the formula (3A) by preparing a negative electrode mixture by mixing with May be contained in the negative electrode 22.
  • the non-aqueous electrolyte battery is assembled as follows. First, the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like. Subsequently, after the positive electrode 21 and the negative electrode 22 are stacked and wound through the separator 23 to produce the wound electrode body 20, the center pin 24 is inserted into the winding center. Subsequently, the wound electrode body 20 is housed in the battery can 11 while being sandwiched between the pair of insulating plates 12 and 13, and the tip of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the tip of the negative electrode lead 26 is attached to the tip of the negative electrode lead 26. Weld to battery can 11.
  • FIG. 3 shows an exploded perspective configuration of the nonaqueous electrolyte battery according to the fourth embodiment of the present technology.
  • FIG. 4 is an enlarged cross-sectional view taken along line II of the spirally wound electrode body 30 shown in FIG. It shows.
  • This non-aqueous electrolyte battery is mainly one in which a wound electrode body 30 to which a positive electrode lead 31 and a negative electrode lead 32 are attached is housed in a film-shaped exterior member 40.
  • the battery structure using the film-shaped exterior member 40 is called a laminate film type.
  • This nonaqueous electrolyte battery is, for example, a secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
  • the positive electrode lead 31 and the negative electrode lead 32 are led out in the same direction from the inside of the exterior member 40 to the outside, for example.
  • the positive electrode lead 31 is made of, for example, a metal material such as aluminum
  • the negative electrode lead 32 is made of, for example, a metal material such as copper, nickel, or stainless steel. These metal materials are, for example, in a thin plate shape or a mesh shape.
  • the exterior member 40 has a configuration in which resin layers are provided on both surfaces of a metal layer made of metal foil, such as an aluminum laminate film in which a nylon film, an aluminum foil, and a polyethylene film are bonded in this order.
  • the general structure of the exterior member 40 has, for example, a laminated structure of an outer resin layer / a metal layer / an inner resin layer.
  • the exterior member 40 has a structure in which the outer edges of two rectangular aluminum laminate films are bonded to each other by fusion or an adhesive so that the inner resin layer faces the wound electrode body 30. Have.
  • Each of the outer resin layer and the inner resin layer may be composed of a plurality of layers.
  • the metal material constituting the metal layer only needs to have a function as a moisture-permeable barrier film, and includes aluminum (Al) foil, stainless steel (SUS) foil, nickel (Ni) foil, and plated iron ( Fe) foil or the like can be used.
  • Al aluminum
  • SUS stainless steel
  • Ni nickel
  • Fe plated iron
  • the aluminum foil which is thin and lightweight and excellent in workability.
  • annealed aluminum JIS A8021P-O
  • JIS A8079P-O JIS A8079P-O
  • JIS A1N30-O JIS A1N30-O
  • the thickness of the metal layer is typically preferably 30 ⁇ m or more and 150 ⁇ m or less, for example.
  • the thickness is less than 30 ⁇ m, the material strength tends to decrease.
  • it exceeds 150 micrometers while processing becomes remarkably difficult, the thickness of a laminate film will increase and it exists in the tendency for the volumetric efficiency of a nonaqueous electrolyte battery to reduce.
  • the inner resin layer is a part that is melted by heat and fused to each other, such as polyethylene (PE), non-axially oriented polypropylene (CPP), polyethylene terephthalate (PET), low density polyethylene (LDPE), high density polyethylene (HDPE), Linear low density polyethylene (LLDPE) or the like can be used, and a plurality of these can be selected and used.
  • PE polyethylene
  • CPP non-axially oriented polypropylene
  • PET polyethylene terephthalate
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE Linear low density polyethylene
  • polyolefin resin polyamide resin, polyimide resin, polyester, or the like is used because of its beautiful appearance, toughness, flexibility, and the like.
  • nylon polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and polybutylene naphthalate (PBN) are used. Is also possible.
  • the adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 to prevent intrusion of outside air.
  • the adhesion film 41 is made of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32. Examples of such a material include polyolefin resins such as polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
  • the exterior member 40 may be constituted by a laminated film having another laminated structure instead of the aluminum laminated film having the laminated structure described above, or may be constituted by a polymer film such as polypropylene or a metal film. It may be.
  • FIG. 4 shows a cross-sectional configuration along the II line of the spirally wound electrode body shown in FIG.
  • This wound electrode body 30 is formed by laminating and winding a belt-like positive electrode 33 and a belt-like negative electrode 34 via a belt-like separator 35 and an electrolyte 36, and the outermost periphery is protected by a protective tape 37. Has been.
  • the positive electrode 33 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a positive electrode current collector 33A having a pair of surfaces. Although not shown, the positive electrode 33 may have a region where the positive electrode active material layer 33B is formed only on one surface of the positive electrode current collector 33A.
  • the positive electrode current collector 33A and the positive electrode active material layer 33B are the same as the positive electrode current collector 21A and the positive electrode active material layer 21B in the third embodiment, respectively.
  • the negative electrode 34 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a negative electrode current collector 34A having a pair of surfaces. Although not shown, the negative electrode 34 may have a region where the negative electrode active material layer 34B is formed only on one surface of the negative electrode current collector 34A.
  • the negative electrode current collector 34A and the negative electrode active material layer 34B are the same as the negative electrode current collector 22A and the negative electrode active material layer 22B in the third embodiment, respectively.
  • the separator 35 is the same as the separator 23 in the third embodiment.
  • the electrolyte 36 includes a nonaqueous electrolytic solution (electrolytic solution) and a polymer compound (matrix polymer compound) that holds the nonaqueous electrolytic solution.
  • the electrolyte 36 is, for example, a so-called gel electrolyte.
  • a gel electrolyte is preferable because high ion conductivity (for example, 1 mS / cm or more at room temperature) is obtained and liquid leakage is prevented.
  • Nonaqueous electrolyte The nonaqueous electrolytic solution includes an electrolyte salt and a nonaqueous solvent that dissolves the electrolyte salt.
  • the non-aqueous electrolyte is the same as in the third embodiment.
  • Polymer compound As the polymer compound, those having a property compatible with a solvent can be used. Examples of such a polymer compound include polyacrylonitrile, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, and polyphosphazene.
  • Polysiloxane polyvinyl acetate, polyvinyl alcohol, polymethyl methacrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, or polycarbonate. These may be single and multiple types may be mixed. Among these, polyacrylonitrile, polyvinylidene fluoride, polyhexafluoropropylene, or polyethylene oxide is preferable. This is because it is electrochemically stable.
  • This nonaqueous electrolyte battery is manufactured, for example, by the following three manufacturing methods (first to third manufacturing methods).
  • first manufacturing method In the first manufacturing method, first, for example, the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A by the same procedure as the manufacturing procedure of the positive electrode 21 and the negative electrode 22 of the third embodiment described above. Thus, the positive electrode 33 is manufactured. Further, the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34.
  • a precursor solution containing an electrolytic solution, a polymer compound, and a solvent is prepared and applied to at least one of both surfaces of the positive electrode 33 and the negative electrode 34, and then the solvent is volatilized to form a gel electrolyte 36.
  • the positive electrode lead 31 is attached to the positive electrode current collector 33A
  • the negative electrode lead 32 is attached to the negative electrode current collector 34A.
  • the gel electrolyte 36 may be formed on at least one surface of both surfaces of the separator.
  • the positive electrode 33 and the negative electrode 34 on which the electrolyte 36 is formed are stacked via the separator 35 and then wound in the longitudinal direction, and a protective tape 37 is adhered to the outermost peripheral portion to produce the wound electrode body 30.
  • a protective tape 37 is adhered to the outermost peripheral portion to produce the wound electrode body 30.
  • the wound electrode body 30 is sandwiched between two film-shaped exterior members 40, the outer edge portions of the exterior member 40 are bonded to each other by heat fusion or the like, so that the wound electrode body 30 is Encapsulate.
  • the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40. Thereby, the nonaqueous electrolyte battery shown in FIGS. 3 and 4 is completed.
  • the positive electrode 33 and the negative electrode 34 are manufactured in the same manner as in the first manufacturing method.
  • the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34.
  • the positive electrode 33 and the negative electrode 34 are laminated and wound through a separator 35 coated with a polymer compound on both sides, and then a protective tape 37 is adhered to the outermost periphery thereof to form a wound electrode body.
  • a wound body that is a precursor of 30 is produced.
  • the remaining outer peripheral edge except for the outer peripheral edge on one side is bonded by thermal fusion or the like, so that the bag-shaped exterior is obtained.
  • the wound body is accommodated in the member 40.
  • Examples of the polymer compound applied to the separator 35 include a polymer containing vinylidene fluoride as a component, that is, a homopolymer, a copolymer, a multi-component copolymer, and the like. Specifically, polyvinylidene fluoride, binary copolymers containing vinylidene fluoride and hexafluoropropylene as components, and ternary copolymers containing vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components. A coalescence or the like is preferred.
  • the polymer compound may contain one or more other polymer compounds together with the polymer containing vinylidene fluoride as a component.
  • the polymer compound on the separator 35 may form a porous polymer compound as follows, for example. That is, first, a solution in which a polymer compound is dissolved in a first solvent composed of a polar organic solvent such as N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylacetamide, N, N-dimethylsulfoxide, etc. And this solution is applied onto the separator 35. Next, the separator 35 coated with the above solution is compatible with the above polar organic solvent such as water, ethyl alcohol, propyl alcohol, etc., and in the second solvent which is a poor solvent for the above polymer compound. Immerse. At this time, solvent exchange occurs, phase separation accompanied by spinodal decomposition occurs, and the polymer compound forms a porous structure. Thereafter, by drying, a porous polymer compound having a porous structure can be obtained.
  • a polar organic solvent such as N-methyl-2-pyrrolidone, ⁇
  • an electrolytic solution is prepared and injected into the bag-shaped exterior member 40, and then the opening of the exterior member 40 is sealed by heat fusion or the like. Thereby, the electrolytic solution is impregnated into the polymer compound, and the polymer compound is gelled to form the gel electrolyte 36, thereby completing the nonaqueous electrolyte battery shown in FIGS.
  • the third manufacturing method In the third manufacturing method, first, the positive electrode 33 and the negative electrode 34 are produced in the same manner as in the first manufacturing method. Next, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated and wound via the separator 35, a protective tape 37 is adhered to the outermost peripheral portion thereof, and a wound body that is a precursor of the wound electrode body 30. Is made.
  • the positive electrode lead 31 is attached to the end portion of the positive electrode current collector 33A by welding, and the negative electrode lead 32 is attached to the end portion of the negative electrode current collector 34A by welding.
  • the positive electrode 33 and the negative electrode 34 are laminated and wound with the separator 35 interposed therebetween, and a protective tape 37 is adhered to the outermost peripheral portion to form a wound body that is a precursor of the wound electrode body 30.
  • the wound body is sandwiched between the exterior members 40, and the outer peripheral edge except for one side is heat-sealed to form a bag shape, which is then stored inside the exterior member 40.
  • the opening of the exterior member 40 is heat-sealed in a vacuum atmosphere and sealed. As a result, the intended non-electrolyte secondary battery is obtained.
  • FIG. 5A is an external view of a nonaqueous electrolyte battery in which the laminated electrode body 70 is accommodated.
  • FIG. 5B is an exploded perspective view showing a state in which the laminated electrode body 70 is accommodated in the exterior member 60.
  • FIG. 5C is an external view showing the external appearance of the nonaqueous electrolyte battery shown in FIG. 5A from the bottom surface side.
  • the laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76.
  • the electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74.
  • an electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This electrolyte layer is the same as the electrolyte 36 described above.
  • a positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other.
  • a film 61 is provided.
  • the manufacturing method of a non-aqueous electrolyte battery produces a laminated electrode body in place of the wound electrode body 30, and a laminated body in place of the wound body (with an electrolyte layer omitted from the laminated electrode body 70).
  • a laminated electrode body in place of the wound electrode body 30 and a laminated body in place of the wound body (with an electrolyte layer omitted from the laminated electrode body 70).
  • Patent Document 8 Japanese Patent Laid-Open No. 2013-80714
  • an isocyanate compound is put in the electrolytic solution. When it is decomposed in the battery, it becomes a compound having an amino group.
  • JP 2011-165998 A is a capacitor, and does not describe any effect in a lithium secondary battery.
  • Patent Document 2 trapped particles are used to supplement HF.
  • lithium titanate is not used for the negative electrode in the patent document 2.
  • patent documents such as lithium titanate are used for the negative electrode. 2 use different negative electrode active material and.
  • FIG. 1 shows a cross-sectional configuration of a battery according to a fifth embodiment of the present technology.
  • FIG. 2 shows an enlarged part of the spirally wound electrode body 20 shown in FIG.
  • This battery is a secondary battery that can be charged and discharged, for example, a non-aqueous electrolyte battery, for example, a lithium ion secondary battery, and the like.
  • This non-aqueous electrolyte battery mainly includes a wound electrode body 20 in which a positive electrode 21 and a negative electrode 22 are laminated and wound through a separator 23 inside a substantially hollow cylindrical battery can 11, and a pair of insulations.
  • the plates 12 and 13 are accommodated.
  • the battery structure using the cylindrical battery can 11 is called a cylindrical type.
  • the battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened, and is made of iron (Fe), aluminum (Al), or an alloy thereof.
  • the battery can 11 is made of iron, for example, nickel (Ni) or the like may be plated on the surface of the battery can 11.
  • the pair of insulating plates 12 and 13 are arranged so as to sandwich the wound electrode body 20 from above and below and to extend perpendicularly to the wound peripheral surface.
  • a battery lid 14, a safety valve mechanism 15, and a heat sensitive resistance element (Positive Temperature Coefficient: PTC element) 16 are caulked through a gasket 17 at the open end of the battery can 11, and the battery can 11 is sealed. ing.
  • the battery lid 14 is made of, for example, the same material as the battery can 11.
  • the safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14.
  • the safety valve mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16.
  • the disk plate 15 ⁇ / b> A is reversed and the electric power between the battery lid 14 and the wound electrode body 20 is reversed. Connection is cut off.
  • the heat-sensitive resistance element 16 prevents abnormal heat generation caused by a large current by increasing resistance (limiting current) as the temperature rises.
  • the gasket 17 is made of, for example, an insulating material, and for example, asphalt is applied to the surface thereof.
  • the wound electrode body 20 is obtained by laminating and winding a positive electrode 21 and a negative electrode 22 via a separator 23.
  • a center pin 24 may be inserted in the center of the wound electrode body 20.
  • a positive electrode lead 25 made of aluminum or the like is connected to the positive electrode 21, and a negative electrode lead 26 made of nickel or the like is connected to the negative electrode 22.
  • the positive electrode lead 25 is welded to the safety valve mechanism 15 and electrically connected to the battery lid 14, and the negative electrode lead 26 is welded to the battery can 11 and electrically connected thereto.
  • the positive electrode 21 is obtained by providing a positive electrode active material layer 21B on both surfaces of a positive electrode current collector 21A having a pair of surfaces.
  • the positive electrode 21 may have the area
  • the positive electrode current collector 21A is made of, for example, a metal material such as aluminum, nickel, or stainless steel.
  • the positive electrode active material layer 21 ⁇ / b> B contains one or more positive electrode materials capable of inserting and extracting lithium as a positive electrode active material.
  • the positive electrode active material layer 21 ⁇ / b> B may contain other materials such as a binder and / or a conductive agent as necessary.
  • a lithium-containing compound As a positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing compound is preferable. This is because a high energy density can be obtained.
  • the lithium-containing compound include a phosphate compound containing lithium and a transition metal element, and a composite oxide containing lithium and a transition metal element.
  • the group which consists of cobalt, nickel, manganese, and iron as a transition metal element is preferable. This is because a higher voltage can be obtained.
  • a phosphoric acid compound containing lithium and a transition metal element for example, a lithium iron phosphate compound having an olivine structure containing at least lithium, phosphorus (P) and iron (Fe), lithium, phosphorus (P) and manganese ( And a lithium manganese phosphate compound having an olivine structure containing at least Mn).
  • the lithium iron phosphate compound having an olivine structure, lithium iron phosphate compound (LiFePO 4), or lithium iron composite phosphate compound containing the different element LiFe x M 1-x O 4: M is other than iron 1 or more types of metal elements, x is 0 ⁇ x ⁇ 1, etc.).
  • M is at least one of cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), aluminum (Al), vanadium (V), and titanium (Ti) as a transition metal element.
  • cobalt Co
  • Ni nickel
  • Mn manganese
  • Fe iron
  • Al aluminum
  • V vanadium
  • Ti titanium
  • Examples of the lithium manganese phosphate compound having an olivine structure include a lithium manganese phosphate compound (LiMnPO 4 ).
  • a typical example of the lithium iron phosphate compound having an olivine structure is a lithium phosphate compound represented by (Chemical Formula 1).
  • (Chemical formula 1) Li u Fe r M1 (1- r) PO 4
  • M1 is cobalt (Co), manganese (Mn), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium (Nb ), Copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr), at least one selected from the group consisting of r.
  • u is a value within the range of 0.9 ⁇ u ⁇ 1.1 Note that the composition of lithium varies depending on the state of charge and discharge, and the value of u Represents the value in the fully discharged state.
  • lithium phosphate compound represented by (Chemical Formula 1) typically, for example, Li u FePO 4 (u is as defined above), Li u Fe r Mn (1-r) PO 4 (u Is as defined above, and r is as defined above.
  • composite oxide containing lithium and transition metal element examples include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide (Li x Ni). 1-z Co z O 2 (z ⁇ 1)), lithium nickel cobalt manganese composite oxide (Li x Ni (1-vw) Co v Mn w O 2 (v + w ⁇ 1)) and other lithium transitions having a layered structure Examples thereof include metal composite oxides, lithium manganese composite oxides having a spinel structure and containing at least lithium and manganese.
  • Examples of the spinel structure lithium manganese composite oxide include a lithium composite oxide represented by (Chemical Formula 2).
  • M2 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe ), Copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), at least one selected from the group consisting of v, w and s are values within the range of 0.9 ⁇ v ⁇ 1.1, 0 ⁇ w ⁇ 0.6, 3.7 ⁇ s ⁇ 4.1, where the composition of lithium is the state of charge and discharge. And the value of v represents a value in a fully discharged state.
  • lithium composite oxide represented by (Chemical Formula 2) for example, Li v Mn 2 O 4 (v is as defined above), lithium manganese nickel composite oxide (LiMn 2 ⁇ t Ni t O 4 (t ⁇ 2)) and the like.
  • the positive electrode material may be one in which a coating layer is formed on at least a part of the surface of the core particle made of the lithium-containing compound described above.
  • the coating layer is provided on at least a part of the surface of the core particle of the lithium-containing compound as the base material, and has a composition element or composition ratio different from that of the lithium-containing compound particle as the base material.
  • another lithium-containing compound for example, Ni, Mn, Li
  • a coating layer containing a phosphate compound for example, lithium phosphate
  • the covering layer may be a carbon material or the like.
  • positive electrode materials capable of inserting and extracting lithium include oxides such as titanium oxide, vanadium oxide and manganese dioxide, disulfides such as titanium disulfide and molybdenum sulfide, and niobium selenide. And chalcogenides such as sulfur, polyaniline or polythiophene, and other conductive polymers.
  • the conductive agent examples include carbon black produced by furnace method, acetylene method, contact method, thermal method, etc., carbon materials such as vapor-grown carbon, activated carbon, activated carbon fiber cloth, single wall or multi-wall carbon nanotube, carbon nanohorn, etc.
  • carbon materials such as vapor-grown carbon, activated carbon, activated carbon fiber cloth, single wall or multi-wall carbon nanotube, carbon nanohorn, etc.
  • those obtained by surface modification of these carbon materials by acid / alkali treatment or the like, or those obtained by physically or chemically bonding other elements can be used.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resins. At least one selected from a copolymer mainly composed of materials is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a negative electrode active material layer 22B is provided on both surfaces of a negative electrode current collector 22A having a pair of surfaces. Although illustration is omitted, the negative electrode 22 may have a region where the negative electrode active material layer 22B is provided only on one surface of the negative electrode current collector 22A.
  • the negative electrode current collector 22A is made of a metal material such as aluminum foil, copper, nickel, or stainless steel, for example.
  • the negative electrode active material layer 22B contains one or more negative electrode materials capable of inserting and extracting lithium as a negative electrode active material.
  • the negative electrode active material layer 22B may contain other materials such as at least one of a binder and a conductive agent as necessary. Note that the same binder and conductive agent as those described for the positive electrode can be used.
  • a negative electrode material capable of inserting and extracting lithium for example, a titanium-containing inorganic oxide containing at least titanium (Ti) and oxygen (O) as constituent elements, or a metal sulfide can be used.
  • the reaction potential of the negative electrode is 1.0 Vvs. More than Li / Li + , preferably 1.0 Vvs. Li / Li + more than 1.9Vvs. The material etc. which become Li / Li + or less are preferable.
  • titanium-containing inorganic oxide examples include composite oxides having at least lithium and titanium as constituent elements (referred to as titanium-containing lithium composite oxides), and metal oxides having titanium and oxygen as constituent elements (referred to as titanium oxides). Etc. Among these, titanium-containing lithium composite oxide or titanium oxide is preferable.
  • titanium-containing lithium composite oxide typically, for example, Li x Ti y O z having a spinel structure (x represents a composition ratio of Li, y represents a composition ratio of Ti, and z represents a composition of O).
  • Li x Ti y O z having a spinel structure examples include Li 4 Ti 5 O 12 .
  • the potential (V vs. Li / Li + ) for occluding and releasing lithium ions of Li x Ti y O z having a spinel structure is, for example, about 1.55 V in the flat portion in the potential change pattern during charge / discharge of the battery. It is. Note that Li in Li x Ti y O z may be Na, K, or the like.
  • titanium-containing lithium composite oxide As a titanium-containing lithium composite oxide, in addition, from the viewpoint that higher potential flatness and rate characteristics can be obtained, some of the constituent elements lithium, titanium, and oxygen are replaced with other elements such as Al and Mg. A substituted one may be used.
  • Examples of other elements that substitute a part of titanium include metal elements and metalloid elements capable of forming an alloy with lithium.
  • Examples thereof include bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd), and platinum (Pt).
  • Typical examples of the titanium-containing lithium composite oxide in which a part of lithium, titanium, and oxygen are substituted with other elements include Li 3.75 Ti 4.875 Mg 0.375 O 12 , Li 3.75 Ti 4.50 Al 0.75 O 12, and the like. Is mentioned.
  • TiO 2 The titanium oxide (which is p> 0, q> 0. ) Ti p O q a compound represented by (titanium oxide) and the like. Specific examples of this compound include TiO 2 and the like.
  • the TiO 2 may be any of anatase TiO 2 [TiO 2 (anatase)], rutile TiO 2 [TiO 2 (rutile)], B-type TiO 2 [TiO 2 (B)], and the like.
  • the titanium-containing inorganic oxide such as the titanium-containing lithium composite oxide may be coated with carbon.
  • CVD chemical vapor deposition
  • hydrocarbons are decomposed and a carbon film is grown on the surface of the titanium-containing lithium composite oxide, whereby a titanium-containing inorganic oxide coated with carbon is obtained.
  • the carbon coating method is not limited to the above.
  • the negative electrode 22 is derived from a silane coupling agent or a siloxane compound (sometimes abbreviated as a silane / siloxane compound) contained in an electrolyte solution described later, and a cyclic carboxylic acid ester compound and a silane / siloxane compound. At least one of the compounds to be included.
  • the negative electrode 22 includes, as such a compound, at least one of a compound represented by the formula (1B), a compound represented by the formula (2B), and a compound represented by the formula (3B). It is. Typically, these compounds are contained in a film or the like formed on the surface of the active material particles in the negative electrode active material layer 22B during charge / discharge. Side reactions can be suppressed by wrapping the active site of the negative electrode 22 with the coating. As a result, gas generation can be suppressed. Further, since the negative electrode 22 contains at least one of the compound represented by the formula (1B), the compound represented by the formula (2B), and the compound represented by the formula (3B), the Lithium is also Li even in a low temperature environment. Ion diffusion is stable and high input / output characteristics can be obtained.
  • R1, R2 and R3 are each independently an alkyl group, a fluorine group, a fluorinated alkyl group or an alkoxy group.
  • N1 is an integer of 1-8)
  • R4, R5 and R6 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R7 and R8 are each independently a hydrogen group, an alkali metal or an alkaline earth metal
  • n2 is an integer of 1 to 8
  • n3 is an integer of 1 to 8.
  • R9, R10 and R11 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R12 and R13 are each independently a hydrogen group alkyl group, a halogen group, or R14 is a hydrogen group, an alkali metal or an alkaline earth metal
  • n4 is an integer of 1 to 8
  • n5 is an integer of 1 to 8.
  • n6 is 1 or more It is an integer of 8 or less.
  • a negative electrode material in which the reaction potential of the negative electrode becomes a noble potential is used as the negative electrode active material.
  • a solvent or the like that decomposes and is not effective when an active material is used can also be used effectively.
  • Examples of the compound represented by the formula (1B) include compounds represented by the following formulas (1B-1) to (1B-5).
  • Examples of the compound represented by the formula (2B) include compounds represented by the following formulas (2B-1) to (2B-20).
  • the compound represented by the formula (2B-1), the compound represented by the formula (2B-4), the compound represented by the formula (2B-5), and the formula (2B-6) A compound, a compound represented by the formula (2B-9), and a compound represented by the formula (2B-10) are preferable because they can impart high electrical conductivity and provide high input / output characteristics even in a low temperature environment.
  • Examples of the compound represented by the formula (3B) include compounds represented by the following formulas (3B-1) to (3B-20).
  • the compound represented by the formula (3B-1), the compound represented by the formula (3B-4), the compound represented by the formula (3B-5), and the formula (3B-6) A compound, a compound represented by the formula (3B-9), and a compound represented by the formula (3B-10) are preferable because they can impart high electrical conductivity and provide high input / output characteristics even in a low temperature environment.
  • the negative electrode 22 including at least one of the compound represented by the formula (1B), the compound represented by the formula (2B), and the compound represented by the formula (3B) is included in, for example, an electrolytic solution impregnated in the negative electrode Silane coupling agents or siloxane compounds (hereinafter referred to as silane / siloxane compounds) and cyclic carboxylic acid ester compounds.
  • the compound represented by the formula (1B) is derived from a silane / siloxane compound, and effectively traps, for example, HF that causes various deteriorations in the battery generated by the reaction between an electrolyte salt and water. It is a thing. For example, HF derived from fluorine-containing lithium salt can be effectively trapped.
  • Each compound represented by Formula (2B) and Formula (3B) is derived from a silane / siloxane compound and a cyclic carboxylic acid ester. Typically, for example, it is produced by a reaction between a silane / siloxane compound and a decomposition product of a cyclic carboxylic acid ester in charge / discharge of a battery.
  • the silane-siloxane compound is typically a silane coupling agent having amino (—NH 2 ).
  • the formation ratio of the active material surface may be analyzed by observing the element distribution with an existing elemental analysis method, that is, energy dispersive X-ray spectroscopy (SEM-EDX).
  • SEM-EDX energy dispersive X-ray spectroscopy
  • the electrode surface may be washed after being washed with an organic solvent such as dimethyl carbonate (DMC). preferable.
  • DMC dimethyl carbonate
  • the washed extract of the electrode body taken out was subjected to existing structural analysis methods, that is, infrared spectroscopy (IR), nuclear magnetic resonance (1H / 13C-NMR), gas or liquid chromatography mass spectrometry (GC /
  • IR infrared spectroscopy
  • GC gas or liquid chromatography mass spectrometry
  • the formation ratio of each compound may be analyzed by analyzing the structure of the compound contained by LC-MS) or the like.
  • the surface of the electrode is washed with an organic solvent such as dimethyl carbonate (DMC) in order to prevent unintentional analysis of unnecessary components in the electrolyte, and then each compound is extracted. And analyzing.
  • DMC dimethyl carbonate
  • the negative electrode active material is further maintained while maintaining characteristics such as battery capacity.
  • the surface can be coated more effectively.
  • At least one of the compound represented by the formula (1B) to the compound represented by the formula (3B) may be contained in the negative electrode and also in the electrolytic solution.
  • the preferable content of at least one of the compound represented by the formula (1B) to the compound represented by the formula (3B) is represented by the compound represented by the formula (1B) to the formula (3B) in the electrolytic solution. Defined by the content of at least one compound.
  • the content of at least one of the compound represented by the formula (1B) to the compound represented by the formula (3B) is 0.05% with respect to the mass of the electrolytic solution from the viewpoint of obtaining a more excellent effect. It is more preferable that the content is not less than 0.5% by mass.
  • the compound in the electrolytic solution can be confirmed by applying the disassembled battery to a centrifuge and analyzing the extracted electrolytic solution.
  • NMR Nuclear magnetic resonance
  • IR infrared absorption spectroscopy
  • Raman Raman
  • GC-MS Gas chromatography, mass spectrometry
  • LC-MS Liquid chromatography, Mass spectrometry
  • the negative electrode 22 may further contain a compound derived from a carbonate compound and a silane / siloxane compound in addition to the above-mentioned compound from the viewpoint of obtaining superior characteristics.
  • the compound derived from the carbonate compound and the silane / siloxane compound contained in the negative electrode 22 is at least a compound represented by the formula (4B), a compound represented by the formula (5B), and a compound represented by the formula (6B).
  • One type is mentioned.
  • R15, R16 and R17 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R18 is an alkali metal, alkaline earth metal, hydrogen group, halogen group or alkyl group.
  • R23, R24 and R25 are each independently an alkali metal, an alkaline earth metal, An alkyl group, a halogen group, a halogenated alkyl group, or a hydrogen group
  • R26 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group.
  • R27, R28 and R29 each independently represents an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R30 represents an alkali metal, an alkaline earth metal, an alkyl group, a halogen group or a halogenated group.
  • R 31 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group.
  • R32 is an alkali metal, alkaline earth metal, alkyl group, halogen group, halogenated alkyl group or hydrogen group.
  • the negative electrode containing at least one of the compound represented by the formula (4B), the compound represented by the formula (5B), and the compound represented by the formula (6B) is included in, for example, an electrolytic solution impregnated in the negative electrode.
  • a silane coupling agent or a siloxane compound hereinafter referred to as a silane / siloxane compound
  • a carbonate solvent hereinafter referred to as a silane / siloxane compound
  • Each compound represented by Formula (4B), Formula (5B), and Formula (6B) is derived from a silane / siloxane compound and a carbonate solvent. Typically, for example, it is produced by a reaction between a silane / siloxane compound and a decomposition product of a carbonate solvent in charge / discharge of a battery.
  • the silane-siloxane compound is typically a coupling agent having amino (—NH 2 ).
  • Examples of the compound represented by the formula (4B) include compounds represented by the following formulas (4B-1) to (4B-78).
  • a compound represented by formula (4B-39), a compound represented by formula (4B-40), a compound represented by formula (4B-41), a formula (4B-42) are preferred.
  • Examples of the compound represented by the formula (5B) include compounds represented by the following formulas (5B-1) to (5B-12). Among these, from the viewpoint of battery characteristics, a compound represented by the formula (5B-10), a compound represented by the formula (5B-11), and a compound represented by the formula (5B-12) are preferable.
  • Examples of the compound represented by the formula (6B) include compounds represented by the following formulas (6B-1) to (6B-3).
  • the separator 23 is a porous film composed of an insulating film having a high ion permeability and a predetermined mechanical strength.
  • the separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte. The electrolyte solution is held in the pores of the separator 23.
  • a polyolefin resin such as polypropylene or polyethylene, an acrylic resin, a styrene resin, a polyester resin, or a nylon resin is preferably used as the resin material constituting the separator 23.
  • polyethylene such as low density polyethylene, high density polyethylene and linear polyethylene, or their low molecular weight wax content, or polyolefin resin such as polypropylene is suitable because it has an appropriate melting temperature and is easily available.
  • a material including a porous film made of a polyolefin resin is excellent in separability between the positive electrode 21 and the negative electrode 22 and can further reduce a decrease in internal short circuit.
  • a nonwoven fabric as the separator 23.
  • Nonwoven fabrics have the feature that it is easy to ensure a sufficient pore diameter that is optimal for the permeation of Li ions, and high input / output can be obtained as a battery.
  • the thickness of the separator 23 can be arbitrarily set as long as it is equal to or greater than the thickness that can maintain the required strength.
  • the separator 23 insulates between the positive electrode 21 and the negative electrode 22 to prevent a short circuit and the like, and has ion permeability for suitably performing a battery reaction via the separator 23, and the battery reaction in the battery. It is preferable to set the thickness so that the volumetric efficiency of the active material layer that contributes to the maximum can be increased.
  • the electrolytic solution includes an electrolyte salt, a nonaqueous solvent that dissolves the electrolyte salt, and a silane coupling agent or a siloxane compound as an additive.
  • the electrolytic solution may contain both a silane coupling agent and a siloxane compound as additives.
  • Non-aqueous solvent a solvent containing at least a cyclic carboxylic acid ester compound is used.
  • Cyclic carboxylic acid ester compound examples include ⁇ -butyrolactone (GBL), ⁇ -valerolactone (GVL), and ⁇ -valerolactone. These compounds and the like are preferable because ion conductivity at low temperature can be further improved.
  • the non-aqueous solvent may contain a carbonate solvent.
  • the carbonate solvent include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC), vinyl ethylene carbonate ( VC) and the like, unsaturated carbonates having unsaturated bonds such as carbon-carbon double bonds, 4-fluoro-1,3-dioxolan-2-one (FEC; fluoroethylene carbonate), 4,5-difluoro-1 Carbonate compounds such as halogenated carbonates such as 1,3-dioxolan-2-one (DFEC; difluoroethylene carbonate) can be used.
  • cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC)
  • chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC
  • the non-aqueous solvent may contain other solvents.
  • Other solvents include 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran (Me-THF), 1,3-dioxolane (DOL), 4-methyl-1,3-dioxolane (Me -DOL), diethyl ether (DEE), 3-methyloxazolidinone (MOX), methyl formate (MF), sulfolane (SL), 3-methylsulfolane (3MS), dimethyl sulfoxide (DMSO), acetonitrile (AN), dimethyl sulfoxide (DMSO), trimethyl phosphate (TMP), propionitrile (PN), glutaronitrile (GLN), adiponitrile (ADN), methoxyacetonitrile (MAN), 3-methoxypropionitrile (MPN), N, N- Dimethylformamide (D F), N, N-dimethylace
  • a chain carbonate and a cyclic carbonate, or a chain carboxylic acid ester and a cyclic carboxylic acid ester are preferable because they have various characteristics in a non-aqueous electrolyte secondary battery.
  • ethylene carbonate and propylene carbonate are preferable.
  • Dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone are more preferable, and ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and ⁇ -butyrolactone are further included.
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and ⁇ -butyrolactone are further included. preferable.
  • content of the cyclic carboxylic acid ester compound in electrolyte solution is not specifically limited, From a viewpoint of battery characteristics, 20 mass% or more is preferable with respect to the mass of electrolyte solution. By containing 20% by mass or more of the carboxylic acid ester compound in the electrolytic solution, it is possible to further secure ion conductivity at a low temperature. In addition, when prescribing
  • the electrolytic solution contains a silane coupling agent or a siloxane compound (silane / siloxane compound) as an additive.
  • the electrolytic solution may contain both a silane coupling agent and a siloxane compound.
  • the electrolytic solution contains a silane / siloxane compound
  • the content ratio of GBL or the like in the electrolytic solution is increased, the impregnation property of the electrolytic solution into the electrode tends to deteriorate.
  • the electrolytic solution electrode it is possible to improve that the impregnation property into the resin deteriorates.
  • silane coupling agent or siloxane compound As the silane coupling agent, for example, a silane coupling agent having an amino group (—NH 2 ), another silane coupling agent, or the like can be used. Among these, a silane coupling agent having an amino group (—NH 2 ) is preferable.
  • HF hydrofluoric acid
  • the silane coupling agent having an amino group By capturing HF (hydrofluoric acid), which causes deterioration of the battery, by the silane coupling agent having an amino group, deterioration of the battery under a high temperature environment can be suppressed.
  • acquired the fluorine becomes a good-quality film, and can further suppress degradation degradation reaction by covering the active active material surface.
  • Examples of the silane coupling agent having an amino group (—NH 2 ) include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 )], 3-amino Examples thereof include propyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 NH 2 ], 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane and the like.
  • silane coupling agents include 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH], 3-mercaptopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 SH], 3-mercaptopropyldimethylmethoxysilane [(CH 3 ) 2 (CH 3 O) Si (CH 2 ) 3 SH], 3-mercaptopropyltrimethylsilane [(CH 3 ) 3 Si ( CH 2 ) 3 SH], 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, vinyltris (2-methoxyethoxy) silane, vinyltristrimethoxysilane, vinyltriethoxysilane, vinyltrichloro Silane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysila 3-methacryloxypropyltrimethoxysilane,
  • siloxane compound examples include decamethylcyclopentanesiloxane, decamethyltetrasiloxane, octamethylcyclotetrasiloxane, octamethyltrisiloxane, hexamethylcyclotrisiloxane, hexamethyldisiloxane and the like.
  • a silane coupling agent those having a structure [R x -Si (R y) n (OR z) 3-n R x reactive functional group, R y: hydrolyzable group: organic group, OR z] If so, it is not limited to these.
  • the siloxane compound is not limited to these as long as it has a siloxane structure.
  • the series of silane / siloxane compounds described above may be one kind, or two or more kinds may be mixed in any combination.
  • Electrode salt As the electrolyte salt contained in the electrolytic solution, one containing at least a fluorine-containing lithium salt containing at least fluorine can be used.
  • the fluorine-containing lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and lithium trifluoromethanesulfonate (LiCF 3).
  • LiN (SO 2 F) 2 lithium bis (fluorosulfonyl) imide
  • LiN (SO 2 F) (SO 2 CF 3 ) 2 lithium bis (Trifluoromethylsulfonyl) imide
  • LiC 2 BO 4 F 2 lithium difluorooxalatoboric acid
  • LiN (SO 2 F) 2 lithium bis (trifluoromethanesulfonyl)
  • At least one member selected from the group consisting of imide (LiN (SO 2 CF 3 ) 2 ) and lithium bis (oxalato) boric acid (LiC 2 BO 4 F 2 ) is preferable, and lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ) and at least one selected from the group consisting of lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) are more preferred.
  • the electrolyte salt may contain other lithium salt together with the fluorine-containing lithium salt.
  • Other lithium salts include lithium perchlorate (LiClO 4 ), lithium tetraphenylborate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium bis (oxalato) borate (LiC 4 BO 8 ), and the like.
  • the concentration of the lithium salt in the electrolytic solution is not particularly limited, but is usually 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more.
  • the upper limit is 2 mol / L or less normally, Preferably it is 1.8 mol / L or less, More preferably, it is 1.7 mol / L or less. If the concentration is too low, the electrical conductivity of the non-aqueous electrolyte may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity, and the performance of the battery decreases. There is a case.
  • the positive electrode 21 is produced. First, a positive electrode material, a binder, and a conductive agent are mixed to obtain a positive electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is uniformly applied to both surfaces of the positive electrode current collector 21A by a doctor blade or a bar coater and dried. Finally, the positive electrode active material layer 21B is formed by compressing and molding the coating film with a roll press or the like while heating as necessary. In this case, compression molding may be repeated a plurality of times.
  • the negative electrode 22 is produced. First, a negative electrode material, a binder, and a conductive agent as necessary are mixed to form a negative electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is uniformly applied to both surfaces of the negative electrode current collector 22A by a doctor blade or a bar coater and dried. Finally, the negative electrode active material layer 22B is formed by compression molding the coating film with a roll press or the like while heating as necessary.
  • the above-described electrolytic solution is prepared.
  • the electrolyte is impregnated in the negative electrode, and a compound derived from the cyclic carboxylic acid ester compound and the silane / siloxane compound is formed during charging and discharging of the battery. More specifically, for example, a reaction product of a decomposition product of a cyclic carboxylic acid ester compound and a silane / siloxane compound is formed at the time of charge / discharge of the battery.
  • the compound represented by the formula (1B), the compound represented by the formula (2B), and the compound represented by the formula (3B) as the above reaction product can be contained in the negative electrode 22.
  • Various methods can be used as a method for causing the anode 22 to contain at least one of these compounds.
  • At least one of a compound represented by the formula (1B), a compound represented by the formula (2B), and a compound represented by the formula (3B), and a negative electrode material At least one of a compound represented by the formula (1B), a compound represented by the formula (2B), and a compound represented by the formula (3B) by preparing a negative electrode mixture by mixing with May be contained in the negative electrode 22.
  • the non-aqueous electrolyte battery is assembled as follows. First, the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like. Subsequently, after the positive electrode 21 and the negative electrode 22 are stacked and wound through the separator 23 to produce the wound electrode body 20, the center pin 24 is inserted into the winding center. Subsequently, the wound electrode body 20 is housed in the battery can 11 while being sandwiched between the pair of insulating plates 12 and 13, and the tip of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the tip of the negative electrode lead 26 is attached to the tip of the negative electrode lead 26. Weld to battery can 11.
  • FIG. 3 shows an exploded perspective configuration of the nonaqueous electrolyte battery according to the sixth embodiment of the present technology
  • FIG. 4 is an enlarged cross-sectional view taken along line II of the spirally wound electrode body 30 shown in FIG. It shows.
  • This non-aqueous electrolyte battery is mainly one in which a wound electrode body 30 to which a positive electrode lead 31 and a negative electrode lead 32 are attached is housed in a film-shaped exterior member 40.
  • the battery structure using the film-shaped exterior member 40 is called a laminate film type.
  • This nonaqueous electrolyte battery is, for example, a secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
  • the positive electrode lead 31 and the negative electrode lead 32 are led out in the same direction from the inside of the exterior member 40 to the outside, for example.
  • the positive electrode lead 31 is made of, for example, a metal material such as aluminum
  • the negative electrode lead 32 is made of, for example, a metal material such as copper, nickel, or stainless steel. These metal materials are, for example, in a thin plate shape or a mesh shape.
  • the exterior member 40 has a configuration in which resin layers are provided on both surfaces of a metal layer made of metal foil, such as an aluminum laminate film in which a nylon film, an aluminum foil, and a polyethylene film are bonded in this order.
  • the general structure of the exterior member 40 has, for example, a laminated structure of an outer resin layer / a metal layer / an inner resin layer.
  • the exterior member 40 has a structure in which the outer edges of two rectangular aluminum laminate films are bonded to each other by fusion or an adhesive so that the inner resin layer faces the wound electrode body 30. Have.
  • Each of the outer resin layer and the inner resin layer may be composed of a plurality of layers.
  • the metal material constituting the metal layer only needs to have a function as a moisture-permeable barrier film, and includes aluminum (Al) foil, stainless steel (SUS) foil, nickel (Ni) foil, and plated iron ( Fe) foil or the like can be used.
  • Al aluminum
  • SUS stainless steel
  • Ni nickel
  • Fe plated iron
  • the aluminum foil which is thin and lightweight and excellent in workability.
  • annealed aluminum JIS A8021P-O
  • JIS A8079P-O JIS A8079P-O
  • JIS A1N30-O JIS A1N30-O
  • the thickness of the metal layer is typically preferably 30 ⁇ m or more and 150 ⁇ m or less, for example.
  • the thickness is less than 30 ⁇ m, the material strength tends to decrease.
  • it exceeds 150 micrometers while processing becomes remarkably difficult, the thickness of a laminate film will increase and it exists in the tendency for the volumetric efficiency of a nonaqueous electrolyte battery to reduce.
  • the inner resin layer is a part that is melted by heat and fused to each other, such as polyethylene (PE), non-axially oriented polypropylene (CPP), polyethylene terephthalate (PET), low density polyethylene (LDPE), high density polyethylene (HDPE), Linear low density polyethylene (LLDPE) or the like can be used, and a plurality of these can be selected and used.
  • PE polyethylene
  • CPP non-axially oriented polypropylene
  • PET polyethylene terephthalate
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE Linear low density polyethylene
  • polyolefin resin polyamide resin, polyimide resin, polyester, or the like is used because of its beautiful appearance, toughness, flexibility, and the like.
  • nylon polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and polybutylene naphthalate (PBN) are used. Is also possible.
  • the adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 to prevent intrusion of outside air.
  • the adhesion film 41 is made of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32. Examples of such a material include polyolefin resins such as polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
  • the exterior member 40 may be constituted by a laminated film having another laminated structure instead of the aluminum laminated film having the laminated structure described above, or may be constituted by a polymer film such as polypropylene or a metal film. It may be.
  • FIG. 4 shows a cross-sectional configuration along the II line of the spirally wound electrode body shown in FIG.
  • This wound electrode body 30 is formed by laminating and winding a belt-like positive electrode 33 and a belt-like negative electrode 34 via a belt-like separator 35 and an electrolyte 36, and the outermost periphery is protected by a protective tape 37. Has been.
  • the positive electrode 33 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a positive electrode current collector 33A having a pair of surfaces. Although not shown, the positive electrode 33 may have a region where the positive electrode active material layer 33B is formed only on one surface of the positive electrode current collector 33A.
  • the positive electrode current collector 33A and the positive electrode active material layer 33B are the same as the positive electrode current collector 21A and the positive electrode active material layer 21B in the fifth embodiment, respectively.
  • the negative electrode 34 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a negative electrode current collector 34A having a pair of surfaces. Although not shown, the negative electrode 34 may have a region where the negative electrode active material layer 34B is formed only on one surface of the negative electrode current collector 34A.
  • the negative electrode current collector 34A and the negative electrode active material layer 34B are the same as the negative electrode current collector 22A and the negative electrode active material layer 22B in the fifth embodiment, respectively.
  • the separator 35 is the same as the separator 23 in the fifth embodiment.
  • the electrolyte 36 includes a nonaqueous electrolytic solution (electrolytic solution) and a polymer compound (matrix polymer compound) that holds the nonaqueous electrolytic solution.
  • the electrolyte 36 is, for example, a so-called gel electrolyte.
  • a gel electrolyte is preferable because high ion conductivity (for example, 1 mS / cm or more at room temperature) is obtained and liquid leakage is prevented.
  • the nonaqueous electrolytic solution includes an electrolyte salt and a nonaqueous solvent that dissolves the electrolyte salt.
  • the nonaqueous electrolytic solution is the same as that of the fifth embodiment.
  • Polymer compound As the polymer compound, those having a property compatible with a solvent can be used. Examples of such a polymer compound include polyacrylonitrile, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, and polyphosphazene.
  • Polysiloxane polyvinyl acetate, polyvinyl alcohol, polymethyl methacrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, or polycarbonate. These may be single and multiple types may be mixed. Among these, polyacrylonitrile, polyvinylidene fluoride, polyhexafluoropropylene, or polyethylene oxide is preferable. This is because it is electrochemically stable.
  • the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A, for example, by the same procedure as the manufacturing procedure of the positive electrode 21 and the negative electrode 22 of the fifth embodiment described above. Thus, the positive electrode 33 is manufactured. Further, the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34.
  • a precursor solution containing an electrolytic solution, a polymer compound, and a solvent is prepared and applied to at least one of both surfaces of the positive electrode 33 and the negative electrode 34, and then the solvent is volatilized to form a gel electrolyte 36.
  • the positive electrode lead 31 is attached to the positive electrode current collector 33A
  • the negative electrode lead 32 is attached to the negative electrode current collector 34A.
  • the gel electrolyte 36 may be formed on at least one surface of both surfaces of the separator.
  • the positive electrode 33 and the negative electrode 34 on which the electrolyte 36 is formed are stacked via the separator 35 and then wound in the longitudinal direction, and a protective tape 37 is adhered to the outermost peripheral portion to produce the wound electrode body 30.
  • a protective tape 37 is adhered to the outermost peripheral portion to produce the wound electrode body 30.
  • the wound electrode body 30 is sandwiched between two film-shaped exterior members 40, the outer edge portions of the exterior member 40 are bonded to each other by heat fusion or the like, so that the wound electrode body 30 is Encapsulate.
  • the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40. Thereby, the nonaqueous electrolyte battery shown in FIGS. 3 and 4 is completed.
  • the positive electrode 33 and the negative electrode 34 are manufactured in the same manner as in the first manufacturing method.
  • the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34.
  • the positive electrode 33 and the negative electrode 34 are laminated and wound through a separator 35 coated with a polymer compound on both sides, and then a protective tape 37 is adhered to the outermost periphery thereof to form a wound electrode body.
  • a wound body that is a precursor of 30 is produced.
  • the remaining outer peripheral edge except for the outer peripheral edge on one side is bonded by thermal fusion or the like, so that the bag-shaped exterior is obtained.
  • the wound body is accommodated in the member 40.
  • Examples of the polymer compound applied to the separator 35 include a polymer containing vinylidene fluoride as a component, that is, a homopolymer, a copolymer, a multi-component copolymer, and the like. Specifically, polyvinylidene fluoride, binary copolymers containing vinylidene fluoride and hexafluoropropylene as components, and ternary copolymers containing vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components. A coalescence or the like is preferred.
  • the polymer compound may contain one or more other polymer compounds together with the polymer containing vinylidene fluoride as a component.
  • the polymer compound on the separator 35 may form a porous polymer compound as follows, for example. That is, first, a solution in which a polymer compound is dissolved in a first solvent composed of a polar organic solvent such as N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylacetamide, N, N-dimethylsulfoxide, etc. And this solution is applied onto the separator 35. Next, the separator 35 coated with the above solution is compatible with the above polar organic solvent such as water, ethyl alcohol, propyl alcohol, etc., and in the second solvent which is a poor solvent for the above polymer compound. Immerse. At this time, solvent exchange occurs, phase separation accompanied by spinodal decomposition occurs, and the polymer compound forms a porous structure. Thereafter, by drying, a porous polymer compound having a porous structure can be obtained.
  • a polar organic solvent such as N-methyl-2-pyrrolidone, ⁇
  • an electrolytic solution is prepared and injected into the bag-shaped exterior member 40, and then the opening of the exterior member 40 is sealed by heat fusion or the like. Thereby, the electrolytic solution is impregnated into the polymer compound, and the polymer compound is gelled to form the gel electrolyte 36, thereby completing the nonaqueous electrolyte battery shown in FIGS.
  • the third manufacturing method In the third manufacturing method, first, the positive electrode 33 and the negative electrode 34 are produced in the same manner as in the first manufacturing method. Next, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated and wound via the separator 35, a protective tape 37 is adhered to the outermost peripheral portion thereof, and a wound body that is a precursor of the wound electrode body 30. Is made.
  • the positive electrode lead 31 is attached to the end portion of the positive electrode current collector 33A by welding, and the negative electrode lead 32 is attached to the end portion of the negative electrode current collector 34A by welding.
  • the positive electrode 33 and the negative electrode 34 are laminated and wound with the separator 35 interposed therebetween, and a protective tape 37 is adhered to the outermost peripheral portion to form a wound body that is a precursor of the wound electrode body 30.
  • the wound body is sandwiched between the exterior members 40, and the outer peripheral edge except for one side is heat-sealed to form a bag shape, which is then stored inside the exterior member 40.
  • the opening of the exterior member 40 is heat-sealed in a vacuum atmosphere and sealed. As a result, the intended non-electrolyte secondary battery is obtained.
  • FIG. 5A is an external view of a nonaqueous electrolyte battery in which the laminated electrode body 70 is accommodated.
  • FIG. 5B is an exploded perspective view showing a state in which the laminated electrode body 70 is accommodated in the exterior member 60.
  • FIG. 5C is an external view showing the external appearance of the nonaqueous electrolyte battery shown in FIG. 5A from the bottom surface side.
  • the laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76.
  • the electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74.
  • an electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This electrolyte layer is the same as the electrolyte 36 described above.
  • a positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other.
  • a film 61 is provided.
  • the manufacturing method of a non-aqueous electrolyte battery produces a laminated electrode body in place of the wound electrode body 30, and a laminated body in place of the wound body (with an electrolyte layer omitted from the laminated electrode body 70).
  • a laminated electrode body in place of the wound electrode body 30 and a laminated body in place of the wound body (with an electrolyte layer omitted from the laminated electrode body 70).
  • Seventh embodiment (example of battery module) A seventh embodiment of the present technology will be described.
  • a battery module using the above-described non-aqueous electrolyte battery and a battery module in which the battery unit is combined will be described.
  • FIGS. 6A to 6B are perspective views showing a configuration example of a battery unit using the nonaqueous electrolyte battery of the present technology.
  • 6A and 6B show the battery unit 100 viewed from different sides.
  • the side mainly shown in FIG. 6A is the front side of the battery unit 100, and is mainly shown in FIG. 6B. Let the side which is present be the back side of the battery unit 100.
  • the battery unit 100 includes non-aqueous electrolyte batteries 1-1 and 1-2, a bracket 110, and bus bars 120-1 and 120-2.
  • the bus bar 120-1 and the bus bar 120-2 are referred to as the bus bar 120 when they are not distinguished from each other.
  • the nonaqueous electrolyte batteries 1-1 and 1-2 have, for example, the same structure as that of the second modification of the nonaqueous electrolyte battery according to the second embodiment, the fourth embodiment, and the sixth embodiment. Is.
  • the bracket 110 is a support for ensuring the strength of the non-aqueous electrolyte batteries 1-1 and 1-2.
  • the non-aqueous electrolyte battery 1-1 is attached to the front side of the bracket 110, and the rear side of the bracket 110 is attached.
  • a nonaqueous electrolyte battery 1-2 is mounted.
  • the bracket 110 has substantially the same shape when viewed from either the front side or the back side, but a chamfered portion 111 is formed at one lower corner, and the chamfered portion 111 is located at the lower right.
  • the side that can be seen is the front side, and the side where the chamfered portion 111 is seen in the lower left is the back side.
  • the bus bars 120-1 and 120-2 are substantially L-shaped metal members, and the connection portions connected to the tabs of the nonaqueous electrolyte batteries 1-1 and 1-2 are arranged on the side surface side of the bracket 110.
  • the terminals connected to the outside of the battery unit 100 are mounted on both side surfaces of the bracket 110 so that the terminals are arranged on the upper surface of the bracket 110.
  • FIG. 7 is a perspective view showing a state where the battery unit 100 is disassembled.
  • the upper side of FIG. 7 is the front side of the battery unit 100
  • the lower side of FIG. 7 is the back side of the battery unit 100.
  • the convex portion in which the laminated electrode body is accommodated is referred to as a battery body 1-1A.
  • a convex portion in which the laminated electrode body is accommodated in the nonaqueous electrolyte battery 1-2 is referred to as a battery body 1-2A.
  • the nonaqueous electrolyte batteries 1-1 and 1-2 are attached to the bracket 110 in a state where the projecting battery main bodies 1-1A and 1-2A face each other. That is, the surface of the nonaqueous electrolyte battery 1-1 on which the positive electrode lead 3-1 and the negative electrode lead 4-1 are provided faces the front side, and the nonaqueous electrolyte battery 1-2 has the positive electrode lead 3-2 and the negative electrode lead 4-2. Is attached to the bracket 110 so that the surface on which the slab is provided faces the back side.
  • the bracket 110 has an outer peripheral wall 112 and a rib portion 113.
  • the outer peripheral wall 112 is slightly wider than the outer periphery of the battery bodies 1-1A and 1-2A of the nonaqueous electrolyte batteries 1-1 and 1-2, that is, the nonaqueous electrolyte batteries 1-1 and 1-2 are mounted. It is formed so as to surround battery main bodies 1-1A and 1-2A.
  • the rib portion 113 is formed on the inner side surface of the outer peripheral wall 112 so as to extend inward from the central portion in the thickness direction of the outer peripheral wall 112.
  • the nonaqueous electrolyte batteries 1-1 and 1-2 are inserted into the outer peripheral wall 112 from the front side and the back side of the bracket 110, and have double-sided tapes 130-1 and 130 having adhesiveness on both sides. -2 is attached to both surfaces of the rib portion 113 of the bracket 110.
  • the double-sided tapes 130-1 and 130-2 have a substantially rectangular shape with a predetermined width along the outer peripheral ends of the nonaqueous electrolyte batteries 1-1 and 1-2. It is only necessary to provide an area where the tapes 130-1 and 130-2 are attached.
  • the rib portion 113 is formed to extend inward from the inner side surface of the outer peripheral wall 112 by a predetermined width along the outer peripheral ends of the nonaqueous electrolyte batteries 1-1 and 1-2.
  • the inside of the rib 113 is an opening.
  • the nonaqueous electrolyte battery 1-1 is attached to the rib portion 113 by the double-sided tape 130-1 from the front side of the bracket 110, and is attached to the rib portion 113 by the double-sided tape 130-2 from the back side of the bracket 110.
  • a gap is formed between the nonaqueous electrolyte battery 1-2 and the nonaqueous electrolyte battery 1-2.
  • the nonaqueous electrolyte batteries 1-1 and 1-2 have the thickness of the rib portion 113 and the thickness of the double-sided tapes 130-1 and 130-2.
  • the bracket 110 is attached with a gap having a total size.
  • FIG. 8 is an exploded perspective view showing a configuration example of the battery module.
  • the battery module 160 includes a module case 150, a rubber sheet part 151, a battery part 152, a battery cover 154, a fixed sheet part 155, an electric part part 156, and a box cover 157. .
  • the module case 150 is a case for storing the battery unit 100 and mounting it on a device to be used.
  • the module case 150 has a size that can store 24 battery units 100.
  • the rubber sheet portion 151 is a sheet that is laid on the bottom surface of the battery unit 100 to mitigate impact and the like. In the rubber sheet portion 151, one rubber sheet is provided for each of the three battery units 100, and eight rubber sheets are prepared to correspond to the 24 battery units 100.
  • the battery unit 152 is configured by combining 24 battery units 100.
  • the battery unit 152 has a connection configuration in which three battery units 100 are connected in parallel to form a parallel block 153, and eight parallel blocks 153 are connected in series.
  • the battery cover 154 is a cover for fixing the battery part 152, and an opening corresponding to the bus bar 120 of the nonaqueous electrolyte battery 1 is provided.
  • the fixed sheet portion 155 is a sheet that is disposed on the upper surface of the battery cover 154 and is in close contact with and fixed to the battery cover 154 and the box cover 157 when the box cover 157 is fixed to the module case 150.
  • the electrical part unit 156 includes electrical components such as a charge / discharge control circuit that controls charging / discharging of the battery unit 100.
  • the charge / discharge control circuit is disposed in a space between the bus bars 120 forming two rows in the battery unit 152.
  • the box cover 157 is a cover for closing the module case 150 after each part is accommodated in the module case 150.
  • the battery unit 100 and the battery module 160 using the nonaqueous electrolyte battery of the present technology are configured.
  • FIG. 9 shows a perspective configuration of a battery pack using single cells
  • FIG. 10 shows a block configuration of the battery pack shown in FIG.
  • disassembled the battery pack is shown.
  • the battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is built in, for example, an electronic device typified by a smartphone.
  • the battery pack includes a power source 211 that is a laminated film type secondary battery according to the second embodiment, the fourth embodiment, or the sixth embodiment. And a circuit board 216 connected to the power supply 211.
  • a pair of adhesive tapes 218 and 219 are attached to both side surfaces of the power source 211.
  • a protection circuit (PCM: Protection Circuit Circuit Module) is formed on the circuit board 216.
  • the circuit board 216 is connected to the positive lead 212 and the negative lead 213 of the power supply 211 via a pair of tabs 214 and 215 and is connected to a lead wire 217 with a connector for external connection.
  • the circuit board 216 is protected from above and below by the label 220 and the insulating sheet 231. By attaching the label 220, the circuit board 216, the insulating sheet 231 and the like are fixed.
  • the battery pack includes a power supply 211 and a circuit board 216.
  • the circuit board 216 includes, for example, a control unit 221, a switch unit 222, a PTC 223, and a temperature detection unit 224. Since the power source 211 can be connected to the outside through the positive terminal 225 and the negative terminal 227, the power source 211 is charged / discharged through the positive terminal 225 and the negative terminal 227.
  • the temperature detection unit 224 can detect the temperature using a temperature detection terminal (so-called T terminal) 226.
  • the control unit 221 controls the operation of the entire battery pack (including the usage state of the power supply 211), and includes, for example, a central processing unit (CPU) and a memory.
  • CPU central processing unit
  • the control unit 221 disconnects the switch unit 222 to prevent the charging current from flowing through the current path of the power supply 211. For example, when a large current flows during charging, the control unit 221 disconnects the charging current by cutting the switch unit 222.
  • the control unit 221 disconnects the switch unit 222 so that the discharge current does not flow in the current path of the power supply 211. For example, when a large current flows during discharge, the control unit 221 cuts off the discharge current by cutting the switch unit 222.
  • the switch unit 222 switches the usage state of the power source 211 (whether the power source 211 can be connected to an external device) in accordance with an instruction from the control unit 221.
  • the switch unit 222 includes, for example, a charge control switch and a discharge control switch.
  • the charge control switch and the discharge control switch are semiconductor switches such as a field effect transistor (MOSFET) using a metal oxide semiconductor, for example.
  • MOSFET field effect transistor
  • the charging / discharging current is detected based on the ON resistance of the switch unit 222, for example.
  • the temperature detection unit 224 measures the temperature of the power supply 211 and outputs the measurement result to the control unit 221.
  • the temperature detection unit 224 includes a temperature detection element such as a thermistor.
  • the measurement result by the temperature detection unit 224 is used when the control unit 221 performs charge / discharge control during abnormal heat generation or when the control unit 221 performs correction processing when calculating the remaining capacity.
  • the circuit board 216 may not include the PTC 223. In this case, a PTC element may be attached to the circuit board 216 separately.
  • FIG. 11 is a block diagram showing a circuit configuration example when the batteries according to the first to sixth embodiments of the present technology (hereinafter appropriately referred to as secondary batteries) are applied to a battery pack.
  • the battery pack includes a switch unit 304 including an assembled battery 301, an exterior, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310.
  • the battery pack also includes a positive electrode terminal 321 and a negative electrode terminal 322.
  • the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when the electronic device is used, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
  • the assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • the secondary battery 301a is a secondary battery of the present technology.
  • FIG. 11 although the case where the six secondary batteries 301a are connected to 2 parallel 3 series (2P3S) is shown as an example, other n parallel m series (n and m are integers) Any connection method may be used.
  • the switch unit 304 includes a charge control switch 302a and a diode 302b, and a discharge control switch 303a and a diode 303b, and is controlled by the control unit 310.
  • the diode 302b has a reverse polarity with respect to the charging current flowing from the positive terminal 321 in the direction of the assembled battery 301 and the forward polarity with respect to the discharging current flowing from the negative terminal 322 in the direction of the assembled battery 301.
  • the diode 303b has a forward polarity with respect to the charging current and a reverse polarity with respect to the discharging current.
  • the switch unit 304 is provided on the + side, but may be provided on the ⁇ side.
  • the charge control switch 302a is turned off when the battery voltage becomes the overcharge detection voltage, and is controlled by the charge / discharge control unit so that the charge current does not flow in the current path of the assembled battery 301. After the charging control switch 302a is turned off, only discharging is possible via the diode 302b. Further, it is turned off when a large current flows during charging, and is controlled by the control unit 310 so that the charging current flowing in the current path of the assembled battery 301 is cut off.
  • the discharge control switch 303 a is turned off when the battery voltage becomes the overdischarge detection voltage, and is controlled by the control unit 310 so that the discharge current does not flow in the current path of the assembled battery 301. After the discharge control switch 303a is turned off, only charging is possible via the diode 303b. Further, it is turned off when a large current flows during discharging, and is controlled by the control unit 310 so as to cut off the discharging current flowing in the current path of the assembled battery 301.
  • the temperature detection element 308 is, for example, a thermistor, is provided in the vicinity of the assembled battery 301, measures the temperature of the assembled battery 301, and supplies the measured temperature to the control unit 310.
  • the voltage detection unit 311 measures the voltage of the assembled battery 301 and each secondary battery 301a constituting the assembled battery 301, performs A / D conversion on the measured voltage, and supplies it to the control unit 310.
  • the current measurement unit 313 measures the current using the current detection resistor 307 and supplies this measurement current to the control unit 310.
  • the switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313.
  • the switch control unit 314 sends a control signal to the switch unit 304 when any voltage of the secondary battery 301a falls below the overcharge detection voltage or overdischarge detection voltage, or when a large current flows suddenly. By sending, overcharge, overdischarge, and overcurrent charge / discharge are prevented.
  • the charge / discharge switch for example, a semiconductor switch such as a MOSFET can be used.
  • the parasitic diode of the MOSFET functions as the diodes 302b and 303b.
  • the switch control unit 314 supplies control signals DO and CO to the gates of the charge control switch 302a and the discharge control switch 303a, respectively.
  • the charge control switch 302a and the discharge control switch 303a are P-channel type, they are turned on by a gate potential that is lower than the source potential by a predetermined value or more. That is, in normal charging and discharging operations, the control signals CO and DO are set to the low level, and the charging control switch 302a and the discharging control switch 303a are turned on.
  • control signals CO and DO are set to the high level, and the charge control switch 302a and the discharge control switch 303a are turned off.
  • the memory 317 includes a RAM and a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) that is a nonvolatile memory.
  • EPROM Erasable Programmable Read Only Memory
  • the numerical value calculated by the control unit 310, the internal resistance value of the battery in the initial state of each secondary battery 301a measured in the manufacturing process, and the like are stored in advance, and can be appropriately rewritten. . (Also, by storing the full charge capacity of the secondary battery 301a, for example, the remaining capacity can be calculated together with the control unit 310.
  • the temperature detection unit 318 measures the temperature using the temperature detection element 308, performs charge / discharge control at the time of abnormal heat generation, and performs correction in the calculation of the remaining capacity.
  • the battery pack can be used for mounting or supplying electric power to devices such as electronic devices, electric vehicles, and power storage devices.
  • Examples of electronic devices include notebook computers, PDAs (personal digital assistants), mobile phones, cordless phones, video movies, digital still cameras, electronic books, electronic dictionaries, music players, radios, headphones, game consoles, navigation systems, Memory card, pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave oven, dishwasher, washing machine, dryer, lighting equipment, toys, medical equipment, robots, road conditioners, traffic lights Etc.
  • examples of the electric vehicle include a railway vehicle, a golf cart, an electric cart, an electric vehicle (including a hybrid vehicle), and the like, and these are used as a driving power source or an auxiliary power source.
  • Examples of power storage devices include power storage power supplies for buildings such as houses or power generation facilities.
  • the first power storage system is a power storage system in which a power storage device is charged by a power generation device that generates power from renewable energy.
  • the second power storage system is a power storage system that includes a power storage device and supplies power to an electronic device connected to the power storage device.
  • the third power storage system is an electronic device that receives power supply from the power storage device.
  • the fourth power storage system includes an electric vehicle having a conversion device that receives power supplied from the power storage device and converts the power into a driving force of the vehicle, and a control device that performs information processing related to vehicle control based on information related to the power storage device. It is.
  • the fifth power storage system is a power system that includes a power information transmission / reception unit that transmits / receives signals to / from other devices via a network, and performs charge / discharge control of the power storage device described above based on information received by the transmission / reception unit.
  • the sixth power storage system is a power system that receives power from the power storage device described above or supplies power from the power generation device or the power network to the power storage device.
  • the power storage system will be described.
  • a power storage device using a battery of the present technology is applied to a residential power storage system
  • a power storage system 400 for a house 401 power is stored from a centralized power system 402 such as a thermal power generation 402a, a nuclear power generation 402b, and a hydroelectric power generation 402c through a power network 409, an information network 412, a smart meter 407, a power hub 408, and the like.
  • a power Supplied to the device 403.
  • power is supplied to the power storage device 403 from an independent power source such as the power generation device 404 in the home.
  • the electric power supplied to the power storage device 403 is stored. Electric power used in the house 401 is supplied using the power storage device 403.
  • the same power storage system can be used not only for the house 401 but also for buildings.
  • the house 401 is provided with a power generation device 404, a power consumption device 405, a power storage device 403, a control device 410 that controls each device, a smart meter 407, and a sensor 411 that acquires various types of information.
  • Each device is connected by a power network 409 and an information network 412.
  • a solar cell, a fuel cell, or the like is used as the power generation device 404, and the generated power is supplied to the power consumption device 405 and / or the power storage device 403.
  • the power consuming device 405 is a refrigerator 405a, an air conditioner 405b, a television receiver 405c, a bath 405d, and the like.
  • the electric power consumption device 405 includes an electric vehicle 406.
  • the electric vehicle 406 is an electric vehicle 406a, a hybrid car 406b, and an electric motorcycle 406c.
  • the battery of the present technology is applied to the power storage device 403.
  • the battery of the present technology may be configured by, for example, the above-described lithium ion secondary battery.
  • the smart meter 407 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
  • the power network 409 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
  • the various sensors 411 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by various sensors 411 is transmitted to the control device 410. Based on the information from the sensor 411, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 405 can be automatically controlled to minimize the energy consumption. Furthermore, the control apparatus 410 can transmit the information regarding the house 401 to an external electric power company etc. via the internet.
  • the power hub 408 performs processing such as branching of power lines and DC / AC conversion.
  • Communication methods of the information network 412 connected to the control device 410 include a method using a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth, ZigBee, Wi-Fi, NFC, etc.
  • a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth, ZigBee, Wi-Fi, NFC, etc.
  • the Bluetooth method is applied to multimedia communication and can perform one-to-many connection communication.
  • ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4).
  • IEEE802.15.4 is a name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • NFC Near Field Communication
  • the control device 410 is connected to an external server 413.
  • the server 413 may be managed by any one of the house 401, the power company, and the service provider.
  • the information transmitted and received by the server 413 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
  • the control device 410 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 403 in this example.
  • the control device 410 is connected to the power storage device 403, the domestic power generation device 404, the power consumption device 405, various sensors 411, the server 413 and the information network 412, and adjusts, for example, the amount of commercial power used and the amount of power generation It has a function to do. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
  • the power generation device 404 (solar power generation, wind power generation) in the home is used as the power storage device 403. Can be stored. Therefore, even if the generated power of the power generation device 404 in the home fluctuates, it is possible to perform control such that the amount of power transmitted to the outside is constant or discharge is performed as necessary. For example, the power obtained by solar power generation is stored in the power storage device 403, and the nighttime power at a low charge is stored in the power storage device 403 at night, and the power stored by the power storage device 403 is discharged during a high daytime charge. You can also use it.
  • control device 410 is stored in the power storage device 403 .
  • control device 410 may be stored in the smart meter 407 or may be configured independently.
  • the power storage system 400 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
  • FIG. 13 schematically shows an example of the configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied.
  • a series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
  • the hybrid vehicle 500 includes an engine 501, a generator 502, a power driving force conversion device 503, driving wheels 504 a, driving wheels 504 b, wheels 505 a, wheels 505 b, a battery 508, a vehicle control device 509, various sensors 510, and a charging port 511. Is installed.
  • the battery of the present technology described above is applied to the battery 508.
  • Hybrid vehicle 500 travels using power driving force conversion device 503 as a power source.
  • An example of the power / driving force conversion device 503 is a motor.
  • the electric power / driving force converter 503 is operated by the electric power of the battery 508, and the rotational force of the electric power / driving force converter 503 is transmitted to the driving wheels 504a and 504b.
  • DC-AC DC-AC
  • AC-DC conversion AC-DC conversion
  • the power driving force converter 503 can be applied to either an AC motor or a DC motor.
  • the various sensors 510 control the engine speed through the vehicle control device 509 and control the opening (throttle opening) of a throttle valve (not shown).
  • Various sensors 510 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational force of the engine 501 is transmitted to the generator 502, and the electric power generated by the generator 502 by the rotational force can be stored in the battery 508.
  • the resistance force at the time of deceleration is applied as a rotational force to the electric power driving force conversion device 503, and the regenerative electric power generated by the electric power driving force conversion device 503 by this rotational force becomes the battery 508. Accumulated in.
  • the battery 508 is connected to an external power source of the hybrid vehicle 500, so that it can receive power from the external power source using the charging port 511 as an input port and store the received power.
  • an information processing device that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
  • an information processing apparatus for example, there is an information processing apparatus that displays a battery remaining amount based on information on the remaining amount of the battery.
  • the present technology is also effective for a parallel hybrid vehicle in which the engine and motor outputs are both driving sources, and the system is switched between the three modes of driving with only the engine, driving with the motor, and engine and motor. Applicable. Furthermore, the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
  • Example 1-1 According to the following procedure, lithium cobaltate (LiCoO 2 ) as a positive electrode active material, and lithium titanate (Li 4 Ti 5) having a flat portion at a charge / discharge potential of about 1.55 V with respect to the lithium potential as a negative electrode active material.
  • the laminate film type secondary battery shown in FIGS. 3 and 4 was produced using O 12 ).
  • this positive electrode mixture slurry is uniformly coated on both sides of an aluminum foil having a thickness of 10 ⁇ m, dried and compression-molded, and a positive electrode active material layer having a thickness of 30 ⁇ m per side (volume density of the active material layer) : 3.5 g / cc). This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a positive electrode.
  • this negative electrode mixture slurry is uniformly applied to one side of an aluminum foil having a thickness of 10 ⁇ m to be a negative electrode current collector, dried and compression-molded, and a negative electrode active material layer having a thickness of 30 ⁇ m per side is formed. Formed. This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a negative electrode (volume density of the mixture: 1.8 g / cc).
  • Separator As the separator, a microporous polyethylene film having a thickness of 16 ⁇ m was used.
  • electrolytic solution nonaqueous electrolytic solution
  • a solvent is prepared, lithium hexafluorophosphate (LiPF 6 ) is dissolved to 1.0 mol / kg, and an additive is further added.
  • LiPF 6 lithium hexafluorophosphate
  • 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 ) Si (CH 2 ) 3 SH] added at 1% by mass was used.
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • EiPS ethyl isopropyl sulfone
  • the compound [(CH 3 O) 3 Si (CH 2 ) 3 SS ( ⁇ O) 2 CH 2 CH 3 ] represented by the formula (1-2) is electrolyzed.
  • the liquid contains 0.05 mass% as a percentage by mass with respect to the electrolytic solution, and the negative electrode also contains the compound represented by the same formula (1-2) as in the electrolytic solution.
  • the compound represented by the formula (1-2) is a compound derived from 3-mercaptotrimethoxysilane and ethylisopropylsulfone, and is produced from a decomposition product of 3-mercaptotrimethoxysilane and ethylisopropylsulfone.
  • Example 1-2 to Example 1-3 Table 1 shows the mass ratio (PC: EMC: VC: EiPS) of propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and ethyl isopropyl sulfone (EiPS) in the electrolytic solution. I changed it to the street.
  • the concentration of 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH] was varied as shown in Table 1 below.
  • the concentration of the compound represented by formula (1-2) [(CH 3 O) Si (CH 2 ) 3 —SS ( ⁇ O) 2 CH 2 CH 3 ] was changed as shown in Table 1 below. It was. Except for the above, a laminated film type battery was produced in the same manner as in Example 1-1.
  • Example 1-4 to Example 1-6 The additive in the electrolyte was changed to 3-mercaptopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 SH].
  • the compound in the negative electrode is changed to the compound represented by the formula (1-4) [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —SS ( ⁇ O) 2 C (CH 3 ) 2 ]. changed.
  • laminate film type batteries were produced in the same manner as in Examples 1-1 to 1-5.
  • Example 1-14> A laminate film type battery was produced in the same manner as in Example 1-2, except that graphite ((C 6 ; Graphite)) was used as the negative electrode active material.
  • the charge / discharge conditions are constant current and constant voltage charge up to the upper limit voltage at a current of 0.2 C, and further charge until the current value reaches 0.05 C at a constant voltage at the upper limit voltage, and then ends at a current of 0.2 C.
  • a constant current was discharged to the voltage.
  • This “0.2 C” is a current value at which the theoretical capacity can be discharged in 5 hours.
  • the upper limit voltage was set to 2.7V.
  • the battery using lithium manganese phosphate described below (Example 3-3) was set to 2.7 V
  • the battery using lithium iron phosphate Example 3-2 etc.
  • Table 1 shows the evaluation results.
  • the negative electrode contains the compound represented by the formula (1-2) or the formula (1-14), thereby increasing the temperature.
  • the cycle characteristics could be improved, gas generation during high temperature storage could be suppressed, and the increase in battery cell thickness could be reduced.
  • the same effect can be obtained when another chain sulfone compound is used as the chain sulfone compound.
  • the same effect can be obtained when another silane coupling agent is used as the silane coupling agent.
  • Example 2-1 to Example 2-5 A laminated film type battery of Example 2-4 was produced in the same manner as Example 1-2.
  • Example 2-1 to Example 2 were carried out in the same manner as Example 2-4, except that the composition of the chain sulfone compound, ethyl isopropyl sulfone (EiPS) in the electrolytic solution was changed as shown in Table 2 below.
  • EtOPS ethyl isopropyl sulfone
  • Example 3-1 A laminated film type battery was produced in the same manner as Example 1-2.
  • Example 3-2> A laminated film type battery was produced in the same manner as in Example 3-1, except that olivine type lithium iron phosphate (LiFePO 4 ) was used as the positive electrode active material.
  • olivine type lithium iron phosphate LiFePO 4
  • Example 3-3 A laminate film type battery was produced in the same manner as in Example 3-1, except that olivine-type lithium iron manganese phosphate (LiFe 0.25 Mn 0.75 PO 4 ) was used as the positive electrode active material.
  • olivine-type lithium iron manganese phosphate LiFe 0.25 Mn 0.75 PO 4
  • Example 3-1 to 3-3 high-temperature cycle characteristics can be improved, gas generation during high-temperature storage can be suppressed, and increase in battery cell thickness can be reduced. did it.
  • the positive electrode active material species lithium iron phosphate (LiFePO 4 ) having an olivine structure, lithium manganese iron phosphate (LiMnFePO 4 ) was used. A better effect was obtained.
  • Example 4-1 A laminated film type battery was produced in the same manner as in Example 3-2.
  • Example 4-2 A battery was fabricated in the same manner as in Example 4-1, except that titanium oxide (TiO 2 ) was used as the negative electrode active material.
  • Example 4-1 to 4-2 high-temperature cycle characteristics can be improved, gas generation during high-temperature storage can be suppressed, and increase in battery cell thickness can be reduced. did it. According to Example 4-1 to Example 4-2, even when the negative electrode active material species is titanium oxide (TiO 2 ), it is possible to obtain the same effect as the negative electrode active material species as Li 4 Ti 5 O 12. did it.
  • TiO 2 titanium oxide
  • Example 5-1 A laminated film type battery was produced in the same manner as in Example 3-2.
  • Example 5-2> A laminated film type battery was produced in the same manner as in Example 5-1, except that lithium bis (fluorosulfonyl) imide (LiFSI) was used as the electrolyte salt.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • Example 5-3 A laminate film type battery was produced in the same manner as in Example 5-1, except that lithium bis (trifluorosulfonyl) imide (LiTFSI) was used as the electrolyte salt.
  • LiTFSI lithium bis (trifluorosulfonyl) imide
  • Examples 5-1 to 5-3 high-temperature cycle characteristics can be improved, gas generation during high-temperature storage can be suppressed, and increase in battery cell thickness can be reduced. did it.
  • the electrolyte salt species is LiFSI or LiTFSI, there is no deterioration due to HF derived from LiPF 6 , high-temperature cycle characteristics, and suppression of gas generation during high-temperature storage. The effect was more excellent.
  • Example 6-1 A laminated film type battery was produced in the same manner as in Example 1-2.
  • Example 6-2 A laminated film type battery was produced in the same manner as in Example 3-2.
  • lithium titanate Li 4 Ti 5 O 12
  • the chain sulfone compound and the silane coupling agent were used.
  • the high output cycle characteristics could be further improved.
  • the positive electrode lithium cobalt oxide (LiCoO 2 )
  • the negative electrode graphite as in Comparative Example 6-1
  • the cycle retention ratio when a high current value equivalent to 5 C is applied is significantly reduced.
  • Example 1A-1> According to the following procedure, lithium cobaltate (LiCoO 2 ) as a positive electrode active material, and lithium titanate (Li 4 Ti 5) having a flat portion at a charge / discharge potential of about 1.55 V with respect to the lithium potential as a negative electrode active material.
  • the laminate film type secondary battery shown in FIGS. 3 and 4 was produced using O 12 ).
  • this positive electrode mixture slurry is uniformly coated on both sides of an aluminum foil having a thickness of 10 ⁇ m, dried and compression-molded, and a positive electrode active material layer having a thickness of 30 ⁇ m per side (volume density of the active material layer) : 3.5 g / cc). This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a positive electrode.
  • this negative electrode mixture slurry is uniformly applied to one side of an aluminum foil having a thickness of 10 ⁇ m to be a negative electrode current collector, dried and compression-molded, and a negative electrode active material layer having a thickness of 30 ⁇ m per side is formed. Formed. This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a negative electrode (volume density of the mixture: 1.8 g / cc).
  • Separator As the separator, a microporous polyethylene film having a thickness of 16 ⁇ m was used.
  • electrolytic solution nonaqueous electrolytic solution
  • a solvent is prepared, lithium hexafluorophosphate (LiPF 6 ) is dissolved to 1.0 mol / kg, and an additive is further added.
  • LiPF 6 lithium hexafluorophosphate
  • 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 )] added at 1% by mass was used.
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • EiPS ethyl isopropyl sulfone
  • the compound represented by the formula (1A-25) is contained in the electrolytic solution in a mass percentage of 0.05% by mass with respect to the electrolytic solution.
  • a compound represented by the same formula (1A-25) as in the liquid is included.
  • the compound represented by the formula (1A-25) is a compound derived from 3-aminopropylmethyldimethoxysilane and a carbonate solvent, and is generated from a decomposition product of 3-aminopropylmethyldimethoxysilane and a carbonate solvent.
  • the concentration of the compound represented by the formula (1A-25) was changed as shown in Table 7 below. Except for the above, a laminated film type battery was produced in the same manner as in Example 1A-1.
  • Example 1A-4 to Example 1A-6> The compound in the negative electrode was changed to a compound represented by the formula (2A-10). Except for the above, laminated film type batteries were produced in the same manner as in Examples 1A-1 to 1A-3.
  • Example 1A-7 to Example 1A-9> The compound in the negative electrode was changed to a compound represented by the formula (3A-1). Except for the above, laminated film type batteries were produced in the same manner as in Examples 1A-1 to 1A-3.
  • Example 1A-5 A laminated film type battery was produced in the same manner as in Example 1A-2 except that graphite ((C 6 ; Graphite)) was used as the negative electrode active material.
  • Table 7 shows the evaluation results.
  • Examples 1A-1 to 1A-15 the low temperature characteristics can be improved, gas generation during high temperature storage can be suppressed, and the increase in battery cell thickness can be reduced. It was.
  • an electrolyte containing an amino group-containing silane coupling agent is used, so that the negative electrode has the formula (1A-25), formula (2A-10), formula (3A-1), formula (1A-26).
  • the compound represented by the formula (2A-12) can improve low-temperature characteristics, suppress gas generation during high-temperature storage, and reduce the increase in battery cell thickness. .
  • the same effect can be obtained when another chain sulfone compound is used as the chain sulfone compound.
  • Example 2A-1 to Example 2A-5 A laminated film type battery of Example 2A-4 was produced in the same manner as Example 1A-5.
  • Example 2A-1 to Example 2A were the same as Example 2A-4 except that the composition of the chain sulfone compound, ethyl isopropyl sulfone (EiPS) in the electrolyte was changed as shown in Table 8 below.
  • EtPS ethyl isopropyl sulfone
  • Example 3A-1 A laminated film type battery was produced in the same manner as Example 1A-5.
  • Example 3A-2> A laminate film type battery was produced in the same manner as in Example 3A-1, except that olivine type lithium iron phosphate (LiFePO 4 ) was used as the positive electrode active material.
  • olivine type lithium iron phosphate LiFePO 4
  • Example 3A-3> A laminated film type battery was produced in the same manner as in Example 3A-1, except that olivine-type lithium iron manganese phosphate (LiFe 0.25 Mn 0.75 PO 4 ) was used as the positive electrode active material.
  • olivine-type lithium iron manganese phosphate LiFe 0.25 Mn 0.75 PO 4
  • Example 3A-1 to 3A-3 As shown in Table 9, in Examples 3A-1 to 3A-3, the low temperature characteristics can be improved, the generation of gas during high temperature storage can be suppressed, and the increase in battery cell thickness can be reduced. It was. According to Example 3A-1 to Example 3A-3, as the positive electrode active material species, lithium iron phosphate (LiFePO 4 ) having an olivine structure and lithium manganese iron phosphate (LiMnFePO 4 ) were used. A better effect was obtained.
  • LiFePO 4 lithium iron phosphate
  • LiMnFePO 4 lithium manganese iron phosphate
  • Example 4A-1 A laminated film type battery was produced in the same manner as Example 3A-2.
  • Example 4A-2> A battery was fabricated in the same manner as in Example 4A-1, except that titanium oxide (TiO 2 ) was used as the negative electrode active material.
  • Example 4A-1 to 4A-2 the low temperature characteristics can be improved, the generation of gas during high temperature storage can be suppressed, and the increase in battery cell thickness can be reduced. It was. According to Example 4A-1 to Example 4A-2, even when the negative electrode active material species is titanium oxide (TiO 2 ), it is possible to obtain the same effect as that of the negative electrode active material species as Li 4 Ti 5 O 12. did it.
  • TiO 2 titanium oxide
  • Example 5A-1 A laminated film type battery was produced in the same manner as Example 3A-2.
  • Example 5A-2 Example 5A-1 except that lithium hexafluorophosphate (LiPF 6 ) and lithium bis (fluorosulfonyl) imide (LiFSI) were used as electrolyte salts at concentrations shown in Table 11 below. A laminate film type battery was produced.
  • LiPF 6 lithium hexafluorophosphate
  • LiFSI lithium bis (fluorosulfonyl) imide
  • Example 5A-3 Example 5A-1 except that lithium hexafluorophosphate (LiPF 6 ) and lithium bis (trifluorosulfonyl) imide (LiTFSI) were used as electrolyte salts at the concentrations shown in Table 11 below. Thus, a laminated film type battery was produced.
  • LiPF 6 lithium hexafluorophosphate
  • LiTFSI lithium bis (trifluorosulfonyl) imide
  • Example 5A-1 to 5A-3 the low temperature characteristics can be improved, gas generation during high temperature storage can be suppressed, and the increase in battery cell thickness can be reduced. It was. According to Example 5A-2 to Example 5A-3, when the electrolyte salt species is LiFSI or LiTFSI, deterioration due to LiPF 6 -derived HF can be suppressed, and low temperature characteristics and gas generation suppression during high temperature storage can be suppressed. The effect was more excellent.
  • Example 6A-1 A laminated film type battery was produced in the same manner as Example 1A-5.
  • Example 6A-2 A laminated film type battery was produced in the same manner as Example 3A-2.
  • Example 6A-1 Graphite ((C 6 ; Graphite)) was used as the negative electrode active material.
  • the electrolytic solution one containing no chain sulfone compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6A-1.
  • Example 6A-3 As the electrolytic solution, one containing no chain sulfone compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6A-1.
  • Example 6A-4 As the electrolytic solution, one containing no chain sulfone compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6A-2.
  • Example 6-1 and Comparative Example 6A-3 4.3V-3.0V
  • Example 6A-2 and Comparative Example 6A-4 2.4V-0.5V
  • Comparative Example 6A-1 4.2V-2.5V
  • Comparative Example 6A-2 3.6V-2.0V.
  • 5.0 C” and “0.05 C” are current values at which the battery capacity (theoretical capacity) can be discharged in 12 minutes and 20 hours, respectively.
  • Table 12 shows the evaluation results.
  • lithium titanate Li 4 Ti 5 O 12
  • an electrolytic solution containing a silane coupling agent was used.
  • the high output cycle characteristics could be further improved.
  • the positive electrode lithium cobalt oxide (LiCoO 2 )
  • the negative electrode graphite as in Comparative Example 6A-1
  • the cycle retention ratio when a high current value equivalent to 5C is applied is significantly reduced.
  • Example 1B-1> According to the following procedure, lithium cobaltate (LiCoO 2 ) as a positive electrode active material, and lithium titanate (Li 4 Ti 5) having a flat portion at a charge / discharge potential of about 1.55 V with respect to the lithium potential as a negative electrode active material.
  • the laminate film type secondary battery shown in FIGS. 3 and 4 was produced using O 12 ).
  • this positive electrode mixture slurry is uniformly coated on both sides of an aluminum foil having a thickness of 10 ⁇ m, dried and compression-molded, and a positive electrode active material layer having a thickness of 30 ⁇ m per side (volume density of the active material layer) : 3.5 g / cc). This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a positive electrode.
  • this negative electrode mixture slurry is uniformly applied to one side of an aluminum foil having a thickness of 10 ⁇ m to be a negative electrode current collector, dried and compression-molded, and a negative electrode active material layer having a thickness of 30 ⁇ m per side is formed. Formed. This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a negative electrode (volume density of the mixture: 1.8 g / cc).
  • Separator As the separator, a microporous polyethylene film having a thickness of 16 ⁇ m was used.
  • electrolytic solution nonaqueous electrolytic solution
  • a solvent is prepared, and lithium hexafluorophosphate (LiPF 6 ) that is a fluorine-containing lithium salt is dissolved so as to be 1.0 mol / kg.
  • LiPF 6 lithium hexafluorophosphate
  • one added with 1% by mass of 3-aminopropyltrimethoxysilane [(CH 3 ) 3 Si (CH 2 ) 3 —NH 2 ] was used as an additive.
  • the compound represented by the formula (1B-4) is contained in the electrolytic solution in a mass percentage of 0.05% by mass with respect to the electrolytic solution.
  • a compound represented by the same formula (1B-4) as in the liquid is included.
  • the compound represented by the formula (1B-4) is a compound derived from 3-aminopropyltrimethoxysilane.
  • the compound represented by the formula (2B-1) is a compound derived from a carboxylic acid ester compound and 3-aminopropylmethyldimethoxysilane. Except for the above, laminated film type batteries were produced in the same manner as in Examples 1B-1 to 1B-3.
  • the compound represented by the formula (2B-1) is a compound derived from a carboxylic acid ester compound and 3-aminopropyltriethoxysilane. Except for the above, laminated film type batteries were produced in the same manner as in Examples 1B-1 to 1B-3.
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • GBL gamma butyrolactone
  • Example 1B-9 A laminated film type battery was produced in the same manner as in Example 1B-2 except that graphite ((C 6 ; Graphite)) was used as the negative electrode active material.
  • the charge / discharge conditions are constant current and constant voltage charge up to the upper limit voltage at a current of 0.2 C, and further charge until the current value reaches 0.05 C at a constant voltage at the upper limit voltage, and then ends at a current of 0.2 C.
  • a constant current was discharged to the voltage.
  • This “0.2 C” is a current value at which the theoretical capacity can be discharged in 5 hours.
  • the upper limit voltage was set to 2.7V.
  • the battery using lithium manganese phosphate described below (Example 3B-3) was set to 2.7 V
  • the battery using lithium iron phosphate Example 3B-2 etc.
  • Table 13 shows the evaluation results.
  • Examples 1B-1 to 1B-9 high temperature cycle characteristics and low temperature characteristics can be improved, gas generation during high temperature storage can be suppressed, and increase in battery cell thickness is reduced.
  • the compound represented by the formula (1B-4), the formula (2B-1), or the formula (3B-5) is used for the negative electrode by using an electrolytic solution containing a silane coupling agent having an amino group. Including, the high-temperature cycle characteristics and low-temperature characteristics can be improved, gas generation during high-temperature storage can be suppressed, and the increase in battery cell thickness can be reduced.
  • the total amount of CO 2 gas was reduced by reducing the amount of carbonate solvent that generates CO 2 by hydrolysis with OH-, which is a decomposition product of water, at the negative electrode.
  • OH- a decomposition product of water
  • the compound represented by the formula (1B-1), the compound represented by the formula (2B-1), or the compound represented by the formula (3B-5) covers the active negative electrode surface, so that It is considered that reductive decomposition of the liquid solvent is suppressed.
  • Examples 1B-1 to 1-3 it is conceivable that deterioration of characteristics can be suppressed by effectively trapping HF (generated by the reaction of LiPF 6 and water) that causes various deteriorations in the battery. .
  • Example 2B-1 to Example 2B-4> A laminated film type battery of Example 2B-2 was produced in the same manner as Example 1B-2.
  • Example 2B-1, Example 2B-3 to Example 2B were the same as Example 2B-2 except that the composition of gamma-butyrolactone (GBL) in the electrolyte was changed as shown in Table 14 below.
  • -4 laminate film type battery was produced.
  • Example 3B-1 A laminated film type battery was produced in the same manner as Example 1B-2.
  • Example 3B-2> A laminated film type battery was produced in the same manner as in Example 3B-1, except that olivine type lithium iron phosphate (LiFePO 4 ) was used as the positive electrode active material.
  • olivine type lithium iron phosphate LiFePO 4
  • Example 3B-3> A laminated film type battery was produced in the same manner as in Example 3B-1, except that olivine-type lithium manganese iron phosphate (LiFe 0.25 Mn 0.75 PO 4 ) was used as the positive electrode active material.
  • olivine-type lithium manganese iron phosphate LiFe 0.25 Mn 0.75 PO 4
  • Example 3B-1 to 3B-3 As shown in Table 15, in Examples 3B-1 to 3B-3, the high-temperature cycle characteristics and the low-temperature characteristics can be improved, gas generation during high-temperature storage can be suppressed, and the increase in battery cell thickness is reduced. We were able to. According to Example 3B-1 to Example 3B-3, as the positive electrode active material species, lithium iron phosphate (LiFePO 4 ) having an olivine structure and lithium manganese iron phosphate (LiMnFePO 4 ) were used. A better effect was obtained.
  • LiFePO 4 lithium iron phosphate having an olivine structure
  • LiMnFePO 4 lithium manganese iron phosphate
  • Example 4B-1 A laminated film type battery was produced in the same manner as Example 3B-2.
  • Example 4B-2 A battery was fabricated in the same manner as in Example 4B-1, except that titanium oxide (TiO 2 ) was used as the negative electrode active material.
  • Examples 4B-1 to 4B-2 high temperature cycle characteristics and low temperature characteristics can be improved, gas generation during high temperature storage can be suppressed, and the increase in battery cell thickness is reduced. We were able to. According to Examples 4B-1 to 4B-2, even when the negative electrode active material species is titanium oxide (TiO 2 ), the same effect as that of the Li 4 Ti 5 O 12 negative electrode active material species can be obtained. did it.
  • Example 5B-1 A laminated film type battery was produced in the same manner as Example 3B-2.
  • Example 5B-2 A laminate film type battery was produced in the same manner as in Example 5B-1, except that lithium bis (fluorosulfonyl) imide (LiFSI) was used as the electrolyte salt at the concentrations shown in Table 17 below.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • Example 5B-3> A laminate film type battery was produced in the same manner as in Example 5B-1, except that lithium bis (trifluorosulfonyl) imide (LiTFSI) was used as the electrolyte salt at the concentrations shown in Table 17 below.
  • LiTFSI lithium bis (trifluorosulfonyl) imide
  • Example 5B-1 to 5B-3 high temperature cycle characteristics and low temperature characteristics can be improved, gas generation during high temperature storage can be suppressed, and an increase in battery cell thickness is reduced.
  • the electrolyte salt species is LiFSI or LiTFSI
  • deterioration due to LiPF 6 -derived HF can be suppressed, high-temperature cycle characteristics and gas generation during high-temperature storage The suppression effect was more excellent.
  • Example 6B-1 A laminated film type battery was produced in the same manner as in Example 1B-5.
  • Example 6B-2 A laminated film type battery was produced in the same manner as Example 3B-2.
  • Example 6B-1 Graphite ((C 6 ; Graphite)) was used as the negative electrode active material.
  • electrolytic solution a solution containing no cyclic carboxylic acid ester compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6B-1.
  • Example 6B-2 Graphite ((C 6 ; Graphite)) was used as the negative electrode active material.
  • electrolytic solution a solution containing no cyclic carboxylic acid ester compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6B-2.
  • Example 6B-3 As the electrolytic solution, a solution containing no cyclic carboxylic acid ester compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6B-1.
  • Example 6B-4 As the electrolytic solution, a solution containing no cyclic carboxylic acid ester compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6B-2.
  • Table 18 shows the evaluation results.
  • lithium titanate Li 4 Ti 5 O 12
  • an electrolytic solution containing a silane coupling agent was used.
  • the high output cycle characteristics could be further improved.
  • the positive electrode lithium cobaltate (LiCoO 2 )
  • the negative electrode graphite as in Comparative Example 6B-1, the cycle retention ratio when a high current value equivalent to 5C is applied is significantly reduced.
  • the laminated film type, cylindrical type battery, and the like have been described.
  • a square type, coin type, button type, or the like may be used.
  • the case where lithium is used for the electrode reaction has been described.
  • other alkali metals such as sodium (Na) or potassium (K), or alkalis such as magnesium or calcium (Ca) are used.
  • the present technology can also be applied to the case where an earth metal or other light metal such as aluminum is used, and the same effect can be obtained.
  • the said embodiment and Example demonstrate the appropriate range derived
  • the appropriate range described above is a particularly preferable range for obtaining the effects of the present technology, and is not limited to the above range as long as the effects of the present technology can be obtained.
  • a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
  • the non-aqueous solvent includes a chain sulfone compound,
  • the additive comprises at least one of a silane coupling agent and a siloxane compound.
  • the one compound is a silane coupling agent having a mercapto group.
  • the positive electrode active material has an olivine structure, a phosphate compound containing at least one of lithium, a transition metal element, and phosphorus, or a spinel structure, and containing at least lithium and manganese.
  • the titanium-containing inorganic oxide is a titanium-containing lithium composite oxide having at least lithium and titanium as constituent elements, or a titanium oxide having titanium and oxygen as constituent elements.
  • the electrolyte salt includes at least one of lithium bis (fluoro) sulfonylimide and lithium bis (trifluoromethylsulfonyl) imide.
  • the electrolyte further includes a polymer compound that holds the electrolytic solution.
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements
  • the battery includes a first compound derived from a silane coupling agent or a siloxane compound and a chain sulfone compound.
  • the silane coupling agent is a silane coupling agent having a mercapto group.
  • n is an integer of 1 to 8.
  • R1, R2, R3 and R4 are each independently a halogen group, an alkyl group, a halogenated alkyl group, an alkoxy group or a siloxane group.
  • the content of the disulfide compound represented by the formula (1) contained in the electrolyte is 0.05% by mass or more and 0.5% by mass or less based on the mass of the electrolytic solution [11].
  • battery [13] The battery according to [10], wherein the second compound includes at least one sulfonyl compound represented by the formula (2).
  • R5 is a halogen group, an alkyl group, a halogenated alkyl group or an alkoxy group.
  • R6 is H or Li.
  • [14] [1] A battery module having a plurality of the batteries according to any one of [13]. [15] The battery according to any one of [1] to [13]; A control unit for controlling the battery; A battery pack having an exterior housing the battery. [16] [1] An electronic device comprising the battery according to any one of [13] and receiving power supply from the battery.
  • a power storage device that includes the battery according to any one of [13] and supplies electric power to an electronic device connected to the battery.
  • a power information control device that transmits and receives signals to and from other devices via a network, The power storage device according to [18], wherein charge / discharge control of the battery is performed based on information received by the power information control device.
  • a power system that receives power from the battery according to any one of [13] or that supplies power to the battery from a power generation device or a power network
  • a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
  • the non-aqueous solvent includes a carbonate compound,
  • the additive comprises at least one of a silane coupling agent and a siloxane compound.
  • the one compound is a silane coupling agent having an amino group.
  • the non-aqueous solvent further includes a chain sulfone compound.
  • the positive electrode active material has an olivine structure, a phosphate compound containing at least one of lithium, a transition metal element, and phosphorus, or a spinel structure, and containing at least lithium and manganese.
  • the titanium-containing inorganic oxide is a titanium-containing lithium composite oxide having at least lithium and titanium as constituent elements, or a titanium oxide having titanium and oxygen as constituent elements.
  • the electrolyte salt includes at least one of lithium bis (fluoro) sulfonylimide and lithium bis (trifluoromethylsulfonyl) imide.
  • the electrolyte further includes a polymer compound that holds the electrolytic solution.
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
  • the negative electrode is a battery including a silane coupling agent or a first compound derived from a siloxane compound and a carbonate compound.
  • the silane coupling agent is a silane coupling agent having an amino group.
  • the first compound includes at least one of a compound represented by the formula (1A), a compound represented by the formula (2A), and a compound represented by the formula (3A).
  • the battery according to any one of the above.
  • R1, R2 and R3 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R4 is an alkali metal, alkaline earth metal, hydrogen group, halogen group or alkyl group.
  • R6, R7 and R8 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R9, R10 and R11 are each independently an alkali metal, an alkaline earth metal, An alkyl group, a halogen group, a halogenated alkyl group, or a hydrogen group
  • R12 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group;
  • R13, R14 and R15 each independently represents an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R16 represents an alkali metal, an alkaline earth metal, an alkyl group, a halogen group or a halogenated group.
  • R 17 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group.
  • R20 is an alkali metal, alkaline earth metal, alkyl group, halogen group, halogenated alkyl group or hydrogen group.
  • the battery according to [11] which is 0.05% by mass or more and 0.5% by mass or less.
  • [13] [1] A battery module having a plurality of the batteries according to any one of [12].
  • [14] The battery according to any one of [1] to [12]; A control unit for controlling the battery; A battery pack having an exterior housing the battery.
  • [15] [1] An electronic device comprising the battery according to any one of [12] and receiving power supply from the battery.
  • An electric vehicle comprising: a control device that performs information processing related to vehicle control based on information related to the battery.
  • a power storage device that includes the battery according to any one of [12] and supplies electric power to an electronic device connected to the battery.
  • a power information control device that transmits and receives signals to and from other devices via a network, The power storage device according to [17], wherein charge / discharge control of the battery is performed based on information received by the power information control device.
  • a power system that receives power supply from the battery according to any one of [12], or that supplies power to the battery from a power generation device or a power network.
  • a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
  • the non-aqueous solvent includes a cyclic carboxylic acid ester compound,
  • the electrolyte salt includes a fluorine-containing lithium salt containing at least fluorine,
  • the battery wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
  • the battery according to [1], wherein the one compound is a silane coupling agent having an amino group.
  • the content of the cyclic carboxylic acid ester compound is 20% by mass or more based on the electrolytic solution.
  • the non-aqueous solvent further includes a carbonate compound.
  • the positive electrode active material has an olivine structure, a phosphate compound containing at least one of lithium, a transition metal element, and phosphorus, or a spinel structure, and containing at least lithium and manganese.
  • the titanium-containing inorganic oxide is a titanium-containing lithium composite oxide having at least lithium and titanium as constituent elements, or a titanium oxide having titanium and oxygen as constituent elements.
  • the fluorine-containing lithium salt includes at least one of lithium bis (fluoro) sulfonylimide and lithium bis (trifluoromethylsulfonyl) imide.
  • the electrolyte further includes a polymer compound that holds the electrolytic solution.
  • a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
  • the negative electrode is a first compound derived from a silane coupling agent or a siloxane compound, and
  • a battery comprising at least one of a second compound derived from a silane coupling agent or a siloxane compound and a cyclic carboxylic acid ester compound.
  • the silane coupling agent is a silane coupling agent having an amino group.
  • the first compound includes at least one compound represented by the formula (1B), The battery according to any one of [9] to [10], wherein the second compound includes at least one of a compound represented by formula (2B) and a compound represented by formula (3B).
  • R1, R2 and R3 are each independently an alkyl group, a fluorine group, a fluorinated alkyl group or an alkoxy group.
  • N1 is an integer of 1-8)
  • R4, R5 and R6 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R7 and R8 are each independently a hydrogen group, an alkali metal or an alkaline earth metal
  • An alkyl group or a halogen group n2 is an integer of 1 to 8
  • n3 is an integer of 1 to 8.
  • R9, R10 and R11 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group.
  • R12 and R13 are each independently a hydrogen group alkyl group, a halogen group, or R14 is a hydrogen group, an alkali metal or an alkaline earth metal
  • n4 is an integer of 1 to 8
  • n5 is an integer of 1 to 8.
  • n6 is 1 or more It is an integer of 8 or less.
  • the content of at least one of the compound represented by formula (1B), the compound represented by formula (2B) and the compound represented by formula (3B) contained in the electrolyte is based on the mass of the electrolyte solution.
  • [16] [1] An electronic device comprising the battery according to any one of [13] and receiving power supply from the battery.
  • An electric vehicle comprising: a control device that performs information processing related to vehicle control based on information related to the battery.
  • a power storage device that includes the battery according to any one of [13] and supplies electric power to an electronic device connected to the battery.
  • a power information control device that transmits and receives signals to and from other devices via a network, The power storage device according to [18], wherein charge / discharge control of the battery is performed based on information received by the power information control device.
  • a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
  • the non-aqueous solvent includes a chain sulfone compound,
  • the additive comprises at least one of a silane coupling agent and a siloxane compound.
  • the one compound is a silane coupling agent having a mercapto group.
  • a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements
  • the battery includes a first compound derived from a silane coupling agent or a siloxane compound and a chain sulfone compound.
  • the silane coupling agent is a silane coupling agent having a mercapto group.
  • n is an integer of 1 to 8.
  • R1, R2, R3 and R4 are each independently a halogen group, an alkyl group, a halogenated alkyl group, an alkoxy group or a siloxane group.
  • the content of the disulfide compound represented by the formula (1) contained in the electrolyte is 0.05% by mass or more and 0.5% by mass or less with respect to the mass of the electrolytic solution [8]. battery.
  • R6 is H or Li.
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
  • the non-aqueous solvent includes a carbonate compound,
  • the battery, wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
  • a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
  • the negative electrode is a battery including a silane coupling agent or a third compound derived from a siloxane compound and a carbonate compound.
  • a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
  • the non-aqueous solvent includes a cyclic carboxylic acid ester compound,
  • the electrolyte salt includes a fluorine-containing lithium salt containing at least fluorine,
  • the battery wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
  • a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
  • the negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
  • the negative electrode is a fourth compound derived from a silane coupling agent or a siloxane compound, and
  • a battery comprising at least one compound of a fifth compound derived from a silane coupling agent or a siloxane compound and a cyclic carboxylic acid ester compound.
  • a battery module having a plurality of the batteries according to any one of [1] to [14].

Abstract

This battery is provided with: a positive electrode; a negative electrode containing a negative electrode active material; and an electrolyte containing an electrolyte solution that contains a nonaqueous solvent, an electrolyte salt and an additive. The negative electrode active material contains a titanium-containing inorganic oxide that contains at least titanium and oxygen as constituent elements. The nonaqueous solvent contains a chain sulfone compound, a carbonate compound or a cyclic carboxylic acid ester compound. The additive contains a silane coupling agent and/or a siloxane compound.

Description

電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システムBatteries, battery packs, battery modules, electronic devices, electric vehicles, power storage devices, and power systems
 本技術は、電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システムに関する。 This technology relates to a battery, a battery pack, a battery module, an electronic device, an electric vehicle, a power storage device, and a power system.
 リチウムイオン二次電池等の二次電池では、高性能化の要求がますます高くなっており、高容量、高出力等の電池特性を向上することが求められている。二次電池の負極に用いる負極材料としては、炭素系負極材料以外に、チタン酸リチウム(Li4Ti512)等の高電位負極材料等が用いられている。近年では、高電位負極材料等を用いた二次電池の開発が、活発に進められている。 In secondary batteries such as lithium ion secondary batteries, there is an increasing demand for higher performance, and it is required to improve battery characteristics such as high capacity and high output. As a negative electrode material used for the negative electrode of the secondary battery, a high potential negative electrode material such as lithium titanate (Li 4 Ti 5 O 12 ) is used in addition to the carbon-based negative electrode material. In recent years, secondary batteries using high-potential negative electrode materials and the like have been actively developed.
 下記の特許文献1~9および非特許文献1には、二次電池に関連する技術が開示されている。 The following Patent Documents 1 to 9 and Non-Patent Document 1 disclose technologies related to secondary batteries.
特開2011-222450号公報JP 2011-222450 A 特開2011-77029号公報JP 2011-77029 A 特開2013-97993号公報JP 2013-97993 A 特開2012-199145号公報JP 2012-199145 A 特開2013-4215号公報JP 2013-4215 A 特開2001-93583号公報JP 2001-93583 A 特開平11-288741号公報JP-A-11-288741 特開2013-80714号公報JP 2013-80714 A 特開2011-165998号公報JP 2011-165998 A
 本技術の目的は、以下に述べる何れかを目的とする。 The purpose of this technology is as follows.
 電池では、高温サイクル特性を向上すると共に、高温保存時のガス発生を抑制することが求められている。 Batteries are required to improve high-temperature cycle characteristics and suppress gas generation during high-temperature storage.
 したがって、本技術の目的は、高温サイクル特性を向上できると共に、高温保存時のガス発生を抑制できる電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システムを提供することにある。 Accordingly, an object of the present technology is to provide a battery, a battery pack, a battery module, an electronic device, an electric vehicle, a power storage device, and a power system that can improve high-temperature cycle characteristics and suppress gas generation during high-temperature storage. .
 電池には、寒暖差が大きい地域や寒冷地での使用にも耐えうる広い温度範囲での動作安定性が求められる。従って、低温特性を向上すると共に、高温サイクル特性および高温保存時のガス発生を抑制することが求められている。 Batteries are required to have operational stability over a wide temperature range that can withstand use in regions with large differences in temperature and in cold regions. Accordingly, there is a demand for improving low temperature characteristics and suppressing high temperature cycle characteristics and gas generation during high temperature storage.
 したがって、本技術の目的は、低温特性を向上できると共に、高温保存時のガス発生を抑制できる電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システムを提供することにある。 Therefore, an object of the present technology is to provide a battery, a battery pack, a battery module, an electronic device, an electric vehicle, a power storage device, and a power system that can improve low temperature characteristics and suppress gas generation during high temperature storage.
 電池には、寒暖差が大きい地域や寒冷地での使用にも耐えうる広い温度範囲での動作安定性が求められる。従って、低温特性を向上すると共に、高温サイクル特性および高温保存時のガス発生を抑制することが求められている。 Batteries are required to have operational stability over a wide temperature range that can withstand use in regions with large differences in temperature and in cold regions. Accordingly, there is a demand for improving low temperature characteristics and suppressing high temperature cycle characteristics and gas generation during high temperature storage.
 したがって、本技術の目的は、高温サイクル特性および低温特性を向上できると共に、高温保存時のガス発生を抑制できる電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システムを提供することにある。 Accordingly, an object of the present technology is to provide a battery, a battery pack, a battery module, an electronic device, an electric vehicle, a power storage device, and a power system that can improve high-temperature cycle characteristics and low-temperature characteristics and can suppress gas generation during high-temperature storage. There is.
 上述した課題を解決するために、本技術は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質とを備え、負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、非水溶媒は、鎖状スルホン化合物を含み、添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池である。 In order to solve the above-described problem, the present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive. The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements, the non-aqueous solvent includes a chain sulfone compound, and the additive includes at least a silane coupling agent and a siloxane compound. It is a battery containing any one compound.
 本技術は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒および電解質塩を含む電解液を含む電解質とを備え、負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、負極は、シランカップリング剤またはシロキサン化合物と鎖状スルホン化合物とに由来する第1の化合物を含む電池である。 The present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte containing a nonaqueous solvent and an electrolyte salt, and the negative electrode active material includes at least titanium and oxygen as constituent elements. The negative electrode is a battery including a first compound derived from a silane coupling agent or a siloxane compound and a chain sulfone compound.
 本技術は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質とを備え、負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、非水溶媒は、カーボネート化合物を含み、添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池である。 The present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive. The negative electrode active material includes at least titanium. The battery includes a titanium-containing inorganic oxide containing oxygen as a constituent element, the non-aqueous solvent includes a carbonate compound, and the additive includes at least one of a silane coupling agent and a siloxane compound.
 本技術は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒および電解質塩を含む電解液を含む電解質とを備え、負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、負極は、シランカップリング剤またはシロキサン化合物とカーボネート化合物とに由来する第3の化合物を含む電池である。 The present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte containing a nonaqueous solvent and an electrolyte salt, and the negative electrode active material includes at least titanium and oxygen as constituent elements. The negative electrode is a battery including a third compound derived from a silane coupling agent or a siloxane compound and a carbonate compound.
 本技術は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質とを備え、負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、非水溶媒は、環状カルボン酸エステル化合物を含み、電解質塩は、少なくともフッ素を含有するフッ素含有リチウム塩を含み、添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池である。 The present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive. The negative electrode active material includes at least titanium. A titanium-containing inorganic oxide containing oxygen as a constituent element, the non-aqueous solvent contains a cyclic carboxylic acid ester compound, the electrolyte salt contains a fluorine-containing lithium salt containing at least fluorine, and the additive is silane The battery includes at least one of a coupling agent and a siloxane compound.
 本技術は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒および電解質塩を含む電解液を含む電解質とを備え、負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、負極は、シランカップリング剤またはシロキサン化合物に由来する第4の化合物、および、シランカップリング剤またはシロキサン化合物と環状カルボン酸エステル化合物とに由来する第5の化合物のうちの少なくとも何れかの化合物を含む電池である。 The present technology includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte including an electrolyte containing a nonaqueous solvent and an electrolyte salt, and the negative electrode active material includes at least titanium and oxygen as constituent elements. The negative electrode is a fourth compound derived from a silane coupling agent or a siloxane compound, and a fifth derived from a silane coupling agent or a siloxane compound and a cyclic carboxylic acid ester compound. A battery comprising at least one of the compounds.
 本技術のバッテリモジュール、電池パック、電子機器、電動車両、蓄電装置および電力システムは、上述の電池を備えるものである。 The battery module, battery pack, electronic device, electric vehicle, power storage device, and power system of the present technology include the above-described battery.
 本技術によれば、以下に述べる何れかの効果を奏する。
 本技術によれば、高温サイクル特性を向上できると共に、高温保存時のガス発生を抑制できるという効果を奏する。
 本技術によれば、低温特性を向上できると共に、高温保存時のガス発生を抑制できるという効果を奏する。
 本技術によれば、高温サイクル特性および低温特性を向上できると共に、高温保存時のガス発生を抑制できるという効果を奏する。
According to the present technology, any of the following effects can be achieved.
According to the present technology, it is possible to improve the high temperature cycle characteristics and to suppress the generation of gas during high temperature storage.
According to the present technology, it is possible to improve the low temperature characteristics and to suppress the generation of gas during high temperature storage.
According to the present technology, it is possible to improve the high-temperature cycle characteristics and the low-temperature characteristics and to suppress the generation of gas during high-temperature storage.
図1は本技術の実施の形態による電池の構成例を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration example of a battery according to an embodiment of the present technology. 図2は図1における巻回電極体の一部を拡大した断面図である。FIG. 2 is an enlarged cross-sectional view of a part of the spirally wound electrode body in FIG. 図3は本技術の実施の形態による電池の構成例を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a configuration example of the battery according to the embodiment of the present technology. 図4は図3における巻回電極体のI-I線に沿った断面図である。4 is a cross-sectional view taken along the line II of the spirally wound electrode body in FIG. 図5Aは本技術の電池の外観を示す斜視図である。図5Bは電池の構成例を示す斜視分解図である。図5Cは図5Aに示す電池の下面の構成例を示す斜視図であるFIG. 5A is a perspective view showing the appearance of the battery of the present technology. FIG. 5B is a perspective exploded view showing a structural example of a battery. FIG. 5C is a perspective view showing a configuration example of the lower surface of the battery shown in FIG. 5A. 図6Aおよび図6Bは本技術の電池を用いたバッテリユニットの構成を示す斜視図である。6A and 6B are perspective views showing a configuration of a battery unit using a battery of the present technology. 図7は本技術の電池を用いたバッテリユニットの構成を示す分解斜視図である。FIG. 7 is an exploded perspective view showing a configuration of a battery unit using the battery of the present technology. 図8は本技術の電池を用いたバッテリモジュールの構成を示す分解斜視図である。FIG. 8 is an exploded perspective view showing a configuration of a battery module using the battery of the present technology. 図9は電池の適用例(電池パック:単電池)の構成を表す斜視図である。FIG. 9 is a perspective view illustrating a configuration of an application example of a battery (battery pack: single battery). 図10は図9に示した電池パックの構成を表すブロック図である。FIG. 10 is a block diagram showing the configuration of the battery pack shown in FIG. 図11は本技術の実施の形態による電池パックの回路構成例を示すブロック図である。FIG. 11 is a block diagram illustrating a circuit configuration example of the battery pack according to the embodiment of the present technology. 図12は本技術の電池を用いた住宅用の蓄電システムに適用した例を示す概略図である。FIG. 12 is a schematic diagram illustrating an example applied to a residential power storage system using the battery of the present technology. 図13は本技術が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す概略図である。FIG. 13 is a schematic diagram schematically illustrating an example of a configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied.
<第1の実施の形態~第2の実施の形態>
(本技術の概要)
 まず、本技術の理解を容易にするため、本技術の概要について説明する。上述した特許文献1(特開2011-222450)では、正極にニッケルや鉄系の化合物を用いた場合にフルオロ基を有するシラン化合物を用いて高温劣化を抑制することが提案されている。また、特許文献1では電解液にスルホン化合物を含むことが記されている。しかしながら、特許文献1の実施例のように、0Vvs.Li/Li+付近に反応電位を持つ黒鉛やカーボンを負極に用いた場合には、上述した非特許文献1(Journal of The Electrochemical Society, 149 7 A920-A926 2002)に記述されている通り スルホン化合物が還元分解を起こし、長期の信頼性が不十分となってしまう。
<First Embodiment to Second Embodiment>
(Outline of this technology)
First, in order to facilitate understanding of the present technology, an outline of the present technology will be described. In Patent Document 1 (Japanese Patent Laid-Open No. 2011-222450) described above, it is proposed to suppress high-temperature deterioration by using a silane compound having a fluoro group when nickel or an iron-based compound is used for the positive electrode. Patent Document 1 describes that the electrolyte solution contains a sulfone compound. However, as in the example of Patent Document 1, 0 Vvs. When graphite or carbon having a reaction potential in the vicinity of Li / Li + is used for the negative electrode, as described in Non-Patent Document 1 (Journal of The Electrochemical Society, 149 7 A920-A926 2002), the sulfone compound Causes reductive decomposition, resulting in insufficient long-term reliability.
 また、特許文献1の技術では、リチウムチタン複合酸化合物を負極に用いた際の効果については何ら示唆されていない。これに対して、本技術では反応電位が1.55Vvs.Li/Li+と十分に高いリチウムチタン複合酸化合物を負極に用いることで鎖状スルホンを用いても十分な長期寿命を得ることができる。 In addition, the technique of Patent Document 1 does not suggest any effect when the lithium titanium composite acid compound is used for the negative electrode. In contrast, in the present technology, the reaction potential is 1.55 Vvs. By using Li / Li + and a sufficiently high lithium-titanium complex acid compound for the negative electrode, a sufficient long life can be obtained even when chain-like sulfone is used.
 特許文献2(特開2011-77029)では、リン酸エステルを電解質中に含ませることにより、高温下等での反応を抑制し高温保存や高温充放電での分解反応を抑制することで、小さな内部抵抗と高い電気容量を得ることが提案されている。 In Patent Document 2 (Japanese Patent Application Laid-Open No. 2011-77029), by containing a phosphate ester in an electrolyte, a reaction at a high temperature is suppressed, and a decomposition reaction at a high temperature storage or a high temperature charge / discharge is suppressed. It has been proposed to obtain internal resistance and high electrical capacity.
 しかしながら、特許文献2に記載のものは、結晶性の高い炭素材料とカルボン酸化合物とを負極に用いたものであり、リチウムチタン複合酸化合物を負極に用いた際の効果については何ら示唆されていない。 However, the thing of patent document 2 uses the carbon material and carboxylic acid compound with high crystallinity for a negative electrode, and what is suggested about the effect at the time of using a lithium titanium complex acid compound for a negative electrode is suggested. Absent.
 以下、本技術の実施の形態について図面を参照して説明する。なお、説明は、以下の順序で行う。
1.第1の実施の形態(円筒型の電池の例)
2.第2の実施の形態(ラミネートフィルム型の電池の例)
 なお、以下に説明する実施の形態等は本技術の好適な具体例であり、本技術の内容がこれらの実施の形態等に限定されるものではない。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また例示した効果と異なる効果が存在することを否定するものではない。
Hereinafter, embodiments of the present technology will be described with reference to the drawings. The description will be given in the following order.
1. First embodiment (example of cylindrical battery)
2. Second Embodiment (Example of laminated film type battery)
The embodiments described below are suitable specific examples of the present technology, and the contents of the present technology are not limited to these embodiments. Moreover, the effect described in this specification is an illustration to the last, is not limited, and does not deny that the effect different from the illustrated effect exists.
1.第1の実施の形態
(1-1)電池の構成
 本技術の第1の実施の形態による電池について図1および図2を参照しながら説明する。図1は、本技術の第1の実施の形態による電池の断面構成を示す。図2は、図1に示す巻回電極体20の一部を拡大して示す。この電池は、例えば、充電および放電可能な二次電池であり、例えば、非水電解質電池であり、例えば、リチウムイオン二次電池等である。
1. First Embodiment (1-1) Battery Configuration A battery according to a first embodiment of the present technology will be described with reference to FIGS. 1 and 2. FIG. 1 shows a cross-sectional configuration of a battery according to the first embodiment of the present technology. FIG. 2 shows an enlarged part of the spirally wound electrode body 20 shown in FIG. This battery is a secondary battery that can be charged and discharged, for example, a non-aqueous electrolyte battery, for example, a lithium ion secondary battery, and the like.
 この非水電解質電池は、主に、ほぼ中空円柱状の電池缶11の内部に、セパレータ23を介して正極21と負極22とが積層および巻回された巻回電極体20と、一対の絶縁板12,13とが収納されたものである。この円柱状の電池缶11を用いた電池構造は、円筒型と呼ばれている。 This non-aqueous electrolyte battery mainly includes a wound electrode body 20 in which a positive electrode 21 and a negative electrode 22 are laminated and wound through a separator 23 inside a substantially hollow cylindrical battery can 11, and a pair of insulations. The plates 12 and 13 are accommodated. The battery structure using the cylindrical battery can 11 is called a cylindrical type.
 電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空構造を有していると共に、鉄(Fe)、アルミニウム(Al)またはそれらの合金等により構成されている。なお、電池缶11が鉄により構成される場合には、例えば、電池缶11の表面にニッケル(Ni)等が鍍金されていてもよい。一対の絶縁板12、13は、巻回電極体20を上下から挟み、その巻回周面に対して垂直に延在するように配置されている。 The battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened, and is made of iron (Fe), aluminum (Al), or an alloy thereof. In the case where the battery can 11 is made of iron, for example, nickel (Ni) or the like may be plated on the surface of the battery can 11. The pair of insulating plates 12 and 13 are arranged so as to sandwich the wound electrode body 20 from above and below and to extend perpendicularly to the wound peripheral surface.
 電池缶11の開放端部には、電池蓋14、安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient:PTC素子)16がガスケット17を介してかしめられており、その電池缶11は、密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15および熱感抵抗素子16は、電池蓋14の内側に設けられている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡、または外部からの加熱等に起因して内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と巻回電極体20との間の電気的接続を切断するようになっている。熱感抵抗素子16は、温度の上昇に応じて抵抗が増大する(電流を制限する)ことにより、大電流に起因する異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、その表面には、例えば、アスファルトが塗布されている。 A battery lid 14, a safety valve mechanism 15, and a heat sensitive resistance element (Positive Temperature Coefficient: PTC element) 16 are caulked through a gasket 17 at the open end of the battery can 11, and the battery can 11 is sealed. ing. The battery lid 14 is made of, for example, the same material as the battery can 11. The safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14. The safety valve mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16. In the safety valve mechanism 15, when the internal pressure becomes a certain level or more due to an internal short circuit or external heating, the disk plate 15 </ b> A is reversed and the electric power between the battery lid 14 and the wound electrode body 20 is reversed. Connection is cut off. The heat-sensitive resistance element 16 prevents abnormal heat generation caused by a large current by increasing resistance (limiting current) as the temperature rises. The gasket 17 is made of, for example, an insulating material, and for example, asphalt is applied to the surface thereof.
(巻回電極体)
 巻回電極体20は、セパレータ23を介して正極21と負極22とが積層および巻回されたものである。この巻回電極体20の中心には、センターピン24が挿入されていてもよい。巻回電極体20では、アルミニウム等により構成された正極リード25が正極21に接続されていると共に、ニッケル等により構成された負極リード26が負極22に接続されている。正極リード25は、安全弁機構15に溶接等されて電池蓋14と電気的に接続されており、負極リード26は、電池缶11に溶接等されて電気的に接続されている。
(Wound electrode body)
The wound electrode body 20 is obtained by laminating and winding a positive electrode 21 and a negative electrode 22 via a separator 23. A center pin 24 may be inserted in the center of the wound electrode body 20. In the wound electrode body 20, a positive electrode lead 25 made of aluminum or the like is connected to the positive electrode 21, and a negative electrode lead 26 made of nickel or the like is connected to the negative electrode 22. The positive electrode lead 25 is welded to the safety valve mechanism 15 and electrically connected to the battery lid 14, and the negative electrode lead 26 is welded to the battery can 11 and electrically connected thereto.
(正極)
 正極21は、例えば、一対の面を有する正極集電体21Aの両面に正極活物質層21Bが設けられたものである。なお、図示は省略するが、正極21は正極活物質層21Bが正極集電体21Aの片面だけに設けられた領域を有していてもよい。
(Positive electrode)
For example, the positive electrode 21 is obtained by providing a positive electrode active material layer 21B on both surfaces of a positive electrode current collector 21A having a pair of surfaces. In addition, although illustration is abbreviate | omitted, the positive electrode 21 may have the area | region where the positive electrode active material layer 21B was provided only in the single side | surface of 21 A of positive electrode collectors.
 正極集電体21Aは、例えば、アルミニウム、ニッケルまたはステンレス等の金属材料によって構成されている。 The positive electrode current collector 21A is made of, for example, a metal material such as aluminum, nickel, or stainless steel.
 正極活物質層21Bは、正極活物質として、リチウムを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んでいる。正極活物質層21Bは、必要に応じて、結着剤および導電剤の少なくとも何れか等の他の材料を含んでいてもよい。 The positive electrode active material layer 21 </ b> B contains one or more positive electrode materials capable of inserting and extracting lithium as a positive electrode active material. The positive electrode active material layer 21 </ b> B may contain other materials such as a binder and / or a conductive agent as necessary.
(正極活物質)
 リチウムを吸蔵および放出することが可能な正極材料としては、例えば、リチウム含有化合物が好ましい。高いエネルギー密度が得られるからである。このリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含むリン酸化合物やリチウムと遷移金属元素とを含む複合酸化物等が挙げられる。中でも、遷移金属元素としてコバルト、ニッケル、マンガンおよび鉄からなる群のうちの少なくとも1種を含むものが好ましい。より高い電圧が得られるからである。
(Positive electrode active material)
As a positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing compound is preferable. This is because a high energy density can be obtained. Examples of the lithium-containing compound include a phosphate compound containing lithium and a transition metal element, and a composite oxide containing lithium and a transition metal element. Especially, what contains at least 1 sort (s) of the group which consists of cobalt, nickel, manganese, and iron as a transition metal element is preferable. This is because a higher voltage can be obtained.
(リチウムと遷移金属元素とを含むリン酸化合物)
 リチウムと遷移金属元素とを含むリン酸化合物としては、例えば、リチウムとリン(P)と鉄(Fe)とを少なくとも含むオリビン構造を有するリン酸鉄リチウム化合物、リチウムとリン(P)とマンガン(Mn)とを少なくとも含むオリビン構造を有するリン酸マンガンリチウム化合物等が挙げられる。オリビン構造を有するリン酸鉄リチウム化合物としては、リチウム鉄リン酸化合物(LiFePO4)、または、異種元素を含有するリチウム鉄複合リン酸化合物(LiFex1-x4:Mは鉄以外の1種類以上金属元素、xは0<x<1である。)等が挙げられる。なお、上記のMとしては、遷移元素、IIA族元素、IIIA族元素、IIIB族元素、IVB族元素等が挙げられる。特に、Mは、遷移金属元素としてコバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、アルミニウム(Al)、バナジウム(V)、およびチタン(Ti)のうちの少なくとも1種が好ましい。オリビン構造を有するリン酸マンガンリチウム化合物としては、例えば、リチウムマンガンリン酸化合物(LiMnPO4)等が挙げられる。
(Phosphate compounds containing lithium and transition metal elements)
As a phosphoric acid compound containing lithium and a transition metal element, for example, a lithium iron phosphate compound having an olivine structure containing at least lithium, phosphorus (P) and iron (Fe), lithium, phosphorus (P) and manganese ( And a lithium manganese phosphate compound having an olivine structure containing at least Mn). The lithium iron phosphate compound having an olivine structure, lithium iron phosphate compound (LiFePO 4), or lithium iron composite phosphate compound containing the different element (LiFe x M 1-x O 4: M is other than iron 1 or more types of metal elements, x is 0 <x <1, etc.). In addition, as said M, a transition element, a IIA group element, a IIIA group element, a IIIB group element, a IVB group element etc. are mentioned. In particular, M is at least one of cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), aluminum (Al), vanadium (V), and titanium (Ti) as a transition metal element. Is preferred. Examples of the lithium manganese phosphate compound having an olivine structure include a lithium manganese phosphate compound (LiMnPO 4 ).
 オリビン構造を有するリン酸鉄リチウム化合物としては、典型的には、(化1)で表されるリチウムリン酸化合物等が挙げられる。
(化1)
 LiuFerM1(1-r)PO4
(式中、M1は、コバルト(Co)、マンガン(Mn)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)からなる群のうちの少なくとも1種を表す。rは、0<r≦1の範囲内の値である。uは、0.9≦u≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、uの値は完全放電状態における値を表している。)
A typical example of the lithium iron phosphate compound having an olivine structure is a lithium phosphate compound represented by (Chemical Formula 1).
(Chemical formula 1)
Li u Fe r M1 (1- r) PO 4
(In the formula, M1 is cobalt (Co), manganese (Mn), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium (Nb ), Copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr), at least one selected from the group consisting of r. , 0 <r ≦ 1, and u is a value within the range of 0.9 ≦ u ≦ 1.1 Note that the composition of lithium varies depending on the state of charge and discharge, and the value of u Represents the value in the fully discharged state.)
 (化1)で表されるリチウムリン酸化合物としては、典型的には、例えば、LiuFePO4(uは上記と同義である)、LiuFerMn(1-r)PO4(uは上記と同義である。rは上記と同義である。)等が挙げられる。 As the lithium phosphate compound represented by (Chemical Formula 1), typically, for example, Li u FePO 4 (u is as defined above), Li u Fe r Mn (1-r) PO 4 (u Is as defined above, and r is as defined above.
(リチウムと遷移金属元素とを含む複合酸化物)
 リチウムと遷移金属元素とを含む複合酸化物としては、例えば、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケル複合酸化物(LixNiO2)、リチウムニッケルコバルト複合酸化物(LixNi1-zCoz2(z<1))、リチウムニッケルコバルトマンガン複合酸化物(LixNi(1-v-w)CovMnw2(v+w<1))等の層状構造を有するリチウム遷移金属複合酸化物、スピネル構造を有し、且つ、リチウムとマンガンとを少なくとも含むリチウムマンガン複合酸化物等が挙げられる。
(Composite oxide containing lithium and transition metal element)
Examples of the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide (Li x Ni). 1-z Co z O 2 (z <1)), lithium nickel cobalt manganese composite oxide (Li x Ni (1-vw) Co v Mn w O 2 (v + w <1)) and other lithium transitions having a layered structure Examples thereof include metal composite oxides, lithium manganese composite oxides having a spinel structure and containing at least lithium and manganese.
 スピネル構造のリチウムマンガン複合酸化物としては、例えば、(化2)で表されるリチウム複合酸化物等が挙げられる。
(化2)
 LivMn(2-w)M2ws
(式中、M2は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。v、wおよびsは、0.9≦v≦1.1、0≦w≦0.6、3.7≦s≦4.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
Examples of the spinel structure lithium manganese composite oxide include a lithium composite oxide represented by (Chemical Formula 2).
(Chemical formula 2)
Li v Mn (2-w) M2 w O s
(In the formula, M2 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe ), Copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), at least one selected from the group consisting of v, w and s are values within the range of 0.9 ≦ v ≦ 1.1, 0 ≦ w ≦ 0.6, 3.7 ≦ s ≦ 4.1, where the composition of lithium is the state of charge and discharge. And the value of v represents a value in a fully discharged state.)
 (化2)で表されるリチウム複合酸化物としては、具体的には、例えば、LivMn24(vは上記と同義である)、リチウムマンガンニッケル複合酸化物(LiMn2-tNit4(t<2))等が挙げられる。 Specifically, as the lithium composite oxide represented by (Chemical Formula 2), for example, Li v Mn 2 O 4 (v is as defined above), lithium manganese nickel composite oxide (LiMn 2−t Ni t O 4 (t <2)) and the like.
 正極材料は、上述したリチウム含有化合物からなる芯粒子の表面の少なくとも一部に被覆層が形成されたものであってもよい。被覆層は、母材となるリチウム含有化合物の芯粒子の表面の少なくとも一部に設けられたものであり、母材となるリチウム含有化合物の粒子とは異なる組成元素または組成比を有するものである。例えば、正極材料としては、より高い電極充填性とサイクル特性が得られるという観点から、上記リチウム含有化合物のいずれかより成る芯粒子の表面に、他のリチウム含有化合物(例えば、Ni、Mn、Li等から選択されるもの)やリン酸化合物(例えば、リン酸リチウム等)を含む被覆層が形成されたものであってもよい。被覆層は、炭素材料等であってもよい。 The positive electrode material may be one in which a coating layer is formed on at least a part of the surface of the core particle made of the lithium-containing compound described above. The coating layer is provided on at least a part of the surface of the core particle of the lithium-containing compound as the base material, and has a composition element or composition ratio different from that of the lithium-containing compound particle as the base material. . For example, as the positive electrode material, another lithium-containing compound (for example, Ni, Mn, Li) is formed on the surface of the core particle made of any of the lithium-containing compounds from the viewpoint that higher electrode filling properties and cycle characteristics can be obtained. And a coating layer containing a phosphate compound (for example, lithium phosphate) may be formed. The covering layer may be a carbon material or the like.
 この他、リチウムを吸蔵および放出することが可能な正極材料としては、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガン等の酸化物や、二硫化チタンまたは硫化モリブデン等の二硫化物や、セレン化ニオブ等のカルコゲン化物や、硫黄、ポリアニリンまたはポリチオフェン等の導電性高分子も挙げられる。 In addition, examples of positive electrode materials capable of inserting and extracting lithium include oxides such as titanium oxide, vanadium oxide and manganese dioxide, disulfides such as titanium disulfide and molybdenum sulfide, and niobium selenide. And chalcogenides such as sulfur, polyaniline or polythiophene, and other conductive polymers.
(導電剤)
 導電剤としては、ファーネス法、アセチレン法、コンタクト法、サーマル法等で作製されたカーボンブラックや、気相成長炭素、活性炭、活性炭繊維布、シングルウォールまたはマルチウォールカーボンナノチューブ、カーボンナノホーン等の炭素材料やこれらの炭素材料を酸・アルカリ処理等で表面改質したもの、他の元素を物理的または化学的に結合させて表面改質したものなどを用いることができる。
(Conductive agent)
Examples of the conductive agent include carbon black produced by furnace method, acetylene method, contact method, thermal method, etc., carbon materials such as vapor-grown carbon, activated carbon, activated carbon fiber cloth, single wall or multi-wall carbon nanotube, carbon nanohorn, etc. In addition, those obtained by surface modification of these carbon materials by acid / alkali treatment or the like, or those obtained by physically or chemically bonding other elements can be used.
(結着剤)
 結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)等の樹脂材料、並びに、これら樹脂材料を主体とする共重合体等から選択される少なくとも1種が用いられる。
(Binder)
Examples of the binder include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resins. At least one selected from a copolymer mainly composed of materials is used.
(負極)
 負極22は、例えば、一対の面を有する負極集電体22Aの両面に負極活物質層22Bが設けられたものである。なお、図示は省略するが、負極22は負極活物質層22Bが負極集電体22Aの片面だけに設けられた領域を有していてもよい。
(Negative electrode)
In the negative electrode 22, for example, a negative electrode active material layer 22B is provided on both surfaces of a negative electrode current collector 22A having a pair of surfaces. Although illustration is omitted, the negative electrode 22 may have a region where the negative electrode active material layer 22B is provided only on one surface of the negative electrode current collector 22A.
 負極集電体22Aは、例えば、アルミニウム箔、銅、ニッケルまたはステンレス等の金属材料によって構成されている。 The negative electrode current collector 22A is made of a metal material such as aluminum foil, copper, nickel, or stainless steel, for example.
 負極活物質層22Bは、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料の1種または2種以上を含んでいる。負極活物質層22Bは、必要に応じて、結着剤および導電剤の少なくとも何れか等の他の材料を含んでいてもよい。なお、結着剤および導電剤は、それぞれ正極で説明したものと同様のものを用いることができる。 The negative electrode active material layer 22B contains one or more negative electrode materials capable of inserting and extracting lithium as a negative electrode active material. The negative electrode active material layer 22B may contain other materials such as at least one of a binder and a conductive agent as necessary. Note that the same binder and conductive agent as those described for the positive electrode can be used.
(負極活物質)
 リチウムを吸蔵および放出することが可能な負極材料としては、例えば、少なくともチタン(Ti)および酸素(O)を構成元素として含有するチタン含有無機酸化物、または、金属硫化物等を用いることができる。リチウムを吸蔵および放出することが可能な負極材料としては、例えば、負極の反応電位が1.0Vvs.Li/Li+超、好ましくは1.0Vvs.Li/Li+超1.9Vvs.Li/Li+以下となる材料等が好ましい。
(Negative electrode active material)
As a negative electrode material capable of inserting and extracting lithium, for example, a titanium-containing inorganic oxide containing at least titanium (Ti) and oxygen (O) as constituent elements, or a metal sulfide can be used. . As the negative electrode material capable of inserting and extracting lithium, for example, the reaction potential of the negative electrode is 1.0 Vvs. More than Li / Li + , preferably 1.0 Vvs. Li / Li + more than 1.9Vvs. The material etc. which become Li / Li + or less are preferable.
 チタン含有無機酸化物としては、少なくともリチウムおよびチタンを構成元素として有する複合酸化物(チタン含有リチウム複合酸化物と称する)、チタンと酸素とを構成元素として有する金属酸化物(チタン酸化物と称する)等が挙げられる。これらの中でも、チタン含有リチウム複合酸化物、または、チタン酸化物が好ましい。 Examples of the titanium-containing inorganic oxide include composite oxides having at least lithium and titanium as constituent elements (referred to as titanium-containing lithium composite oxides), and metal oxides having titanium and oxygen as constituent elements (referred to as titanium oxides). Etc. Among these, titanium-containing lithium composite oxide or titanium oxide is preferable.
 チタン含有リチウム複合酸化物としては、典型的には、例えば、スピネル構造を有するLixTiyz(xはLiの組成比を示し、yはTiの組成比を示し、zはOの組成比を示す。x>0、y>0、z>0である。)で表される化合物(チタン酸リチウム)が挙げられる。 As the titanium-containing lithium composite oxide, typically, for example, Li x Ti y O z having a spinel structure (x represents a composition ratio of Li, y represents a composition ratio of Ti, and z represents a composition of O). A compound (lithium titanate) represented by the following formula: x> 0, y> 0, z> 0).
 スピネル構造を有するLixTiyzの具体例としては、Li4Ti512等が挙げられる。スピネル構造を有するLixTiyzのリチウムイオンを吸蔵および放出する電位(V対Li/Li+)は、例えば、電池の充放電時の電位変化パターン中における平坦部において約1.55V等である。なお、LixTiyz中のLiは、Na、K等であってもよい。 Specific examples of Li x Ti y O z having a spinel structure include Li 4 Ti 5 O 12 . The potential (V vs. Li / Li + ) for occluding and releasing lithium ions of Li x Ti y O z having a spinel structure is, for example, about 1.55 V in the flat portion in the potential change pattern during charge / discharge of the battery. It is. Note that Li in Li x Ti y O z may be Na, K, or the like.
 チタン含有リチウム複合酸化物としては、更にまた、より高い電位平坦性とレート特性が得られるという観点から、上記構成元素のリチウム、チタン、酸素の一部が、AlやMg等の他の元素に置換されたものを用いてもよい。 As a titanium-containing lithium composite oxide, in addition, from the viewpoint that higher potential flatness and rate characteristics can be obtained, some of the constituent elements lithium, titanium, and oxygen are replaced with other elements such as Al and Mg. A substituted one may be used.
 チタンの一部を置換する他の元素としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)または白金(Pt)等である。 Examples of other elements that substitute a part of titanium include metal elements and metalloid elements capable of forming an alloy with lithium. Specifically, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), Examples thereof include bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd), and platinum (Pt).
 リチウム、チタン、酸素の一部が他の元素に置換されたチタン含有リチウム複合酸化物としては、典型的には、例えば、Li3.75Ti4.875Mg0.37512、Li3.75Ti4.50Al0.7512等が挙げられる。 Typical examples of the titanium-containing lithium composite oxide in which a part of lithium, titanium, and oxygen are substituted with other elements include Li 3.75 Ti 4.875 Mg 0.375 O 12 , Li 3.75 Ti 4.50 Al 0.75 O 12, and the like. Is mentioned.
(チタン酸化物)
 チタン酸化物としてはTipq(p>0、q>0である。)で表される化合物(酸化チタン)が挙げられる。この化合物の具体例としては、TiO2等が挙げられる。TiO2は、アナターゼ型TiO2〔TiO2(anatase)〕、ルチル型TiO2〔TiO2(rutile)〕、B型TiO2〔TiO2(B)〕等の何れであってもよい。
(Titanium oxide)
The titanium oxide (which is p> 0, q> 0. ) Ti p O q a compound represented by (titanium oxide) and the like. Specific examples of this compound include TiO 2 and the like. The TiO 2 may be any of anatase TiO 2 [TiO 2 (anatase)], rutile TiO 2 [TiO 2 (rutile)], B-type TiO 2 [TiO 2 (B)], and the like.
 なお、チタン含有リチウム複合酸化物等のチタン含有無機酸化物は、炭素により被覆されていてもよい。例えば、化学気相成長(CVD)法等を用いて、炭化水素等を分解させてチタン含有リチウム複合酸化物の表面に炭素皮膜を成長させることにより、炭素により被覆されたチタン含有無機酸化物を得ることができる。なお、炭素被覆の方法に関して、上記に限定されるものではない。 In addition, the titanium-containing inorganic oxide such as the titanium-containing lithium composite oxide may be coated with carbon. For example, by using a chemical vapor deposition (CVD) method or the like, hydrocarbons are decomposed and a carbon film is grown on the surface of the titanium-containing lithium composite oxide, whereby a titanium-containing inorganic oxide coated with carbon is obtained. Obtainable. The carbon coating method is not limited to the above.
 負極22には、後述の電解液に含まれる鎖状スルホン化合物とシランカップリング剤またはシロキサン化合物(以下、シラン・シロキサン化合物と称する場合もある)とに由来する化合物が含まれている。なお、負極22には、鎖状スルホン化合物に由来する化合物がさらに含まれていてもよい。 The negative electrode 22 contains a compound derived from a chain sulfone compound and a silane coupling agent or a siloxane compound (hereinafter sometimes referred to as a silane / siloxane compound) contained in an electrolyte solution described later. The negative electrode 22 may further include a compound derived from a chain sulfone compound.
 例えば、負極22には、鎖状スルホン化合物およびシラン・シロキサン化合物に由来する化合物として、式(1)で表されるジスルフィド結合(-S-S-)を有するジスルフィド化合物の少なくとも1種が含まれている。負極22には、式(1)で表されるジスルフィド結合(-S-S-)を有するジスルフィド化合物の少なくとも1種と共に、式(2)で表されるスルホニル結合(-S(=O)2-)を有するスルホニル化合物の少なくとも1種が含まれていてもよい。例えば、式(1)で表されるジスルフィド化合物の少なくとも1種および式(2)で表されるスルホニル化合物の少なくとも1種は、典型的には、充放電時において負極活物質層22B中の活物質粒子の表面に形成される被膜等に含まれている。被膜によって負極22の活性部位を包むことで副反応を抑制することができる。その結果、ガス発生の抑制、並びに、高温環境下でのサイクル特性を向上することができる。 For example, the negative electrode 22 includes at least one disulfide compound having a disulfide bond (—SS—) represented by the formula (1) as a compound derived from a chain sulfone compound and a silane / siloxane compound. ing. The negative electrode 22 includes at least one disulfide compound having a disulfide bond (—SS—) represented by the formula (1) and a sulfonyl bond (—S (═O) 2 represented by the formula (2). At least one of sulfonyl compounds having-) may be included. For example, at least one disulfide compound represented by the formula (1) and at least one sulfonyl compound represented by the formula (2) are typically active in the negative electrode active material layer 22B during charge / discharge. It is contained in a film formed on the surface of the substance particles. Side reactions can be suppressed by wrapping the active site of the negative electrode 22 with the coating. As a result, it is possible to suppress gas generation and improve cycle characteristics in a high temperature environment.
Figure JPOXMLDOC01-appb-C000001
(式中、nは1以上8以下の整数である。R1、R2、R3およびR4は、各々独立してハロゲン基、アルキル基、ハロゲン化アルキル基、アルコキシ基またはシロキサン基を表す。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, n is an integer of 1 to 8. R1, R2, R3 and R4 each independently represents a halogen group, an alkyl group, a halogenated alkyl group, an alkoxy group or a siloxane group.)
Figure JPOXMLDOC01-appb-C000002
(式中、R5は、ハロゲン基、アルキル基、ハロゲン化アルキル基またはアルコキシ基である。R6は、HまたはLiである。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, R5 is a halogen group, an alkyl group, a halogenated alkyl group or an alkoxy group. R6 is H or Li.)
 なお、本技術では、黒鉛等の炭素系負極活物質と比較して、負極活物質として、負極の反応電位が貴な電位となる負極材料を用いているため、後述の鎖状スルホン化合物のような負極の反応電位が卑な炭素系負極活物質を用いた場合に分解してしまい有効ではない溶媒を、効果的に使用することができる。 In this technology, compared to a carbon-based negative electrode active material such as graphite, a negative electrode material in which the reaction potential of the negative electrode becomes a noble potential is used as the negative electrode active material. When a carbon-based negative electrode active material having a low negative electrode reaction potential is used, a solvent that decomposes and is not effective can be used effectively.
 式(1)で表されるジスルフィド化合物としては、例えば、下記の式(1-1)~式(1-25)で表される化合物等が挙げられる。これらの中でも、電池特性の観点から、式(1-2)で表される化合物、式(1-4)で表される化合物が好ましい。 Examples of the disulfide compound represented by the formula (1) include compounds represented by the following formulas (1-1) to (1-25). Among these, from the viewpoint of battery characteristics, a compound represented by the formula (1-2) and a compound represented by the formula (1-4) are preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
 式(2)で表されるスルホニル化合物としては、例えば、下記の式(2-1)~式(2-8)で表される化合物等が挙げられる。これらの中でも、電池特性の観点から、式(2-2)で表される化合物、式(2-4)で表される化合物が好ましい。 Examples of the sulfonyl compound represented by the formula (2) include compounds represented by the following formulas (2-1) to (2-8). Among these, from the viewpoint of battery characteristics, a compound represented by the formula (2-2) and a compound represented by the formula (2-4) are preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)で表される化合物の少なくとも1種を含む負極は、例えば、負極に含浸させた電解液に含まれたシラン・シロキサン化合物および鎖状スルホン化合物から生成されたものが含まれたものである。(2)で表される化合物の少なくとも1種を含む負極は、例えば、負極に含浸させた電解液に含まれた鎖状スルホン化合物の分解物から生成されたものが含まれたものである。 The negative electrode containing at least one compound represented by the formula (1) includes, for example, one produced from a silane / siloxane compound and a chain sulfone compound contained in the electrolytic solution impregnated in the negative electrode It is. The negative electrode containing at least one of the compounds represented by (2) includes, for example, one produced from a decomposition product of a chain sulfone compound contained in the electrolyte solution impregnated in the negative electrode.
 式(1)で表される化合物は、シラン・シロキサン化合物および鎖状スルホン化合物に由来するものである。典型的には、例えば、電池の充放電時に、シラン・シロキサン化合物と鎖状スルホン化合物の分解物との反応によって生成されたもの等である。シラン・シロキサン化合物は、典型的には、例えば、メルカプト基(-SH)を有するシランカップリング剤である。式(2)で表される化合物は、鎖状スルホン化合物に由来するものである。典型的には、例えば、鎖状スルホン化合物が分解することによって生成された分解物等である。 The compound represented by the formula (1) is derived from a silane / siloxane compound and a chain sulfone compound. Typically, for example, it is produced by a reaction between a silane / siloxane compound and a decomposition product of a chain sulfone compound at the time of charge / discharge of the battery. The silane-siloxane compound is typically a silane coupling agent having a mercapto group (—SH), for example. The compound represented by the formula (2) is derived from a chain sulfone compound. Typically, for example, a decomposition product produced by the decomposition of a chain sulfone compound.
 なお、負極中等の電池内に形成された、鎖状スルホン化合物およびシラン・シロキサン化合物に由来する化合物、鎖状スルホン化合物に由来する化合物を確認するためには、例えば、電池を解体して負極を含む電極体を取り出したのち、活物質表面を既存の元素分析方法、すなわち、エネルギー分散型X線分光法(SEM-EDX)等により元素分布観察を行うことによってその形成割合を分析すればよい。この方法を用いる場合には、意図せずに電解質中の不要成分が分析されることを防止するために、電極の表面を炭酸ジメチル(DMC)等の有機溶剤で洗浄してから分析することが好ましい。 In order to confirm the compounds derived from the chain sulfone compound and the silane / siloxane compound and the compound derived from the chain sulfone compound formed in the battery such as in the negative electrode, for example, the battery is disassembled and the negative electrode is removed. After the electrode body including the electrode body is taken out, the formation ratio of the active material surface may be analyzed by observing the element distribution by an existing elemental analysis method, that is, energy dispersive X-ray spectroscopy (SEM-EDX). When using this method, in order to prevent unintentional analysis of unnecessary components in the electrolyte, the electrode surface may be washed after being washed with an organic solvent such as dimethyl carbonate (DMC). preferable.
 また、取り出した電極体の洗浄抽出物を既存の構造分析方法、すなわち、赤外分光法(IR)、核磁気共鳴法(1H/13C-NMR)、ガスまたは液クロマトグラフ質量分析法(GC/LC-MS)等により含まれる化合物の構造解析を行うことによって、各化合物の形成割合を分析してもよい。この方法を用いる場合にも、意図せずに電解質中の不要成分が分析されることを防止するために、電極の表面を炭酸ジメチル(DMC)等の有機溶剤で洗浄してから各化合物を抽出および分析することが好ましい。 In addition, the washed extract of the electrode body taken out was subjected to existing structural analysis methods, that is, infrared spectroscopy (IR), nuclear magnetic resonance (1H / 13C-NMR), gas or liquid chromatography mass spectrometry (GC / The formation ratio of each compound may be analyzed by analyzing the structure of the compound contained by LC-MS) or the like. Even when this method is used, the surface of the electrode is washed with an organic solvent such as dimethyl carbonate (DMC) in order to prevent unintentional analysis of unnecessary components in the electrolyte, and then each compound is extracted. And analyzing.
(式(1)で表される化合物の含有量)
 式(1)で表される化合物の含有量を、所定の範囲にすることによって、電池容量等の特性をより維持しつつ、負極活物質表面をより効果的に被覆することができる。式(1)で表される化合物は、負極中に含まれると共に、電解液中にも含まれていてもよい。式(1)で表される化合物の好ましい含有量は、電解液中の式(1)で表される化合物の含有量によって規定される。式(1)で表される化合物の含有量としては、より優れた効果を得られる観点から、電解液の質量に対して、0.05質量%以上0.5質量%以下であることが好ましい。
(Content of the compound represented by the formula (1))
By making content of the compound represented by Formula (1) into a predetermined range, the surface of the negative electrode active material can be more effectively coated while maintaining characteristics such as battery capacity. The compound represented by the formula (1) may be contained in the negative electrode and also in the electrolytic solution. The preferable content of the compound represented by the formula (1) is defined by the content of the compound represented by the formula (1) in the electrolytic solution. As content of the compound represented by Formula (1), it is preferable that it is 0.05 mass% or more and 0.5 mass% or less with respect to the mass of electrolyte solution from a viewpoint from which the more outstanding effect is acquired. .
 電解液中の化合物は、解体した電池を遠心分離機にかけ、取り出した電解液を分析することで確認できる。具体的には、NMR(Nuclear Magnetic Resonance)、IR(infrared absorption spectrometry)、Raman(ラマン分光法)、GC-MS(Gas Chromatography mass spectrometry)、LC-MS(Liquid Chromatography Mass Spectrometry)等を用いることができる。 The compound in the electrolytic solution can be confirmed by applying the disassembled battery to a centrifuge and analyzing the extracted electrolytic solution. Specifically, NMR (Nuclear magnetic resonance), IR (infrared absorption absorption spectrometry), Raman (Raman spectroscopy), GC-MS (Gas chromatography, mass spectrometry, LC-MS (Liquid chromatography, Mass spectrometry), etc. can be used. it can.
(セパレータ)
 セパレータ23は、イオン透過度が大きく、所定の機械的強度を有する絶縁性の膜から構成される多孔質膜である。セパレータ23には、液状の電解質である電解液が含浸されている。セパレータ23の空孔には、電解液が保持される。
(Separator)
The separator 23 is a porous film composed of an insulating film having a high ion permeability and a predetermined mechanical strength. The separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte. The electrolyte solution is held in the pores of the separator 23.
 このようなセパレータ23を構成する樹脂材料は、例えばポリプロピレンもしくはポリエチレン等のポリオレフィン樹脂、アクリル樹脂、スチレン樹脂、ポリエステル樹脂またはナイロン樹脂等を用いることが好ましい。特に、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン等のポリエチレン、もしくはそれらの低分子量ワックス分、またはポリプロピレン等のポリオレフィン樹脂は溶融温度が適当であり、入手が容易なので好適に用いられる。また、これら2種以上の多孔質膜を積層した構造、もしくは、2種以上の樹脂材料を溶融混練して形成した多孔質膜としてもよい。ポリオレフィン樹脂からなる多孔質膜を含むものは、正極21と負極22との分離性に優れ、内部短絡の低下をいっそう低減することができる。また、セパレータ23としては、不織布を用いることが好まし。不織布ではLiイオンが透過するのに最適な十分な細孔径を確保しやすいという特徴があり、電池として高い入出力を得ることができる。 For example, a polyolefin resin such as polypropylene or polyethylene, an acrylic resin, a styrene resin, a polyester resin, or a nylon resin is preferably used as the resin material constituting the separator 23. In particular, polyethylene such as low density polyethylene, high density polyethylene and linear polyethylene, or their low molecular weight wax content, or polyolefin resin such as polypropylene is suitable because it has an appropriate melting temperature and is easily available. Moreover, it is good also as a porous film formed by melt-kneading the structure which laminated | stacked these 2 or more types of porous films, or 2 or more types of resin materials. A material including a porous film made of a polyolefin resin is excellent in separability between the positive electrode 21 and the negative electrode 22 and can further reduce a decrease in internal short circuit. Moreover, it is preferable to use a nonwoven fabric as the separator 23. Nonwoven fabrics have the feature that it is easy to ensure a sufficient pore diameter that is optimal for the permeation of Li ions, and high input / output can be obtained as a battery.
 セパレータ23の厚さは、必要な強度を保つことができる厚さ以上であれば任意に設定可能である。セパレータ23は、正極21と負極22との間の絶縁を図り、短絡等を防止するとともに、セパレータ23を介した電池反応を好適に行うためのイオン透過性を有し、かつ電池内において電池反応に寄与する活物質層の体積効率をできるだけ高くできる厚さに設定されることが好ましい。 The thickness of the separator 23 can be arbitrarily set as long as it is equal to or greater than the thickness that can maintain the required strength. The separator 23 insulates between the positive electrode 21 and the negative electrode 22 to prevent a short circuit and the like, and has ion permeability for suitably performing a battery reaction via the separator 23, and the battery reaction in the battery. It is preferable to set the thickness so that the volumetric efficiency of the active material layer that contributes to the maximum can be increased.
(電解液)
 電解液(非水電解液)は、電解質塩と、この電解質塩を溶解する非水溶媒と、添加剤としてシランカップリング剤またはシロキサン化合物を含む。なお、電解液は、添加剤としてシランカップリング剤およびシロキサン化合物の両方を含んでいてもよい。
(Electrolyte)
The electrolytic solution (nonaqueous electrolytic solution) includes an electrolyte salt, a nonaqueous solvent that dissolves the electrolyte salt, and a silane coupling agent or a siloxane compound as an additive. The electrolytic solution may contain both a silane coupling agent and a siloxane compound as additives.
(非水溶媒)
 非水溶媒としては、主溶媒と鎖状スルホン化合物とを含むものを用いる。
(Non-aqueous solvent)
As the non-aqueous solvent, a solvent containing a main solvent and a chain sulfone compound is used.
(主溶媒)
 本技術に含まれる主溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート、ビニルエチレンカーボネート(VC)等の炭素-炭素間二重結合等の不飽和結合を有する不飽和カーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC;フルオロエチレンカーボネート)、4,5-ジフルオロ-1,3-ジオキソラン-2-オン(DFEC;ジフルオロエチレンカーボネート)等のハロゲン化カーボネート、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(Me-THF)、1,3-ジオキソラン(DOL)、4-メチルー1,3-ジオキソラン(Me-DOL)、ジエチルエーテル(DEE)、γーブチロラクトン(GBL)、γーバレロラクトン(GVL)、3-メチルオキサゾリジノン(MOX)、ギ酸メチル(MF)、スルホラン(SL)、3-メチルスルホラン(3MS)、ジメチルスルホキシド(DMSO)、アセトニトリル(AN)、ジメチルスルホキシド(DMSO)、トリメチルフォスフェート(TMP)、プロピオニトリル(PN)、グルタロニトリル(GLN)、アジポニトリル(ADN)、メトキシアセトニトリル(MAN)、3-メトキシプロピオニトリル(MPN)、N,N-ジメチルフォルムアミド(DMF),N,N-ジメチルアセトアミド(DMA)、N-メチルピロリジノン(NMP)、N-メチルオキサゾリジノン(NMO)、N,N’-ジメチルイミダゾリジノン(DMI)、ニトロメタン(NM),ニトロエタン(NE)等が挙げられる.
(Main solvent)
As main solvents included in the present technology, cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC), Unsaturated carbonates having unsaturated bonds such as carbon-carbon double bonds such as vinylethylene carbonate (VC), 4-fluoro-1,3-dioxolan-2-one (FEC; fluoroethylene carbonate), 4,5 Halogenated carbonates such as difluoro-1,3-dioxolan-2-one (DFEC; difluoroethylene carbonate), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran (Me-THF), 1,3-Geo Solan (DOL), 4-methyl-1,3-dioxolane (Me-DOL), diethyl ether (DEE), γ-butyrolactone (GBL), γ-valerolactone (GVL), 3-methyloxazolidinone (MOX), methyl formate (MF) ), Sulfolane (SL), 3-methylsulfolane (3MS), dimethyl sulfoxide (DMSO), acetonitrile (AN), dimethyl sulfoxide (DMSO), trimethyl phosphate (TMP), propionitrile (PN), glutaronitrile ( GLN), adiponitrile (ADN), methoxyacetonitrile (MAN), 3-methoxypropionitrile (MPN), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA), N-methylpyrrolidinone ( NMP), N Methyl oxazolidinone (NMO), N, N'- dimethyl-imidazolidinone (DMI), nitromethane (NM), nitroethane (NE), and the like.
 これらの中でも、鎖状カーボネートおよび環状カーボネートまたは鎖状カルボン酸エステルおよび環状カルボン酸エステルが、非水系電解液二次電池における種々の特性がよい点で好ましく、それらのなかでも、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトンがより好ましく、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトンが更に好ましい。 Among these, a chain carbonate and a cyclic carbonate, or a chain carboxylic acid ester and a cyclic carboxylic acid ester are preferable because they have various characteristics in a non-aqueous electrolyte secondary battery. Among these, ethylene carbonate and propylene carbonate are preferable. Dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone are more preferable, and ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and γ-butyrolactone are further included. preferable.
(鎖状スルホン化合物)
 電解液中に溶媒として鎖状スルホン化合物が含まれる。鎖状スルホン化合物とは、鎖状構造を有し、且つ、スルホニル基(-S(=O)2-)を有する化合物のことをいう。鎖状スルホン化合物の例としては、ジメチルスルホン〔式(3-1)〕、ジエチルスルホン〔式(3-2)〕、エチルメチルスルホン〔式(3-3)〕、メチルイソプロピルスルホン〔式(3-4)〕、エチルイソプロピルスルホン〔式(3-5)〕、エチルイソブチルスルホン〔式(3-6)〕、イソプロピルイソブチルスルホン〔式(3-7)〕、イソプロピルs-ブチルスルホン〔式(3-8)〕、ブチルイソブチルスルホン〔式(3-9)〕が好ましい。これらの中でも、電池特性の観点から、エチルイソプロピルスルホン(式(3-5);EiPS)が最も好ましい。
(Chain sulfone compound)
The electrolytic solution contains a chain sulfone compound as a solvent. The chain sulfone compound refers to a compound having a chain structure and having a sulfonyl group (—S (═O) 2 —). Examples of chain sulfone compounds include dimethylsulfone [formula (3-1)], diethylsulfone [formula (3-2)], ethylmethylsulfone [formula (3-3)], methylisopropylsulfone [formula (3) -4)], ethyl isopropyl sulfone [formula (3-5)], ethyl isobutyl sulfone [formula (3-6)], isopropyl isobutyl sulfone [formula (3-7)], isopropyl s-butyl sulfone [formula (3 -8)] and butyl isobutyl sulfone [formula (3-9)] are preferred. Among these, ethyl isopropyl sulfone (formula (3-5); EiPS) is most preferable from the viewpoint of battery characteristics.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 電解液中に溶媒として鎖状スルホン化合物を含有させることによって、充放電時に鎖状スルホン化合物に由来する化合物を含む被膜をチタン含有無機酸化物を用いた負極に対して形成させることができる。また、電解液は、さらに添加剤としてシラン・シロキサン化合物を含むため、このシラン・シロキサン化合物および鎖状スルホン化合物に由来する被膜を、チタン含有無機酸化物を用いた負極に対して形成させることができる。 By containing a chain sulfone compound as a solvent in the electrolytic solution, a film containing a compound derived from the chain sulfone compound at the time of charge / discharge can be formed on the negative electrode using the titanium-containing inorganic oxide. Further, since the electrolytic solution further contains a silane / siloxane compound as an additive, a coating derived from the silane / siloxane compound and the chain sulfone compound can be formed on the negative electrode using the titanium-containing inorganic oxide. it can.
(含有量)
 電解液中の鎖状スルホン化合物の含有量は、特に限定されないが、電解液の質量に対して、0.1質量%以上20質量%以下が好ましく、0.3質量%以上8質量%以下がより好ましく、0.5質量%以上5質量%以下が最も好ましい。この範囲内において、溶媒であるカーボネート由来のガス発生量をより低減すると共に、低温および高温においてより優れた電池特性を示す。
(Content)
Although content of the chain | strand-shaped sulfone compound in electrolyte solution is not specifically limited, 0.1 to 20 mass% is preferable with respect to the mass of electrolyte solution, and 0.3 to 8 mass% is preferable. More preferably, 0.5 mass% or more and 5 mass% or less is the most preferable. Within this range, the amount of gas generated from the carbonate, which is a solvent, is further reduced, and more excellent battery characteristics are exhibited at low and high temperatures.
(添加剤)
 電解液は、添加剤として、シランカップリング剤またはシロキサン化合物(シラン・シロキサン化合物)を含む。なお、電解液は、シランカップリング剤およびシロキサン化合物の両方を含んでいてもよい。電解液に、シラン・シロキサン化合物を含有させることによって、シラン・シロキサン化合物およびシラン・シロキサン化合物に由来する化合物の少なくとも何れかが電極活物質の活性面を覆う効果も有し、電解液等の分解副反応を効果的に抑制することができ、長期信頼性の高い電池を提供することができる。さらに、電解液がシラン・シロキサン化合物を含むことによって、電解液の電極への含浸性をより向上させることができ、低温環境下でも高い容量を発現することができるというより優れた効果も得ることができる。
(Additive)
The electrolytic solution contains a silane coupling agent or a siloxane compound (silane / siloxane compound) as an additive. The electrolytic solution may contain both a silane coupling agent and a siloxane compound. By containing the silane / siloxane compound in the electrolytic solution, at least one of the silane / siloxane compound and the compound derived from the silane / siloxane compound also has an effect of covering the active surface of the electrode active material, and the electrolytic solution is decomposed. Side reactions can be effectively suppressed, and a battery with high long-term reliability can be provided. Furthermore, when the electrolytic solution contains a silane / siloxane compound, it is possible to further improve the impregnation of the electrolytic solution into the electrode, and to obtain a more excellent effect that a high capacity can be expressed even in a low temperature environment. Can do.
(シランカップリング剤またはシロキサン化合物)
 シランカップリング剤としては、例えば、メルカプト基(-SH)を有するシランカップリング剤、他のシランカップリング剤等を用いることができる。メルカプト基(-SH)を有するシランカップリング剤としては、3-メルカプトプロピルトリメトキシシラン〔(CH3O)3Si(CH23SH〕、3-メルカプトプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23SH〕、3-メルカプトプロピルジメチルメトキシシラン〔(CH32(CH3O)Si(CH23SH〕、3-メルカプトプロピルトリメチルシラン〔(CH33)Si(CH23SH〕等が挙げられる。
(Silane coupling agent or siloxane compound)
As the silane coupling agent, for example, a silane coupling agent having a mercapto group (—SH), another silane coupling agent, or the like can be used. Examples of silane coupling agents having a mercapto group (—SH) include 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH], 3-mercaptopropylmethyldimethoxysilane [(CH 3 ). (CH 3 O) 2 Si (CH 2 ) 3 SH], 3-mercaptopropyldimethylmethoxysilane [(CH 3 ) 2 (CH 3 O) Si (CH 2 ) 3 SH], 3-mercaptopropyltrimethylsilane [( CH 3 ) 3 ) Si (CH 2 ) 3 SH] and the like.
 他のシランカップリング剤としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリストリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロクシプロピルトリメトキシシラン、3-メタクリロクシプロピルトリメトキシシラン、3-メタクリロクシプロピルトリメトキシシラン、3-メタクリロクシプロピルメチルジメトキシシラン、3-メタクリロクシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-クロルプロピルトリメトキシシラン、3-クロルプロピルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン等が挙げられる。 Other silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) ) -3-Aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-triethoxy Silyl-N- (1,3-dimethylbutylidene) propylamine, vinyltris (2-methoxyethoxy) silane, vinyltristrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxy Propyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxy Silane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- ( 3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-ureidopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropi Triethoxysilane, methyl triethoxysilane, methyl trimethoxysilane, phenyl triethoxysilane, and phenyl trimethoxysilane.
 シロキサン化合物としては、デカメチルシクロペンタンシロキサン、デカメチルテトラシロキサン、オクタメチルシクロテトラシロキサン、オクタメチルトリシロキサン、ヘキサメチルシクロトリシロキサン、ヘキサメチルジシロキサン等が挙げられる。 Examples of the siloxane compound include decamethylcyclopentanesiloxane, decamethyltetrasiloxane, octamethylcyclotetrasiloxane, octamethyltrisiloxane, hexamethylcyclotrisiloxane, hexamethyldisiloxane and the like.
 なお、シランカップリング剤は、〔Rx-Si(Ryn(ORz3-n Rx反応性官能基、Ry:有機基、ORz:加水分解性基〕構造を有するものであればこれらに限られるものではない。シロキサン化合物は、シロキサン構造を有するものであればこれらに限られるものではない。また、上述した一連のシラン・シロキサン化合物は、1種類であってもよいし、任意の組み合わせで2種以上混合されてもよい。これらのシラン・シロキサン化合物の中でも、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルジメチルメトキシシラン、3-メルカプトプロピルトリメチルシラン、ヘキサメチルシクロトリシロキサン等が、電池特性を得られる観点から特に好ましい。 Incidentally, a silane coupling agent, those having a structure [R x -Si (R y) n (OR z) 3-n R x reactive functional group, R y: hydrolyzable group: organic group, OR z] If so, it is not limited to these. The siloxane compound is not limited to these as long as it has a siloxane structure. Further, the series of silane / siloxane compounds described above may be one kind, or two or more kinds may be mixed in any combination. Among these silane / siloxane compounds, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyldimethylmethoxysilane, 3-mercaptopropyltrimethylsilane, hexamethylcyclotrisiloxane, etc. are battery characteristics. From the viewpoint of obtaining
(電解質塩)
 電解液に含まれる電解質塩としては、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、六フッ化ヒ酸リチウム(LiAsF6)、テトラフェニルホウ酸リチウム(LiB(C654)、メタンスルホン酸リチウム(LiCH3SO3)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、リチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド(LiN(SO2F)(SO2CF3))、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(SO2CF32)、リチウムビス(オキサラト)ホウ酸(LiC4BO8)、リチウムジフルオロオキサラトホウ酸(LiC2BO42)等が挙げられる。
(Electrolyte salt)
Examples of the electrolyte salt contained in the electrolytic solution include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate ( LiAsF 6 ), lithium tetraphenylborate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ), lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide (LiN (SO 2 F) (SO 2 CF 3 )), lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3) 2), lithium bis (oxalato) borate (LiC 4 BO 8), Richiumujifu Oro like oxa Ratn borate (LiC 2 BO 4 F 2) and the like.
 これらは、1種を単独で使用しても、2種以上を任意の組み合わせおよび比率で併用しても良い。これらの中でも、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、なる群のうちの少なくとも1種が好ましく、四フッ化ホウ酸リチウム(LiBF4)、リチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SO2CF32)、およびリチウムビス(オキサラト)ホウ酸(LiC2BO42)を含むことがより好ましい。 These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Among these, at least one of the group consisting of lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) is preferable, and lithium tetrafluoroborate (LiBF 4 ), lithium bis (Fluorosulfonyl) imide (LiN (SO 2 F) 2 ), lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 ) 2 ), and lithium bis (oxalato) boric acid (LiC 2 BO 4 F 2 ) It is more preferable to contain.
 電解液中の上記リチウム塩の濃度は、特に制限はないが、通常0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、その上限は、通常2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。濃度が低すぎると、非水系電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池の性能が低下する場合がある。 The concentration of the lithium salt in the electrolytic solution is not particularly limited, but is usually 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more. Moreover, the upper limit is 2 mol / L or less normally, Preferably it is 1.8 mol / L or less, More preferably, it is 1.7 mol / L or less. If the concentration is too low, the electrical conductivity of the non-aqueous electrolyte may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity, and the performance of the battery decreases. There is a case.
(1-2)電池の製造方法
 この非水電解質電池は、例えば、以下の製造方法によって製造される。
(1-2) Battery Manufacturing Method This nonaqueous electrolyte battery is manufactured, for example, by the following manufacturing method.
(正極の製造)
 まず、正極21を作製する。最初に、正極材料と、結着剤と、導電剤とを混合して正極合剤としたのち、有機溶剤に分散させてペースト状の正極合剤スラリーとする。続いて、ドクタブレードまたはバーコータ等によって正極集電体21Aの両面に正極合剤スラリーを均一に塗布して乾燥させる。最後に、必要に応じて加熱しながらロールプレス機等によって塗膜を圧縮成型して正極活物質層21Bを形成する。この場合には、圧縮成型を複数回に渡って繰り返してもよい。
(Manufacture of positive electrode)
First, the positive electrode 21 is produced. First, a positive electrode material, a binder, and a conductive agent are mixed to obtain a positive electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is uniformly applied to both surfaces of the positive electrode current collector 21A by a doctor blade or a bar coater and dried. Finally, the positive electrode active material layer 21B is formed by compressing and molding the coating film with a roll press or the like while heating as necessary. In this case, compression molding may be repeated a plurality of times.
(負極の製造)
 次に、負極22を作製する。最初に、負極材料と、結着剤と、必要に応じて導電剤とを混合して負極合剤としたのち、これを有機溶剤に分散させてペースト状の負極合剤スラリーとする。続いて、ドクタブレードまたはバーコータ等によって負極集電体22Aの両面に負極合剤スラリーを均一に塗布して乾燥させる。最後に、必要に応じて加熱しながらロールプレス機等によって塗膜を圧縮成型して負極活物質層22Bを形成する。
(Manufacture of negative electrode)
Next, the negative electrode 22 is produced. First, a negative electrode material, a binder, and a conductive agent as necessary are mixed to form a negative electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is uniformly applied to both surfaces of the negative electrode current collector 22A by a doctor blade or a bar coater and dried. Finally, the negative electrode active material layer 22B is formed by compression molding the coating film with a roll press or the like while heating as necessary.
(電解液の調製)
 上述した電解液を調製する。この電解液が負極22に含浸され、電池の充放電時等に、鎖状スルホン化合物に由来する化合物、並びに、鎖状スルホン化合物およびシラン・シロキサン化合物に由来する化合物が形成される。より具体的には、例えば、電池の充放電時等に、鎖状スルホン化合物の分解物、並びに、鎖状スルホン化合物の分解物とシラン・シロキサン化合物との反応生成物が形成される。
(Preparation of electrolyte)
The above-described electrolytic solution is prepared. The electrolyte 22 is impregnated into the negative electrode 22 to form a compound derived from the chain sulfone compound and a compound derived from the chain sulfone compound and the silane / siloxane compound during charging and discharging of the battery. More specifically, for example, when the battery is charged and discharged, a decomposition product of the chain sulfone compound and a reaction product of the decomposition product of the chain sulfone compound and the silane / siloxane compound are formed.
 さらに具体的には、電池の充放電時等に、例えば、上述の反応生成物として式(1)で表される化合物および上述の分解物として式(2)で表される化合物が形成され、これらの化合物を負極22に含有させることができる。なお、負極22に式(1)で表される化合物、式(2)で表される化合物を含有させる方法としては、種々の方法をとることができる。例えば、負極活物質層22Bを形成する際に、式(1)で表される化合物および式(2)で表される化合物を負極材料等と混合する等して負極合剤を調製する等して、式(1)および式(2)で表される化合物を負極に含有させるようにしてもよい。また、負極22には式(1)で表される化合物のみを含有させるようにしてもよい。 More specifically, at the time of charge / discharge of the battery, for example, the compound represented by the formula (1) as the above reaction product and the compound represented by the formula (2) as the above decomposition product are formed, These compounds can be contained in the negative electrode 22. In addition, as a method of making the negative electrode 22 contain the compound represented by Formula (1) and the compound represented by Formula (2), various methods can be taken. For example, when forming the negative electrode active material layer 22B, a negative electrode mixture is prepared by mixing a compound represented by the formula (1) and a compound represented by the formula (2) with a negative electrode material or the like. Thus, the compounds represented by formula (1) and formula (2) may be contained in the negative electrode. Moreover, you may make it make the negative electrode 22 contain only the compound represented by Formula (1).
(電池の組み立て)
 非水電解質電池の組み立ては、以下のようにして行う。最初に、正極集電体21Aに正極リード25を溶接等して取り付けると共に、負極集電体22Aに負極リード26を溶接等して取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層および巻回させて巻回電極体20を作製したのち、その巻回中心にセンターピン24を挿入する。続いて、一対の絶縁板12、13で挟みながら巻回電極体20を電池缶11の内部に収納すると共に、正極リード25の先端部を安全弁機構15に溶接し、負極リード26の先端部を電池缶11に溶接する。
(Battery assembly)
The non-aqueous electrolyte battery is assembled as follows. First, the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like. Subsequently, after the positive electrode 21 and the negative electrode 22 are stacked and wound through the separator 23 to produce the wound electrode body 20, the center pin 24 is inserted into the winding center. Subsequently, the wound electrode body 20 is housed in the battery can 11 while being sandwiched between the pair of insulating plates 12 and 13, and the tip of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the tip of the negative electrode lead 26 is attached to the tip of the negative electrode lead 26. Weld to battery can 11.
 続いて、上述の電解液を電池缶11の内部に注入してセパレータ23等に含浸させる。最後に、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16を、ガスケット17を介してかしめることにより固定する。これにより、図1および図2に示す非水電解質電池が完成する。 Subsequently, the electrolytic solution described above is injected into the battery can 11 and impregnated in the separator 23 and the like. Finally, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are fixed to the opening end of the battery can 11 by caulking through the gasket 17. Thereby, the nonaqueous electrolyte battery shown in FIGS. 1 and 2 is completed.
2.第2の実施の形態
(2-1)電池の構成
 本技術の第2の実施の形態による非水電解質電池(電池)について説明する。図3は本技術の第2の実施の形態による非水電解質電池の分解斜視構成を表しており、図4は図3に示す巻回電極体30のI-I線に沿った断面を拡大して示している。
2. Second Embodiment (2-1) Battery Configuration A nonaqueous electrolyte battery (battery) according to a second embodiment of the present technology will be described. FIG. 3 illustrates an exploded perspective configuration of the nonaqueous electrolyte battery according to the second embodiment of the present technology, and FIG. 4 is an enlarged cross-sectional view taken along line II of the spirally wound electrode body 30 illustrated in FIG. It shows.
 この非水電解質電池は、主に、フィルム状の外装部材40の内部に、正極リード31および負極リード32が取り付けられた巻回電極体30が収容されたものである。このフィルム状の外装部材40を用いた電池構造は、ラミネートフィルム型と呼ばれている。この非水電解質電池は、例えば充電および放電が可能な二次電池であり、また、例えばリチウムイオン二次電池である。 This non-aqueous electrolyte battery is mainly one in which a wound electrode body 30 to which a positive electrode lead 31 and a negative electrode lead 32 are attached is housed in a film-shaped exterior member 40. The battery structure using the film-shaped exterior member 40 is called a laminate film type. This nonaqueous electrolyte battery is, for example, a secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
 正極リード31および負極リード32は、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウム等の金属材料によって構成されており、負極リード32は、例えば、銅、ニッケルまたはステンレス等の金属材料によって構成されている。これらの金属材料は、例えば、薄板状または網目状になっている。 The positive electrode lead 31 and the negative electrode lead 32 are led out in the same direction from the inside of the exterior member 40 to the outside, for example. The positive electrode lead 31 is made of, for example, a metal material such as aluminum, and the negative electrode lead 32 is made of, for example, a metal material such as copper, nickel, or stainless steel. These metal materials are, for example, in a thin plate shape or a mesh shape.
 外装部材40は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムがこの順に貼り合わされたアルミラミネートフィルム等のように、金属箔からなる金属層の両面に樹脂層を設けた構成とされている。外装部材40の一般的な構成は、例えば、外側樹脂層/金属層/内側樹脂層の積層構造を有する。例えば、外装部材40は、例えば、内側樹脂層が巻回電極体30と対向するように、2枚の矩形型のアルミラミネートフィルムの外縁部同士が融着または接着剤によって互いに接着された構造を有している。外側樹脂層および内側樹脂層は、それぞれ複数層で構成されてもよい。 The exterior member 40 has a configuration in which resin layers are provided on both surfaces of a metal layer made of metal foil, such as an aluminum laminate film in which a nylon film, an aluminum foil, and a polyethylene film are bonded in this order. The general structure of the exterior member 40 has, for example, a laminated structure of an outer resin layer / a metal layer / an inner resin layer. For example, the exterior member 40 has a structure in which the outer edges of two rectangular aluminum laminate films are bonded to each other by fusion or an adhesive so that the inner resin layer faces the wound electrode body 30. Have. Each of the outer resin layer and the inner resin layer may be composed of a plurality of layers.
 金属層を構成する金属材料としては、耐透湿性のバリア膜としての機能を備えていれば良く、アルミニウム(Al)箔、ステンレス(SUS)箔、ニッケル(Ni)箔およびメッキを施した鉄(Fe)箔等を使用することができる。なかでも、薄く軽量で加工性に優れるアルミニウム箔を好適に用いることが好ましい。特に、加工性の点から、例えば焼きなまし処理済みのアルミニウム(JIS A8021P-O)、(JIS A8079P-O)または(JIS A1N30-O)等を用いるのが好ましい。 The metal material constituting the metal layer only needs to have a function as a moisture-permeable barrier film, and includes aluminum (Al) foil, stainless steel (SUS) foil, nickel (Ni) foil, and plated iron ( Fe) foil or the like can be used. Especially, it is preferable to use the aluminum foil which is thin and lightweight and excellent in workability. In particular, from the viewpoint of workability, for example, annealed aluminum (JIS A8021P-O), (JIS A8079P-O), or (JIS A1N30-O) is preferably used.
 金属層の厚みは、典型的には、例えば、30μm以上150μm以下とすることが好ましい。30μm未満の場合、材料強度が低減する傾向にある。また、150μmを超えた場合、加工が著しく困難になるとともに、ラミネートフィルムの厚さが増してしまい、非水電解質電池の体積効率が低減する傾向にある。 The thickness of the metal layer is typically preferably 30 μm or more and 150 μm or less, for example. When the thickness is less than 30 μm, the material strength tends to decrease. Moreover, when it exceeds 150 micrometers, while processing becomes remarkably difficult, the thickness of a laminate film will increase and it exists in the tendency for the volumetric efficiency of a nonaqueous electrolyte battery to reduce.
 内側樹脂層は、熱で溶けて互いに融着する部分であり、ポリエチレン(PE)、無軸延伸ポリプロピレン(CPP)、ポリエチレンテレフタレート(PET)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等が使用可能であり、これらから複数種類選択して用いることも可能である。 The inner resin layer is a part that is melted by heat and fused to each other, such as polyethylene (PE), non-axially oriented polypropylene (CPP), polyethylene terephthalate (PET), low density polyethylene (LDPE), high density polyethylene (HDPE), Linear low density polyethylene (LLDPE) or the like can be used, and a plurality of these can be selected and used.
 外側樹脂層としては、外観の美しさや強靱さ、柔軟性等からポリオレフィン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエステル等が用いられる。具体的には、ナイロン(Ny)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)が用いられ、これらから複数種類選択して用いることも可能である。 As the outer resin layer, polyolefin resin, polyamide resin, polyimide resin, polyester, or the like is used because of its beautiful appearance, toughness, flexibility, and the like. Specifically, nylon (Ny), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and polybutylene naphthalate (PBN) are used. Is also possible.
 外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するための密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料によって構成されている。このような材料としては、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレン等のポリオレフィン樹脂が挙げられる。 An adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 to prevent intrusion of outside air. The adhesion film 41 is made of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32. Examples of such a material include polyolefin resins such as polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
 なお、外装部材40は、上記した積層構造を有するアルミラミネートフィルムに代えて、他の積層構造を有するラミネートフィルムによって構成されていてもよいし、ポリプロピレン等の高分子フィルムまたは金属フィルム等によって構成されていてもよい。 The exterior member 40 may be constituted by a laminated film having another laminated structure instead of the aluminum laminated film having the laminated structure described above, or may be constituted by a polymer film such as polypropylene or a metal film. It may be.
 図4は、図3に示す巻回電極体のI-I線に沿った断面構成を表している。この巻回電極体30は、帯状のセパレータ35および電解質36を介して帯状の正極33と帯状の負極34とが積層および巻回されたものであり、その最外周部は、保護テープ37によって保護されている。 FIG. 4 shows a cross-sectional configuration along the II line of the spirally wound electrode body shown in FIG. This wound electrode body 30 is formed by laminating and winding a belt-like positive electrode 33 and a belt-like negative electrode 34 via a belt-like separator 35 and an electrolyte 36, and the outermost periphery is protected by a protective tape 37. Has been.
(正極)
 正極33は、例えば、一対の面を有する正極集電体33Aの両面に正極活物質層33Bが設けられた構造を有している。なお、図示はしないが、正極33は、正極集電体33Aの片面のみに正極活物質層33Bが形成された領域を有していてもよい。正極集電体33Aおよび正極活物質層33Bは、それぞれ第1の実施の形態における正極集電体21Aおよび正極活物質層21Bと同様である。
(Positive electrode)
The positive electrode 33 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a positive electrode current collector 33A having a pair of surfaces. Although not shown, the positive electrode 33 may have a region where the positive electrode active material layer 33B is formed only on one surface of the positive electrode current collector 33A. The positive electrode current collector 33A and the positive electrode active material layer 33B are the same as the positive electrode current collector 21A and the positive electrode active material layer 21B in the first embodiment, respectively.
(負極)
 負極34は、例えば、一対の面を有する負極集電体34Aの両面に正極活物質層33Bが設けられた構造を有している。なお、図示はしないが、負極34は、負極集電体34Aの片面のみに負極活物質層34Bが形成された領域を有していてもよい。負極集電体34Aおよび負極活物質層34Bは、それぞれ第1の実施の形態における負極集電体22Aおよび負極活物質層22Bと同様である。
(Negative electrode)
The negative electrode 34 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a negative electrode current collector 34A having a pair of surfaces. Although not shown, the negative electrode 34 may have a region where the negative electrode active material layer 34B is formed only on one surface of the negative electrode current collector 34A. The negative electrode current collector 34A and the negative electrode active material layer 34B are the same as the negative electrode current collector 22A and the negative electrode active material layer 22B in the first embodiment, respectively.
(セパレータ)
 セパレータ35は第1の実施の形態におけるセパレータ23と同様である。
(Separator)
The separator 35 is the same as the separator 23 in the first embodiment.
(電解質)
 電解質36は、非水電解液(電解液)と、それを保持する高分子化合物(マトリックス高分子化合物)とを含んでいる。電解質36は、例えば、いわゆるゲル状の電解質である。ゲル状の電解質は、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に漏液が防止されるので好ましい。
(Electrolytes)
The electrolyte 36 includes a nonaqueous electrolytic solution (electrolytic solution) and a polymer compound (matrix polymer compound) that holds the nonaqueous electrolytic solution. The electrolyte 36 is, for example, a so-called gel electrolyte. A gel electrolyte is preferable because high ion conductivity (for example, 1 mS / cm or more at room temperature) is obtained and liquid leakage is prevented.
(非水電解液)
 非水電解液は、電解質塩と、この電解質塩を溶解する非水溶媒とを含む。非水電解液は、第1の実施の形態と同様である。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution includes an electrolyte salt and a nonaqueous solvent that dissolves the electrolyte salt. The non-aqueous electrolyte is the same as in the first embodiment.
(高分子化合物)
 高分子化合物としては、溶媒に相溶可能な性質を有するもの等を用いることができる。このような高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレン、またはポリカーボネート等が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。中でも、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンまたはポリエチレンオキサイドが好ましい。電気化学的に安定だからである。
(Polymer compound)
As the polymer compound, those having a property compatible with a solvent can be used. Examples of such a polymer compound include polyacrylonitrile, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, and polyphosphazene. , Polysiloxane, polyvinyl acetate, polyvinyl alcohol, polymethyl methacrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, or polycarbonate. These may be single and multiple types may be mixed. Among these, polyacrylonitrile, polyvinylidene fluoride, polyhexafluoropropylene, or polyethylene oxide is preferable. This is because it is electrochemically stable.
(2-2)電池の製造方法
 この非水電解質電池は、例えば、以下の3種類の製造方法(第1~第3の製造方法)によって製造される。
(2-2) Battery Manufacturing Method This nonaqueous electrolyte battery is manufactured, for example, by the following three manufacturing methods (first to third manufacturing methods).
(第1の製造方法)
 第1の製造方法では、最初に、例えば、上記した第1の実施の形態の正極21および負極22の作製手順と同様の手順により、正極集電体33Aの両面に正極活物質層33Bを形成して正極33を作製する。また、負極集電体34Aの両面に負極活物質層34Bを形成して負極34を作製する。
(First manufacturing method)
In the first manufacturing method, first, the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A, for example, by the same procedure as the manufacturing procedure of the positive electrode 21 and the negative electrode 22 of the first embodiment described above. Thus, the positive electrode 33 is manufactured. Further, the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34.
 続いて、電解液と、高分子化合物と、溶剤とを含む前駆溶液を調製して正極33および負極34の少なくとも一方の両面に塗布したのち、溶剤を揮発させてゲル状の電解質36を形成する。続いて、正極集電体33Aに正極リード31を取り付けると共に、負極集電体34Aに負極リード32を取り付ける。なお、電極の両面にゲル状の電解質36を形成することに変えて、セパレータの両面の少なくとも一方の面にゲル状の電解質36を形成してもよい。 Subsequently, a precursor solution containing an electrolytic solution, a polymer compound, and a solvent is prepared and applied to at least one of both surfaces of the positive electrode 33 and the negative electrode 34, and then the solvent is volatilized to form a gel electrolyte 36. . Subsequently, the positive electrode lead 31 is attached to the positive electrode current collector 33A, and the negative electrode lead 32 is attached to the negative electrode current collector 34A. Instead of forming the gel electrolyte 36 on both surfaces of the electrode, the gel electrolyte 36 may be formed on at least one surface of both surfaces of the separator.
 続いて、電解質36が形成された正極33と負極34とをセパレータ35を介して積層させてから長手方向に巻回し、その最外周部に保護テープ37を接着させて巻回電極体30を作製する。最後に、例えば、2枚のフィルム状の外装部材40の間に巻回電極体30を挟み込んだのち、その外装部材40の外縁部同士を熱融着等で接着させて巻回電極体30を封入する。この際、正極リード31および負極リード32と外装部材40との間に、密着フィルム41を挿入する。これにより、図3および図4に示す非水電解質電池が完成する。 Subsequently, the positive electrode 33 and the negative electrode 34 on which the electrolyte 36 is formed are stacked via the separator 35 and then wound in the longitudinal direction, and a protective tape 37 is adhered to the outermost peripheral portion to produce the wound electrode body 30. To do. Finally, for example, after the wound electrode body 30 is sandwiched between two film-shaped exterior members 40, the outer edge portions of the exterior member 40 are bonded to each other by heat fusion or the like, so that the wound electrode body 30 is Encapsulate. At this time, the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40. Thereby, the nonaqueous electrolyte battery shown in FIGS. 3 and 4 is completed.
(第2の製造方法)
 第2の製造方法では、最初に、第1の製造方法と同様に正極33および負極34を作製する。次に、正極33に正極リード31を取り付けると共に、負極34に負極リード32を取り付ける。続いて、高分子化合物が両面に塗布されたセパレータ35を介して正極33と負極34とを積層して巻回させたのち、その最外周部に保護テープ37を接着させて、巻回電極体30の前駆体である巻回体を作製する
(Second manufacturing method)
In the second manufacturing method, first, the positive electrode 33 and the negative electrode 34 are manufactured in the same manner as in the first manufacturing method. Next, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. Subsequently, the positive electrode 33 and the negative electrode 34 are laminated and wound through a separator 35 coated with a polymer compound on both sides, and then a protective tape 37 is adhered to the outermost periphery thereof to form a wound electrode body. A wound body that is a precursor of 30 is produced.
 続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着等で接着させて、袋状の外装部材40の内部に巻回体を収納する。 Subsequently, after sandwiching the wound body between the two film-like exterior members 40, the remaining outer peripheral edge except for the outer peripheral edge on one side is bonded by thermal fusion or the like, so that the bag-shaped exterior is obtained. The wound body is accommodated in the member 40.
 このセパレータ35に塗布する高分子化合物としては、例えば、フッ化ビニリデンを成分とする重合体、すなわち単独重合体、共重合体または多元共重合体等が挙げられる。具体的には、ポリフッ化ビニリデンや、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体や、フッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体等が好適である。なお、高分子化合物は、上記したフッ化ビニリデンを成分とする重合体と共に、他の1種または2種以上の高分子化合物を含んでいてもよい。 Examples of the polymer compound applied to the separator 35 include a polymer containing vinylidene fluoride as a component, that is, a homopolymer, a copolymer, a multi-component copolymer, and the like. Specifically, polyvinylidene fluoride, binary copolymers containing vinylidene fluoride and hexafluoropropylene as components, and ternary copolymers containing vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components. A coalescence or the like is preferred. The polymer compound may contain one or more other polymer compounds together with the polymer containing vinylidene fluoride as a component.
 セパレータ35上の高分子化合物は、例えば、以下のようにして、多孔性高分子化合物を形成していてもよい。すなわち、まず、高分子化合物を、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N,N-ジメチルスルホキシド等の極性有機溶媒からなる第1の溶媒に溶解させた溶液を調製し、この溶液をセパレータ35上に塗布する。次に、上記溶液が塗布されたセパレータ35を水、エチルアルコール、プロピルアルコール等の上記極性有機溶媒に対して相溶性があり、上記高分子化合物に対して貧溶媒である第2の溶媒中に浸漬する。このとき、溶媒交換が起こり、スピノーダル分解を伴う相分離が生じ、高分子化合物は多孔構造を形成する。その後、乾燥することにより、多孔構造を有する多孔性高分子化合物を得ることができる。 The polymer compound on the separator 35 may form a porous polymer compound as follows, for example. That is, first, a solution in which a polymer compound is dissolved in a first solvent composed of a polar organic solvent such as N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylacetamide, N, N-dimethylsulfoxide, etc. And this solution is applied onto the separator 35. Next, the separator 35 coated with the above solution is compatible with the above polar organic solvent such as water, ethyl alcohol, propyl alcohol, etc., and in the second solvent which is a poor solvent for the above polymer compound. Immerse. At this time, solvent exchange occurs, phase separation accompanied by spinodal decomposition occurs, and the polymer compound forms a porous structure. Thereafter, by drying, a porous polymer compound having a porous structure can be obtained.
 続いて、電解液を調製して、袋状の外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着等で密封する。これにより、電解液が高分子化合物に含浸し、その高分子化合物がゲル化して、ゲル状の電解質36が形成され、図3および図4に示す非水電解質電池が完成する。 Subsequently, an electrolytic solution is prepared and injected into the bag-shaped exterior member 40, and then the opening of the exterior member 40 is sealed by heat fusion or the like. Thereby, the electrolytic solution is impregnated into the polymer compound, and the polymer compound is gelled to form the gel electrolyte 36, thereby completing the nonaqueous electrolyte battery shown in FIGS.
(第3の製造方法)
 第3の製造方法では、最初に、第1の製造方法と同様に正極33および負極34を作製する。次に正極33に正極リード31を取り付けると共に、負極34に負極リード32を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層して巻回させたのち、その最外周部に保護テープ37を接着させて、巻回電極体30の前駆体である巻回体を作製する。
(Third production method)
In the third manufacturing method, first, the positive electrode 33 and the negative electrode 34 are produced in the same manner as in the first manufacturing method. Next, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated and wound via the separator 35, a protective tape 37 is adhered to the outermost peripheral portion thereof, and a wound body that is a precursor of the wound electrode body 30. Is made.
 続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着等で接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤等の他の材料とを含む電解質用組成物を調製して袋状の外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着等で密封する。最後に、モノマーを熱重合させて高分子化合物とすることにより、ゲル状の電解質36を形成する。これにより、図3および図4に示す非水電解質電池が完成する。 Subsequently, after sandwiching the wound body between the two film-like exterior members 40, the remaining outer peripheral edge except for the outer peripheral edge on one side is bonded by thermal fusion or the like, so that the bag-shaped exterior is obtained. The wound body is accommodated in the member 40. Subsequently, an electrolyte composition containing an electrolytic solution, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary is prepared to form a bag-shaped exterior member. After injecting into the inside of 40, the opening of the exterior member 40 is sealed by heat sealing or the like. Finally, the gel electrolyte 36 is formed by thermally polymerizing the monomer to obtain a polymer compound. Thereby, the nonaqueous electrolyte battery shown in FIGS. 3 and 4 is completed.
[変形例1]
 上述の第2の実施の形態による非水電解質電池の一例では、ゲル状の電解質を用いた構成例について説明したが、ゲル状の電解質に代えて、液系の電解質である電解液を用いてもよい。この場合、外装部材60内には非水電解液が充填されており、巻回電極体30から電解質36を省略した構成の巻回体が、非水電解液に含浸されている。この場合、非水電解質電池は例えば次のようにして作製される。
[Modification 1]
In the example of the nonaqueous electrolyte battery according to the second embodiment described above, the configuration example using the gel electrolyte has been described. However, instead of the gel electrolyte, an electrolyte solution that is a liquid electrolyte is used. Also good. In this case, the exterior member 60 is filled with a non-aqueous electrolyte, and a wound body having a configuration in which the electrolyte 36 is omitted from the wound electrode body 30 is impregnated with the non-aqueous electrolyte. In this case, the nonaqueous electrolyte battery is manufactured as follows, for example.
〔非水電解質電池の製造方法〕
(正極、負極、非水電解液の調製)
 非水電解質電池の一例の製造方法と同様にして、正極33および負極34の作製、非水電解液の調製を行う。
[Method for producing non-aqueous electrolyte battery]
(Preparation of positive electrode, negative electrode, non-aqueous electrolyte)
In the same manner as the manufacturing method of an example of the nonaqueous electrolyte battery, the positive electrode 33 and the negative electrode 34 are produced, and the nonaqueous electrolytic solution is prepared.
(非水電解質電池の組立て)
 次に、正極集電体33Aの端部に正極リード31を溶接により取り付けると共に、負極集電体34Aの端部に負極リード32を溶接により取り付ける。
(Assembling of non-aqueous electrolyte battery)
Next, the positive electrode lead 31 is attached to the end portion of the positive electrode current collector 33A by welding, and the negative electrode lead 32 is attached to the end portion of the negative electrode current collector 34A by welding.
 次に、正極33と負極34とをセパレータ35を介して積層して巻回し、最外周部に保護テープ37を接着して、巻回電極体30の前駆体である巻回体を形成する。次に、この巻回体を外装部材40に挟み、一辺を除く外周縁部を熱融着して袋状とし、外装部材40の内部に収納する。 Next, the positive electrode 33 and the negative electrode 34 are laminated and wound with the separator 35 interposed therebetween, and a protective tape 37 is adhered to the outermost peripheral portion to form a wound body that is a precursor of the wound electrode body 30. Next, the wound body is sandwiched between the exterior members 40, and the outer peripheral edge except for one side is heat-sealed to form a bag shape, which is then stored inside the exterior member 40.
 次に、非水電解液を外装部材40の内部に注入し、巻回体に非水電解液を含浸させたのち、外装部材40の開口部を真空雰囲気下で熱融着して密封する。以上により、目的とする非電解質二次電池が得られる。 Next, after injecting the non-aqueous electrolyte into the exterior member 40 and impregnating the wound body with the non-aqueous electrolyte, the opening of the exterior member 40 is heat-sealed in a vacuum atmosphere and sealed. As a result, the intended non-electrolyte secondary battery is obtained.
[変形例2]
 上述の第2の実施の形態の一例および変形例1では、巻回電極体30が外装部材60で外装された非水電解質電池について説明したが、図5A~図5Cに示すように、巻回電極体30の代わりに積層電極体70を用いてもよい。図5Aは、積層電極体70を収容した非水電解質電池の外観図である。図5Bは、外装部材60に積層電極体70が収容される様子を示す分解斜視図である。図5Cは、図5Aに示す非水電解質電池の底面側からの外観を示す外観図である。
[Modification 2]
In the above-described example of the second embodiment and the first modification, the nonaqueous electrolyte battery in which the wound electrode body 30 is sheathed with the exterior member 60 has been described. However, as illustrated in FIGS. A laminated electrode body 70 may be used instead of the electrode body 30. FIG. 5A is an external view of a nonaqueous electrolyte battery in which the laminated electrode body 70 is accommodated. FIG. 5B is an exploded perspective view showing a state in which the laminated electrode body 70 is accommodated in the exterior member 60. FIG. 5C is an external view showing the external appearance of the nonaqueous electrolyte battery shown in FIG. 5A from the bottom surface side.
 積層電極体70は、矩形状の正極73および矩形状の負極74を、矩形状のセパレータ75を介して積層し、固定部材76で固定した積層電極体70を用いる。なお、図示は省略するが、電解質層を形成する場合には、電解質層が正極73および負極74に接するように設けられている。例えば、正極73およびセパレータ75の間、並びに、負極74およびセパレータ75の間に電解質層(図示省略)が設けられている。この電解質層は、上述した電解質36と同様である。積層電極体70からは、正極73と接続された正極リード71および負極74と接続された負極リード72とが導出されており、正極リード71および負極リード72と外装部材60との間には密着フィルム61が設けられる。 The laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76. Although not shown, when the electrolyte layer is formed, the electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74. For example, an electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This electrolyte layer is the same as the electrolyte 36 described above. A positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other. A film 61 is provided.
 なお、非水電解質電池の製造方法は、巻回電極体30に代えて積層電極体を作製すること、巻回体に代えて積層体(積層電極体70から電解質層を省略した構成のもの)を作製すること以外は、上述の第2の実施の形態の一例および変形例1の非水電解質電池の製造方法と同様である。 In addition, the manufacturing method of a non-aqueous electrolyte battery produces a laminated electrode body in place of the wound electrode body 30, and a laminated body in place of the wound body (with an electrolyte layer omitted from the laminated electrode body 70). Is the same as the manufacturing method of the nonaqueous electrolyte battery of the example of the second embodiment and the modified example 1 except that is manufactured.
<第3の実施の形態~第4の実施の形態>
(本技術の概要)
 まず、本技術の理解を容易にするため、本技術の概要について説明する。上述した特許文献3(特開2013-97993号公報)では、目的が低温特性の改善であるが、シラン化合物にアミノ基とカーボネート構造が含まれず、本技術が示す化合物とは構造が大きく異なる。また、低温特性の改善が十分ではなかった。
<Third to Fourth Embodiments>
(Outline of this technology)
First, in order to facilitate understanding of the present technology, an outline of the present technology will be described. In Patent Document 3 (Japanese Patent Laid-Open No. 2013-97993) described above, the object is to improve low-temperature characteristics, but the silane compound does not contain an amino group and a carbonate structure, and the structure is greatly different from the compound shown in the present technology. Moreover, the improvement of the low temperature characteristics was not sufficient.
 特許文献4(特開2012-199145号公報)では負極にチタン酸リチウム、電池内にSiRの構造を持つ化合物を有するが、改善目的が抵抗上昇と自己放電の抑制で、Si化合物が本技術とは異なる。また、先行技術はスルホン系溶媒を含んでいない。抵抗上昇は抑制できているが、初期の抵抗が高い。 Patent Document 4 (Japanese Patent Application Laid-Open No. 2012-199145) has a lithium titanate in the negative electrode and a compound having a SiR structure in the battery. The purpose of improvement is to suppress resistance increase and self-discharge. Is different. In addition, the prior art does not include a sulfonic solvent. Although the resistance rise can be suppressed, the initial resistance is high.
 特許文献5(特開2013-4215号公報)ではカーボネート構造の被膜によって特性改善を図っているが、本技術の化合物とは構造が異なりかつ改善目的が低温特性の改善でなく、低温特性は改善できていない。 Patent Document 5 (Japanese Patent Laid-Open No. 2013-4215) attempts to improve the characteristics with a carbonate-structured coating, but the structure is different from the compound of the present technology and the purpose of the improvement is not to improve the low-temperature characteristics, but the low-temperature characteristics are improved. Not done.
 特許文献6(特開2001-93583号公報)では、内部短絡の防止が目的で、本技術とは改善目的が異なる。負極内に架橋剤を有し、その候補としてシランカップリング剤が挙げられているが、本技術が示している化合物とは異なる。また、特許文献4では、負極にチタン酸リチウムを有していないが、本技術では負極にチタン酸リチウムを有する。 In Patent Document 6 (Japanese Patent Laid-Open No. 2001-93583), the purpose of improvement is different from the present technology for the purpose of preventing an internal short circuit. Although it has a crosslinking agent in the negative electrode and a silane coupling agent is mentioned as a candidate for this, it is different from the compound shown in the present technology. In Patent Document 4, the negative electrode does not have lithium titanate, but in the present technology, the negative electrode has lithium titanate.
 特許文献7(特開平11-288741号公報)では安全性の向上が改善目的である。特許文献5では負極にチタン酸リチウムを有していないが、本技術では負極のチタン酸リチウムを有する。負極にシランカップリング剤が用いられているが、本技術が示す化合物とは化学構造が異なる。電解液に環状スルホランが含まれているが、環状スルホランは粘度が高いため、高抵抗で低温をはじめ入出力特性が損なわれる。本技術では粘度の低い鎖状スルホランを用いた場合には、低抵抗かつ、入出力特性を低下させずに低温特性を向上できる。 In Patent Document 7 (Japanese Patent Application Laid-Open No. 11-287441), an improvement in safety is an improvement objective. In Patent Document 5, the negative electrode does not have lithium titanate, but the present technology has negative electrode lithium titanate. Although a silane coupling agent is used for the negative electrode, the chemical structure is different from the compound represented by the present technology. Although cyclic sulfolane is contained in the electrolytic solution, the cyclic sulfolane has a high viscosity, so that the input / output characteristics including high resistance and low temperature are impaired. In the present technology, when a low-viscosity chain sulfolane is used, low resistance and low temperature characteristics can be improved without deteriorating input / output characteristics.
 特許文献1(特開2011-222450号公報)では、正極にニッケルや鉄系の化合物を用いたときにフルオロ基を有するシラン化合物を用いて高温劣化を抑制することが提案されている。また、特許文献6では電解液にスルホン化合物を含むことが記されているが、特許文献6の実施例にあるように負極に0Vvs.Li/Li+付近に反応電位を持つ黒鉛やカーボンを用いた場合、非特許文献1(Journal of The Electrochemical Society, 149 7 A920-A926 2002)に記述されている通り、スルホン化合物が還元分解を起こし、長期の信頼性が不十分となってしまう。上述したものでは、リチウムチタン複合酸化合物を負極用いた際の効果については何ら示唆されていない。それに対して、本技術では反応電位が1.55Vvs.Li/Li+と十分に高いリチウムチタン複合酸化合物を負極に用いることで、鎖状スルホンを用いた場合には、より十分な長期寿命を得ることができる。 In Patent Document 1 (Japanese Patent Laid-Open No. 2011-222450), it is proposed to suppress high-temperature deterioration by using a silane compound having a fluoro group when nickel or an iron-based compound is used for the positive electrode. In Patent Document 6, it is described that the electrolyte solution contains a sulfone compound. However, as in the example of Patent Document 6, the negative electrode has 0 Vvs. When graphite or carbon having a reaction potential near Li / Li + is used, the sulfone compound undergoes reductive decomposition as described in Non-Patent Document 1 (Journal of The Electrochemical Society, 149 7 A920-A926 2002). Long-term reliability will be insufficient. In what was mentioned above, there is no suggestion about the effect at the time of using a lithium titanium complex acid compound for a negative electrode. In contrast, in this technique, the reaction potential is 1.55 Vvs. By using Li / Li + and a sufficiently high lithium-titanium complex acid compound for the negative electrode, when a chain sulfone is used, a more sufficient long-term life can be obtained.
 以下、本技術の実施の形態について図面を参照して説明する。なお、説明は、以下の順序で行う。
3.第3の実施の形態(円筒型の電池の例)
4.第4の実施の形態(ラミネートフィルム型の電池の例)
 なお、以下に説明する実施の形態等は本技術の好適な具体例であり、本技術の内容がこれらの実施の形態等に限定されるものではない。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また例示した効果と異なる効果が存在することを否定するものではない。
Hereinafter, embodiments of the present technology will be described with reference to the drawings. The description will be given in the following order.
3. Third embodiment (example of cylindrical battery)
4). Fourth Embodiment (Example of laminated film type battery)
The embodiments described below are suitable specific examples of the present technology, and the contents of the present technology are not limited to these embodiments. Moreover, the effect described in this specification is an illustration to the last, is not limited, and does not deny that the effect different from the illustrated effect exists.
3.第3の実施の形態
(3-1)電池の構成
 本技術の第3の実施の形態による電池について図1および図2を参照しながら説明する。図1は、本技術の第3の実施の形態による電池の断面構成を示す。図2は、図1に示す巻回電極体20の一部を拡大して示す。この電池は、例えば、充電および放電可能な二次電池であり、例えば、非水電解質電池であり、例えば、リチウムイオン二次電池等である。
3. Third Embodiment (3-1) Battery Configuration A battery according to a third embodiment of the present technology will be described with reference to FIGS. 1 and 2. FIG. 1 shows a cross-sectional configuration of a battery according to a third embodiment of the present technology. FIG. 2 shows an enlarged part of the spirally wound electrode body 20 shown in FIG. This battery is a secondary battery that can be charged and discharged, for example, a non-aqueous electrolyte battery, for example, a lithium ion secondary battery, and the like.
 この非水電解質電池は、主に、ほぼ中空円柱状の電池缶11の内部に、セパレータ23を介して正極21と負極22とが積層および巻回された巻回電極体20と、一対の絶縁板12,13とが収納されたものである。この円柱状の電池缶11を用いた電池構造は、円筒型と呼ばれている。 This non-aqueous electrolyte battery mainly includes a wound electrode body 20 in which a positive electrode 21 and a negative electrode 22 are laminated and wound through a separator 23 inside a substantially hollow cylindrical battery can 11, and a pair of insulations. The plates 12 and 13 are accommodated. The battery structure using the cylindrical battery can 11 is called a cylindrical type.
 電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空構造を有していると共に、鉄(Fe)、アルミニウム(Al)またはそれらの合金等により構成されている。なお、電池缶11が鉄により構成される場合には、例えば、電池缶11の表面にニッケル(Ni)等が鍍金されていてもよい。一対の絶縁板12、13は、巻回電極体20を上下から挟み、その巻回周面に対して垂直に延在するように配置されている。 The battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened, and is made of iron (Fe), aluminum (Al), or an alloy thereof. In the case where the battery can 11 is made of iron, for example, nickel (Ni) or the like may be plated on the surface of the battery can 11. The pair of insulating plates 12 and 13 are arranged so as to sandwich the wound electrode body 20 from above and below and to extend perpendicularly to the wound peripheral surface.
 電池缶11の開放端部には、電池蓋14、安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient:PTC素子)16がガスケット17を介してかしめられており、その電池缶11は、密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15および熱感抵抗素子16は、電池蓋14の内側に設けられている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡、または外部からの加熱等に起因して内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と巻回電極体20との間の電気的接続を切断するようになっている。熱感抵抗素子16は、温度の上昇に応じて抵抗が増大する(電流を制限する)ことにより、大電流に起因する異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、その表面には、例えば、アスファルトが塗布されている。 A battery lid 14, a safety valve mechanism 15, and a heat sensitive resistance element (Positive Temperature Coefficient: PTC element) 16 are caulked through a gasket 17 at the open end of the battery can 11, and the battery can 11 is sealed. ing. The battery lid 14 is made of, for example, the same material as the battery can 11. The safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14. The safety valve mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16. In the safety valve mechanism 15, when the internal pressure becomes a certain level or more due to an internal short circuit or external heating, the disk plate 15 </ b> A is reversed and the electric power between the battery lid 14 and the wound electrode body 20 is reversed. Connection is cut off. The heat-sensitive resistance element 16 prevents abnormal heat generation caused by a large current by increasing resistance (limiting current) as the temperature rises. The gasket 17 is made of, for example, an insulating material, and for example, asphalt is applied to the surface thereof.
(巻回電極体)
 巻回電極体20は、セパレータ23を介して正極21と負極22とが積層および巻回されたものである。この巻回電極体20の中心には、センターピン24が挿入されていてもよい。巻回電極体20では、アルミニウム等により構成された正極リード25が正極21に接続されていると共に、ニッケル等により構成された負極リード26が負極22に接続されている。正極リード25は、安全弁機構15に溶接等されて電池蓋14と電気的に接続されており、負極リード26は、電池缶11に溶接等されて電気的に接続されている。
(Wound electrode body)
The wound electrode body 20 is obtained by laminating and winding a positive electrode 21 and a negative electrode 22 via a separator 23. A center pin 24 may be inserted in the center of the wound electrode body 20. In the wound electrode body 20, a positive electrode lead 25 made of aluminum or the like is connected to the positive electrode 21, and a negative electrode lead 26 made of nickel or the like is connected to the negative electrode 22. The positive electrode lead 25 is welded to the safety valve mechanism 15 and electrically connected to the battery lid 14, and the negative electrode lead 26 is welded to the battery can 11 and electrically connected thereto.
(正極)
 正極21は、例えば、一対の面を有する正極集電体21Aの両面に正極活物質層21Bが設けられたものである。なお、図示は省略するが、正極21は正極活物質層21Bが正極集電体21Aの片面だけに設けられた領域を有していてもよい。
(Positive electrode)
For example, the positive electrode 21 is obtained by providing a positive electrode active material layer 21B on both surfaces of a positive electrode current collector 21A having a pair of surfaces. In addition, although illustration is abbreviate | omitted, the positive electrode 21 may have the area | region where the positive electrode active material layer 21B was provided only in the single side | surface of 21 A of positive electrode collectors.
 正極集電体21Aは、例えば、アルミニウム、ニッケルまたはステンレス等の金属材料によって構成されている。 The positive electrode current collector 21A is made of, for example, a metal material such as aluminum, nickel, or stainless steel.
 正極活物質層21Bは、正極活物質として、リチウムを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んでいる。正極活物質層21Bは、必要に応じて、結着剤および導電剤の少なくとも何れか等の他の材料を含んでいてもよい。 The positive electrode active material layer 21 </ b> B contains one or more positive electrode materials capable of inserting and extracting lithium as a positive electrode active material. The positive electrode active material layer 21 </ b> B may contain other materials such as a binder and / or a conductive agent as necessary.
(正極活物質)
 リチウムを吸蔵および放出することが可能な正極材料としては、例えば、リチウム含有化合物が好ましい。高いエネルギー密度が得られるからである。このリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含むリン酸化合物やリチウムと遷移金属元素とを含む複合酸化物等が挙げられる。中でも、遷移金属元素としてコバルト、ニッケル、マンガンおよび鉄からなる群のうちの少なくとも1種を含むものが好ましい。より高い電圧が得られるからである。
(Positive electrode active material)
As a positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing compound is preferable. This is because a high energy density can be obtained. Examples of the lithium-containing compound include a phosphate compound containing lithium and a transition metal element, and a composite oxide containing lithium and a transition metal element. Especially, what contains at least 1 sort (s) of the group which consists of cobalt, nickel, manganese, and iron as a transition metal element is preferable. This is because a higher voltage can be obtained.
(リチウムと遷移金属元素とを含むリン酸化合物)
 リチウムと遷移金属元素とを含むリン酸化合物としては、例えば、リチウムとリン(P)と鉄(Fe)とを少なくとも含むオリビン構造を有するリン酸鉄リチウム化合物、リチウムとリン(P)とマンガン(Mn)とを少なくとも含むオリビン構造を有するリン酸マンガンリチウム化合物等が挙げられる。オリビン構造を有するリン酸鉄リチウム化合物としては、リチウム鉄リン酸化合物(LiFePO4)、または、異種元素を含有するリチウム鉄複合リン酸化合物(LiFex1-x4:Mは鉄以外の1種類以上金属元素、xは0<x<1である。)等が挙げられる。なお、上記のMとしては、遷移元素、IIA族元素、IIIA族元素、IIIB族元素、IVB族元素等が挙げられる。特に、Mは、遷移金属元素としてコバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、アルミニウム(Al)、バナジウム(V)、およびチタン(Ti)のうちの少なくとも1種が好ましい。オリビン構造を有するリン酸マンガンリチウム化合物としては、例えば、リチウムマンガンリン酸化合物(LiMnPO4)等が挙げられる。
(Phosphate compounds containing lithium and transition metal elements)
As a phosphoric acid compound containing lithium and a transition metal element, for example, a lithium iron phosphate compound having an olivine structure containing at least lithium, phosphorus (P) and iron (Fe), lithium, phosphorus (P) and manganese ( And a lithium manganese phosphate compound having an olivine structure containing at least Mn). The lithium iron phosphate compound having an olivine structure, lithium iron phosphate compound (LiFePO 4), or lithium iron composite phosphate compound containing the different element (LiFe x M 1-x O 4: M is other than iron 1 or more types of metal elements, x is 0 <x <1, etc.). In addition, as said M, a transition element, a IIA group element, a IIIA group element, a IIIB group element, a IVB group element etc. are mentioned. In particular, M is at least one of cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), aluminum (Al), vanadium (V), and titanium (Ti) as a transition metal element. Is preferred. Examples of the lithium manganese phosphate compound having an olivine structure include a lithium manganese phosphate compound (LiMnPO 4 ).
 オリビン構造を有するリン酸鉄リチウム化合物としては、典型的には、(化1)で表されるリチウムリン酸化合物等が挙げられる。
(化1)
 LiuFerM1(1-r)PO4
(式中、M1は、コバルト(Co)、マンガン(Mn)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)からなる群のうちの少なくとも1種を表す。rは、0<r≦1の範囲内の値である。uは、0.9≦u≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、uの値は完全放電状態における値を表している。)
A typical example of the lithium iron phosphate compound having an olivine structure is a lithium phosphate compound represented by (Chemical Formula 1).
(Chemical formula 1)
Li u Fe r M1 (1- r) PO 4
(In the formula, M1 is cobalt (Co), manganese (Mn), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium (Nb ), Copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr), at least one selected from the group consisting of r. , 0 <r ≦ 1, and u is a value within the range of 0.9 ≦ u ≦ 1.1 Note that the composition of lithium varies depending on the state of charge and discharge, and the value of u Represents the value in the fully discharged state.)
 (化1)で表されるリチウムリン酸化合物としては、典型的には、例えば、LiuFePO4(uは上記と同義である)、LiuFerMn(1-r)PO4(uは上記と同義である。rは上記と同義である。)等が挙げられる。 As the lithium phosphate compound represented by (Chemical Formula 1), typically, for example, Li u FePO 4 (u is as defined above), Li u Fe r Mn (1-r) PO 4 (u Is as defined above, and r is as defined above.
(リチウムと遷移金属元素とを含む複合酸化物)
 リチウムと遷移金属元素とを含む複合酸化物としては、例えば、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケル複合酸化物(LixNiO2)、リチウムニッケルコバルト複合酸化物(LixNi1-zCoz2(z<1))、リチウムニッケルコバルトマンガン複合酸化物(LixNi(1-v-w)CovMnw2(v+w<1))等の層状構造を有するリチウム遷移金属複合酸化物、スピネル構造を有し、且つ、リチウムとマンガンとを少なくとも含むリチウムマンガン複合酸化物等が挙げられる。
(Composite oxide containing lithium and transition metal element)
Examples of the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide (Li x Ni). 1-z Co z O 2 (z <1)), lithium nickel cobalt manganese composite oxide (Li x Ni (1-vw) Co v Mn w O 2 (v + w <1)) and other lithium transitions having a layered structure Examples thereof include metal composite oxides, lithium manganese composite oxides having a spinel structure and containing at least lithium and manganese.
 スピネル構造のリチウムマンガン複合酸化物としては、例えば、(化2)で表されるリチウム複合酸化物等が挙げられる。
(化2)
 LivMn(2-w)M2ws
(式中、M2は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。v、wおよびsは、0.9≦v≦1.1、0≦w≦0.6、3.7≦s≦4.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
Examples of the spinel structure lithium manganese composite oxide include a lithium composite oxide represented by (Chemical Formula 2).
(Chemical formula 2)
Li v Mn (2-w) M2 w O s
(In the formula, M2 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe ), Copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), at least one selected from the group consisting of v, w and s are values within the range of 0.9 ≦ v ≦ 1.1, 0 ≦ w ≦ 0.6, 3.7 ≦ s ≦ 4.1, where the composition of lithium is the state of charge and discharge. And the value of v represents a value in a fully discharged state.)
 (化2)で表されるリチウム複合酸化物としては、具体的には、例えば、LivMn24(vは上記と同義である)、リチウムマンガンニッケル複合酸化物(LiMn2-tNit4(t<2))等が挙げられる。 Specifically, as the lithium composite oxide represented by (Chemical Formula 2), for example, Li v Mn 2 O 4 (v is as defined above), lithium manganese nickel composite oxide (LiMn 2−t Ni t O 4 (t <2)) and the like.
 正極材料は、上述したリチウム含有化合物からなる芯粒子の表面の少なくとも一部に被覆層が形成されたものであってもよい。被覆層は、母材となるリチウム含有化合物の芯粒子の表面の少なくとも一部に設けられたものであり、母材となるリチウム含有化合物の粒子とは異なる組成元素または組成比を有するものである。例えば、正極材料としては、より高い電極充填性とサイクル特性が得られるという観点から、上記リチウム含有化合物のいずれかより成る芯粒子の表面に、他のリチウム含有化合物(例えば、Ni、Mn、Li等から選択されるもの)やリン酸化合物(例えば、リン酸リチウム等)を含む被覆層が形成されたものであってもよい。被覆層は、炭素材料等であってもよい。 The positive electrode material may be one in which a coating layer is formed on at least a part of the surface of the core particle made of the lithium-containing compound described above. The coating layer is provided on at least a part of the surface of the core particle of the lithium-containing compound as the base material, and has a composition element or composition ratio different from that of the lithium-containing compound particle as the base material. . For example, as the positive electrode material, another lithium-containing compound (for example, Ni, Mn, Li) is formed on the surface of the core particle made of any of the lithium-containing compounds from the viewpoint that higher electrode filling properties and cycle characteristics can be obtained. And a coating layer containing a phosphate compound (for example, lithium phosphate) may be formed. The covering layer may be a carbon material or the like.
 この他、リチウムを吸蔵および放出することが可能な正極材料としては、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガン等の酸化物や、二硫化チタンまたは硫化モリブデン等の二硫化物や、セレン化ニオブ等のカルコゲン化物や、硫黄、ポリアニリンまたはポリチオフェン等の導電性高分子も挙げられる。 In addition, examples of positive electrode materials capable of inserting and extracting lithium include oxides such as titanium oxide, vanadium oxide and manganese dioxide, disulfides such as titanium disulfide and molybdenum sulfide, and niobium selenide. And chalcogenides such as sulfur, polyaniline or polythiophene, and other conductive polymers.
(導電剤)
 導電剤としては、ファーネス法、アセチレン法、コンタクト法、サーマル法等で作製されたカーボンブラックや、気相成長炭素、活性炭、活性炭繊維布、シングルウォールまたはマルチウォールカーボンナノチューブ、カーボンナノホーン等の炭素材料やこれらの炭素材料を酸・アルカリ処理等で表面改質したもの、他の元素を物理的または化学的に結合させて表面改質したものなどを用いることができる。
(Conductive agent)
Examples of the conductive agent include carbon black produced by furnace method, acetylene method, contact method, thermal method, etc., carbon materials such as vapor-grown carbon, activated carbon, activated carbon fiber cloth, single wall or multi-wall carbon nanotube, carbon nanohorn, etc. In addition, those obtained by surface modification of these carbon materials by acid / alkali treatment or the like, or those obtained by physically or chemically bonding other elements can be used.
(結着剤)
 結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)等の樹脂材料、並びに、これら樹脂材料を主体とする共重合体等から選択される少なくとも1種が用いられる。
(Binder)
Examples of the binder include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resins. At least one selected from a copolymer mainly composed of materials is used.
(負極)
 負極22は、例えば、一対の面を有する負極集電体22Aの両面に負極活物質層22Bが設けられたものである。なお、図示は省略するが、負極22は負極活物質層22Bが負極集電体22Aの片面だけに設けられた領域を有していてもよい。
(Negative electrode)
In the negative electrode 22, for example, a negative electrode active material layer 22B is provided on both surfaces of a negative electrode current collector 22A having a pair of surfaces. Although illustration is omitted, the negative electrode 22 may have a region where the negative electrode active material layer 22B is provided only on one surface of the negative electrode current collector 22A.
 負極集電体22Aは、例えば、アルミニウム箔、銅、ニッケルまたはステンレス等の金属材料によって構成されている。 The negative electrode current collector 22A is made of a metal material such as aluminum foil, copper, nickel, or stainless steel, for example.
 負極活物質層22Bは、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料の1種または2種以上を含んでいる。負極活物質層22Bは、必要に応じて、結着剤および導電剤の少なくとも何れか等の他の材料を含んでいてもよい。なお、結着剤および導電剤は、それぞれ正極で説明したものと同様のものを用いることができる。 The negative electrode active material layer 22B contains one or more negative electrode materials capable of inserting and extracting lithium as a negative electrode active material. The negative electrode active material layer 22B may contain other materials such as at least one of a binder and a conductive agent as necessary. Note that the same binder and conductive agent as those described for the positive electrode can be used.
(負極活物質)
 リチウムを吸蔵および放出することが可能な負極材料としては、例えば、少なくともチタン(Ti)および酸素(O)を構成元素として含有するチタン含有無機酸化物、または、金属硫化物等を用いることができる。リチウムを吸蔵および放出することが可能な負極材料としては、例えば、負極の反応電位が1.0Vvs.Li/Li+超、好ましくは1.0Vvs.Li/Li+超1.9Vvs.Li/Li+以下となる材料等が好ましい。
(Negative electrode active material)
As a negative electrode material capable of inserting and extracting lithium, for example, a titanium-containing inorganic oxide containing at least titanium (Ti) and oxygen (O) as constituent elements, or a metal sulfide can be used. . As the negative electrode material capable of inserting and extracting lithium, for example, the reaction potential of the negative electrode is 1.0 Vvs. More than Li / Li + , preferably 1.0 Vvs. Li / Li + more than 1.9Vvs. The material etc. which become Li / Li + or less are preferable.
 チタン含有無機酸化物としては、少なくともリチウムおよびチタンを構成元素として有する複合酸化物(チタン含有リチウム複合酸化物と称する)、チタンと酸素とを構成元素として有する金属酸化物(チタン酸化物と称する)等が挙げられる。これらの中でも、チタン含有リチウム複合酸化物、または、チタン酸化物が好ましい。 Examples of the titanium-containing inorganic oxide include composite oxides having at least lithium and titanium as constituent elements (referred to as titanium-containing lithium composite oxides), and metal oxides having titanium and oxygen as constituent elements (referred to as titanium oxides). Etc. Among these, titanium-containing lithium composite oxide or titanium oxide is preferable.
 チタン含有リチウム複合酸化物としては、典型的には、例えば、スピネル構造を有するLixTiyz(xはLiの組成比を示し、yはTiの組成比を示し、zはOの組成比を示す。x>0、y>0、z>0である。)で表される化合物(チタン酸リチウム)が挙げられる。 As the titanium-containing lithium composite oxide, typically, for example, Li x Ti y O z having a spinel structure (x represents a composition ratio of Li, y represents a composition ratio of Ti, and z represents a composition of O). A compound (lithium titanate) represented by the following formula: x> 0, y> 0, z> 0).
 スピネル構造を有するLixTiyzの具体例としては、Li4Ti512等が挙げられる。スピネル構造を有するLixTiyzのリチウムイオンを吸蔵および放出する電位(V対Li/Li+)は、例えば、電池の充放電時の電位変化パターン中における平坦部において約1.55V等である。なお、LixTiyz中のLiは、Na、K等であってもよい。 Specific examples of Li x Ti y O z having a spinel structure include Li 4 Ti 5 O 12 . The potential (V vs. Li / Li + ) for occluding and releasing lithium ions of Li x Ti y O z having a spinel structure is, for example, about 1.55 V in the flat portion in the potential change pattern during charge / discharge of the battery. It is. Note that Li in Li x Ti y O z may be Na, K, or the like.
 チタン含有リチウム複合酸化物としては、更にまた、より高い電位平坦性とレート特性が得られるという観点から、上記構成元素のリチウム、チタン、酸素の一部が、AlやMg等の他の元素に置換されたものを用いてもよい。 As a titanium-containing lithium composite oxide, in addition, from the viewpoint that higher potential flatness and rate characteristics can be obtained, some of the constituent elements lithium, titanium, and oxygen are replaced with other elements such as Al and Mg. A substituted one may be used.
 チタンの一部を置換する他の元素としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)または白金(Pt)等である。 Examples of other elements that substitute a part of titanium include metal elements and metalloid elements capable of forming an alloy with lithium. Specifically, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), Examples thereof include bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd), and platinum (Pt).
 リチウム、チタン、酸素の一部が他の元素に置換されたチタン含有リチウム複合酸化物としては、典型的には、例えば、Li3.75Ti4.875Mg0.37512、Li3.75Ti4.50Al0.7512等が挙げられる。 Typical examples of the titanium-containing lithium composite oxide in which a part of lithium, titanium, and oxygen are substituted with other elements include Li 3.75 Ti 4.875 Mg 0.375 O 12 , Li 3.75 Ti 4.50 Al 0.75 O 12, and the like. Is mentioned.
(チタン酸化物)
 チタン酸化物としてはTipq(p>0、q>0である。)で表される化合物(酸化チタン)が挙げられる。この化合物の具体例としては、TiO2等が挙げられる。TiO2は、アナターゼ型TiO2〔TiO2(anatase)〕、ルチル型TiO2〔TiO2(rutile)〕、B型TiO2〔TiO2(B)〕等の何れであってもよい。
(Titanium oxide)
The titanium oxide (which is p> 0, q> 0. ) Ti p O q a compound represented by (titanium oxide) and the like. Specific examples of this compound include TiO 2 and the like. The TiO 2 may be any of anatase TiO 2 [TiO 2 (anatase)], rutile TiO 2 [TiO 2 (rutile)], B-type TiO 2 [TiO 2 (B)], and the like.
 なお、チタン含有リチウム複合酸化物等のチタン含有無機酸化物は、炭素により被覆されていてもよい。例えば、化学気相成長(CVD)法等を用いて、炭化水素等を分解させてチタン含有リチウム複合酸化物の表面に炭素皮膜を成長させることにより、炭素により被覆されたチタン含有無機酸化物を得ることができる。なお、炭素被覆の方法に関して、上記に限定されるものではない。 In addition, the titanium-containing inorganic oxide such as the titanium-containing lithium composite oxide may be coated with carbon. For example, by using a chemical vapor deposition (CVD) method or the like, hydrocarbons are decomposed and a carbon film is grown on the surface of the titanium-containing lithium composite oxide, whereby a titanium-containing inorganic oxide coated with carbon is obtained. Obtainable. The carbon coating method is not limited to the above.
 負極22には、後述の電解液に含まれるカーボネート溶媒およびシランカップリング剤またはシロキサン化合物(シラン・シロキサン化合物と略称する場合もある)に由来する化合物が含まれている。なお、負極22には、さらに鎖状スルホン化合物に由来する化合物が含まれるようにしてもよい。 The negative electrode 22 contains a compound derived from a carbonate solvent and a silane coupling agent or a siloxane compound (sometimes abbreviated as a silane / siloxane compound) contained in an electrolyte solution described later. The negative electrode 22 may further contain a compound derived from a chain sulfone compound.
 例えば、負極22には、このような化合物として、式(1A)で表される化合物、式(2A)で表される化合物、および、式(3A)で表される化合物の少なくとも1種が含まれている。負極22には、鎖状スルホン化合物に由来する化合物として、式(4A)で表されるスルホニル化合物がさらに含まれるようにしてもよい。典型的には、これらの化合物は、充放電時において負極活物質層22B中の活物質粒子の表面に形成される被膜等に含まれている。被膜によって負極22の活性部位を包むことで副反応を抑制することができる。その結果、ガス発生の抑制を抑制することができる。また、負極22に式(1A)で表される化合物、式(2A)で表される化合物および式(3A)で表される化合物の少なくとも1種が含まれることによって、低温環境下においてもLiイオンの拡散が安定し、高い入出力特性を得ることができる。 For example, the negative electrode 22 includes, as such a compound, at least one of a compound represented by the formula (1A), a compound represented by the formula (2A), and a compound represented by the formula (3A). It is. The negative electrode 22 may further include a sulfonyl compound represented by the formula (4A) as a compound derived from the chain sulfone compound. Typically, these compounds are contained in a film or the like formed on the surface of the active material particles in the negative electrode active material layer 22B during charge / discharge. Side reactions can be suppressed by wrapping the active site of the negative electrode 22 with the coating. As a result, suppression of gas generation can be suppressed. In addition, since the negative electrode 22 contains at least one of the compound represented by the formula (1A), the compound represented by the formula (2A), and the compound represented by the formula (3A), Li can be obtained even in a low temperature environment. Ion diffusion is stable and high input / output characteristics can be obtained.
Figure JPOXMLDOC01-appb-C000006
(式中、R1、R2およびR3は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R4は、アルカリ金属、アルカリ土類金属、水素基、ハロゲン基、アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、アルカリ金属と結合したアルキル基、アルカリ土類金属と結合したアルキル基、ハロゲン化アルケニル基、アルカリ金属と結合したアルケニル基、アルカリ土類金属と結合したアルケニル基、ハロゲン化アルキニル基、アルカリ金属と結合したアルキニル基、アルカリ土類金属と結合したアルキニル基またはアルコキシ基である。R5は、アルカリ金属、アルカリ土類金属、水素基、ハロゲン基、アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、アルカリ金属と結合したアルキル基、アルカリ土類金属と結合したアルキル基、ハロゲン化アルケニル基、アルカリ金属と結合したアルケニル基、アルカリ土類金属と結合したアルケニル基、ハロゲン化アルキニル基、アルカリ金属と結合したアルキニル基、アルカリ土類金属と結合したアルキニル基、アルコキシ基、下記の式(A)で表される置換基、下記の式(B)で表される置換基、下記の式(C)で表される置換基、下記の式(D)で表される置換基、下記の式(E)で表される置換基、下記の式(F)で表される置換基、下記の式(G)で表される置換基、下記の式(H)で表される置換基、または、下記の式(I)で表される置換基である。)
Figure JPOXMLDOC01-appb-C000007
(式中、R6、R7およびR8は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R9、R10およびR11は、各々独立してアルカリ金属、アルカリ土類金属、アルキル基、ハロゲン基、ハロゲン化アルキル基または水素基である。R12は、アルキル基、ハロゲン基、ハロゲン化アルキル基、下記の式(A)で表される置換基、または、水素基である。)
Figure JPOXMLDOC01-appb-C000008
(式中、R13、R14およびR15は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R16は、アルカリ金属、アルカリ土類金属、アルキル基、ハロゲン基、ハロゲン化アルキル基または水素基である。R17は、アルキル基、ハロゲン基、ハロゲン化アルキル基、下記の式(A)で表される置換基、または、水素基である。)
Figure JPOXMLDOC01-appb-C000009
(式中、R18は、ハロゲン基、アルキル基、ハロゲン化アルキル基またはアルコキシ基である。R19は、HまたはLiを表す。)
Figure JPOXMLDOC01-appb-C000010
(式中、R20は、アルカリ金属、アルカリ土類金属、アルキル基、ハロゲン基、ハロゲン化アルキル基または水素基である。)
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-C000006
(In the formula, R1, R2 and R3 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R4 is an alkali metal, alkaline earth metal, hydrogen group, halogen group or alkyl group. , Alkenyl group, alkynyl group, halogenated alkyl group, alkyl group bonded to alkali metal, alkyl group bonded to alkaline earth metal, alkenyl halide group, alkenyl group bonded to alkali metal, bonded to alkaline earth metal An alkenyl group, a halogenated alkynyl group, an alkynyl group bonded to an alkali metal, an alkynyl group bonded to an alkaline earth metal, or an alkoxy group, wherein R5 is an alkali metal, alkaline earth metal, hydrogen group, halogen group, alkyl group; Alkenyl group, alkynyl group, halogenated alkyl group, alkali metal Bonded alkyl group, alkyl group bonded to alkaline earth metal, halogenated alkenyl group, alkenyl group bonded to alkali metal, alkenyl group bonded to alkaline earth metal, halogenated alkynyl group, alkynyl group bonded to alkali metal , An alkynyl group bonded to an alkaline earth metal, an alkoxy group, a substituent represented by the following formula (A), a substituent represented by the following formula (B), and a formula (C) Substituents, substituents represented by the following formula (D), substituents represented by the following formula (E), substituents represented by the following formula (F), represented by the following formula (G) A substituent represented by the following formula (H), or a substituent represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000007
(Wherein R6, R7 and R8 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R9, R10 and R11 are each independently an alkali metal, an alkaline earth metal, An alkyl group, a halogen group, a halogenated alkyl group, or a hydrogen group, and R12 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group; )
Figure JPOXMLDOC01-appb-C000008
(In the formula, R13, R14 and R15 each independently represents an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R16 represents an alkali metal, an alkaline earth metal, an alkyl group, a halogen group or a halogenated group. R 17 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group.
Figure JPOXMLDOC01-appb-C000009
(In the formula, R18 represents a halogen group, an alkyl group, a halogenated alkyl group or an alkoxy group. R19 represents H or Li.)
Figure JPOXMLDOC01-appb-C000010
(Wherein R20 is an alkali metal, alkaline earth metal, alkyl group, halogen group, halogenated alkyl group or hydrogen group.)
Figure JPOXMLDOC01-appb-I000003
 なお、本技術では、黒鉛等の炭素系負極活物質と比較して、負極活物質として、負極の反応電位が貴な電位となる負極材料を用いているため、後述の鎖状スルホン化合物のような負極の反応電位が卑な炭素系負極活物質を用いた場合に分解してしまい有効ではない溶媒を、効果的に使用することもできる。 In this technology, compared to a carbon-based negative electrode active material such as graphite, a negative electrode material in which the reaction potential of the negative electrode becomes a noble potential is used as the negative electrode active material. When a carbon-based negative electrode active material having a low negative electrode reaction potential is used, a solvent that decomposes and is not effective can be used effectively.
 式(1A)で表される化合物としては、例えば、下記の式(1A-1)~式(1A-78)で表される化合物等が挙げられる。これらの中でも、電池特性の観点から、式(1A-25)で表される化合物、式(1A-26)で表される化合物、式(1A-27)で表される化合物、式(1A-28)で表される化合物、式(1A-29)で表される化合物、式(1A-30)で表される化合物、式(1A-32)で表される化合物、式(1A-38)で表される化合物、式(1A-39)で表される化合物、式(1A-40)で表される化合物、式(1A-41)で表される化合物、式(1A-42)で表される化合物が好ましい。 Examples of the compound represented by the formula (1A) include compounds represented by the following formulas (1A-1) to (1A-78). Among these, from the viewpoint of battery characteristics, a compound represented by the formula (1A-25), a compound represented by the formula (1A-26), a compound represented by the formula (1A-27), a formula (1A- 28), a compound represented by formula (1A-29), a compound represented by formula (1A-30), a compound represented by formula (1A-32), a formula (1A-38) A compound represented by formula (1A-39), a compound represented by formula (1A-40), a compound represented by formula (1A-41), a formula (1A-42) Are preferred.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
 式(2A)で表される化合物としては、例えば、下記の式(2A-1)~式(2A-12)で表される化合物等が挙げられる。これらの中でも、電池特性の観点から、式(2A-10)で表される化合物、式(2A-11)で表される化合物、式(2A-12)で表される化合物が好ましい。 Examples of the compound represented by the formula (2A) include compounds represented by the following formulas (2A-1) to (2A-12). Among these, from the viewpoint of battery characteristics, a compound represented by the formula (2A-10), a compound represented by the formula (2A-11), and a compound represented by the formula (2A-12) are preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(3A)で表される化合物としては、例えば、下記の式(3A-1)~式(3A-3)で表される化合物等が挙げられる。 Examples of the compound represented by the formula (3A) include compounds represented by the following formulas (3A-1) to (3A-3).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(1A)で表される化合物、式(2A)で表される化合物および式(3A)で表される化合物の少なくとも1種を含む負極は、例えば、負極に含浸させた電解液に含まれたシランカップリング剤またはシロキサン化合物(以下シラン・シロキサン化合物と称する)およびカーボネート溶媒から生成されたものである。 The negative electrode including at least one of the compound represented by the formula (1A), the compound represented by the formula (2A), and the compound represented by the formula (3A) is included in, for example, an electrolytic solution impregnated in the negative electrode. A silane coupling agent or a siloxane compound (hereinafter referred to as a silane / siloxane compound) and a carbonate solvent.
 式(1A)、式(2A)、式(3A)で表される各化合物は、シラン・シロキサン化合物およびカーボネート溶媒に由来するものである。典型的には、例えば、電池の充放電における、シラン・シロキサン化合物とカーボネート溶媒の分解物との反応によって生成されたもの等である。シラン・シロキサン化合物は、典型的には、アミノ(-NH2)を有するシラン・シロキサン化合物である。 Each compound represented by Formula (1A), Formula (2A), and Formula (3A) is derived from a silane / siloxane compound and a carbonate solvent. Typically, for example, it is produced by a reaction between a silane / siloxane compound and a decomposition product of a carbonate solvent in charge / discharge of a battery. The silane siloxane compound is typically a silane siloxane compound having amino (—NH 2 ).
 なお、負極中等の電池内に形成された、シラン・シロキサン化合物およびカーボネート溶媒に由来する化合物等を確認するためには、例えば、電池を解体して負極を含む電極体を取り出したのち、活物質表面を既存の元素分析方法、すなわち、エネルギー分散型X線分光法(SEM-EDX)等により元素分布観察を行うことによってその形成割合を分析すればよい。この方法を用いる場合には、意図せずに電解質中の不要成分が分析されることを防止するために、電極の表面を炭酸ジメチル(DMC)等の有機溶剤で洗浄してから分析することが好ましい。 In order to confirm the silane / siloxane compound and the compound derived from the carbonate solvent formed in the battery such as in the negative electrode, for example, after disassembling the battery and taking out the electrode body including the negative electrode, the active material The formation ratio of the surface may be analyzed by observing the element distribution by an existing elemental analysis method, that is, energy dispersive X-ray spectroscopy (SEM-EDX). When using this method, in order to prevent unintentional analysis of unnecessary components in the electrolyte, the electrode surface may be washed after being washed with an organic solvent such as dimethyl carbonate (DMC). preferable.
 また、取り出した電極体の洗浄抽出物を既存の構造分析方法、すなわち、赤外分光法(IR)、核磁気共鳴法(1H/13C-NMR)、ガスまたは液クロマトグラフ質量分析法(GC/LC-MS)等により含まれる化合物の構造解析を行うことによって、各化合物の形成割合を分析してもよい。この方法を用いる場合にも、意図せずに電解質中の不要成分が分析されることを防止するために、電極の表面を炭酸ジメチル(DMC)等の有機溶剤で洗浄してから各化合物を抽出および分析することが好ましい。 In addition, the washed extract of the electrode body taken out was subjected to existing structural analysis methods, that is, infrared spectroscopy (IR), nuclear magnetic resonance (1H / 13C-NMR), gas or liquid chromatography mass spectrometry (GC / The formation ratio of each compound may be analyzed by analyzing the structure of the compound contained by LC-MS) or the like. Even when this method is used, the surface of the electrode is washed with an organic solvent such as dimethyl carbonate (DMC) in order to prevent unintentional analysis of unnecessary components in the electrolyte, and then each compound is extracted. And analyzing.
(式(1A)で表される化合物~式(3A)で表される化合物の少なくとも1種の含有量)
 式(1A)で表される化合物~式(3A)で表される化合物の少なくとも1種の含有量を、所定の範囲にすることによって、電池容量等の特性をより維持しつつ、負極活物質表面をより効果的に被覆することができる。式(1A)で表される化合物~式(3A)で表される化合物の少なくとも1種は、負極中に含まれると共に、電解液中にも含まれていてもよい。式(1A)で表される化合物~式(3A)で表される化合物の少なくとも1種の好ましい含有量は、電解液中の式(1A)で表される化合物~式(3A)で表される化合物の少なくとも1種の含有量によって規定される。式(1A)で表される化合物~式(3A)で表される化合物の少なくとも1種の含有量としては、より優れた効果を得られる観点から、電解液の全質量に対して、0.05質量%以上0.5質量%以下であることがより好ましい。
(Content of at least one compound represented by formula (1A) to compound represented by formula (3A))
By adjusting the content of at least one of the compound represented by the formula (1A) to the compound represented by the formula (3A) within a predetermined range, the negative electrode active material can be maintained while maintaining characteristics such as battery capacity. The surface can be coated more effectively. At least one of the compound represented by the formula (1A) to the compound represented by the formula (3A) may be contained in the negative electrode and also in the electrolytic solution. A preferable content of at least one of the compound represented by the formula (1A) to the compound represented by the formula (3A) is represented by the compound represented by the formula (1A) to the formula (3A) in the electrolytic solution. Defined by the content of at least one compound. The content of at least one of the compound represented by the formula (1A) to the compound represented by the formula (3A) is set to 0. 0 with respect to the total mass of the electrolytic solution from the viewpoint of obtaining a more excellent effect. More preferably, the content is from 05% by mass to 0.5% by mass.
 式(4A)で表される化合物としては、例えば、下記の式(4A-1)~式(4A-8)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000014
Examples of the compound represented by the formula (4A) include compounds represented by the following formulas (4A-1) to (4A-8).
Figure JPOXMLDOC01-appb-C000014
 電解液中の化合物は、解体した電池を遠心分離機にかけ、取り出した電解液を分析することで確認できる。具体的には、NMR(Nuclear Magnetic Resonance)、IR(infrared absorption spectrometry)、Raman(ラマン分光法)、GC-MS(Gas Chromatography mass spectrometry)、LC-MS(Liquid Chromatography Mass Spectrometry)等を用いることができる。 The compound in the electrolytic solution can be confirmed by applying the disassembled battery to a centrifuge and analyzing the extracted electrolytic solution. Specifically, NMR (Nuclear magnetic resonance), IR (infrared absorption spectroscopy), Raman (Raman spectroscopy), GC-MS (Gas chromatography, mass spectrometry), LC-MS (Liquid chromatography, Mass spectrometry), etc. can be used. it can.
(セパレータ)
 セパレータ23は、イオン透過度が大きく、所定の機械的強度を有する絶縁性の膜から構成される多孔質膜である。セパレータ23には、液状の電解質である電解液が含浸されている。セパレータ23の空孔には、電解液が保持される。
(Separator)
The separator 23 is a porous film composed of an insulating film having a high ion permeability and a predetermined mechanical strength. The separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte. The electrolyte solution is held in the pores of the separator 23.
 このようなセパレータ23を構成する樹脂材料は、例えばポリプロピレンもしくはポリエチレン等のポリオレフィン樹脂、アクリル樹脂、スチレン樹脂、ポリエステル樹脂またはナイロン樹脂等を用いることが好ましい。特に、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン等のポリエチレン、もしくはそれらの低分子量ワックス分、またはポリプロピレン等のポリオレフィン樹脂は溶融温度が適当であり、入手が容易なので好適に用いられる。また、これら2種以上の多孔質膜を積層した構造、もしくは、2種以上の樹脂材料を溶融混練して形成した多孔質膜としてもよい。ポリオレフィン樹脂からなる多孔質膜を含むものは、正極21と負極22との分離性に優れ、内部短絡の低下をいっそう低減することができる。また、セパレータ23としては、不織布を用いることが好まし。不織布ではLiイオンが透過するのに最適な十分な細孔径を確保しやすいという特徴があり、電池として高い入出力を得ることができる。 For example, a polyolefin resin such as polypropylene or polyethylene, an acrylic resin, a styrene resin, a polyester resin, or a nylon resin is preferably used as the resin material constituting the separator 23. In particular, polyethylene such as low density polyethylene, high density polyethylene and linear polyethylene, or their low molecular weight wax content, or polyolefin resin such as polypropylene is suitable because it has an appropriate melting temperature and is easily available. Moreover, it is good also as a porous film formed by melt-kneading the structure which laminated | stacked these 2 or more types of porous films, or 2 or more types of resin materials. A material including a porous film made of a polyolefin resin is excellent in separability between the positive electrode 21 and the negative electrode 22 and can further reduce a decrease in internal short circuit. Moreover, it is preferable to use a nonwoven fabric as the separator 23. Nonwoven fabrics have the feature that it is easy to ensure a sufficient pore diameter that is optimal for the permeation of Li ions, and high input / output can be obtained as a battery.
 セパレータ23の厚さは、必要な強度を保つことができる厚さ以上であれば任意に設定可能である。セパレータ23は、正極21と負極22との間の絶縁を図り、短絡等を防止するとともに、セパレータ23を介した電池反応を好適に行うためのイオン透過性を有し、かつ電池内において電池反応に寄与する活物質層の体積効率をできるだけ高くできる厚さに設定されることが好ましい。 The thickness of the separator 23 can be arbitrarily set as long as it is equal to or greater than the thickness that can maintain the required strength. The separator 23 insulates between the positive electrode 21 and the negative electrode 22 to prevent a short circuit and the like, and has ion permeability for suitably performing a battery reaction via the separator 23, and the battery reaction in the battery. It is preferable to set the thickness so that the volumetric efficiency of the active material layer that contributes to the maximum can be increased.
(電解液)
 電解液(非水電解液)は、電解質塩と、この電解質塩を溶解する非水溶媒と、添加剤としてシランカップリング剤またはシロキサン化合物を含む。なお、電解液は、添加剤としてシランカップリング剤およびシロキサン化合物の両方を含んでいてもよい。
(Electrolyte)
The electrolytic solution (nonaqueous electrolytic solution) includes an electrolyte salt, a nonaqueous solvent that dissolves the electrolyte salt, and a silane coupling agent or a siloxane compound as an additive. The electrolytic solution may contain both a silane coupling agent and a siloxane compound as additives.
(非水溶媒)
 非水溶媒としては、少なくともカーボネート溶媒を含むものを用いる。
(Non-aqueous solvent)
As the non-aqueous solvent, a solvent containing at least a carbonate solvent is used.
(カーボネート溶媒)
 本技術に含まれるカーボネート溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート等、ビニルエチレンカーボネート(VC)等の炭素-炭素間二重結合等の不飽和結合を有する不飽和カーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC;フルオロエチレンカーボネート)、4,5-ジフルオロ-1,3-ジオキソラン-2-オン(DFEC;ジフルオロエチレンカーボネート)等のハロゲン化カーボネート等のカーボネート化合物を用いることができる。
(Carbonate solvent)
Examples of the carbonate solvent included in the present technology include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Unsaturated carbonates having unsaturated bonds such as carbon-carbon double bonds such as vinyl ethylene carbonate (VC), 4-fluoro-1,3-dioxolan-2-one (FEC; fluoroethylene carbonate), 4, Carbonate compounds such as halogenated carbonates such as 5-difluoro-1,3-dioxolan-2-one (DFEC; difluoroethylene carbonate) can be used.
(他の溶媒)
 非水溶媒は、他の溶媒を含んでいてもよい。他の溶媒としては、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(Me-THF)、1,3-ジオキソラン(DOL)、4-メチルー1,3-ジオキソラン(Me-DOL)、ジエチルエーテル(DEE)、γーブチロラクトン(GBL)、γーバレロラクトン(GVL)、3-メチルオキサゾリジノン(MOX)、ギ酸メチル(MF)、スルホラン(SL)、3-メチルスルホラン(3MS)、ジメチルスルホキシド(DMSO)、アセトニトリル(AN)、ジメチルスルホキシド(DMSO)、トリメチルフォスフェート(TMP)、プロピオニトリル(PN)、グルタロニトリル(GLN)、アジポニトリル(ADN)、メトキシアセトニトリル(MAN)、3-メトキシプロピオニトリル(MPN)、N,N-ジメチルフォルムアミド(DMF),N,N-ジメチルアセトアミド(DMA)、N-メチルピロリジノン(NMP)、N-メチルオキサゾリジノン(NMO)、N,N’-ジメチルイミダゾリジノン(DMI)、ニトロメタン(NM),ニトロエタン(NE)等が挙げられる.
(Other solvents)
The non-aqueous solvent may contain other solvents. Other solvents include 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran (Me-THF), 1,3-dioxolane (DOL), 4-methyl-1,3-dioxolane (Me -DOL), diethyl ether (DEE), γ-butyrolactone (GBL), γ-valerolactone (GVL), 3-methyloxazolidinone (MOX), methyl formate (MF), sulfolane (SL), 3-methylsulfolane (3MS), Dimethyl sulfoxide (DMSO), acetonitrile (AN), dimethyl sulfoxide (DMSO), trimethyl phosphate (TMP), propionitrile (PN), glutaronitrile (GLN), adiponitrile (ADN), methoxyacetonitrile (MAN), 3 -Methoxypro Pionitrile (MPN), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA), N-methylpyrrolidinone (NMP), N-methyloxazolidinone (NMO), N, N'-dimethylimidazolidi Non (DMI), nitromethane (NM), nitroethane (NE) and the like can be mentioned.
 これらの中でも、鎖状カーボネートおよび環状カーボネートまたは鎖状カルボン酸エステルおよび環状カルボン酸エステルが、非水系電解液二次電池における種々の特性がよい点で好ましく、それらのなかでも、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトンがより好ましく、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトンが更に好ましい。 Among these, a chain carbonate and a cyclic carbonate, or a chain carboxylic acid ester and a cyclic carboxylic acid ester are preferable because they have various characteristics in a non-aqueous electrolyte secondary battery. Among these, ethylene carbonate and propylene carbonate are preferable. Dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone are more preferable, and ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and γ-butyrolactone are further included. preferable.
 非水溶媒としては、他の溶媒として、鎖状スルホン化合物を含んでいてもよい。鎖状スルホン化合物とは、鎖状構造を有し、且つ、スルホニル基(-S(=O)2-)を有する化合物のことをいう。鎖状スルホン化合物の例としては、ジメチルスルホン〔式(5A-1)〕、ジエチルスルホン〔式(5A-2)〕、エチルメチルスルホン〔式(5A-3)〕、メチルイソプロピルスルホン〔式(5A-4)〕、エチルイソプロピルスルホン〔式(5A-5)〕、エチルイソブチルスルホン〔式(5A-6)〕、イソプロピルイソブチルスルホン〔式(5A-7)〕、イソプロピルs-ブチルスルホン〔式(5A-8)〕、ブチルイソブチルスルホン〔式(5A-9)〕が好ましい。これらの中でも、電池特性の観点から、エチルイソプロピルスルホン(式(5A-5);EiPS)が最も好ましい。 The non-aqueous solvent may contain a chain sulfone compound as another solvent. The chain sulfone compound refers to a compound having a chain structure and having a sulfonyl group (—S (═O) 2 —). Examples of chain sulfone compounds include dimethylsulfone [formula (5A-1)], diethylsulfone [formula (5A-2)], ethylmethylsulfone [formula (5A-3)], methylisopropylsulfone [formula (5A -4)], ethyl isopropyl sulfone [formula (5A-5)], ethyl isobutyl sulfone [formula (5A-6)], isopropyl isobutyl sulfone [formula (5A-7)], isopropyl s-butyl sulfone [formula (5A -8)] and butyl isobutyl sulfone [formula (5A-9)] are preferred. Among these, ethyl isopropyl sulfone (formula (5A-5); EiPS) is most preferable from the viewpoint of battery characteristics.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 電解液中に溶媒として鎖状スルホン化合物を含有させることによって、充放電時に負極に鎖状スルホン化合物に由来する化合物を含む被膜をチタン含有無機酸化物を用いた負極に対して形成させることができる。 By containing a chain sulfone compound as a solvent in the electrolytic solution, a film containing a compound derived from the chain sulfone compound can be formed on the negative electrode during charging / discharging with respect to the negative electrode using a titanium-containing inorganic oxide. .
(含有量)
 電解液中の鎖状スルホン化合物の含有量は、特に限定されないが、電解液の質量に対して、0.1質量%以上20質量%以下が好ましく、0.3質量%以上8質量%以下がより好ましく、0.5質量%以上5質量%以下が最も好ましい。この範囲内において、溶媒であるカーボネート由来のガス発生量をより低減すると共に、低温および高温においてより優れた電池特性を示す。
(Content)
Although content of the chain | strand-shaped sulfone compound in electrolyte solution is not specifically limited, 0.1 to 20 mass% is preferable with respect to the mass of electrolyte solution, and 0.3 to 8 mass% is preferable. More preferably, 0.5 mass% or more and 5 mass% or less is the most preferable. Within this range, the amount of gas generated from the carbonate, which is a solvent, is further reduced, and more excellent battery characteristics are exhibited at low and high temperatures.
(添加剤)
 電解液は、添加剤として、シランカップリング剤またはシロキサン化合物(シラン・シロキサン化合物)を含む。なお、電解液は、シランカップリング剤およびシロキサン化合物の両方を含んでいてもよい。電解液に、シラン・シロキサン化合物を含有させることによって、シラン・シロキサン化合物およびシラン・シロキサン化合物に由来する化合物の少なくとも何れかが電極活物質の活性面を覆う効果も有し、電解液等の分解副反応を効果的に抑制することができ、長期信頼性の高い電池を提供することができる。さらに、電解液がシラン・シロキサン化合物を含むことによって、電解液の電極への含浸性をより向上させることができ、低温環境下でも高い容量を発現することができるというより優れた効果も得ることができる。
(Additive)
The electrolytic solution contains a silane coupling agent or a siloxane compound (silane / siloxane compound) as an additive. The electrolytic solution may contain both a silane coupling agent and a siloxane compound. By containing the silane / siloxane compound in the electrolytic solution, at least one of the silane / siloxane compound and the compound derived from the silane / siloxane compound also has an effect of covering the active surface of the electrode active material, and the electrolytic solution is decomposed. Side reactions can be effectively suppressed, and a battery with high long-term reliability can be provided. Furthermore, when the electrolytic solution contains a silane / siloxane compound, it is possible to further improve the impregnation of the electrolytic solution into the electrode, and to obtain a more excellent effect that a high capacity can be expressed even in a low temperature environment. Can do.
(シランカップリング剤またはシロキサン化合物)
 シランカップリング剤としては、例えば、アミノ基(-NH2)を有するシランカップリング剤、他のシランカップリング剤等を用いることができる。アミノ基(-NH2)を有するシランカップリング剤としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23-NH2)〕、3-アミノプロピルトリメトキシシラン〔(CH3O)3Si(CH23NH2〕、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等が挙げられる。
(Silane coupling agent or siloxane compound)
As the silane coupling agent, for example, a silane coupling agent having an amino group (—NH 2 ), another silane coupling agent, or the like can be used. Examples of the silane coupling agent having an amino group (—NH 2 ) include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 )], 3-amino Examples thereof include propyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 NH 2 ], 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane and the like.
 他のシランカップリング剤としては、3-メルカプトプロピルトリメトキシシラン〔(CH3O)3Si(CH23SH〕、3-メルカプトプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23SH〕、3-メルカプトプロピルジメチルメトキシシラン〔(CH32(CH3O)Si(CH23SH〕、3-メルカプトプロピルトリメチルシラン〔(CH33Si(CH23SH〕、3-トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリストリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロクシプロピルトリメトキシシラン、3-メタクリロクシプロピルトリメトキシシラン、3-メタクリロクシプロピルトリメトキシシラン、3-メタクリロクシプロピルメチルジメトキシシラン、3-メタクリロクシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-クロルプロピルトリメトキシシラン、3-クロルプロピルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン等が挙げられる。 Other silane coupling agents include 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH], 3-mercaptopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 SH], 3-mercaptopropyldimethylmethoxysilane [(CH 3 ) 2 (CH 3 O) Si (CH 2 ) 3 SH], 3-mercaptopropyltrimethylsilane [(CH 3 ) 3 Si ( CH 2 ) 3 SH], 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, vinyltris (2-methoxyethoxy) silane, vinyltristrimethoxysilane, vinyltriethoxysilane, vinyltrichloro Silane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysila 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycyl Sidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxy Cyclohexyl) ethyltriethoxysilane, 3-ureidopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, Le triethoxysilane, methyl trimethoxysilane, phenyl triethoxysilane, and phenyl trimethoxysilane.
 シロキサン化合物としては、デカメチルシクロペンタンシロキサン、デカメチルテトラシロキサン、オクタメチルシクロテトラシロキサン、オクタメチルトリシロキサン、ヘキサメチルシクロトリシロキサン、ヘキサメチルジシロキサン等が挙げられる。 Examples of the siloxane compound include decamethylcyclopentanesiloxane, decamethyltetrasiloxane, octamethylcyclotetrasiloxane, octamethyltrisiloxane, hexamethylcyclotrisiloxane, hexamethyldisiloxane and the like.
 なお、シランカップリング剤は、〔Rx-Si(Ryn(ORz3-n Rx反応性官能基、Ry:有機基、ORz:加水分解性基〕構造を有するものであればこれらに限られるものではない。シロキサン化合物は、シロキサン構造を有するものであればこれらに限られるものではない。また、上述した一連のシラン・シロキサン化合物は、1種類であってもよいし、任意の組み合わせで2種以上混合されてもよい。これらのシラン・シロキサン化合物の中でも、電池特性の観点から、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等が好ましい。 Incidentally, a silane coupling agent, those having a structure [R x -Si (R y) n (OR z) 3-n R x reactive functional group, R y: hydrolyzable group: organic group, OR z] If so, it is not limited to these. The siloxane compound is not limited to these as long as it has a siloxane structure. Further, the series of silane / siloxane compounds described above may be one kind, or two or more kinds may be mixed in any combination. Among these silane / siloxane compounds, from the viewpoint of battery characteristics, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N -2- (Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxy Silane and the like are preferable.
(電解質塩)
 電解質に含まれる電解質塩としては、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、六フッ化ヒ酸リチウム(LiAsF6)、テトラフェニルホウ酸リチウム(LiB(C654)、メタンスルホン酸リチウム(LiCH3SO3)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、リチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド(LiN(SO2F)(SO2CF3))、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(SO2CF32)、リチウムビス(オキサラト)ホウ酸(LiC4BO8)、リチウムジフルオロオキサラトホウ酸(LiC2BO42)等が挙げられる。
(Electrolyte salt)
Examples of the electrolyte salt contained in the electrolyte include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), and lithium hexafluoroarsenate (LiAsF). 6), lithium tetraphenylborate (LiB (C 6 H 5) 4), methanesulfonic acid lithium (LiCH 3 SO 3), lithium trifluoromethanesulfonate (LiCF 3 SO 3), lithium bis (fluorosulfonyl) imide ( LiN (SO 2 F) 2 ), lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide (LiN (SO 2 F) (SO 2 CF 3 )), lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3) 2), lithium bis (oxalato) borate (LiC 4 BO 8), Richiumujifu Oro like oxa Ratn borate (LiC 2 BO 4 F 2) and the like.
 これらは、1種を単独で使用しても、2種以上を任意の組み合わせおよび比率で併用しても良い。これらの中でも、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)からなる群のうちの少なくとも1種が好ましく、四フッ化ホウ酸リチウム(LiBF4)、リチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SO2CF32)、およびリチウムビス(オキサラト)ホウ酸(LiC2BO42)を含むことがより好ましい。 These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Among these, at least one selected from the group consisting of lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) is preferable, and lithium tetrafluoroborate (LiBF 4 ), lithium bis (Fluorosulfonyl) imide (LiN (SO 2 F) 2 ), lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 ) 2 ), and lithium bis (oxalato) boric acid (LiC 2 BO 4 F 2 ) It is more preferable to contain.
 電解液中の上記リチウム塩の濃度は、特に制限はないが、通常0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、その上限は、通常2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。濃度が低すぎると、非水系電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池の性能が低下する場合がある。 The concentration of the lithium salt in the electrolytic solution is not particularly limited, but is usually 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more. Moreover, the upper limit is 2 mol / L or less normally, Preferably it is 1.8 mol / L or less, More preferably, it is 1.7 mol / L or less. If the concentration is too low, the electrical conductivity of the non-aqueous electrolyte may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity, and the performance of the battery decreases. There is a case.
 電解質塩としては、鎖状スルホン化合物の添加に応じてリチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)を含むことが望ましい。この場合、鎖状スルホン化合物の電解液溶媒における比率がX%で、電解質塩の総量がYmol/Lであれば、リチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)の添加量:Zmol/Lとした時にZmol/L≧Ymol/L×X/100であることが好ましい。 The electrolyte salt preferably contains lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ) depending on the addition of the chain sulfone compound. In this case, if the ratio of the chain sulfone compound in the electrolyte solvent is X% and the total amount of the electrolyte salt is Ymol / L, the amount of lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ) added: It is preferable that Zmol / L ≧ Ymol / L × X / 100 when Zmol / L is set.
 例えば、エチルイソプロピルスルホン(式(5A-5);EiPS)が電解質溶媒の10%である場合、電解質塩の総量が1.0mol/Lであれば0.1mol/L以上のリチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)を含むことが望ましい。これにより低温環境下をはじめ広い温度範囲において高い電気伝導度を付与し、より優れた電池特性を提供することができる。 For example, when ethyl isopropyl sulfone (formula (5A-5); EiPS) is 10% of the electrolyte solvent, if the total amount of the electrolyte salt is 1.0 mol / L, 0.1 mol / L or more of lithium bis (fluorosulfonyl) ) Imide (LiN (SO 2 F) 2 ) is desirable. Thereby, high electrical conductivity can be imparted in a wide temperature range including under a low temperature environment, and more excellent battery characteristics can be provided.
(3-2)電池の製造方法
 この非水電解質電池は、例えば、以下の製造方法によって製造される。
(3-2) Battery Manufacturing Method This nonaqueous electrolyte battery is manufactured, for example, by the following manufacturing method.
(正極の製造)
 まず、正極21を作製する。最初に、正極材料と、結着剤と、導電剤とを混合して正極合剤としたのち、有機溶剤に分散させてペースト状の正極合剤スラリーとする。続いて、ドクタブレードまたはバーコータ等によって正極集電体21Aの両面に正極合剤スラリーを均一に塗布して乾燥させる。最後に、必要に応じて加熱しながらロールプレス機等によって塗膜を圧縮成型して正極活物質層21Bを形成する。この場合には、圧縮成型を複数回に渡って繰り返してもよい。
(Manufacture of positive electrode)
First, the positive electrode 21 is produced. First, a positive electrode material, a binder, and a conductive agent are mixed to obtain a positive electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is uniformly applied to both surfaces of the positive electrode current collector 21A by a doctor blade or a bar coater and dried. Finally, the positive electrode active material layer 21B is formed by compressing and molding the coating film with a roll press or the like while heating as necessary. In this case, compression molding may be repeated a plurality of times.
(負極の製造)
 次に、負極22を作製する。最初に、負極材料と、結着剤と、必要に応じて導電剤とを混合して負極合剤としたのち、これを有機溶剤に分散させてペースト状の負極合剤スラリーとする。続いて、ドクタブレードまたはバーコータ等によって負極集電体22Aの両面に負極合剤スラリーを均一に塗布して乾燥させる。最後に、必要に応じて加熱しながらロールプレス機等によって塗膜を圧縮成型して負極活物質層22Bを形成する。
(Manufacture of negative electrode)
Next, the negative electrode 22 is produced. First, a negative electrode material, a binder, and a conductive agent as necessary are mixed to form a negative electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is uniformly applied to both surfaces of the negative electrode current collector 22A by a doctor blade or a bar coater and dried. Finally, the negative electrode active material layer 22B is formed by compression molding the coating film with a roll press or the like while heating as necessary.
(電解液の調製)
 上述した電解液を調製する。この電解液が負極に含浸され、電池の充放電時等に、カーボネート溶媒(カーボネート化合物)およびシラン・シロキサン化合物に由来する化合物が形成される。より具体的には、例えば、電池の充放電時等に、カーボネート溶媒の分解物とシラン・シロキサン化合物との反応生成物が形成される。
(Preparation of electrolyte)
The above-described electrolytic solution is prepared. The electrolyte is impregnated in the negative electrode, and a compound derived from a carbonate solvent (carbonate compound) and a silane / siloxane compound is formed during charging and discharging of the battery. More specifically, for example, a reaction product of a decomposition product of a carbonate solvent and a silane / siloxane compound is formed during charge / discharge of a battery.
 具体的には、電池の充放電時等に、例えば、上述の反応生成物として式(1A)で表される化合物、式(2A)で表される化合物および式(3A)で表される化合物の少なくとも1種が形成され、これらの化合物の少なくとも1種を負極22に含有させることができる。なお、負極22にこれらの化合物の少なくとも1種を含有させる方法としては、種々の方法をとることができる。例えば、負極活物質層22Bを形成する際に、式(1A)で表される化合物、式(2A)で表される化合物および式(3A)で表される化合物の少なくとも1種と、負極材料等と混合する等して負極合剤を調製する等して、式(1A)で表される化合物、式(2A)で表される化合物および式(3A)で表される化合物の少なくとも1種を負極22に含有させるようにしてもよい。 Specifically, at the time of charge / discharge of the battery, for example, the compound represented by the formula (1A), the compound represented by the formula (2A), and the compound represented by the formula (3A) as the above-described reaction product And at least one of these compounds can be contained in the negative electrode 22. Various methods can be used as a method for causing the anode 22 to contain at least one of these compounds. For example, when forming the negative electrode active material layer 22B, at least one of a compound represented by the formula (1A), a compound represented by the formula (2A), and a compound represented by the formula (3A), and a negative electrode material At least one of a compound represented by the formula (1A), a compound represented by the formula (2A), and a compound represented by the formula (3A) by preparing a negative electrode mixture by mixing with May be contained in the negative electrode 22.
(電池の組み立て)
 非水電解質電池の組み立ては、以下のようにして行う。最初に、正極集電体21Aに正極リード25を溶接等して取り付けると共に、負極集電体22Aに負極リード26を溶接等して取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層および巻回させて巻回電極体20を作製したのち、その巻回中心にセンターピン24を挿入する。続いて、一対の絶縁板12、13で挟みながら巻回電極体20を電池缶11の内部に収納すると共に、正極リード25の先端部を安全弁機構15に溶接し、負極リード26の先端部を電池缶11に溶接する。
(Battery assembly)
The non-aqueous electrolyte battery is assembled as follows. First, the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like. Subsequently, after the positive electrode 21 and the negative electrode 22 are stacked and wound through the separator 23 to produce the wound electrode body 20, the center pin 24 is inserted into the winding center. Subsequently, the wound electrode body 20 is housed in the battery can 11 while being sandwiched between the pair of insulating plates 12 and 13, and the tip of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the tip of the negative electrode lead 26 is attached to the tip of the negative electrode lead 26. Weld to battery can 11.
 続いて、上述の電解液を電池缶11の内部に注入してセパレータ23等に含浸させる。最後に、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16を、ガスケット17を介してかしめることにより固定する。これにより、図1および図2に示す非水電解質電池が完成する。 Subsequently, the electrolytic solution described above is injected into the battery can 11 and impregnated in the separator 23 and the like. Finally, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are fixed to the opening end of the battery can 11 by caulking through the gasket 17. Thereby, the nonaqueous electrolyte battery shown in FIGS. 1 and 2 is completed.
4.第4の実施の形態
(4-1)電池の構成
 本技術の第4の実施の形態による非水電解質電池(電池)について説明する。図3は本技術の第4の実施の形態による非水電解質電池の分解斜視構成を表しており、図4は図3に示す巻回電極体30のI-I線に沿った断面を拡大して示している。
4). Fourth Embodiment (4-1) Battery Configuration A nonaqueous electrolyte battery (battery) according to a fourth embodiment of the present technology will be described. FIG. 3 shows an exploded perspective configuration of the nonaqueous electrolyte battery according to the fourth embodiment of the present technology. FIG. 4 is an enlarged cross-sectional view taken along line II of the spirally wound electrode body 30 shown in FIG. It shows.
 この非水電解質電池は、主に、フィルム状の外装部材40の内部に、正極リード31および負極リード32が取り付けられた巻回電極体30が収容されたものである。このフィルム状の外装部材40を用いた電池構造は、ラミネートフィルム型と呼ばれている。この非水電解質電池は、例えば充電および放電が可能な二次電池であり、また、例えばリチウムイオン二次電池である。 This non-aqueous electrolyte battery is mainly one in which a wound electrode body 30 to which a positive electrode lead 31 and a negative electrode lead 32 are attached is housed in a film-shaped exterior member 40. The battery structure using the film-shaped exterior member 40 is called a laminate film type. This nonaqueous electrolyte battery is, for example, a secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
 正極リード31および負極リード32は、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウム等の金属材料によって構成されており、負極リード32は、例えば、銅、ニッケルまたはステンレス等の金属材料によって構成されている。これらの金属材料は、例えば、薄板状または網目状になっている。 The positive electrode lead 31 and the negative electrode lead 32 are led out in the same direction from the inside of the exterior member 40 to the outside, for example. The positive electrode lead 31 is made of, for example, a metal material such as aluminum, and the negative electrode lead 32 is made of, for example, a metal material such as copper, nickel, or stainless steel. These metal materials are, for example, in a thin plate shape or a mesh shape.
 外装部材40は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムがこの順に貼り合わされたアルミラミネートフィルム等のように、金属箔からなる金属層の両面に樹脂層を設けた構成とされている。外装部材40の一般的な構成は、例えば、外側樹脂層/金属層/内側樹脂層の積層構造を有する。例えば、外装部材40は、例えば、内側樹脂層が巻回電極体30と対向するように、2枚の矩形型のアルミラミネートフィルムの外縁部同士が融着または接着剤によって互いに接着された構造を有している。外側樹脂層および内側樹脂層は、それぞれ複数層で構成されてもよい。 The exterior member 40 has a configuration in which resin layers are provided on both surfaces of a metal layer made of metal foil, such as an aluminum laminate film in which a nylon film, an aluminum foil, and a polyethylene film are bonded in this order. The general structure of the exterior member 40 has, for example, a laminated structure of an outer resin layer / a metal layer / an inner resin layer. For example, the exterior member 40 has a structure in which the outer edges of two rectangular aluminum laminate films are bonded to each other by fusion or an adhesive so that the inner resin layer faces the wound electrode body 30. Have. Each of the outer resin layer and the inner resin layer may be composed of a plurality of layers.
 金属層を構成する金属材料としては、耐透湿性のバリア膜としての機能を備えていれば良く、アルミニウム(Al)箔、ステンレス(SUS)箔、ニッケル(Ni)箔およびメッキを施した鉄(Fe)箔等を使用することができる。なかでも、薄く軽量で加工性に優れるアルミニウム箔を好適に用いることが好ましい。特に、加工性の点から、例えば焼きなまし処理済みのアルミニウム(JIS A8021P-O)、(JIS A8079P-O)または(JIS A1N30-O)等を用いるのが好ましい。 The metal material constituting the metal layer only needs to have a function as a moisture-permeable barrier film, and includes aluminum (Al) foil, stainless steel (SUS) foil, nickel (Ni) foil, and plated iron ( Fe) foil or the like can be used. Especially, it is preferable to use the aluminum foil which is thin and lightweight and excellent in workability. In particular, from the viewpoint of workability, for example, annealed aluminum (JIS A8021P-O), (JIS A8079P-O), or (JIS A1N30-O) is preferably used.
 金属層の厚みは、典型的には、例えば、30μm以上150μm以下とすることが好ましい。30μm未満の場合、材料強度が低減する傾向にある。また、150μmを超えた場合、加工が著しく困難になるとともに、ラミネートフィルムの厚さが増してしまい、非水電解質電池の体積効率が低減する傾向にある。 The thickness of the metal layer is typically preferably 30 μm or more and 150 μm or less, for example. When the thickness is less than 30 μm, the material strength tends to decrease. Moreover, when it exceeds 150 micrometers, while processing becomes remarkably difficult, the thickness of a laminate film will increase and it exists in the tendency for the volumetric efficiency of a nonaqueous electrolyte battery to reduce.
 内側樹脂層は、熱で溶けて互いに融着する部分であり、ポリエチレン(PE)、無軸延伸ポリプロピレン(CPP)、ポリエチレンテレフタレート(PET)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等が使用可能であり、これらから複数種類選択して用いることも可能である。 The inner resin layer is a part that is melted by heat and fused to each other, such as polyethylene (PE), non-axially oriented polypropylene (CPP), polyethylene terephthalate (PET), low density polyethylene (LDPE), high density polyethylene (HDPE), Linear low density polyethylene (LLDPE) or the like can be used, and a plurality of these can be selected and used.
 外側樹脂層としては、外観の美しさや強靱さ、柔軟性等からポリオレフィン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエステル等が用いられる。具体的には、ナイロン(Ny)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)が用いられ、これらから複数種類選択して用いることも可能である。 As the outer resin layer, polyolefin resin, polyamide resin, polyimide resin, polyester, or the like is used because of its beautiful appearance, toughness, flexibility, and the like. Specifically, nylon (Ny), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and polybutylene naphthalate (PBN) are used. Is also possible.
 外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するための密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料によって構成されている。このような材料としては、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレン等のポリオレフィン樹脂が挙げられる。 An adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 to prevent intrusion of outside air. The adhesion film 41 is made of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32. Examples of such a material include polyolefin resins such as polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
 なお、外装部材40は、上記した積層構造を有するアルミラミネートフィルムに代えて、他の積層構造を有するラミネートフィルムによって構成されていてもよいし、ポリプロピレン等の高分子フィルムまたは金属フィルム等によって構成されていてもよい。 The exterior member 40 may be constituted by a laminated film having another laminated structure instead of the aluminum laminated film having the laminated structure described above, or may be constituted by a polymer film such as polypropylene or a metal film. It may be.
 図4は、図3に示す巻回電極体のI-I線に沿った断面構成を表している。この巻回電極体30は、帯状のセパレータ35および電解質36を介して帯状の正極33と帯状の負極34とが積層および巻回されたものであり、その最外周部は、保護テープ37によって保護されている。 FIG. 4 shows a cross-sectional configuration along the II line of the spirally wound electrode body shown in FIG. This wound electrode body 30 is formed by laminating and winding a belt-like positive electrode 33 and a belt-like negative electrode 34 via a belt-like separator 35 and an electrolyte 36, and the outermost periphery is protected by a protective tape 37. Has been.
(正極)
 正極33は、例えば、一対の面を有する正極集電体33Aの両面に正極活物質層33Bが設けられた構造を有している。なお、図示はしないが、正極33は、正極集電体33Aの片面のみに正極活物質層33Bが形成された領域を有していてもよい。正極集電体33Aおよび正極活物質層33Bは、それぞれ第3の実施の形態における正極集電体21Aおよび正極活物質層21Bと同様である。
(Positive electrode)
The positive electrode 33 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a positive electrode current collector 33A having a pair of surfaces. Although not shown, the positive electrode 33 may have a region where the positive electrode active material layer 33B is formed only on one surface of the positive electrode current collector 33A. The positive electrode current collector 33A and the positive electrode active material layer 33B are the same as the positive electrode current collector 21A and the positive electrode active material layer 21B in the third embodiment, respectively.
(負極)
 負極34は、例えば、一対の面を有する負極集電体34Aの両面に正極活物質層33Bが設けられた構造を有している。なお、図示はしないが、負極34は、負極集電体34Aの片面のみに負極活物質層34Bが形成された領域を有していてもよい。負極集電体34Aおよび負極活物質層34Bは、それぞれ第3の実施の形態における負極集電体22Aおよび負極活物質層22Bと同様である。
(Negative electrode)
The negative electrode 34 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a negative electrode current collector 34A having a pair of surfaces. Although not shown, the negative electrode 34 may have a region where the negative electrode active material layer 34B is formed only on one surface of the negative electrode current collector 34A. The negative electrode current collector 34A and the negative electrode active material layer 34B are the same as the negative electrode current collector 22A and the negative electrode active material layer 22B in the third embodiment, respectively.
(セパレータ)
 セパレータ35は第3の実施の形態におけるセパレータ23と同様である。
(Separator)
The separator 35 is the same as the separator 23 in the third embodiment.
(電解質)
 電解質36は、非水電解液(電解液)と、それを保持する高分子化合物(マトリックス高分子化合物)とを含んでいる。電解質36は、例えば、いわゆるゲル状の電解質である。ゲル状の電解質は、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に漏液が防止されるので好ましい。
(Electrolytes)
The electrolyte 36 includes a nonaqueous electrolytic solution (electrolytic solution) and a polymer compound (matrix polymer compound) that holds the nonaqueous electrolytic solution. The electrolyte 36 is, for example, a so-called gel electrolyte. A gel electrolyte is preferable because high ion conductivity (for example, 1 mS / cm or more at room temperature) is obtained and liquid leakage is prevented.
(非水電解液)
 非水電解液は、電解質塩と、この電解質塩を溶解する非水溶媒とを含む。非水電解液は、第3の実施の形態と同様である。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution includes an electrolyte salt and a nonaqueous solvent that dissolves the electrolyte salt. The non-aqueous electrolyte is the same as in the third embodiment.
(高分子化合物)
 高分子化合物としては、溶媒に相溶可能な性質を有するもの等を用いることができる。このような高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレン、またはポリカーボネート等が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。中でも、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンまたはポリエチレンオキサイドが好ましい。電気化学的に安定だからである。
(Polymer compound)
As the polymer compound, those having a property compatible with a solvent can be used. Examples of such a polymer compound include polyacrylonitrile, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, and polyphosphazene. , Polysiloxane, polyvinyl acetate, polyvinyl alcohol, polymethyl methacrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, or polycarbonate. These may be single and multiple types may be mixed. Among these, polyacrylonitrile, polyvinylidene fluoride, polyhexafluoropropylene, or polyethylene oxide is preferable. This is because it is electrochemically stable.
(4-2)電池の製造方法
 この非水電解質電池は、例えば、以下の3種類の製造方法(第1~第3の製造方法)によって製造される。
(4-2) Battery Manufacturing Method This nonaqueous electrolyte battery is manufactured, for example, by the following three manufacturing methods (first to third manufacturing methods).
(第1の製造方法)
 第1の製造方法では、最初に、例えば、上記した第3の実施の形態の正極21および負極22の作製手順と同様の手順により、正極集電体33Aの両面に正極活物質層33Bを形成して正極33を作製する。また、負極集電体34Aの両面に負極活物質層34Bを形成して負極34を作製する。
(First manufacturing method)
In the first manufacturing method, first, for example, the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A by the same procedure as the manufacturing procedure of the positive electrode 21 and the negative electrode 22 of the third embodiment described above. Thus, the positive electrode 33 is manufactured. Further, the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34.
 続いて、電解液と、高分子化合物と、溶剤とを含む前駆溶液を調製して正極33および負極34の少なくとも一方の両面に塗布したのち、溶剤を揮発させてゲル状の電解質36を形成する。続いて、正極集電体33Aに正極リード31を取り付けると共に、負極集電体34Aに負極リード32を取り付ける。なお、電極の両面にゲル状の電解質36を形成することに変えて、セパレータの両面の少なくとも一方の面にゲル状の電解質36を形成してもよい。 Subsequently, a precursor solution containing an electrolytic solution, a polymer compound, and a solvent is prepared and applied to at least one of both surfaces of the positive electrode 33 and the negative electrode 34, and then the solvent is volatilized to form a gel electrolyte 36. . Subsequently, the positive electrode lead 31 is attached to the positive electrode current collector 33A, and the negative electrode lead 32 is attached to the negative electrode current collector 34A. Instead of forming the gel electrolyte 36 on both surfaces of the electrode, the gel electrolyte 36 may be formed on at least one surface of both surfaces of the separator.
 続いて、電解質36が形成された正極33と負極34とをセパレータ35を介して積層させてから長手方向に巻回し、その最外周部に保護テープ37を接着させて巻回電極体30を作製する。最後に、例えば、2枚のフィルム状の外装部材40の間に巻回電極体30を挟み込んだのち、その外装部材40の外縁部同士を熱融着等で接着させて巻回電極体30を封入する。この際、正極リード31および負極リード32と外装部材40との間に、密着フィルム41を挿入する。これにより、図3および図4に示す非水電解質電池が完成する。 Subsequently, the positive electrode 33 and the negative electrode 34 on which the electrolyte 36 is formed are stacked via the separator 35 and then wound in the longitudinal direction, and a protective tape 37 is adhered to the outermost peripheral portion to produce the wound electrode body 30. To do. Finally, for example, after the wound electrode body 30 is sandwiched between two film-shaped exterior members 40, the outer edge portions of the exterior member 40 are bonded to each other by heat fusion or the like, so that the wound electrode body 30 is Encapsulate. At this time, the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40. Thereby, the nonaqueous electrolyte battery shown in FIGS. 3 and 4 is completed.
(第2の製造方法)
 第2の製造方法では、最初に、第1の製造方法と同様に正極33および負極34を作製する。次に、正極33に正極リード31を取り付けると共に、負極34に負極リード32を取り付ける。続いて、高分子化合物が両面に塗布されたセパレータ35を介して正極33と負極34とを積層して巻回させたのち、その最外周部に保護テープ37を接着させて、巻回電極体30の前駆体である巻回体を作製する
(Second manufacturing method)
In the second manufacturing method, first, the positive electrode 33 and the negative electrode 34 are manufactured in the same manner as in the first manufacturing method. Next, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. Subsequently, the positive electrode 33 and the negative electrode 34 are laminated and wound through a separator 35 coated with a polymer compound on both sides, and then a protective tape 37 is adhered to the outermost periphery thereof to form a wound electrode body. A wound body that is a precursor of 30 is produced.
 続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着等で接着させて、袋状の外装部材40の内部に巻回体を収納する。 Subsequently, after sandwiching the wound body between the two film-like exterior members 40, the remaining outer peripheral edge except for the outer peripheral edge on one side is bonded by thermal fusion or the like, so that the bag-shaped exterior is obtained. The wound body is accommodated in the member 40.
 このセパレータ35に塗布する高分子化合物としては、例えば、フッ化ビニリデンを成分とする重合体、すなわち単独重合体、共重合体または多元共重合体等が挙げられる。具体的には、ポリフッ化ビニリデンや、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体や、フッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体等が好適である。なお、高分子化合物は、上記したフッ化ビニリデンを成分とする重合体と共に、他の1種または2種以上の高分子化合物を含んでいてもよい。 Examples of the polymer compound applied to the separator 35 include a polymer containing vinylidene fluoride as a component, that is, a homopolymer, a copolymer, a multi-component copolymer, and the like. Specifically, polyvinylidene fluoride, binary copolymers containing vinylidene fluoride and hexafluoropropylene as components, and ternary copolymers containing vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components. A coalescence or the like is preferred. The polymer compound may contain one or more other polymer compounds together with the polymer containing vinylidene fluoride as a component.
 セパレータ35上の高分子化合物は、例えば、以下のようにして、多孔性高分子化合物を形成していてもよい。すなわち、まず、高分子化合物を、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N,N-ジメチルスルホキシド等の極性有機溶媒からなる第1の溶媒に溶解させた溶液を調製し、この溶液をセパレータ35上に塗布する。次に、上記溶液が塗布されたセパレータ35を水、エチルアルコール、プロピルアルコール等の上記極性有機溶媒に対して相溶性があり、上記高分子化合物に対して貧溶媒である第2の溶媒中に浸漬する。このとき、溶媒交換が起こり、スピノーダル分解を伴う相分離が生じ、高分子化合物は多孔構造を形成する。その後、乾燥することにより、多孔構造を有する多孔性高分子化合物を得ることができる。 The polymer compound on the separator 35 may form a porous polymer compound as follows, for example. That is, first, a solution in which a polymer compound is dissolved in a first solvent composed of a polar organic solvent such as N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylacetamide, N, N-dimethylsulfoxide, etc. And this solution is applied onto the separator 35. Next, the separator 35 coated with the above solution is compatible with the above polar organic solvent such as water, ethyl alcohol, propyl alcohol, etc., and in the second solvent which is a poor solvent for the above polymer compound. Immerse. At this time, solvent exchange occurs, phase separation accompanied by spinodal decomposition occurs, and the polymer compound forms a porous structure. Thereafter, by drying, a porous polymer compound having a porous structure can be obtained.
 続いて、電解液を調製して、袋状の外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着等で密封する。これにより、電解液が高分子化合物に含浸し、その高分子化合物がゲル化して、ゲル状の電解質36が形成され、図3および図4に示す非水電解質電池が完成する。 Subsequently, an electrolytic solution is prepared and injected into the bag-shaped exterior member 40, and then the opening of the exterior member 40 is sealed by heat fusion or the like. Thereby, the electrolytic solution is impregnated into the polymer compound, and the polymer compound is gelled to form the gel electrolyte 36, thereby completing the nonaqueous electrolyte battery shown in FIGS.
(第3の製造方法)
 第3の製造方法では、最初に、第1の製造方法と同様に正極33および負極34を作製する。次に正極33に正極リード31を取り付けると共に、負極34に負極リード32を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層して巻回させたのち、その最外周部に保護テープ37を接着させて、巻回電極体30の前駆体である巻回体を作製する。
(Third production method)
In the third manufacturing method, first, the positive electrode 33 and the negative electrode 34 are produced in the same manner as in the first manufacturing method. Next, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated and wound via the separator 35, a protective tape 37 is adhered to the outermost peripheral portion thereof, and a wound body that is a precursor of the wound electrode body 30. Is made.
 続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着等で接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤等の他の材料とを含む電解質用組成物を調製して袋状の外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着等で密封する。最後に、モノマーを熱重合させて高分子化合物とすることにより、ゲル状の電解質36を形成する。これにより、図3および図4に示す非水電解質電池が完成する。 Subsequently, after sandwiching the wound body between the two film-like exterior members 40, the remaining outer peripheral edge except for the outer peripheral edge on one side is bonded by thermal fusion or the like, so that the bag-shaped exterior is obtained. The wound body is accommodated in the member 40. Subsequently, an electrolyte composition containing an electrolytic solution, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary is prepared to form a bag-shaped exterior member. After injecting into the inside of 40, the opening of the exterior member 40 is sealed by heat sealing or the like. Finally, the gel electrolyte 36 is formed by thermally polymerizing the monomer to obtain a polymer compound. Thereby, the nonaqueous electrolyte battery shown in FIGS. 3 and 4 is completed.
[変形例1]
 上述の第4の実施の形態による非水電解質電池の一例では、ゲル状の電解質を用いた構成例について説明したが、ゲル状の電解質に代えて、液系の電解質である電解液を用いてもよい。この場合、外装部材60内には非水電解液が充填されており、巻回電極体30から電解質36を省略した構成の巻回体が、非水電解液に含浸されている。この場合、非水電解質電池は例えば次のようにして作製される。
[Modification 1]
In the example of the nonaqueous electrolyte battery according to the fourth embodiment described above, the configuration example using the gel electrolyte has been described. However, instead of the gel electrolyte, an electrolyte solution that is a liquid electrolyte is used. Also good. In this case, the exterior member 60 is filled with a non-aqueous electrolyte, and a wound body having a configuration in which the electrolyte 36 is omitted from the wound electrode body 30 is impregnated with the non-aqueous electrolyte. In this case, the nonaqueous electrolyte battery is manufactured as follows, for example.
〔非水電解質電池の製造方法〕
(正極、負極、非水電解液の調製)
 非水電解質電池の一例の製造方法と同様にして、正極33および負極34の作製、非水電解液の調製を行う。
[Method for producing non-aqueous electrolyte battery]
(Preparation of positive electrode, negative electrode, non-aqueous electrolyte)
In the same manner as the manufacturing method of an example of the nonaqueous electrolyte battery, the positive electrode 33 and the negative electrode 34 are produced, and the nonaqueous electrolytic solution is prepared.
(非水電解質電池の組立て)
 次に、正極集電体33Aの端部に正極リード31を溶接により取り付けると共に、負極集電体34Aの端部に負極リード32を溶接により取り付ける。
(Assembling of non-aqueous electrolyte battery)
Next, the positive electrode lead 31 is attached to the end portion of the positive electrode current collector 33A by welding, and the negative electrode lead 32 is attached to the end portion of the negative electrode current collector 34A by welding.
 次に、正極33と負極34とをセパレータ35を介して積層して巻回し、最外周部に保護テープ37を接着して、巻回電極体30の前駆体である巻回体を形成する。次に、この巻回体を外装部材40に挟み、一辺を除く外周縁部を熱融着して袋状とし、外装部材40の内部に収納する。 Next, the positive electrode 33 and the negative electrode 34 are laminated and wound with the separator 35 interposed therebetween, and a protective tape 37 is adhered to the outermost peripheral portion to form a wound body that is a precursor of the wound electrode body 30. Next, the wound body is sandwiched between the exterior members 40, and the outer peripheral edge except for one side is heat-sealed to form a bag shape, which is then stored inside the exterior member 40.
 次に、非水電解液を外装部材40の内部に注入し、巻回体に非水電解液を含浸させたのち、外装部材40の開口部を真空雰囲気下で熱融着して密封する。以上により、目的とする非電解質二次電池が得られる。 Next, after injecting the non-aqueous electrolyte into the exterior member 40 and impregnating the wound body with the non-aqueous electrolyte, the opening of the exterior member 40 is heat-sealed in a vacuum atmosphere and sealed. As a result, the intended non-electrolyte secondary battery is obtained.
[変形例2]
 上述の第4の実施の形態の一例および変形例1では、巻回電極体30が外装部材60で外装された非水電解質電池について説明したが、図5A~図5Cに示すように、巻回電極体30の代わりに積層電極体70を用いてもよい。図5Aは、積層電極体70を収容した非水電解質電池の外観図である。図5Bは、外装部材60に積層電極体70が収容される様子を示す分解斜視図である。図5Cは、図5Aに示す非水電解質電池の底面側からの外観を示す外観図である。
[Modification 2]
In the above-described example of the fourth embodiment and the first modification, the nonaqueous electrolyte battery in which the wound electrode body 30 is sheathed with the exterior member 60 has been described. However, as illustrated in FIGS. 5A to 5C, A laminated electrode body 70 may be used instead of the electrode body 30. FIG. 5A is an external view of a nonaqueous electrolyte battery in which the laminated electrode body 70 is accommodated. FIG. 5B is an exploded perspective view showing a state in which the laminated electrode body 70 is accommodated in the exterior member 60. FIG. 5C is an external view showing the external appearance of the nonaqueous electrolyte battery shown in FIG. 5A from the bottom surface side.
 積層電極体70は、矩形状の正極73および矩形状の負極74を、矩形状のセパレータ75を介して積層し、固定部材76で固定した積層電極体70を用いる。なお、図示は省略するが、電解質層を形成する場合には、電解質層が正極73および負極74に接するように設けられている。例えば、正極73およびセパレータ75の間、並びに、負極74およびセパレータ75の間に電解質層(図示省略)が設けられている。この電解質層は、上述した電解質36と同様である。積層電極体70からは、正極73と接続された正極リード71および負極74と接続された負極リード72とが導出されており、正極リード71および負極リード72と外装部材60との間には密着フィルム61が設けられる。 The laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76. Although not shown, when the electrolyte layer is formed, the electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74. For example, an electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This electrolyte layer is the same as the electrolyte 36 described above. A positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other. A film 61 is provided.
 なお、非水電解質電池の製造方法は、巻回電極体30に代えて積層電極体を作製すること、巻回体に代えて積層体(積層電極体70から電解質層を省略した構成のもの)を作製すること以外は、上述の第4の実施の形態の一例および変形例1の非水電解質電池の製造方法と同様である。 In addition, the manufacturing method of a non-aqueous electrolyte battery produces a laminated electrode body in place of the wound electrode body 30, and a laminated body in place of the wound body (with an electrolyte layer omitted from the laminated electrode body 70). Is the same as the manufacturing method of the nonaqueous electrolyte battery of the example of the fourth embodiment and the modification 1 except that the above is manufactured.
<第5の実施の形態~第6の実施の形態>
(本技術の概要)
 まず、本技術の理解を容易にするため、本技術の概要について説明する。上述した特許文献8(特開2013-80714ではガス発生を抑制するために電解液にイソシアナート化合物を入れている。それが電池内で分解することでアミノ基を有する化合物となる。このアミノ基を有する化合物は、本技術の化合物とは異なるものである。また先行技術では劣化原因のHFを捕捉して劣化を抑制することを目的としていないし、言及もしていない。特許文献9(特許公開2011-165998号公報)の応用範囲はキャパシタであり、リチウム二次電池での効果については何ら述べていない。特許文献2では、HFを補足するために捕捉粒子を用いているが、本技術の化合物とは異なるものである。特許文献2では負極にチタン酸リチウムを用いていない。一方、本技術では、負極にチタン酸リチウム等の特許文献2とは異なる負極活物質を用いている。
<Fifth to sixth embodiments>
(Outline of this technology)
First, in order to facilitate understanding of the present technology, an outline of the present technology will be described. In the above-mentioned Patent Document 8 (Japanese Patent Laid-Open No. 2013-80714, in order to suppress gas generation, an isocyanate compound is put in the electrolytic solution. When it is decomposed in the battery, it becomes a compound having an amino group. In the prior art, there is no purpose or mention of suppressing the deterioration by capturing the HF causing the deterioration. The application range of JP 2011-165998 A is a capacitor, and does not describe any effect in a lithium secondary battery.In Patent Document 2, trapped particles are used to supplement HF. In Patent Document 2, lithium titanate is not used for the negative electrode in the patent document 2. On the other hand, in this technology, patent documents such as lithium titanate are used for the negative electrode. 2 use different negative electrode active material and.
 以下、本技術の実施の形態について図面を参照して説明する。なお、説明は、以下の順序で行う。
5.第5の実施の形態(円筒型の電池の例)
6.第6の実施の形態(ラミネートフィルム型の電池の例)
 なお、以下に説明する実施の形態等は本技術の好適な具体例であり、本技術の内容がこれらの実施の形態等に限定されるものではない。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また例示した効果と異なる効果が存在することを否定するものではない。
Hereinafter, embodiments of the present technology will be described with reference to the drawings. The description will be given in the following order.
5. Fifth embodiment (example of cylindrical battery)
6). Sixth embodiment (example of laminated film type battery)
The embodiments described below are suitable specific examples of the present technology, and the contents of the present technology are not limited to these embodiments. Moreover, the effect described in this specification is an illustration to the last, is not limited, and does not deny that the effect different from the illustrated effect exists.
5.第5の実施の形態
(5-1)電池の構成
 本技術の第5の実施の形態による電池について図1および図2を参照しながら説明する。図1は、本技術の第5の実施の形態による電池の断面構成を示す。図2は、図1に示す巻回電極体20の一部を拡大して示す。この電池は、例えば、充電および放電可能な二次電池であり、例えば、非水電解質電池であり、例えば、リチウムイオン二次電池等である。
5. Fifth Embodiment (5-1) Battery Configuration A battery according to a fifth embodiment of the present technology will be described with reference to FIGS. 1 and 2. FIG. 1 shows a cross-sectional configuration of a battery according to a fifth embodiment of the present technology. FIG. 2 shows an enlarged part of the spirally wound electrode body 20 shown in FIG. This battery is a secondary battery that can be charged and discharged, for example, a non-aqueous electrolyte battery, for example, a lithium ion secondary battery, and the like.
 この非水電解質電池は、主に、ほぼ中空円柱状の電池缶11の内部に、セパレータ23を介して正極21と負極22とが積層および巻回された巻回電極体20と、一対の絶縁板12,13とが収納されたものである。この円柱状の電池缶11を用いた電池構造は、円筒型と呼ばれている。 This non-aqueous electrolyte battery mainly includes a wound electrode body 20 in which a positive electrode 21 and a negative electrode 22 are laminated and wound through a separator 23 inside a substantially hollow cylindrical battery can 11, and a pair of insulations. The plates 12 and 13 are accommodated. The battery structure using the cylindrical battery can 11 is called a cylindrical type.
 電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空構造を有していると共に、鉄(Fe)、アルミニウム(Al)またはそれらの合金等により構成されている。なお、電池缶11が鉄により構成される場合には、例えば、電池缶11の表面にニッケル(Ni)等が鍍金されていてもよい。一対の絶縁板12、13は、巻回電極体20を上下から挟み、その巻回周面に対して垂直に延在するように配置されている。 The battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened, and is made of iron (Fe), aluminum (Al), or an alloy thereof. In the case where the battery can 11 is made of iron, for example, nickel (Ni) or the like may be plated on the surface of the battery can 11. The pair of insulating plates 12 and 13 are arranged so as to sandwich the wound electrode body 20 from above and below and to extend perpendicularly to the wound peripheral surface.
 電池缶11の開放端部には、電池蓋14、安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient:PTC素子)16がガスケット17を介してかしめられており、その電池缶11は、密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15および熱感抵抗素子16は、電池蓋14の内側に設けられている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡、または外部からの加熱等に起因して内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と巻回電極体20との間の電気的接続を切断するようになっている。熱感抵抗素子16は、温度の上昇に応じて抵抗が増大する(電流を制限する)ことにより、大電流に起因する異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、その表面には、例えば、アスファルトが塗布されている。 A battery lid 14, a safety valve mechanism 15, and a heat sensitive resistance element (Positive Temperature Coefficient: PTC element) 16 are caulked through a gasket 17 at the open end of the battery can 11, and the battery can 11 is sealed. ing. The battery lid 14 is made of, for example, the same material as the battery can 11. The safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14. The safety valve mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16. In the safety valve mechanism 15, when the internal pressure becomes a certain level or more due to an internal short circuit or external heating, the disk plate 15 </ b> A is reversed and the electric power between the battery lid 14 and the wound electrode body 20 is reversed. Connection is cut off. The heat-sensitive resistance element 16 prevents abnormal heat generation caused by a large current by increasing resistance (limiting current) as the temperature rises. The gasket 17 is made of, for example, an insulating material, and for example, asphalt is applied to the surface thereof.
(巻回電極体)
 巻回電極体20は、セパレータ23を介して正極21と負極22とが積層および巻回されたものである。この巻回電極体20の中心には、センターピン24が挿入されていてもよい。巻回電極体20では、アルミニウム等により構成された正極リード25が正極21に接続されていると共に、ニッケル等により構成された負極リード26が負極22に接続されている。正極リード25は、安全弁機構15に溶接等されて電池蓋14と電気的に接続されており、負極リード26は、電池缶11に溶接等されて電気的に接続されている。
(Wound electrode body)
The wound electrode body 20 is obtained by laminating and winding a positive electrode 21 and a negative electrode 22 via a separator 23. A center pin 24 may be inserted in the center of the wound electrode body 20. In the wound electrode body 20, a positive electrode lead 25 made of aluminum or the like is connected to the positive electrode 21, and a negative electrode lead 26 made of nickel or the like is connected to the negative electrode 22. The positive electrode lead 25 is welded to the safety valve mechanism 15 and electrically connected to the battery lid 14, and the negative electrode lead 26 is welded to the battery can 11 and electrically connected thereto.
(正極)
 正極21は、例えば、一対の面を有する正極集電体21Aの両面に正極活物質層21Bが設けられたものである。なお、図示は省略するが、正極21は正極活物質層21Bが正極集電体21Aの片面だけに設けられた領域を有していてもよい。
(Positive electrode)
For example, the positive electrode 21 is obtained by providing a positive electrode active material layer 21B on both surfaces of a positive electrode current collector 21A having a pair of surfaces. In addition, although illustration is abbreviate | omitted, the positive electrode 21 may have the area | region where the positive electrode active material layer 21B was provided only in the single side | surface of 21 A of positive electrode collectors.
 正極集電体21Aは、例えば、アルミニウム、ニッケルまたはステンレス等の金属材料によって構成されている。 The positive electrode current collector 21A is made of, for example, a metal material such as aluminum, nickel, or stainless steel.
 正極活物質層21Bは、正極活物質として、リチウムを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んでいる。正極活物質層21Bは、必要に応じて、結着剤および導電剤の少なくとも何れか等の他の材料を含んでいてもよい。 The positive electrode active material layer 21 </ b> B contains one or more positive electrode materials capable of inserting and extracting lithium as a positive electrode active material. The positive electrode active material layer 21 </ b> B may contain other materials such as a binder and / or a conductive agent as necessary.
(正極活物質)
 リチウムを吸蔵および放出することが可能な正極材料としては、例えば、リチウム含有化合物が好ましい。高いエネルギー密度が得られるからである。このリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含むリン酸化合物やリチウムと遷移金属元素とを含む複合酸化物等が挙げられる。中でも、遷移金属元素としてコバルト、ニッケル、マンガンおよび鉄からなる群のうちの少なくとも1種を含むものが好ましい。より高い電圧が得られるからである。
(Positive electrode active material)
As a positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing compound is preferable. This is because a high energy density can be obtained. Examples of the lithium-containing compound include a phosphate compound containing lithium and a transition metal element, and a composite oxide containing lithium and a transition metal element. Especially, what contains at least 1 sort (s) of the group which consists of cobalt, nickel, manganese, and iron as a transition metal element is preferable. This is because a higher voltage can be obtained.
(リチウムと遷移金属元素とを含むリン酸化合物)
 リチウムと遷移金属元素とを含むリン酸化合物としては、例えば、リチウムとリン(P)と鉄(Fe)とを少なくとも含むオリビン構造を有するリン酸鉄リチウム化合物、リチウムとリン(P)とマンガン(Mn)とを少なくとも含むオリビン構造を有するリン酸マンガンリチウム化合物等が挙げられる。オリビン構造を有するリン酸鉄リチウム化合物としては、リチウム鉄リン酸化合物(LiFePO4)、または、異種元素を含有するリチウム鉄複合リン酸化合物(LiFex1-x4:Mは鉄以外の1種類以上金属元素、xは0<x<1である。)等が挙げられる。なお、上記のMとしては、遷移元素、IIA族元素、IIIA族元素、IIIB族元素、IVB族元素等が挙げられる。特に、Mは、遷移金属元素としてコバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、アルミニウム(Al)、バナジウム(V)、およびチタン(Ti)のうちの少なくとも1種が好ましい。オリビン構造を有するリン酸マンガンリチウム化合物としては、例えば、リチウムマンガンリン酸化合物(LiMnPO4)等が挙げられる。
(Phosphate compounds containing lithium and transition metal elements)
As a phosphoric acid compound containing lithium and a transition metal element, for example, a lithium iron phosphate compound having an olivine structure containing at least lithium, phosphorus (P) and iron (Fe), lithium, phosphorus (P) and manganese ( And a lithium manganese phosphate compound having an olivine structure containing at least Mn). The lithium iron phosphate compound having an olivine structure, lithium iron phosphate compound (LiFePO 4), or lithium iron composite phosphate compound containing the different element (LiFe x M 1-x O 4: M is other than iron 1 or more types of metal elements, x is 0 <x <1, etc.). In addition, as said M, a transition element, a IIA group element, a IIIA group element, a IIIB group element, a IVB group element etc. are mentioned. In particular, M is at least one of cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), aluminum (Al), vanadium (V), and titanium (Ti) as a transition metal element. Is preferred. Examples of the lithium manganese phosphate compound having an olivine structure include a lithium manganese phosphate compound (LiMnPO 4 ).
 オリビン構造を有するリン酸鉄リチウム化合物としては、典型的には、(化1)で表されるリチウムリン酸化合物等が挙げられる。
(化1)
 LiuFerM1(1-r)PO4
(式中、M1は、コバルト(Co)、マンガン(Mn)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)からなる群のうちの少なくとも1種を表す。rは、0<r≦1の範囲内の値である。uは、0.9≦u≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、uの値は完全放電状態における値を表している。)
A typical example of the lithium iron phosphate compound having an olivine structure is a lithium phosphate compound represented by (Chemical Formula 1).
(Chemical formula 1)
Li u Fe r M1 (1- r) PO 4
(In the formula, M1 is cobalt (Co), manganese (Mn), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium (Nb ), Copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr), at least one selected from the group consisting of r. , 0 <r ≦ 1, and u is a value within the range of 0.9 ≦ u ≦ 1.1 Note that the composition of lithium varies depending on the state of charge and discharge, and the value of u Represents the value in the fully discharged state.)
 (化1)で表されるリチウムリン酸化合物としては、典型的には、例えば、LiuFePO4(uは上記と同義である)、LiuFerMn(1-r)PO4(uは上記と同義である。rは上記と同義である。)等が挙げられる。 As the lithium phosphate compound represented by (Chemical Formula 1), typically, for example, Li u FePO 4 (u is as defined above), Li u Fe r Mn (1-r) PO 4 (u Is as defined above, and r is as defined above.
(リチウムと遷移金属元素とを含む複合酸化物)
 リチウムと遷移金属元素とを含む複合酸化物としては、例えば、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケル複合酸化物(LixNiO2)、リチウムニッケルコバルト複合酸化物(LixNi1-zCoz2(z<1))、リチウムニッケルコバルトマンガン複合酸化物(LixNi(1-v-w)CovMnw2(v+w<1))等の層状構造を有するリチウム遷移金属複合酸化物、スピネル構造を有し、且つ、リチウムとマンガンとを少なくとも含むリチウムマンガン複合酸化物等が挙げられる。
(Composite oxide containing lithium and transition metal element)
Examples of the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide (Li x Ni). 1-z Co z O 2 (z <1)), lithium nickel cobalt manganese composite oxide (Li x Ni (1-vw) Co v Mn w O 2 (v + w <1)) and other lithium transitions having a layered structure Examples thereof include metal composite oxides, lithium manganese composite oxides having a spinel structure and containing at least lithium and manganese.
 スピネル構造のリチウムマンガン複合酸化物としては、例えば、(化2)で表されるリチウム複合酸化物等が挙げられる。
(化2)
 LivMn(2-w)M2ws
(式中、M2は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。v、wおよびsは、0.9≦v≦1.1、0≦w≦0.6、3.7≦s≦4.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
Examples of the spinel structure lithium manganese composite oxide include a lithium composite oxide represented by (Chemical Formula 2).
(Chemical formula 2)
Li v Mn (2-w) M2 w O s
(In the formula, M2 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe ), Copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), at least one selected from the group consisting of v, w and s are values within the range of 0.9 ≦ v ≦ 1.1, 0 ≦ w ≦ 0.6, 3.7 ≦ s ≦ 4.1, where the composition of lithium is the state of charge and discharge. And the value of v represents a value in a fully discharged state.)
 (化2)で表されるリチウム複合酸化物としては、具体的には、例えば、LivMn24(vは上記と同義である)、リチウムマンガンニッケル複合酸化物(LiMn2-tNit4(t<2))等が挙げられる。 Specifically, as the lithium composite oxide represented by (Chemical Formula 2), for example, Li v Mn 2 O 4 (v is as defined above), lithium manganese nickel composite oxide (LiMn 2−t Ni t O 4 (t <2)) and the like.
 正極材料は、上述したリチウム含有化合物からなる芯粒子の表面の少なくとも一部に被覆層が形成されたものであってもよい。被覆層は、母材となるリチウム含有化合物の芯粒子の表面の少なくとも一部に設けられたものであり、母材となるリチウム含有化合物の粒子とは異なる組成元素または組成比を有するものである。例えば、正極材料としては、より高い電極充填性とサイクル特性が得られるという観点から、上記リチウム含有化合物のいずれかより成る芯粒子の表面に、他のリチウム含有化合物(例えば、Ni、Mn、Li等から選択されるもの)やリン酸化合物(例えば、リン酸リチウム等)を含む被覆層が形成されたものであってもよい。被覆層は、炭素材料等であってもよい。 The positive electrode material may be one in which a coating layer is formed on at least a part of the surface of the core particle made of the lithium-containing compound described above. The coating layer is provided on at least a part of the surface of the core particle of the lithium-containing compound as the base material, and has a composition element or composition ratio different from that of the lithium-containing compound particle as the base material. . For example, as the positive electrode material, another lithium-containing compound (for example, Ni, Mn, Li) is formed on the surface of the core particle made of any of the lithium-containing compounds from the viewpoint that higher electrode filling properties and cycle characteristics can be obtained. And a coating layer containing a phosphate compound (for example, lithium phosphate) may be formed. The covering layer may be a carbon material or the like.
 この他、リチウムを吸蔵および放出することが可能な正極材料としては、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガン等の酸化物や、二硫化チタンまたは硫化モリブデン等の二硫化物や、セレン化ニオブ等のカルコゲン化物や、硫黄、ポリアニリンまたはポリチオフェン等の導電性高分子も挙げられる。 In addition, examples of positive electrode materials capable of inserting and extracting lithium include oxides such as titanium oxide, vanadium oxide and manganese dioxide, disulfides such as titanium disulfide and molybdenum sulfide, and niobium selenide. And chalcogenides such as sulfur, polyaniline or polythiophene, and other conductive polymers.
(導電剤)
 導電剤としては、ファーネス法、アセチレン法、コンタクト法、サーマル法等で作製されたカーボンブラックや、気相成長炭素、活性炭、活性炭繊維布、シングルウォールまたはマルチウォールカーボンナノチューブ、カーボンナノホーン等の炭素材料やこれらの炭素材料を酸・アルカリ処理等で表面改質したもの、他の元素を物理的または化学的に結合させて表面改質したものなどを用いることができる。
(Conductive agent)
Examples of the conductive agent include carbon black produced by furnace method, acetylene method, contact method, thermal method, etc., carbon materials such as vapor-grown carbon, activated carbon, activated carbon fiber cloth, single wall or multi-wall carbon nanotube, carbon nanohorn, etc. In addition, those obtained by surface modification of these carbon materials by acid / alkali treatment or the like, or those obtained by physically or chemically bonding other elements can be used.
(結着剤)
 結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)等の樹脂材料、並びに、これら樹脂材料を主体とする共重合体等から選択される少なくとも1種が用いられる。
(Binder)
Examples of the binder include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resins. At least one selected from a copolymer mainly composed of materials is used.
(負極)
 負極22は、例えば、一対の面を有する負極集電体22Aの両面に負極活物質層22Bが設けられたものである。なお、図示は省略するが、負極22は負極活物質層22Bが負極集電体22Aの片面だけに設けられた領域を有していてもよい。
(Negative electrode)
In the negative electrode 22, for example, a negative electrode active material layer 22B is provided on both surfaces of a negative electrode current collector 22A having a pair of surfaces. Although illustration is omitted, the negative electrode 22 may have a region where the negative electrode active material layer 22B is provided only on one surface of the negative electrode current collector 22A.
 負極集電体22Aは、例えば、アルミニウム箔、銅、ニッケルまたはステンレス等の金属材料によって構成されている。 The negative electrode current collector 22A is made of a metal material such as aluminum foil, copper, nickel, or stainless steel, for example.
 負極活物質層22Bは、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料の1種または2種以上を含んでいる。負極活物質層22Bは、必要に応じて、結着剤および導電剤の少なくとも何れか等の他の材料を含んでいてもよい。なお、結着剤および導電剤は、それぞれ正極で説明したものと同様のものを用いることができる。 The negative electrode active material layer 22B contains one or more negative electrode materials capable of inserting and extracting lithium as a negative electrode active material. The negative electrode active material layer 22B may contain other materials such as at least one of a binder and a conductive agent as necessary. Note that the same binder and conductive agent as those described for the positive electrode can be used.
(負極活物質)
 リチウムを吸蔵および放出することが可能な負極材料としては、例えば、少なくともチタン(Ti)および酸素(O)を構成元素として含有するチタン含有無機酸化物、または、金属硫化物等を用いることができる。リチウムを吸蔵および放出することが可能な負極材料としては、例えば、負極の反応電位が1.0Vvs.Li/Li+超、好ましくは1.0Vvs.Li/Li+超1.9Vvs.Li/Li+以下となる材料等が好ましい。
(Negative electrode active material)
As a negative electrode material capable of inserting and extracting lithium, for example, a titanium-containing inorganic oxide containing at least titanium (Ti) and oxygen (O) as constituent elements, or a metal sulfide can be used. . As the negative electrode material capable of inserting and extracting lithium, for example, the reaction potential of the negative electrode is 1.0 Vvs. More than Li / Li + , preferably 1.0 Vvs. Li / Li + more than 1.9Vvs. The material etc. which become Li / Li + or less are preferable.
 チタン含有無機酸化物としては、少なくともリチウムおよびチタンを構成元素として有する複合酸化物(チタン含有リチウム複合酸化物と称する)、チタンと酸素とを構成元素として有する金属酸化物(チタン酸化物と称する)等が挙げられる。これらの中でも、チタン含有リチウム複合酸化物、または、チタン酸化物が好ましい。 Examples of the titanium-containing inorganic oxide include composite oxides having at least lithium and titanium as constituent elements (referred to as titanium-containing lithium composite oxides), and metal oxides having titanium and oxygen as constituent elements (referred to as titanium oxides). Etc. Among these, titanium-containing lithium composite oxide or titanium oxide is preferable.
 チタン含有リチウム複合酸化物としては、典型的には、例えば、スピネル構造を有するLixTiyz(xはLiの組成比を示し、yはTiの組成比を示し、zはOの組成比を示す。x>0、y>0、z>0である。)で表される化合物(チタン酸リチウム)が挙げられる。 As the titanium-containing lithium composite oxide, typically, for example, Li x Ti y O z having a spinel structure (x represents a composition ratio of Li, y represents a composition ratio of Ti, and z represents a composition of O). A compound (lithium titanate) represented by the following formula: x> 0, y> 0, z> 0).
 スピネル構造を有するLixTiyzの具体例としては、Li4Ti512等が挙げられる。スピネル構造を有するLixTiyzのリチウムイオンを吸蔵および放出する電位(V対Li/Li+)は、例えば、電池の充放電時の電位変化パターン中における平坦部において約1.55V等である。なお、LixTiyz中のLiは、Na、K等であってもよい。 Specific examples of Li x Ti y O z having a spinel structure include Li 4 Ti 5 O 12 . The potential (V vs. Li / Li + ) for occluding and releasing lithium ions of Li x Ti y O z having a spinel structure is, for example, about 1.55 V in the flat portion in the potential change pattern during charge / discharge of the battery. It is. Note that Li in Li x Ti y O z may be Na, K, or the like.
 チタン含有リチウム複合酸化物としては、更にまた、より高い電位平坦性とレート特性が得られるという観点から、上記構成元素のリチウム、チタン、酸素の一部が、AlやMg等の他の元素に置換されたものを用いてもよい。 As a titanium-containing lithium composite oxide, in addition, from the viewpoint that higher potential flatness and rate characteristics can be obtained, some of the constituent elements lithium, titanium, and oxygen are replaced with other elements such as Al and Mg. A substituted one may be used.
 チタンの一部を置換する他の元素としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)または白金(Pt)等である。 Examples of other elements that substitute a part of titanium include metal elements and metalloid elements capable of forming an alloy with lithium. Specifically, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), Examples thereof include bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd), and platinum (Pt).
 リチウム、チタン、酸素の一部が他の元素に置換されたチタン含有リチウム複合酸化物としては、典型的には、例えば、Li3.75Ti4.875Mg0.37512、Li3.75Ti4.50Al0.7512等が挙げられる。 Typical examples of the titanium-containing lithium composite oxide in which a part of lithium, titanium, and oxygen are substituted with other elements include Li 3.75 Ti 4.875 Mg 0.375 O 12 , Li 3.75 Ti 4.50 Al 0.75 O 12, and the like. Is mentioned.
(チタン酸化物)
 チタン酸化物としてはTipq(p>0、q>0である。)で表される化合物(酸化チタン)が挙げられる。この化合物の具体例としては、TiO2等が挙げられる。TiO2は、アナターゼ型TiO2〔TiO2(anatase)〕、ルチル型TiO2〔TiO2(rutile)〕、B型TiO2〔TiO2(B)〕等の何れであってもよい。
(Titanium oxide)
The titanium oxide (which is p> 0, q> 0. ) Ti p O q a compound represented by (titanium oxide) and the like. Specific examples of this compound include TiO 2 and the like. The TiO 2 may be any of anatase TiO 2 [TiO 2 (anatase)], rutile TiO 2 [TiO 2 (rutile)], B-type TiO 2 [TiO 2 (B)], and the like.
 なお、チタン含有リチウム複合酸化物等のチタン含有無機酸化物は、炭素により被覆されていてもよい。例えば、化学気相成長(CVD)法等を用いて、炭化水素等を分解させてチタン含有リチウム複合酸化物の表面に炭素皮膜を成長させることにより、炭素により被覆されたチタン含有無機酸化物を得ることができる。なお、炭素被覆の方法に関して、上記に限定されるものではない。 In addition, the titanium-containing inorganic oxide such as the titanium-containing lithium composite oxide may be coated with carbon. For example, by using a chemical vapor deposition (CVD) method or the like, hydrocarbons are decomposed and a carbon film is grown on the surface of the titanium-containing lithium composite oxide, whereby a titanium-containing inorganic oxide coated with carbon is obtained. Obtainable. The carbon coating method is not limited to the above.
 負極22には、後述の電解液に含まれるシランカップリング剤またはシロキサン化合物(シラン・シロキサン化合物と略称する場合もある)に由来する化合物、並びに、環状カルボン酸エステル化合物およびシラン・シロキサン化合物に由来する化合物の少なくとも何れかが含まれている。 The negative electrode 22 is derived from a silane coupling agent or a siloxane compound (sometimes abbreviated as a silane / siloxane compound) contained in an electrolyte solution described later, and a cyclic carboxylic acid ester compound and a silane / siloxane compound. At least one of the compounds to be included.
 例えば、負極22には、このような化合物として、式(1B)で表される化合物、式(2B)で表される化合物、および、式(3B)で表される化合物の少なくとも1種が含まれている。典型的には、これらの化合物は、充放電時において負極活物質層22B中の活物質粒子の表面に形成される被膜等に含まれている。被膜によって負極22の活性部位を包むことで副反応を抑制することができる。その結果、ガス発生を抑制することができる。また、負極22に式(1B)で表される化合物、式(2B)で表される化合物および式(3B)で表される化合物の少なくとも1種が含まれることによって、低温環境下においてもLiイオンの拡散が安定し、高い入出力特性を得ることができる。 For example, the negative electrode 22 includes, as such a compound, at least one of a compound represented by the formula (1B), a compound represented by the formula (2B), and a compound represented by the formula (3B). It is. Typically, these compounds are contained in a film or the like formed on the surface of the active material particles in the negative electrode active material layer 22B during charge / discharge. Side reactions can be suppressed by wrapping the active site of the negative electrode 22 with the coating. As a result, gas generation can be suppressed. Further, since the negative electrode 22 contains at least one of the compound represented by the formula (1B), the compound represented by the formula (2B), and the compound represented by the formula (3B), the Lithium is also Li even in a low temperature environment. Ion diffusion is stable and high input / output characteristics can be obtained.
Figure JPOXMLDOC01-appb-C000016
(式中、R1、R2およびR3は、各々独立してアルキル基、フッ素基、フッ素化アルキル基またはアルコキシ基である。n1は1以上8以下の整数である。)
Figure JPOXMLDOC01-appb-C000017
(式中、R4、R5およびR6は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R7およびR8は、各々独立して水素基、アルカリ金属、アルカリ土類金属、アルキル基、またはハロゲン基である。n2は1以上8以下の整数である。n3は1以上8以下の整数である。)
Figure JPOXMLDOC01-appb-C000018
(式中、R9、R10およびR11は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R12およびR13は、各々独立して、水素基
アルキル基、ハロゲン基、またはハロゲン化アルキル基である。R14は、水素基、アルカリ金属、またはアルカリ土類金属である。n4は1以上8以下の整数である。n5は1以上8以下の整数である。n6は1以上8以下の整数である。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, R1, R2 and R3 are each independently an alkyl group, a fluorine group, a fluorinated alkyl group or an alkoxy group. N1 is an integer of 1-8)
Figure JPOXMLDOC01-appb-C000017
(Wherein R4, R5 and R6 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R7 and R8 are each independently a hydrogen group, an alkali metal or an alkaline earth metal) An alkyl group or a halogen group, n2 is an integer of 1 to 8, and n3 is an integer of 1 to 8.)
Figure JPOXMLDOC01-appb-C000018
(Wherein R9, R10 and R11 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R12 and R13 are each independently a hydrogen group alkyl group, a halogen group, or R14 is a hydrogen group, an alkali metal or an alkaline earth metal, n4 is an integer of 1 to 8, n5 is an integer of 1 to 8. n6 is 1 or more It is an integer of 8 or less.)
 なお、本技術では、黒鉛等の炭素系負極活物質と比較して、負極活物質として、負極の反応電位が貴な電位となる負極材料を用いているため、反応電位が卑な炭素系負極活物質を用いた場合に分解してしまい有効ではない溶媒等を、効果的に使用することもできる。 In this technology, compared with carbon-based negative electrode active materials such as graphite, a negative electrode material in which the reaction potential of the negative electrode becomes a noble potential is used as the negative electrode active material. A solvent or the like that decomposes and is not effective when an active material is used can also be used effectively.
 式(1B)で表される化合物としては、例えば、下記の式(1B-1)~式(1B-5)で表される化合物等が挙げられる。 Examples of the compound represented by the formula (1B) include compounds represented by the following formulas (1B-1) to (1B-5).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(2B)で表される化合物としては、例えば、下記の式(2B-1)~式(2B-20)で表される化合物等が挙げられる。これらの中でも、式(2B-1)で表される化合物、式(2B-4)で表される化合物、式(2B-5)で表される化合物、式(2B-6)で表される化合物、式(2B-9)で表される化合物、式(2B-10)で表される化合物が、高い電導度を付与でき、低温環境下においても高い入出力特性を得られるため好ましい。 Examples of the compound represented by the formula (2B) include compounds represented by the following formulas (2B-1) to (2B-20). Among these, the compound represented by the formula (2B-1), the compound represented by the formula (2B-4), the compound represented by the formula (2B-5), and the formula (2B-6) A compound, a compound represented by the formula (2B-9), and a compound represented by the formula (2B-10) are preferable because they can impart high electrical conductivity and provide high input / output characteristics even in a low temperature environment.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-I000012
 式(3B)で表される化合物としては、例えば、下記の式(3B-1)~式(3B-20)で表される化合物等が挙げられる。これらの中でも、式(3B-1)で表される化合物、式(3B-4)で表される化合物、式(3B-5)で表される化合物、式(3B-6)で表される化合物、式(3B-9)で表される化合物、式(3B-10)で表される化合物が、高い電導度を付与でき、低温環境下においても高い入出力特性を得られるため好ましい。 Examples of the compound represented by the formula (3B) include compounds represented by the following formulas (3B-1) to (3B-20). Among these, the compound represented by the formula (3B-1), the compound represented by the formula (3B-4), the compound represented by the formula (3B-5), and the formula (3B-6) A compound, a compound represented by the formula (3B-9), and a compound represented by the formula (3B-10) are preferable because they can impart high electrical conductivity and provide high input / output characteristics even in a low temperature environment.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
 式(1B)で表される化合物、式(2B)で表される化合物および式(3B)で表される化合物の少なくとも1種を含む負極22は、例えば、負極に含浸させた電解液に含まれたシランカップリング剤またはシロキサン化合物(以下シラン・シロキサン化合物と称する)および環状カルボン酸エステル化合物から生成されたものを含む。 The negative electrode 22 including at least one of the compound represented by the formula (1B), the compound represented by the formula (2B), and the compound represented by the formula (3B) is included in, for example, an electrolytic solution impregnated in the negative electrode Silane coupling agents or siloxane compounds (hereinafter referred to as silane / siloxane compounds) and cyclic carboxylic acid ester compounds.
 式(1B)で表される化合物は、シラン・シロキサン化合物に由来するものであり、例えば、電解質塩と水との反応等により生成された電池内の種々の劣化をもたらすHFを効果的にトラップしたものである。例えば、フッ素含有リチウム塩等に由来するHFを効果的にトラップできる。式(2B)、式(3B)で表される各化合物は、シラン・シロキサン化合物および環状カルボン酸エステルに由来するものである。典型的には、例えば、電池の充放電における、シラン・シロキサン化合物と環状カルボン酸エステルの分解物との反応によって生成されたもの等である。シラン・シロキサン化合物は、典型的には、アミノ(-NH2)を有するシランカップリング剤である。 The compound represented by the formula (1B) is derived from a silane / siloxane compound, and effectively traps, for example, HF that causes various deteriorations in the battery generated by the reaction between an electrolyte salt and water. It is a thing. For example, HF derived from fluorine-containing lithium salt can be effectively trapped. Each compound represented by Formula (2B) and Formula (3B) is derived from a silane / siloxane compound and a cyclic carboxylic acid ester. Typically, for example, it is produced by a reaction between a silane / siloxane compound and a decomposition product of a cyclic carboxylic acid ester in charge / discharge of a battery. The silane-siloxane compound is typically a silane coupling agent having amino (—NH 2 ).
 なお、負極中等の電池内に形成された、シラン・シロキサン化合物および環状カルボン酸エステルに由来する化合物等を確認するためには、例えば、電池を解体して負極を含む電極体を取り出したのち、活物質表面を既存の元素分析方法、すなわち、エネルギー分散型X線分光法(SEM-EDX)等により元素分布観察を行うことによってその形成割合を分析すればよい。この方法を用いる場合には、意図せずに電解質中の不要成分が分析されることを防止するために、電極の表面を炭酸ジメチル(DMC)等の有機溶剤で洗浄してから分析することが好ましい。 In order to confirm the compounds derived from the silane / siloxane compound and the cyclic carboxylic acid ester formed in the battery such as in the negative electrode, for example, after disassembling the battery and taking out the electrode body including the negative electrode, The formation ratio of the active material surface may be analyzed by observing the element distribution with an existing elemental analysis method, that is, energy dispersive X-ray spectroscopy (SEM-EDX). When using this method, in order to prevent unintentional analysis of unnecessary components in the electrolyte, the electrode surface may be washed after being washed with an organic solvent such as dimethyl carbonate (DMC). preferable.
 また、取り出した電極体の洗浄抽出物を既存の構造分析方法、すなわち、赤外分光法(IR)、核磁気共鳴法(1H/13C-NMR)、ガスまたは液クロマトグラフ質量分析法(GC/LC-MS)等により含まれる化合物の構造解析を行うことによって、各化合物の形成割合を分析してもよい。この方法を用いる場合にも、意図せずに電解質中の不要成分が分析されることを防止するために、電極の表面を炭酸ジメチル(DMC)等の有機溶剤で洗浄してから各化合物を抽出および分析することが好ましい。 In addition, the washed extract of the electrode body taken out was subjected to existing structural analysis methods, that is, infrared spectroscopy (IR), nuclear magnetic resonance (1H / 13C-NMR), gas or liquid chromatography mass spectrometry (GC / The formation ratio of each compound may be analyzed by analyzing the structure of the compound contained by LC-MS) or the like. Even when this method is used, the surface of the electrode is washed with an organic solvent such as dimethyl carbonate (DMC) in order to prevent unintentional analysis of unnecessary components in the electrolyte, and then each compound is extracted. And analyzing.
(式(1B)で表される化合物~式(3B)で表される化合物の少なくとも1種の含有量)
 式(1B)で表される化合物~式(3B)で表される化合物の少なくとも1種の含有量を、所定の範囲にすることによって、電池容量等の特性をより維持しつつ、負極活物質表面をより効果的に被覆することができる。式(1B)で表される化合物~式(3B)で表される化合物の少なくとも1種は、負極中に含まれると共に、電解液中にも含まれていてもよい。式(1B)で表される化合物~式(3B)で表される化合物の少なくとも1種の好ましい含有量は、電解液中の式(1B)で表される化合物~式(3B)で表される化合物の少なくとも1種の含有量によって規定される。式(1B)で表される化合物~式(3B)で表される化合物の少なくとも1種の含有量としては、より優れた効果を得られる観点から、電解液の質量に対して、0.05質量%以上0.5質量%以下であることがより好ましい。
(Content of at least one compound represented by formula (1B) to compound represented by formula (3B))
By adjusting the content of at least one of the compound represented by the formula (1B) to the compound represented by the formula (3B) within a predetermined range, the negative electrode active material is further maintained while maintaining characteristics such as battery capacity. The surface can be coated more effectively. At least one of the compound represented by the formula (1B) to the compound represented by the formula (3B) may be contained in the negative electrode and also in the electrolytic solution. The preferable content of at least one of the compound represented by the formula (1B) to the compound represented by the formula (3B) is represented by the compound represented by the formula (1B) to the formula (3B) in the electrolytic solution. Defined by the content of at least one compound. The content of at least one of the compound represented by the formula (1B) to the compound represented by the formula (3B) is 0.05% with respect to the mass of the electrolytic solution from the viewpoint of obtaining a more excellent effect. It is more preferable that the content is not less than 0.5% by mass.
 電解液中の化合物は、解体した電池を遠心分離機にかけ、取り出した電解液を分析することで確認できる。具体的には、NMR(Nuclear Magnetic Resonance)、IR(infrared absorption spectrometry)、Raman(ラマン分光法)、GC-MS(Gas Chromatography mass spectrometry)、LC-MS(Liquid Chromatography Mass Spectrometry)等を用いることができる。 The compound in the electrolytic solution can be confirmed by applying the disassembled battery to a centrifuge and analyzing the extracted electrolytic solution. Specifically, NMR (Nuclear magnetic resonance), IR (infrared absorption spectroscopy), Raman (Raman spectroscopy), GC-MS (Gas chromatography, mass spectrometry), LC-MS (Liquid chromatography, Mass spectrometry), etc. can be used. it can.
 負極22には、より優れた特性が得られる観点から、上述の化合物と共に、カーボネート化合物およびシラン・シロキサン化合物に由来する化合物がさらに含まれるようにしてもよい。負極22に含まれるカーボネート化合物およびシラン・シロキサン化合物に由来する化合物としては、式(4B)で表される化合物、式(5B)で表される化合物および式(6B)で表される化合物の少なくとも1種が挙げられる。 The negative electrode 22 may further contain a compound derived from a carbonate compound and a silane / siloxane compound in addition to the above-mentioned compound from the viewpoint of obtaining superior characteristics. The compound derived from the carbonate compound and the silane / siloxane compound contained in the negative electrode 22 is at least a compound represented by the formula (4B), a compound represented by the formula (5B), and a compound represented by the formula (6B). One type is mentioned.
Figure JPOXMLDOC01-appb-C000022
(式中、R15、R16およびR17は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R18は、アルカリ金属、アルカリ土類金属、水素基、ハロゲン基、アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、アルカリ金属と結合したアルキル基、アルカリ土類金属と結合したアルキル基、ハロゲン化アルケニル基、アルカリ金属と結合したアルケニル基、アルカリ土類金属と結合したアルケニル基、ハロゲン化アルキニル基、アルカリ金属と結合したアルキニル基、アルカリ土類金属と結合したアルキニル基またはアルコキシ基である。R19は、アルカリ金属、アルカリ土類金属、水素基、ハロゲン基、アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、アルカリ金属と結合したアルキル基、アルカリ土類金属と結合したアルキル基、ハロゲン化アルケニル基、アルカリ金属と結合したアルケニル基、アルカリ土類金属と結合したアルケニル基、ハロゲン化アルキニル基、アルカリ金属と結合したアルキニル基、アルカリ土類金属と結合したアルキニル基、アルコキシ基、下記の式(A)で表される置換基、下記の式(B)で表される置換基、下記の式(C)で表される置換基、下記の式(D)で表される置換基、下記の式(E)で表される置換基、下記の式(F)で表される置換基、下記の式(G)で表される置換基、下記の式(H)で表される置換基、または、下記の式(I)で表される置換基である。)
Figure JPOXMLDOC01-appb-C000023
(式中、R20、R21およびR22は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R23、R24およびR25は、各々独立してアルカリ金属、アルカリ土類金属、アルキル基、ハロゲン基、ハロゲン化アルキル基または水素基である。R26は、アルキル基、ハロゲン基、ハロゲン化アルキル基、下記の式(A)で表される置換基、または、水素基である。)
Figure JPOXMLDOC01-appb-C000024
(式中、R27、R28およびR29は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R30は、アルカリ金属、アルカリ土類金属、アルキル基、ハロゲン基、ハロゲン化アルキル基または水素基である。R31は、アルキル基、ハロゲン基、ハロゲン化アルキル基、下記の式(A)で表される置換基、または、水素基である。)
Figure JPOXMLDOC01-appb-C000025
(式中、R32は、アルカリ金属、アルカリ土類金属、アルキル基、ハロゲン基、ハロゲン化アルキル基または水素基である。)
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-C000022
Wherein R15, R16 and R17 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R18 is an alkali metal, alkaline earth metal, hydrogen group, halogen group or alkyl group. , Alkenyl group, alkynyl group, halogenated alkyl group, alkyl group bonded to alkali metal, alkyl group bonded to alkaline earth metal, alkenyl halide group, alkenyl group bonded to alkali metal, bonded to alkaline earth metal An alkenyl group, a halogenated alkynyl group, an alkynyl group bonded to an alkali metal, an alkynyl group bonded to an alkaline earth metal, or an alkoxy group, wherein R19 is an alkali metal, alkaline earth metal, hydrogen group, halogen group, alkyl group; Alkenyl group, alkynyl group, halogenated alkyl group, Alkyl group bonded to potassium metal, alkyl group bonded to alkaline earth metal, halogenated alkenyl group, alkenyl group bonded to alkali metal, alkenyl group bonded to alkaline earth metal, alkynyl halide group, bonded to alkali metal An alkynyl group bonded to an alkaline earth metal, an alkoxy group, a substituent represented by the following formula (A), a substituent represented by the following formula (B), and the following formula (C): The substituent represented by the following formula (D), the substituent represented by the following formula (E), the substituent represented by the following formula (F), the following formula (G ), A substituent represented by the following formula (H), or a substituent represented by the following formula (I).)
Figure JPOXMLDOC01-appb-C000023
(Wherein R20, R21 and R22 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R23, R24 and R25 are each independently an alkali metal, an alkaline earth metal, An alkyl group, a halogen group, a halogenated alkyl group, or a hydrogen group, and R26 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group. )
Figure JPOXMLDOC01-appb-C000024
(Wherein R27, R28 and R29 each independently represents an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R30 represents an alkali metal, an alkaline earth metal, an alkyl group, a halogen group or a halogenated group. R 31 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group.
Figure JPOXMLDOC01-appb-C000025
(Wherein R32 is an alkali metal, alkaline earth metal, alkyl group, halogen group, halogenated alkyl group or hydrogen group.)
Figure JPOXMLDOC01-appb-I000015
 式(4B)で表される化合物、式(5B)で表される化合物および式(6B)で表される化合物の少なくとも1種を含む負極は、例えば、負極に含浸させた電解液に含まれたシランカップリング剤またはシロキサン化合物(以下シラン・シロキサン化合物と称する)およびカーボネート溶媒から生成されたものである。 The negative electrode containing at least one of the compound represented by the formula (4B), the compound represented by the formula (5B), and the compound represented by the formula (6B) is included in, for example, an electrolytic solution impregnated in the negative electrode. A silane coupling agent or a siloxane compound (hereinafter referred to as a silane / siloxane compound) and a carbonate solvent.
 式(4B)、式(5B)、式(6B)で表される各化合物は、シラン・シロキサン化合物およびカーボネート溶媒に由来するものである。典型的には、例えば、電池の充放電における、シラン・シロキサン化合物とカーボネート溶媒の分解物との反応によって生成されたもの等である。シラン・シロキサン化合物は、典型的には、アミノ(-NH2)を有するカップリング剤である。 Each compound represented by Formula (4B), Formula (5B), and Formula (6B) is derived from a silane / siloxane compound and a carbonate solvent. Typically, for example, it is produced by a reaction between a silane / siloxane compound and a decomposition product of a carbonate solvent in charge / discharge of a battery. The silane-siloxane compound is typically a coupling agent having amino (—NH 2 ).
 式(4B)で表される化合物としては、例えば、下記の式(4B-1)~式(4B-78)で表される化合物等が挙げられる。これらの中でも、電池特性の観点から、式(4B-25)で表される化合物、式(4B-26)で表される化合物、式(4B-27)で表される化合物、式(4B-28)で表される化合物、式(4B-29)で表される化合物、式(4B-30)で表される化合物、式(4B-32)で表される化合物、式(4B-38)で表される化合物、式(4B-39)で表される化合物、式(4B-40)で表される化合物、式(4B-41)で表される化合物、式(4B-42)で表される化合物が好ましい。 Examples of the compound represented by the formula (4B) include compounds represented by the following formulas (4B-1) to (4B-78). Among these, from the viewpoint of battery characteristics, a compound represented by the formula (4B-25), a compound represented by the formula (4B-26), a compound represented by the formula (4B-27), a formula (4B- 28), a compound represented by formula (4B-29), a compound represented by formula (4B-30), a compound represented by formula (4B-32), a formula (4B-38) A compound represented by formula (4B-39), a compound represented by formula (4B-40), a compound represented by formula (4B-41), a formula (4B-42) Are preferred.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
 式(5B)で表される化合物としては、例えば、下記の式(5B-1)~式(5B-12)で表される化合物等が挙げられる。これらの中でも、電池特性の観点から、式(5B-10)で表される化合物、式(5B-11)で表される化合物、式(5B-12)で表される化合物が好ましい。 Examples of the compound represented by the formula (5B) include compounds represented by the following formulas (5B-1) to (5B-12). Among these, from the viewpoint of battery characteristics, a compound represented by the formula (5B-10), a compound represented by the formula (5B-11), and a compound represented by the formula (5B-12) are preferable.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(6B)で表される化合物としては、例えば、下記の式(6B-1)~式(6B-3)で表される化合物等が挙げられる。 Examples of the compound represented by the formula (6B) include compounds represented by the following formulas (6B-1) to (6B-3).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(セパレータ)
 セパレータ23は、イオン透過度が大きく、所定の機械的強度を有する絶縁性の膜から構成される多孔質膜である。セパレータ23には、液状の電解質である電解液が含浸されている。セパレータ23の空孔には、電解液が保持される。
(Separator)
The separator 23 is a porous film composed of an insulating film having a high ion permeability and a predetermined mechanical strength. The separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte. The electrolyte solution is held in the pores of the separator 23.
 このようなセパレータ23を構成する樹脂材料は、例えばポリプロピレンもしくはポリエチレン等のポリオレフィン樹脂、アクリル樹脂、スチレン樹脂、ポリエステル樹脂またはナイロン樹脂等を用いることが好ましい。特に、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン等のポリエチレン、もしくはそれらの低分子量ワックス分、またはポリプロピレン等のポリオレフィン樹脂は溶融温度が適当であり、入手が容易なので好適に用いられる。また、これら2種以上の多孔質膜を積層した構造、もしくは、2種以上の樹脂材料を溶融混練して形成した多孔質膜としてもよい。ポリオレフィン樹脂からなる多孔質膜を含むものは、正極21と負極22との分離性に優れ、内部短絡の低下をいっそう低減することができる。また、セパレータ23としては、不織布を用いることが好まし。不織布ではLiイオンが透過するのに最適な十分な細孔径を確保しやすいという特徴があり、電池として高い入出力を得ることができる。 For example, a polyolefin resin such as polypropylene or polyethylene, an acrylic resin, a styrene resin, a polyester resin, or a nylon resin is preferably used as the resin material constituting the separator 23. In particular, polyethylene such as low density polyethylene, high density polyethylene and linear polyethylene, or their low molecular weight wax content, or polyolefin resin such as polypropylene is suitable because it has an appropriate melting temperature and is easily available. Moreover, it is good also as a porous film formed by melt-kneading the structure which laminated | stacked these 2 or more types of porous films, or 2 or more types of resin materials. A material including a porous film made of a polyolefin resin is excellent in separability between the positive electrode 21 and the negative electrode 22 and can further reduce a decrease in internal short circuit. Moreover, it is preferable to use a nonwoven fabric as the separator 23. Nonwoven fabrics have the feature that it is easy to ensure a sufficient pore diameter that is optimal for the permeation of Li ions, and high input / output can be obtained as a battery.
 セパレータ23の厚さは、必要な強度を保つことができる厚さ以上であれば任意に設定可能である。セパレータ23は、正極21と負極22との間の絶縁を図り、短絡等を防止するとともに、セパレータ23を介した電池反応を好適に行うためのイオン透過性を有し、かつ電池内において電池反応に寄与する活物質層の体積効率をできるだけ高くできる厚さに設定されることが好ましい。 The thickness of the separator 23 can be arbitrarily set as long as it is equal to or greater than the thickness that can maintain the required strength. The separator 23 insulates between the positive electrode 21 and the negative electrode 22 to prevent a short circuit and the like, and has ion permeability for suitably performing a battery reaction via the separator 23, and the battery reaction in the battery. It is preferable to set the thickness so that the volumetric efficiency of the active material layer that contributes to the maximum can be increased.
(電解液)
 電解液(非水電解液)は、電解質塩と、この電解質塩を溶解する非水溶媒と、添加剤としてシランカップリング剤またはシロキサン化合物を含む。なお、電解液は、添加剤としてシランカップリング剤およびシロキサン化合物の両方を含んでいてもよい。
(Electrolyte)
The electrolytic solution (nonaqueous electrolytic solution) includes an electrolyte salt, a nonaqueous solvent that dissolves the electrolyte salt, and a silane coupling agent or a siloxane compound as an additive. The electrolytic solution may contain both a silane coupling agent and a siloxane compound as additives.
(非水溶媒)
 非水溶媒としては、少なくとも環状カルボン酸エステル化合物を含むものを用いる。
(Non-aqueous solvent)
As the non-aqueous solvent, a solvent containing at least a cyclic carboxylic acid ester compound is used.
(環状カルボン酸エステル化合物)
 環状カルボン酸エステル化合物としては、γーブチロラクトン(GBL)、γーバレロラクトン(GVL)、σ-バレロラクトン等が挙げられる。これらの化合物等は、低温でのイオン伝導性をより向上できるため好ましい。
(Cyclic carboxylic acid ester compound)
Examples of cyclic carboxylic acid ester compounds include γ-butyrolactone (GBL), γ-valerolactone (GVL), and σ-valerolactone. These compounds and the like are preferable because ion conductivity at low temperature can be further improved.
(カーボネート溶媒)
 非水溶媒は、カーボネート溶媒を含んでいてもよい。カーボネート溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート等、ビニルエチレンカーボネート(VC)等の炭素-炭素間二重結合等の不飽和結合を有する不飽和カーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC;フルオロエチレンカーボネート)、4,5-ジフルオロ-1,3-ジオキソラン-2-オン(DFEC;ジフルオロエチレンカーボネート)等のハロゲン化カーボネート等のカーボネート化合物を用いることができる。
(Carbonate solvent)
The non-aqueous solvent may contain a carbonate solvent. Examples of the carbonate solvent include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC), vinyl ethylene carbonate ( VC) and the like, unsaturated carbonates having unsaturated bonds such as carbon-carbon double bonds, 4-fluoro-1,3-dioxolan-2-one (FEC; fluoroethylene carbonate), 4,5-difluoro-1 Carbonate compounds such as halogenated carbonates such as 1,3-dioxolan-2-one (DFEC; difluoroethylene carbonate) can be used.
(他の溶媒)
 非水溶媒は、他の溶媒を含んでいてもよい。他の溶媒としては、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(Me-THF)、1,3-ジオキソラン(DOL)、4-メチルー1,3-ジオキソラン(Me-DOL)、ジエチルエーテル(DEE)、3-メチルオキサゾリジノン(MOX)、ギ酸メチル(MF)、スルホラン(SL)、3-メチルスルホラン(3MS)、ジメチルスルホキシド(DMSO)、アセトニトリル(AN)、ジメチルスルホキシド(DMSO)、トリメチルフォスフェート(TMP)、プロピオニトリル(PN)、グルタロニトリル(GLN)、アジポニトリル(ADN)、メトキシアセトニトリル(MAN)、3-メトキシプロピオニトリル(MPN)、N,N-ジメチルフォルムアミド(DMF),N,N-ジメチルアセトアミド(DMA)、N-メチルピロリジノン(NMP)、N-メチルオキサゾリジノン(NMO)、N,N’-ジメチルイミダゾリジノン(DMI)、ニトロメタン(NM),ニトロエタン(NE)等が挙げられる.
(Other solvents)
The non-aqueous solvent may contain other solvents. Other solvents include 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran (Me-THF), 1,3-dioxolane (DOL), 4-methyl-1,3-dioxolane (Me -DOL), diethyl ether (DEE), 3-methyloxazolidinone (MOX), methyl formate (MF), sulfolane (SL), 3-methylsulfolane (3MS), dimethyl sulfoxide (DMSO), acetonitrile (AN), dimethyl sulfoxide (DMSO), trimethyl phosphate (TMP), propionitrile (PN), glutaronitrile (GLN), adiponitrile (ADN), methoxyacetonitrile (MAN), 3-methoxypropionitrile (MPN), N, N- Dimethylformamide (D F), N, N-dimethylacetamide (DMA), N-methylpyrrolidinone (NMP), N-methyloxazolidinone (NMO), N, N′-dimethylimidazolidinone (DMI), nitromethane (NM), nitroethane (NE) ) Etc.
 これらの中でも、鎖状カーボネートおよび環状カーボネートまたは鎖状カルボン酸エステルおよび環状カルボン酸エステルが、非水系電解液二次電池における種々の特性がよい点で好ましく、それらのなかでも、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトンがより好ましく、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトンが更に好ましい。 Among these, a chain carbonate and a cyclic carbonate, or a chain carboxylic acid ester and a cyclic carboxylic acid ester are preferable because they have various characteristics in a non-aqueous electrolyte secondary battery. Among these, ethylene carbonate and propylene carbonate are preferable. Dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone are more preferable, and ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and γ-butyrolactone are further included. preferable.
(含有量)
 電解液中の環状カルボン酸エステル化合物の含有量は、特に限定されないが、電池特性の観点から、電解液の質量に対して、20質量%以上が好ましい。電解液に20質量%以上のカルボン酸エステル化合物を含むことで、低温でのイオン伝導性をより確保できる。なお、上限値を規定する場合には60質量%以下が好ましい。
(Content)
Although content of the cyclic carboxylic acid ester compound in electrolyte solution is not specifically limited, From a viewpoint of battery characteristics, 20 mass% or more is preferable with respect to the mass of electrolyte solution. By containing 20% by mass or more of the carboxylic acid ester compound in the electrolytic solution, it is possible to further secure ion conductivity at a low temperature. In addition, when prescribing | regulating an upper limit, 60 mass% or less is preferable.
(添加剤)
 電解液は、添加剤として、シランカップリング剤またはシロキサン化合物(シラン・シロキサン化合物)を含む。なお、電解液は、シランカップリング剤およびシロキサン化合物の両方を含んでいてもよい。電解液に、シラン・シロキサン化合物を含有させることによって、シラン・シロキサン化合物およびシラン・シロキサン化合物に由来する化合物の少なくとも何れかが電極活物質の活性面を覆う効果も有し、電解液等の分解副反応を効果的に抑制することができ、長期信頼性の高い電池を提供することができる。さらに、電解液がシラン・シロキサン化合物を含むことによって、電解液の電極への含浸性をより向上させることができ、低温環境下でも高い容量を発現することができるというより優れた効果も得ることができる。例えば、電解液中のGBL等の含有比率を多くした場合には、電解液の電極への含浸性が悪くなる傾向にあるが、電解液がシラン・シロキサン化合物を含むことによって、電解液の電極への含浸性が悪くなることを改善することができる。
(Additive)
The electrolytic solution contains a silane coupling agent or a siloxane compound (silane / siloxane compound) as an additive. The electrolytic solution may contain both a silane coupling agent and a siloxane compound. By containing the silane / siloxane compound in the electrolytic solution, at least one of the silane / siloxane compound and the compound derived from the silane / siloxane compound also has an effect of covering the active surface of the electrode active material, and the electrolytic solution is decomposed. Side reactions can be effectively suppressed, and a battery with high long-term reliability can be provided. Furthermore, when the electrolytic solution contains a silane / siloxane compound, it is possible to further improve the impregnation of the electrolytic solution into the electrode, and to obtain a more excellent effect that a high capacity can be expressed even in a low temperature environment. Can do. For example, when the content ratio of GBL or the like in the electrolytic solution is increased, the impregnation property of the electrolytic solution into the electrode tends to deteriorate. However, when the electrolytic solution contains a silane / siloxane compound, the electrolytic solution electrode It is possible to improve that the impregnation property into the resin deteriorates.
(シランカップリング剤またはシロキサン化合物)
 シランカップリング剤としては、例えば、アミノ基(-NH2)を有するシランカップリング剤、他のシランカップリング剤等を用いることができる。これらの中でも、アミノ基(-NH2)を有するシランカップリング剤が好ましい。電池の劣化の原因となるHF(フッ化水素酸)を、アミノ基を有するシランカップリング剤が捕捉することにより、高温環境下での電池の劣化を抑制できる。また、フッ素を捕捉したアミノ基を有するシラン化合物に由来する化合物が良質な被膜となり、活性な活物質表面を覆うことでさらなる分解劣化反応を抑制できる。アミノ基(-NH2)を有するシランカップリング剤としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23-NH2)〕、3-アミノプロピルトリメトキシシラン〔(CH3O)3Si(CH23NH2〕、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等が挙げられる。
(Silane coupling agent or siloxane compound)
As the silane coupling agent, for example, a silane coupling agent having an amino group (—NH 2 ), another silane coupling agent, or the like can be used. Among these, a silane coupling agent having an amino group (—NH 2 ) is preferable. By capturing HF (hydrofluoric acid), which causes deterioration of the battery, by the silane coupling agent having an amino group, deterioration of the battery under a high temperature environment can be suppressed. Moreover, the compound derived from the silane compound which has the amino group which capture | acquired the fluorine becomes a good-quality film, and can further suppress degradation degradation reaction by covering the active active material surface. Examples of the silane coupling agent having an amino group (—NH 2 ) include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 )], 3-amino Examples thereof include propyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 NH 2 ], 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane and the like.
 他のシランカップリング剤としては、3-メルカプトプロピルトリメトキシシラン〔(CH3O)3Si(CH23SH〕、3-メルカプトプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23SH〕、3-メルカプトプロピルジメチルメトキシシラン〔(CH32(CH3O)Si(CH23SH〕、3-メルカプトプロピルトリメチルシラン〔(CH33Si(CH23SH〕、3-トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリストリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロクシプロピルトリメトキシシラン、3-メタクリロクシプロピルトリメトキシシラン、3-メタクリロクシプロピルトリメトキシシラン、3-メタクリロクシプロピルメチルジメトキシシラン、3-メタクリロクシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-クロルプロピルトリメトキシシラン、3-クロルプロピルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン等が挙げられる。 Other silane coupling agents include 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH], 3-mercaptopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 SH], 3-mercaptopropyldimethylmethoxysilane [(CH 3 ) 2 (CH 3 O) Si (CH 2 ) 3 SH], 3-mercaptopropyltrimethylsilane [(CH 3 ) 3 Si ( CH 2 ) 3 SH], 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, vinyltris (2-methoxyethoxy) silane, vinyltristrimethoxysilane, vinyltriethoxysilane, vinyltrichloro Silane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysila 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycyl Sidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxy Cyclohexyl) ethyltriethoxysilane, 3-ureidopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, Le triethoxysilane, methyl trimethoxysilane, phenyl triethoxysilane, and phenyl trimethoxysilane.
 シロキサン化合物としては、デカメチルシクロペンタンシロキサン、デカメチルテトラシロキサン、オクタメチルシクロテトラシロキサン、オクタメチルトリシロキサン、ヘキサメチルシクロトリシロキサン、ヘキサメチルジシロキサン等が挙げられる。 Examples of the siloxane compound include decamethylcyclopentanesiloxane, decamethyltetrasiloxane, octamethylcyclotetrasiloxane, octamethyltrisiloxane, hexamethylcyclotrisiloxane, hexamethyldisiloxane and the like.
 なお、シランカップリング剤は、〔Rx-Si(Ryn(ORz3-n Rx反応性官能基、Ry:有機基、ORz:加水分解性基〕構造を有するものであればこれらに限られるものではない。シロキサン化合物は、シロキサン構造を有するものであればこれらに限られるものではない。また、上述した一連のシラン・シロキサン化合物は、1種類であってもよいし、任意の組み合わせで2種以上混合されてもよい。これらのシラン・シロキサン化合物の中でも、電池特性の観点から、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等が好ましい。 Incidentally, a silane coupling agent, those having a structure [R x -Si (R y) n (OR z) 3-n R x reactive functional group, R y: hydrolyzable group: organic group, OR z] If so, it is not limited to these. The siloxane compound is not limited to these as long as it has a siloxane structure. Further, the series of silane / siloxane compounds described above may be one kind, or two or more kinds may be mixed in any combination. Among these silane / siloxane compounds, from the viewpoint of battery characteristics, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N -2- (Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxy Silane and the like are preferable.
(電解質塩)
 電解液に含まれる電解質塩としては、少なくともフッ素を含有するフッ素含有リチウム塩を、少なくとも含むものを用いることができる。フッ素含有リチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、リチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド(LiN(SO2F)(SO2CF3))、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(SO2CF32)、リチウムジフルオロオキサラトホウ酸(LiC2BO42)等が挙げられる。
(Electrolyte salt)
As the electrolyte salt contained in the electrolytic solution, one containing at least a fluorine-containing lithium salt containing at least fluorine can be used. Examples of the fluorine-containing lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and lithium trifluoromethanesulfonate (LiCF 3). SO 3 ), lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ), lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide (LiN (SO 2 F) (SO 2 CF 3 )), lithium bis (Trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ), lithium difluorooxalatoboric acid (LiC 2 BO 4 F 2 ) and the like.
 これらは、1種を単独で使用しても、2種以上を任意の組み合わせおよび比率で併用しても良い。これらの中でも、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、リチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SO2CF32)、およびリチウムビス(オキサラト)ホウ酸(LiC2BO42)からなる群のの少なくとも1種が好ましく、リチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SO2CF32)からなる群のうちの少なくとも1種がより好ましい。 These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Among these, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ), lithium bis (trifluoromethanesulfonyl) At least one member selected from the group consisting of imide (LiN (SO 2 CF 3 ) 2 ) and lithium bis (oxalato) boric acid (LiC 2 BO 4 F 2 ) is preferable, and lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ) and at least one selected from the group consisting of lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) are more preferred.
 電解質塩は、フッ素含有リチウム塩と共にその他のリチウム塩を含んでいてもよい。その他のリチウム塩としては、過塩素酸リチウム(LiClO4)、テトラフェニルホウ酸リチウム(LiB(C654)、メタンスルホン酸リチウム(LiCH3SO3)、リチウムビス(オキサラト)ホウ酸(LiC4BO8)、等が挙げられる。 The electrolyte salt may contain other lithium salt together with the fluorine-containing lithium salt. Other lithium salts include lithium perchlorate (LiClO 4 ), lithium tetraphenylborate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium bis (oxalato) borate (LiC 4 BO 8 ), and the like.
 電解液中の上記リチウム塩の濃度は、特に制限はないが、通常0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、その上限は、通常2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。濃度が低すぎると、非水系電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池の性能が低下する場合がある。 The concentration of the lithium salt in the electrolytic solution is not particularly limited, but is usually 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more. Moreover, the upper limit is 2 mol / L or less normally, Preferably it is 1.8 mol / L or less, More preferably, it is 1.7 mol / L or less. If the concentration is too low, the electrical conductivity of the non-aqueous electrolyte may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity, and the performance of the battery decreases. There is a case.
(5-2)電池の製造方法
 この非水電解質電池は、例えば、以下の製造方法によって製造される。
(5-2) Battery Manufacturing Method This nonaqueous electrolyte battery is manufactured, for example, by the following manufacturing method.
(正極の製造)
 まず、正極21を作製する。最初に、正極材料と、結着剤と、導電剤とを混合して正極合剤としたのち、有機溶剤に分散させてペースト状の正極合剤スラリーとする。続いて、ドクタブレードまたはバーコータ等によって正極集電体21Aの両面に正極合剤スラリーを均一に塗布して乾燥させる。最後に、必要に応じて加熱しながらロールプレス機等によって塗膜を圧縮成型して正極活物質層21Bを形成する。この場合には、圧縮成型を複数回に渡って繰り返してもよい。
(Manufacture of positive electrode)
First, the positive electrode 21 is produced. First, a positive electrode material, a binder, and a conductive agent are mixed to obtain a positive electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is uniformly applied to both surfaces of the positive electrode current collector 21A by a doctor blade or a bar coater and dried. Finally, the positive electrode active material layer 21B is formed by compressing and molding the coating film with a roll press or the like while heating as necessary. In this case, compression molding may be repeated a plurality of times.
(負極の製造)
 次に、負極22を作製する。最初に、負極材料と、結着剤と、必要に応じて導電剤とを混合して負極合剤としたのち、これを有機溶剤に分散させてペースト状の負極合剤スラリーとする。続いて、ドクタブレードまたはバーコータ等によって負極集電体22Aの両面に負極合剤スラリーを均一に塗布して乾燥させる。最後に、必要に応じて加熱しながらロールプレス機等によって塗膜を圧縮成型して負極活物質層22Bを形成する。
(Manufacture of negative electrode)
Next, the negative electrode 22 is produced. First, a negative electrode material, a binder, and a conductive agent as necessary are mixed to form a negative electrode mixture, which is then dispersed in an organic solvent to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is uniformly applied to both surfaces of the negative electrode current collector 22A by a doctor blade or a bar coater and dried. Finally, the negative electrode active material layer 22B is formed by compression molding the coating film with a roll press or the like while heating as necessary.
(電解液の調製)
 上述した電解液を調製する。この電解液が負極に含浸され、電池の充放電時等に、環状カルボン酸エステル化合物およびシラン・シロキサン化合物に由来する化合物が形成される。より具体的には、例えば、電池の充放電時等に、環状カルボン酸エステル化合物の分解物とシラン・シロキサン化合物との反応生成物等が形成される。
(Preparation of electrolyte)
The above-described electrolytic solution is prepared. The electrolyte is impregnated in the negative electrode, and a compound derived from the cyclic carboxylic acid ester compound and the silane / siloxane compound is formed during charging and discharging of the battery. More specifically, for example, a reaction product of a decomposition product of a cyclic carboxylic acid ester compound and a silane / siloxane compound is formed at the time of charge / discharge of the battery.
 具体的には、電池の充放電時等に、例えば、上述の反応生成物として式(1B)で表される化合物、式(2B)で表される化合物および式(3B)で表される化合物の少なくとも1種が形成され、これらの化合物の少なくとも1種を負極22に含有させることができる。なお、負極22にこれらの化合物の少なくとも1種を含有させる方法としては、種々の方法をとることができる。例えば、負極活物質層22Bを形成する際に、式(1B)で表される化合物、式(2B)で表される化合物および式(3B)で表される化合物の少なくとも1種と、負極材料等と混合する等して負極合剤を調製する等して、式(1B)で表される化合物、式(2B)で表される化合物および式(3B)で表される化合物の少なくとも1種を負極22に含有させるようにしてもよい。 Specifically, at the time of charge / discharge of a battery, for example, the compound represented by the formula (1B), the compound represented by the formula (2B), and the compound represented by the formula (3B) as the above reaction product And at least one of these compounds can be contained in the negative electrode 22. Various methods can be used as a method for causing the anode 22 to contain at least one of these compounds. For example, when forming the negative electrode active material layer 22B, at least one of a compound represented by the formula (1B), a compound represented by the formula (2B), and a compound represented by the formula (3B), and a negative electrode material At least one of a compound represented by the formula (1B), a compound represented by the formula (2B), and a compound represented by the formula (3B) by preparing a negative electrode mixture by mixing with May be contained in the negative electrode 22.
(電池の組み立て)
 非水電解質電池の組み立ては、以下のようにして行う。最初に、正極集電体21Aに正極リード25を溶接等して取り付けると共に、負極集電体22Aに負極リード26を溶接等して取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層および巻回させて巻回電極体20を作製したのち、その巻回中心にセンターピン24を挿入する。続いて、一対の絶縁板12、13で挟みながら巻回電極体20を電池缶11の内部に収納すると共に、正極リード25の先端部を安全弁機構15に溶接し、負極リード26の先端部を電池缶11に溶接する。
(Battery assembly)
The non-aqueous electrolyte battery is assembled as follows. First, the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like. Subsequently, after the positive electrode 21 and the negative electrode 22 are stacked and wound through the separator 23 to produce the wound electrode body 20, the center pin 24 is inserted into the winding center. Subsequently, the wound electrode body 20 is housed in the battery can 11 while being sandwiched between the pair of insulating plates 12 and 13, and the tip of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the tip of the negative electrode lead 26 is attached to the tip of the negative electrode lead 26. Weld to battery can 11.
 続いて、上述の電解液を電池缶11の内部に注入してセパレータ23等に含浸させる。最後に、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16を、ガスケット17を介してかしめることにより固定する。これにより、図1および図2に示す非水電解質電池が完成する。 Subsequently, the electrolytic solution described above is injected into the battery can 11 and impregnated in the separator 23 and the like. Finally, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are fixed to the opening end of the battery can 11 by caulking through the gasket 17. Thereby, the nonaqueous electrolyte battery shown in FIGS. 1 and 2 is completed.
6.第6の実施の形態
(6-1)電池の構成
 本技術の第6の実施の形態による非水電解質電池(電池)について説明する。図3は本技術の第6の実施の形態による非水電解質電池の分解斜視構成を表しており、図4は図3に示す巻回電極体30のI-I線に沿った断面を拡大して示している。
6). Sixth Embodiment (6-1) Battery Configuration A nonaqueous electrolyte battery (battery) according to a sixth embodiment of the present technology will be described. FIG. 3 shows an exploded perspective configuration of the nonaqueous electrolyte battery according to the sixth embodiment of the present technology, and FIG. 4 is an enlarged cross-sectional view taken along line II of the spirally wound electrode body 30 shown in FIG. It shows.
 この非水電解質電池は、主に、フィルム状の外装部材40の内部に、正極リード31および負極リード32が取り付けられた巻回電極体30が収容されたものである。このフィルム状の外装部材40を用いた電池構造は、ラミネートフィルム型と呼ばれている。この非水電解質電池は、例えば充電および放電が可能な二次電池であり、また、例えばリチウムイオン二次電池である。 This non-aqueous electrolyte battery is mainly one in which a wound electrode body 30 to which a positive electrode lead 31 and a negative electrode lead 32 are attached is housed in a film-shaped exterior member 40. The battery structure using the film-shaped exterior member 40 is called a laminate film type. This nonaqueous electrolyte battery is, for example, a secondary battery that can be charged and discharged, and is, for example, a lithium ion secondary battery.
 正極リード31および負極リード32は、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウム等の金属材料によって構成されており、負極リード32は、例えば、銅、ニッケルまたはステンレス等の金属材料によって構成されている。これらの金属材料は、例えば、薄板状または網目状になっている。 The positive electrode lead 31 and the negative electrode lead 32 are led out in the same direction from the inside of the exterior member 40 to the outside, for example. The positive electrode lead 31 is made of, for example, a metal material such as aluminum, and the negative electrode lead 32 is made of, for example, a metal material such as copper, nickel, or stainless steel. These metal materials are, for example, in a thin plate shape or a mesh shape.
 外装部材40は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムがこの順に貼り合わされたアルミラミネートフィルム等のように、金属箔からなる金属層の両面に樹脂層を設けた構成とされている。外装部材40の一般的な構成は、例えば、外側樹脂層/金属層/内側樹脂層の積層構造を有する。例えば、外装部材40は、例えば、内側樹脂層が巻回電極体30と対向するように、2枚の矩形型のアルミラミネートフィルムの外縁部同士が融着または接着剤によって互いに接着された構造を有している。外側樹脂層および内側樹脂層は、それぞれ複数層で構成されてもよい。 The exterior member 40 has a configuration in which resin layers are provided on both surfaces of a metal layer made of metal foil, such as an aluminum laminate film in which a nylon film, an aluminum foil, and a polyethylene film are bonded in this order. The general structure of the exterior member 40 has, for example, a laminated structure of an outer resin layer / a metal layer / an inner resin layer. For example, the exterior member 40 has a structure in which the outer edges of two rectangular aluminum laminate films are bonded to each other by fusion or an adhesive so that the inner resin layer faces the wound electrode body 30. Have. Each of the outer resin layer and the inner resin layer may be composed of a plurality of layers.
 金属層を構成する金属材料としては、耐透湿性のバリア膜としての機能を備えていれば良く、アルミニウム(Al)箔、ステンレス(SUS)箔、ニッケル(Ni)箔およびメッキを施した鉄(Fe)箔等を使用することができる。なかでも、薄く軽量で加工性に優れるアルミニウム箔を好適に用いることが好ましい。特に、加工性の点から、例えば焼きなまし処理済みのアルミニウム(JIS A8021P-O)、(JIS A8079P-O)または(JIS A1N30-O)等を用いるのが好ましい。 The metal material constituting the metal layer only needs to have a function as a moisture-permeable barrier film, and includes aluminum (Al) foil, stainless steel (SUS) foil, nickel (Ni) foil, and plated iron ( Fe) foil or the like can be used. Especially, it is preferable to use the aluminum foil which is thin and lightweight and excellent in workability. In particular, from the viewpoint of workability, for example, annealed aluminum (JIS A8021P-O), (JIS A8079P-O), or (JIS A1N30-O) is preferably used.
 金属層の厚みは、典型的には、例えば、30μm以上150μm以下とすることが好ましい。30μm未満の場合、材料強度が低減する傾向にある。また、150μmを超えた場合、加工が著しく困難になるとともに、ラミネートフィルムの厚さが増してしまい、非水電解質電池の体積効率が低減する傾向にある。 The thickness of the metal layer is typically preferably 30 μm or more and 150 μm or less, for example. When the thickness is less than 30 μm, the material strength tends to decrease. Moreover, when it exceeds 150 micrometers, while processing becomes remarkably difficult, the thickness of a laminate film will increase and it exists in the tendency for the volumetric efficiency of a nonaqueous electrolyte battery to reduce.
 内側樹脂層は、熱で溶けて互いに融着する部分であり、ポリエチレン(PE)、無軸延伸ポリプロピレン(CPP)、ポリエチレンテレフタレート(PET)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等が使用可能であり、これらから複数種類選択して用いることも可能である。 The inner resin layer is a part that is melted by heat and fused to each other, such as polyethylene (PE), non-axially oriented polypropylene (CPP), polyethylene terephthalate (PET), low density polyethylene (LDPE), high density polyethylene (HDPE), Linear low density polyethylene (LLDPE) or the like can be used, and a plurality of these can be selected and used.
 外側樹脂層としては、外観の美しさや強靱さ、柔軟性等からポリオレフィン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエステル等が用いられる。具体的には、ナイロン(Ny)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)が用いられ、これらから複数種類選択して用いることも可能である。 As the outer resin layer, polyolefin resin, polyamide resin, polyimide resin, polyester, or the like is used because of its beautiful appearance, toughness, flexibility, and the like. Specifically, nylon (Ny), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and polybutylene naphthalate (PBN) are used. Is also possible.
 外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するための密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料によって構成されている。このような材料としては、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレン等のポリオレフィン樹脂が挙げられる。 An adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 to prevent intrusion of outside air. The adhesion film 41 is made of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32. Examples of such a material include polyolefin resins such as polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
 なお、外装部材40は、上記した積層構造を有するアルミラミネートフィルムに代えて、他の積層構造を有するラミネートフィルムによって構成されていてもよいし、ポリプロピレン等の高分子フィルムまたは金属フィルム等によって構成されていてもよい。 The exterior member 40 may be constituted by a laminated film having another laminated structure instead of the aluminum laminated film having the laminated structure described above, or may be constituted by a polymer film such as polypropylene or a metal film. It may be.
 図4は、図3に示す巻回電極体のI-I線に沿った断面構成を表している。この巻回電極体30は、帯状のセパレータ35および電解質36を介して帯状の正極33と帯状の負極34とが積層および巻回されたものであり、その最外周部は、保護テープ37によって保護されている。 FIG. 4 shows a cross-sectional configuration along the II line of the spirally wound electrode body shown in FIG. This wound electrode body 30 is formed by laminating and winding a belt-like positive electrode 33 and a belt-like negative electrode 34 via a belt-like separator 35 and an electrolyte 36, and the outermost periphery is protected by a protective tape 37. Has been.
(正極)
 正極33は、例えば、一対の面を有する正極集電体33Aの両面に正極活物質層33Bが設けられた構造を有している。なお、図示はしないが、正極33は、正極集電体33Aの片面のみに正極活物質層33Bが形成された領域を有していてもよい。正極集電体33Aおよび正極活物質層33Bは、それぞれ第5の実施の形態における正極集電体21Aおよび正極活物質層21Bと同様である。
(Positive electrode)
The positive electrode 33 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a positive electrode current collector 33A having a pair of surfaces. Although not shown, the positive electrode 33 may have a region where the positive electrode active material layer 33B is formed only on one surface of the positive electrode current collector 33A. The positive electrode current collector 33A and the positive electrode active material layer 33B are the same as the positive electrode current collector 21A and the positive electrode active material layer 21B in the fifth embodiment, respectively.
(負極)
 負極34は、例えば、一対の面を有する負極集電体34Aの両面に正極活物質層33Bが設けられた構造を有している。なお、図示はしないが、負極34は、負極集電体34Aの片面のみに負極活物質層34Bが形成された領域を有していてもよい。負極集電体34Aおよび負極活物質層34Bは、それぞれ第5の実施の形態における負極集電体22Aおよび負極活物質層22Bと同様である。
(Negative electrode)
The negative electrode 34 has, for example, a structure in which a positive electrode active material layer 33B is provided on both surfaces of a negative electrode current collector 34A having a pair of surfaces. Although not shown, the negative electrode 34 may have a region where the negative electrode active material layer 34B is formed only on one surface of the negative electrode current collector 34A. The negative electrode current collector 34A and the negative electrode active material layer 34B are the same as the negative electrode current collector 22A and the negative electrode active material layer 22B in the fifth embodiment, respectively.
(セパレータ)
 セパレータ35は第5の実施の形態におけるセパレータ23と同様である。
(Separator)
The separator 35 is the same as the separator 23 in the fifth embodiment.
(電解質)
 電解質36は、非水電解液(電解液)と、それを保持する高分子化合物(マトリックス高分子化合物)とを含んでいる。電解質36は、例えば、いわゆるゲル状の電解質である。ゲル状の電解質は、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に漏液が防止されるので好ましい。
(Electrolytes)
The electrolyte 36 includes a nonaqueous electrolytic solution (electrolytic solution) and a polymer compound (matrix polymer compound) that holds the nonaqueous electrolytic solution. The electrolyte 36 is, for example, a so-called gel electrolyte. A gel electrolyte is preferable because high ion conductivity (for example, 1 mS / cm or more at room temperature) is obtained and liquid leakage is prevented.
(非水電解液)
 非水電解液は、電解質塩と、この電解質塩を溶解する非水溶媒とを含む。非水電解液は、第5の実施の形態と同様である。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution includes an electrolyte salt and a nonaqueous solvent that dissolves the electrolyte salt. The nonaqueous electrolytic solution is the same as that of the fifth embodiment.
(高分子化合物)
 高分子化合物としては、溶媒に相溶可能な性質を有するもの等を用いることができる。このような高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレン、またはポリカーボネート等が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。中でも、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンまたはポリエチレンオキサイドが好ましい。電気化学的に安定だからである。
(Polymer compound)
As the polymer compound, those having a property compatible with a solvent can be used. Examples of such a polymer compound include polyacrylonitrile, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, and polyphosphazene. , Polysiloxane, polyvinyl acetate, polyvinyl alcohol, polymethyl methacrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, or polycarbonate. These may be single and multiple types may be mixed. Among these, polyacrylonitrile, polyvinylidene fluoride, polyhexafluoropropylene, or polyethylene oxide is preferable. This is because it is electrochemically stable.
(6-2)電池の製造方法
 この非水電解質電池は、例えば、以下の3種類の製造方法(第1~第3の製造方法)によって製造される。
(6-2) Battery Manufacturing Method This nonaqueous electrolyte battery is manufactured, for example, by the following three manufacturing methods (first to third manufacturing methods).
(第1の製造方法)
 第1の製造方法では、最初に、例えば、上記した第5の実施の形態の正極21および負極22の作製手順と同様の手順により、正極集電体33Aの両面に正極活物質層33Bを形成して正極33を作製する。また、負極集電体34Aの両面に負極活物質層34Bを形成して負極34を作製する。
(First manufacturing method)
In the first manufacturing method, first, the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A, for example, by the same procedure as the manufacturing procedure of the positive electrode 21 and the negative electrode 22 of the fifth embodiment described above. Thus, the positive electrode 33 is manufactured. Further, the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34.
 続いて、電解液と、高分子化合物と、溶剤とを含む前駆溶液を調製して正極33および負極34の少なくとも一方の両面に塗布したのち、溶剤を揮発させてゲル状の電解質36を形成する。続いて、正極集電体33Aに正極リード31を取り付けると共に、負極集電体34Aに負極リード32を取り付ける。なお、電極の両面にゲル状の電解質36を形成することに変えて、セパレータの両面の少なくとも一方の面にゲル状の電解質36を形成してもよい。 Subsequently, a precursor solution containing an electrolytic solution, a polymer compound, and a solvent is prepared and applied to at least one of both surfaces of the positive electrode 33 and the negative electrode 34, and then the solvent is volatilized to form a gel electrolyte 36. . Subsequently, the positive electrode lead 31 is attached to the positive electrode current collector 33A, and the negative electrode lead 32 is attached to the negative electrode current collector 34A. Instead of forming the gel electrolyte 36 on both surfaces of the electrode, the gel electrolyte 36 may be formed on at least one surface of both surfaces of the separator.
 続いて、電解質36が形成された正極33と負極34とをセパレータ35を介して積層させてから長手方向に巻回し、その最外周部に保護テープ37を接着させて巻回電極体30を作製する。最後に、例えば、2枚のフィルム状の外装部材40の間に巻回電極体30を挟み込んだのち、その外装部材40の外縁部同士を熱融着等で接着させて巻回電極体30を封入する。この際、正極リード31および負極リード32と外装部材40との間に、密着フィルム41を挿入する。これにより、図3および図4に示す非水電解質電池が完成する。 Subsequently, the positive electrode 33 and the negative electrode 34 on which the electrolyte 36 is formed are stacked via the separator 35 and then wound in the longitudinal direction, and a protective tape 37 is adhered to the outermost peripheral portion to produce the wound electrode body 30. To do. Finally, for example, after the wound electrode body 30 is sandwiched between two film-shaped exterior members 40, the outer edge portions of the exterior member 40 are bonded to each other by heat fusion or the like, so that the wound electrode body 30 is Encapsulate. At this time, the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40. Thereby, the nonaqueous electrolyte battery shown in FIGS. 3 and 4 is completed.
(第2の製造方法)
 第2の製造方法では、最初に、第1の製造方法と同様に正極33および負極34を作製する。次に、正極33に正極リード31を取り付けると共に、負極34に負極リード32を取り付ける。続いて、高分子化合物が両面に塗布されたセパレータ35を介して正極33と負極34とを積層して巻回させたのち、その最外周部に保護テープ37を接着させて、巻回電極体30の前駆体である巻回体を作製する
(Second manufacturing method)
In the second manufacturing method, first, the positive electrode 33 and the negative electrode 34 are manufactured in the same manner as in the first manufacturing method. Next, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. Subsequently, the positive electrode 33 and the negative electrode 34 are laminated and wound through a separator 35 coated with a polymer compound on both sides, and then a protective tape 37 is adhered to the outermost periphery thereof to form a wound electrode body. A wound body that is a precursor of 30 is produced.
 続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着等で接着させて、袋状の外装部材40の内部に巻回体を収納する。 Subsequently, after sandwiching the wound body between the two film-like exterior members 40, the remaining outer peripheral edge except for the outer peripheral edge on one side is bonded by thermal fusion or the like, so that the bag-shaped exterior is obtained. The wound body is accommodated in the member 40.
 このセパレータ35に塗布する高分子化合物としては、例えば、フッ化ビニリデンを成分とする重合体、すなわち単独重合体、共重合体または多元共重合体等が挙げられる。具体的には、ポリフッ化ビニリデンや、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体や、フッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体等が好適である。なお、高分子化合物は、上記したフッ化ビニリデンを成分とする重合体と共に、他の1種または2種以上の高分子化合物を含んでいてもよい。 Examples of the polymer compound applied to the separator 35 include a polymer containing vinylidene fluoride as a component, that is, a homopolymer, a copolymer, a multi-component copolymer, and the like. Specifically, polyvinylidene fluoride, binary copolymers containing vinylidene fluoride and hexafluoropropylene as components, and ternary copolymers containing vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components. A coalescence or the like is preferred. The polymer compound may contain one or more other polymer compounds together with the polymer containing vinylidene fluoride as a component.
 セパレータ35上の高分子化合物は、例えば、以下のようにして、多孔性高分子化合物を形成していてもよい。すなわち、まず、高分子化合物を、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N,N-ジメチルスルホキシド等の極性有機溶媒からなる第1の溶媒に溶解させた溶液を調製し、この溶液をセパレータ35上に塗布する。次に、上記溶液が塗布されたセパレータ35を水、エチルアルコール、プロピルアルコール等の上記極性有機溶媒に対して相溶性があり、上記高分子化合物に対して貧溶媒である第2の溶媒中に浸漬する。このとき、溶媒交換が起こり、スピノーダル分解を伴う相分離が生じ、高分子化合物は多孔構造を形成する。その後、乾燥することにより、多孔構造を有する多孔性高分子化合物を得ることができる。 The polymer compound on the separator 35 may form a porous polymer compound as follows, for example. That is, first, a solution in which a polymer compound is dissolved in a first solvent composed of a polar organic solvent such as N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylacetamide, N, N-dimethylsulfoxide, etc. And this solution is applied onto the separator 35. Next, the separator 35 coated with the above solution is compatible with the above polar organic solvent such as water, ethyl alcohol, propyl alcohol, etc., and in the second solvent which is a poor solvent for the above polymer compound. Immerse. At this time, solvent exchange occurs, phase separation accompanied by spinodal decomposition occurs, and the polymer compound forms a porous structure. Thereafter, by drying, a porous polymer compound having a porous structure can be obtained.
 続いて、電解液を調製して、袋状の外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着等で密封する。これにより、電解液が高分子化合物に含浸し、その高分子化合物がゲル化して、ゲル状の電解質36が形成され、図3および図4に示す非水電解質電池が完成する。 Subsequently, an electrolytic solution is prepared and injected into the bag-shaped exterior member 40, and then the opening of the exterior member 40 is sealed by heat fusion or the like. Thereby, the electrolytic solution is impregnated into the polymer compound, and the polymer compound is gelled to form the gel electrolyte 36, thereby completing the nonaqueous electrolyte battery shown in FIGS.
(第3の製造方法)
 第3の製造方法では、最初に、第1の製造方法と同様に正極33および負極34を作製する。次に正極33に正極リード31を取り付けると共に、負極34に負極リード32を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層して巻回させたのち、その最外周部に保護テープ37を接着させて、巻回電極体30の前駆体である巻回体を作製する。
(Third production method)
In the third manufacturing method, first, the positive electrode 33 and the negative electrode 34 are produced in the same manner as in the first manufacturing method. Next, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated and wound via the separator 35, a protective tape 37 is adhered to the outermost peripheral portion thereof, and a wound body that is a precursor of the wound electrode body 30. Is made.
 続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着等で接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤等の他の材料とを含む電解質用組成物を調製して袋状の外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着等で密封する。最後に、モノマーを熱重合させて高分子化合物とすることにより、ゲル状の電解質36を形成する。これにより、図3および図4に示す非水電解質電池が完成する。 Subsequently, after sandwiching the wound body between the two film-like exterior members 40, the remaining outer peripheral edge except for the outer peripheral edge on one side is bonded by thermal fusion or the like, so that the bag-shaped exterior is obtained. The wound body is accommodated in the member 40. Subsequently, an electrolyte composition containing an electrolytic solution, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary is prepared to form a bag-shaped exterior member. After injecting into the inside of 40, the opening of the exterior member 40 is sealed by heat sealing or the like. Finally, the gel electrolyte 36 is formed by thermally polymerizing the monomer to obtain a polymer compound. Thereby, the nonaqueous electrolyte battery shown in FIGS. 3 and 4 is completed.
[変形例1]
 上述の第6の実施の形態による非水電解質電池の一例では、ゲル状の電解質を用いた構成例について説明したが、ゲル状の電解質に代えて、液系の電解質である電解液を用いてもよい。この場合、外装部材60内には非水電解液が充填されており、巻回電極体30から電解質36を省略した構成の巻回体が、非水電解液に含浸されている。この場合、非水電解質電池は例えば次のようにして作製される。
[Modification 1]
In the example of the non-aqueous electrolyte battery according to the sixth embodiment described above, the configuration example using the gel electrolyte has been described. However, instead of the gel electrolyte, an electrolytic solution that is a liquid electrolyte is used. Also good. In this case, the exterior member 60 is filled with a non-aqueous electrolyte, and a wound body having a configuration in which the electrolyte 36 is omitted from the wound electrode body 30 is impregnated with the non-aqueous electrolyte. In this case, the nonaqueous electrolyte battery is manufactured as follows, for example.
〔非水電解質電池の製造方法〕
(正極、負極、非水電解液の調製)
 非水電解質電池の一例の製造方法と同様にして、正極33および負極34の作製、非水電解液の調製を行う。
[Method for producing non-aqueous electrolyte battery]
(Preparation of positive electrode, negative electrode, non-aqueous electrolyte)
In the same manner as the manufacturing method of an example of the nonaqueous electrolyte battery, the positive electrode 33 and the negative electrode 34 are produced, and the nonaqueous electrolytic solution is prepared.
(非水電解質電池の組立て)
 次に、正極集電体33Aの端部に正極リード31を溶接により取り付けると共に、負極集電体34Aの端部に負極リード32を溶接により取り付ける。
(Assembling of non-aqueous electrolyte battery)
Next, the positive electrode lead 31 is attached to the end portion of the positive electrode current collector 33A by welding, and the negative electrode lead 32 is attached to the end portion of the negative electrode current collector 34A by welding.
 次に、正極33と負極34とをセパレータ35を介して積層して巻回し、最外周部に保護テープ37を接着して、巻回電極体30の前駆体である巻回体を形成する。次に、この巻回体を外装部材40に挟み、一辺を除く外周縁部を熱融着して袋状とし、外装部材40の内部に収納する。 Next, the positive electrode 33 and the negative electrode 34 are laminated and wound with the separator 35 interposed therebetween, and a protective tape 37 is adhered to the outermost peripheral portion to form a wound body that is a precursor of the wound electrode body 30. Next, the wound body is sandwiched between the exterior members 40, and the outer peripheral edge except for one side is heat-sealed to form a bag shape, which is then stored inside the exterior member 40.
 次に、非水電解液を外装部材40の内部に注入し、巻回体に非水電解液を含浸させたのち、外装部材40の開口部を真空雰囲気下で熱融着して密封する。以上により、目的とする非電解質二次電池が得られる。 Next, after injecting the non-aqueous electrolyte into the exterior member 40 and impregnating the wound body with the non-aqueous electrolyte, the opening of the exterior member 40 is heat-sealed in a vacuum atmosphere and sealed. As a result, the intended non-electrolyte secondary battery is obtained.
[変形例2]
 上述の第6の実施の形態の一例および変形例1では、巻回電極体30が外装部材60で外装された非水電解質電池について説明したが、図5A~図5Cに示すように、巻回電極体30の代わりに積層電極体70を用いてもよい。図5Aは、積層電極体70を収容した非水電解質電池の外観図である。図5Bは、外装部材60に積層電極体70が収容される様子を示す分解斜視図である。図5Cは、図5Aに示す非水電解質電池の底面側からの外観を示す外観図である。
[Modification 2]
In the above-described example of the sixth embodiment and Modification 1, the non-aqueous electrolyte battery in which the wound electrode body 30 is packaged by the exterior member 60 has been described. However, as illustrated in FIGS. A laminated electrode body 70 may be used instead of the electrode body 30. FIG. 5A is an external view of a nonaqueous electrolyte battery in which the laminated electrode body 70 is accommodated. FIG. 5B is an exploded perspective view showing a state in which the laminated electrode body 70 is accommodated in the exterior member 60. FIG. 5C is an external view showing the external appearance of the nonaqueous electrolyte battery shown in FIG. 5A from the bottom surface side.
 積層電極体70は、矩形状の正極73および矩形状の負極74を、矩形状のセパレータ75を介して積層し、固定部材76で固定した積層電極体70を用いる。なお、図示は省略するが、電解質層を形成する場合には、電解質層が正極73および負極74に接するように設けられている。例えば、正極73およびセパレータ75の間、並びに、負極74およびセパレータ75の間に電解質層(図示省略)が設けられている。この電解質層は、上述した電解質36と同様である。積層電極体70からは、正極73と接続された正極リード71および負極74と接続された負極リード72とが導出されており、正極リード71および負極リード72と外装部材60との間には密着フィルム61が設けられる。 The laminated electrode body 70 uses a laminated electrode body 70 in which a rectangular positive electrode 73 and a rectangular negative electrode 74 are laminated via a rectangular separator 75 and fixed by a fixing member 76. Although not shown, when the electrolyte layer is formed, the electrolyte layer is provided in contact with the positive electrode 73 and the negative electrode 74. For example, an electrolyte layer (not shown) is provided between the positive electrode 73 and the separator 75 and between the negative electrode 74 and the separator 75. This electrolyte layer is the same as the electrolyte 36 described above. A positive electrode lead 71 connected to the positive electrode 73 and a negative electrode lead 72 connected to the negative electrode 74 are led out from the laminated electrode body 70, and the positive electrode lead 71, the negative electrode lead 72, and the exterior member 60 are in close contact with each other. A film 61 is provided.
 なお、非水電解質電池の製造方法は、巻回電極体30に代えて積層電極体を作製すること、巻回体に代えて積層体(積層電極体70から電解質層を省略した構成のもの)を作製すること以外は、上述の第6の実施の形態の一例および変形例1の非水電解質電池の製造方法と同様である。 In addition, the manufacturing method of a non-aqueous electrolyte battery produces a laminated electrode body in place of the wound electrode body 30, and a laminated body in place of the wound body (with an electrolyte layer omitted from the laminated electrode body 70). Is the same as the manufacturing method of the nonaqueous electrolyte battery of the example of the sixth embodiment and the modification 1 except that the above is manufactured.
<第7の実施の形態~第10の実施の形態>
 以下、本技術の実施の形態について図面を参照して説明する。なお、説明は、以下の順序で行う。
7.第7の実施の形態(バッテリモジュール等の例)
8.第8の実施の形態(電池パックの例)
9.第9の実施の形態(電池パックの例)
10.第10の実施の形態(蓄電システム等の例))
<Seventh to Tenth Embodiments>
Hereinafter, embodiments of the present technology will be described with reference to the drawings. The description will be given in the following order.
7). Seventh embodiment (example of battery module)
8). Eighth embodiment (example of battery pack)
9. Ninth embodiment (example of battery pack)
10. Tenth embodiment (an example of a power storage system)
7.第7の実施の形態
(バッテリーモジュールの例)
 本技術の第7の実施の形態について説明する。第7の実施の形態では、上述の非水電解質電池を用いたバッテリユニットおよびバッテリユニットが組み合わされたバッテリモジュールについて説明する。
7). Seventh embodiment (example of battery module)
A seventh embodiment of the present technology will be described. In the seventh embodiment, a battery module using the above-described non-aqueous electrolyte battery and a battery module in which the battery unit is combined will be described.
(バッテリユニット)
 図6A~図6Bは、本技術の非水電解質電池を用いたバッテリユニットの構成例を示す斜視図である。図6Aおよび図6Bには、それぞれ異なる側から見たバッテリユニット100が示されており、図6Aに主に示されている側をバッテリユニット100の正面側とし、図6Bに主に示されている側をバッテリユニット100の背面側とする。図6A~図6Bに示すように、バッテリユニット100は、非水電解質電池1-1および1-2、ブラケット110、並びに、バスバー120-1および120-2を備えて構成される。なお、バスバー120-1およびバスバー120-2を区別しない場合には、バスバー120と称する。非水電解質電池1-1および1-2は、例えば、第2の実施の形態、第4の実施の形態、第6の実施の形態による非水電解質電池の変形例2と同様の構造を有するものである。
(Battery unit)
6A to 6B are perspective views showing a configuration example of a battery unit using the nonaqueous electrolyte battery of the present technology. 6A and 6B show the battery unit 100 viewed from different sides. The side mainly shown in FIG. 6A is the front side of the battery unit 100, and is mainly shown in FIG. 6B. Let the side which is present be the back side of the battery unit 100. As shown in FIGS. 6A to 6B, the battery unit 100 includes non-aqueous electrolyte batteries 1-1 and 1-2, a bracket 110, and bus bars 120-1 and 120-2. Note that the bus bar 120-1 and the bus bar 120-2 are referred to as the bus bar 120 when they are not distinguished from each other. The nonaqueous electrolyte batteries 1-1 and 1-2 have, for example, the same structure as that of the second modification of the nonaqueous electrolyte battery according to the second embodiment, the fourth embodiment, and the sixth embodiment. Is.
 ブラケット110は、非水電解質電池1-1および1-2の強度を確保するための支持具であり、ブラケット110の正面側に非水電解質電池1-1が装着され、ブラケット110の背面側に非水電解質電池1-2が装着される。なお、ブラケット110は、正面側および背面側のどちらから見ても、ほぼ同じ形状をしているが、下側の一方の角部分に面取り部111が形成されており、面取り部111が右下に見える側を正面側とし、面取り部111が左下に見える側を背面側とする。 The bracket 110 is a support for ensuring the strength of the non-aqueous electrolyte batteries 1-1 and 1-2. The non-aqueous electrolyte battery 1-1 is attached to the front side of the bracket 110, and the rear side of the bracket 110 is attached. A nonaqueous electrolyte battery 1-2 is mounted. The bracket 110 has substantially the same shape when viewed from either the front side or the back side, but a chamfered portion 111 is formed at one lower corner, and the chamfered portion 111 is located at the lower right. The side that can be seen is the front side, and the side where the chamfered portion 111 is seen in the lower left is the back side.
 バスバー120-1および120-2は、略L字形状をした金属の部材であり、非水電解質電池1-1および1-2のタブに接続される接続部分がブラケット110の側面側に配置され、バッテリユニット100の外部と接続されるターミナルがブラケット110の上面に配置されるように、ブラケット110の両側面にそれぞれ装着される。 The bus bars 120-1 and 120-2 are substantially L-shaped metal members, and the connection portions connected to the tabs of the nonaqueous electrolyte batteries 1-1 and 1-2 are arranged on the side surface side of the bracket 110. The terminals connected to the outside of the battery unit 100 are mounted on both side surfaces of the bracket 110 so that the terminals are arranged on the upper surface of the bracket 110.
 図7は、バッテリユニット100が分解された状態を示す斜視図である。図7の上側をバッテリユニット100の正面側とし、図7の下側をバッテリユニット100の背面側とする。以下、非水電解質電池1-1において内部に積層電極体が収容された凸状部分を電池本体1-1Aと称する。同様に、非水電解質電池1-2において内部に積層電極体が収容された凸状部分を電池本体1-2Aと称する。 FIG. 7 is a perspective view showing a state where the battery unit 100 is disassembled. The upper side of FIG. 7 is the front side of the battery unit 100, and the lower side of FIG. 7 is the back side of the battery unit 100. Hereinafter, in the nonaqueous electrolyte battery 1-1, the convex portion in which the laminated electrode body is accommodated is referred to as a battery body 1-1A. Similarly, a convex portion in which the laminated electrode body is accommodated in the nonaqueous electrolyte battery 1-2 is referred to as a battery body 1-2A.
 非水電解質電池1-1および1-2は、凸形状となっている電池本体1-1Aおよび1-2A側を互いに向い合せた状態で、ブラケット110に装着される。つまり、非水電解質電池1-1は正極リード3-1および負極リード4-1が設けられる面が正面側を向き、非水電解質電池1-2は正極リード3-2および負極リード4-2が設けられる面が背面側を向くように、ブラケット110に装着される。 The nonaqueous electrolyte batteries 1-1 and 1-2 are attached to the bracket 110 in a state where the projecting battery main bodies 1-1A and 1-2A face each other. That is, the surface of the nonaqueous electrolyte battery 1-1 on which the positive electrode lead 3-1 and the negative electrode lead 4-1 are provided faces the front side, and the nonaqueous electrolyte battery 1-2 has the positive electrode lead 3-2 and the negative electrode lead 4-2. Is attached to the bracket 110 so that the surface on which the slab is provided faces the back side.
 ブラケット110は、外周壁112およびリブ部113を有している。外周壁112は、非水電解質電池1-1および1-2の電池本体1-1Aおよび1-2Aの外周よりも若干広く、即ち、非水電解質電池1-1および1-2が装着された状態で電池本体1-1Aおよび1-2Aを囲うように形成される。リブ部113は、外周壁112の内側の側面に外周壁112の厚み方向の中央部分から内側に向かって伸びるように形成される。 The bracket 110 has an outer peripheral wall 112 and a rib portion 113. The outer peripheral wall 112 is slightly wider than the outer periphery of the battery bodies 1-1A and 1-2A of the nonaqueous electrolyte batteries 1-1 and 1-2, that is, the nonaqueous electrolyte batteries 1-1 and 1-2 are mounted. It is formed so as to surround battery main bodies 1-1A and 1-2A. The rib portion 113 is formed on the inner side surface of the outer peripheral wall 112 so as to extend inward from the central portion in the thickness direction of the outer peripheral wall 112.
 図7の構成例では、非水電解質電池1-1および1-2が、ブラケット110の正面側および背面側から外周壁112内に挿入され、両面に粘着性を有する両面テープ130-1および130-2により、ブラケット110のリブ部113の両面に貼着される。両面テープ130-1および130-2は、非水電解質電池1-1および1-2の外周端に沿った所定の幅の略ロ字形状をしており、ブラケット110のリブ部113は、両面テープ130-1および130-2が貼着する面積だけ設けられていればよい。 In the configuration example of FIG. 7, the nonaqueous electrolyte batteries 1-1 and 1-2 are inserted into the outer peripheral wall 112 from the front side and the back side of the bracket 110, and have double-sided tapes 130-1 and 130 having adhesiveness on both sides. -2 is attached to both surfaces of the rib portion 113 of the bracket 110. The double-sided tapes 130-1 and 130-2 have a substantially rectangular shape with a predetermined width along the outer peripheral ends of the nonaqueous electrolyte batteries 1-1 and 1-2. It is only necessary to provide an area where the tapes 130-1 and 130-2 are attached.
 このように、リブ部113は、非水電解質電池1-1および1-2の外周端に沿った所定の幅だけ、外周壁112の内側の側面から内側に向かって伸びるように形成されており、リブ部113よりも内側は、開口部となっている。従って、ブラケット110の正面側から両面テープ130-1によりリブ部113に貼着される非水電解質電池1-1と、ブラケット110の背面側から両面テープ130-2によりリブ部113に貼着される非水電解質電池1-2との間では、この開口部によって隙間が生じている。 In this manner, the rib portion 113 is formed to extend inward from the inner side surface of the outer peripheral wall 112 by a predetermined width along the outer peripheral ends of the nonaqueous electrolyte batteries 1-1 and 1-2. The inside of the rib 113 is an opening. Accordingly, the nonaqueous electrolyte battery 1-1 is attached to the rib portion 113 by the double-sided tape 130-1 from the front side of the bracket 110, and is attached to the rib portion 113 by the double-sided tape 130-2 from the back side of the bracket 110. A gap is formed between the nonaqueous electrolyte battery 1-2 and the nonaqueous electrolyte battery 1-2.
 即ち、ブラケット110の中央部分に開口部が形成されていることで、非水電解質電池1-1および1-2は、リブ部113の厚みと両面テープ130-1および130-2の厚みとを合計した寸法の隙間を有してブラケット110に装着される。 That is, since the opening is formed in the central portion of the bracket 110, the nonaqueous electrolyte batteries 1-1 and 1-2 have the thickness of the rib portion 113 and the thickness of the double-sided tapes 130-1 and 130-2. The bracket 110 is attached with a gap having a total size.
(バッテリモジュール)
 次に、図8を参照して、バッテリユニット100が組み合わされたバッテリモジュール160の構成例について説明する。図8は、バッテリモジュールの構成例を示す分解斜視図である。図8に示すように、バッテリモジュール160は、モジュールケース150、ゴムシート部151、電池部152、電池カバー154、固定シート部155、電気パーツ部156、およびボックスカバー157を備えて構成されている。
(Battery module)
Next, a configuration example of the battery module 160 in which the battery unit 100 is combined will be described with reference to FIG. FIG. 8 is an exploded perspective view showing a configuration example of the battery module. As shown in FIG. 8, the battery module 160 includes a module case 150, a rubber sheet part 151, a battery part 152, a battery cover 154, a fixed sheet part 155, an electric part part 156, and a box cover 157. .
 モジュールケース150は、バッテリユニット100を収納して使用機器に搭載するためのケースであり、図8の構成例では、24個のバッテリユニット100が収納可能なサイズとされている。 The module case 150 is a case for storing the battery unit 100 and mounting it on a device to be used. In the configuration example of FIG. 8, the module case 150 has a size that can store 24 battery units 100.
 ゴムシート部151は、バッテリユニット100の底面に敷かれて、衝撃等を緩和するためのシートである。ゴムシート部151では、3個のバッテリユニット100ごとに1枚のゴムシートが設けられ、24個のバッテリユニット100に対応するために8枚のゴムシートが用意される。 The rubber sheet portion 151 is a sheet that is laid on the bottom surface of the battery unit 100 to mitigate impact and the like. In the rubber sheet portion 151, one rubber sheet is provided for each of the three battery units 100, and eight rubber sheets are prepared to correspond to the 24 battery units 100.
 電池部152は、図8の構成例では、24個のバッテリユニット100が組み合わされて構成されている。また、電池部152では、3個のバッテリユニット100が並列に接続されて並列ブロック153を構成し、8個の並列ブロック153が直列に接続される接続構成となっている。 In the configuration example of FIG. 8, the battery unit 152 is configured by combining 24 battery units 100. The battery unit 152 has a connection configuration in which three battery units 100 are connected in parallel to form a parallel block 153, and eight parallel blocks 153 are connected in series.
 電池カバー154は、電池部152を固定するためのカバーであり、非水電解質電池1のバスバー120に対応した開口部が設けられている。 The battery cover 154 is a cover for fixing the battery part 152, and an opening corresponding to the bus bar 120 of the nonaqueous electrolyte battery 1 is provided.
 固定シート部155は、電池カバー154の上面に配置され、ボックスカバー157がモジュールケース150に固定されたときに、電池カバー154およびボックスカバー157に密着して固定するシートである。 The fixed sheet portion 155 is a sheet that is disposed on the upper surface of the battery cover 154 and is in close contact with and fixed to the battery cover 154 and the box cover 157 when the box cover 157 is fixed to the module case 150.
 電気パーツ部156は、バッテリユニット100の充放電を制御する充放電制御回路等の電気的な部品を有する。充放電制御回路は、例えば、電池部152において2本の列をなすバスバー120の間の空間に配置される。 The electrical part unit 156 includes electrical components such as a charge / discharge control circuit that controls charging / discharging of the battery unit 100. For example, the charge / discharge control circuit is disposed in a space between the bus bars 120 forming two rows in the battery unit 152.
 ボックスカバー157は、モジュールケース150に各部が収納された後に、モジュールケース150を閉鎖するためのカバーである。 The box cover 157 is a cover for closing the module case 150 after each part is accommodated in the module case 150.
 以上説明したように、本技術の非水電解質電池を用いたバッテリユニット100およびバッテリモジュール160が構成される。 As described above, the battery unit 100 and the battery module 160 using the nonaqueous electrolyte battery of the present technology are configured.
8.第8の実施の形態
 図9は、単電池を用いた電池パックの斜視構成を表しており、図10は、図9に示した電池パックのブロック構成を表している。なお、図9では、電池パックを分解した状態を示している。
8). Eighth Embodiment FIG. 9 shows a perspective configuration of a battery pack using single cells, and FIG. 10 shows a block configuration of the battery pack shown in FIG. In addition, in FIG. 9, the state which decomposed | disassembled the battery pack is shown.
 ここで説明する電池パックは、1つの二次電池を用いた簡易型の電池パック(いわゆるソフトパック)であり、例えば、スマートフォンに代表される電子機器等に内蔵される。この電池パックは、例えば、図10に示したように、第2の実施の形態、第4の実施の形態または第6の実施の形態、によるラミネートフィルム型の二次電池である電源211と、その電源211に接続される回路基板216とを備えている。 The battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is built in, for example, an electronic device typified by a smartphone. For example, as shown in FIG. 10, the battery pack includes a power source 211 that is a laminated film type secondary battery according to the second embodiment, the fourth embodiment, or the sixth embodiment. And a circuit board 216 connected to the power supply 211.
 電源211の両側面には、一対の粘着テープ218,219が貼り付けられている。回路基板216には、保護回路(PCM:Protection・Circuit・Module)が形成されている。この回路基板216は、電源211の正極リード212および負極リード213に対して一対のタブ214,215を介して接続されていると共に、外部接続用のコネクタ付きリード線217に接続されている。なお、回路基板216が電源211に接続された状態において、その回路基板216は、ラベル220および絶縁シート231により上下から保護されている。このラベル220が貼り付けられることで、回路基板216および絶縁シート231等は固定されている。 A pair of adhesive tapes 218 and 219 are attached to both side surfaces of the power source 211. A protection circuit (PCM: Protection Circuit Circuit Module) is formed on the circuit board 216. The circuit board 216 is connected to the positive lead 212 and the negative lead 213 of the power supply 211 via a pair of tabs 214 and 215 and is connected to a lead wire 217 with a connector for external connection. In the state where the circuit board 216 is connected to the power supply 211, the circuit board 216 is protected from above and below by the label 220 and the insulating sheet 231. By attaching the label 220, the circuit board 216, the insulating sheet 231 and the like are fixed.
 また、電池パックは、例えば、図10に示しているように、電源211と、回路基板216とを備えている。回路基板216は、例えば、制御部221と、スイッチ部222と、PTC223と、温度検出部224とを備えている。電源211は、正極端子225および負極端子227を介して外部と接続可能であるため、その電源211は、正極端子225および負極端子227を介して充放電される。温度検出部224は、温度検出端子(いわゆるT端子)226を用いて温度を検出可能である。 Further, for example, as shown in FIG. 10, the battery pack includes a power supply 211 and a circuit board 216. The circuit board 216 includes, for example, a control unit 221, a switch unit 222, a PTC 223, and a temperature detection unit 224. Since the power source 211 can be connected to the outside through the positive terminal 225 and the negative terminal 227, the power source 211 is charged / discharged through the positive terminal 225 and the negative terminal 227. The temperature detection unit 224 can detect the temperature using a temperature detection terminal (so-called T terminal) 226.
 制御部221は、電池パック全体の動作(電源211の使用状態を含む)を制御するものであり、例えば、中央演算処理装置(CPU)およびメモリ等を含んでいる。 The control unit 221 controls the operation of the entire battery pack (including the usage state of the power supply 211), and includes, for example, a central processing unit (CPU) and a memory.
 この制御部221は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部222を切断させることで、電源211の電流経路に充電電流が流れないようにする。また、制御部221は、例えば、充電時において大電流が流れると、スイッチ部222を切断させて、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the control unit 221 disconnects the switch unit 222 to prevent the charging current from flowing through the current path of the power supply 211. For example, when a large current flows during charging, the control unit 221 disconnects the charging current by cutting the switch unit 222.
 この他、制御部221は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部222を切断させることで、電源211の電流経路に放電電流が流れないようにする。また、制御部221は、例えば、放電時において大電流が流れると、スイッチ部222を切断させることで、放電電流を遮断する。 In addition, for example, when the battery voltage reaches the overdischarge detection voltage, the control unit 221 disconnects the switch unit 222 so that the discharge current does not flow in the current path of the power supply 211. For example, when a large current flows during discharge, the control unit 221 cuts off the discharge current by cutting the switch unit 222.
 スイッチ部222は、制御部221の指示に応じて、電源211の使用状態(電源211と外部機器との接続の可否)を切り換えるものである。このスイッチ部222は、例えば、充電制御スイッチおよび放電制御スイッチ等を含んでいる。充電制御スイッチおよび放電制御スイッチは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)等の半導体スイッチである。なお、充放電電流は、例えば、スイッチ部222のON抵抗に基づいて検出される。 The switch unit 222 switches the usage state of the power source 211 (whether the power source 211 can be connected to an external device) in accordance with an instruction from the control unit 221. The switch unit 222 includes, for example, a charge control switch and a discharge control switch. The charge control switch and the discharge control switch are semiconductor switches such as a field effect transistor (MOSFET) using a metal oxide semiconductor, for example. The charging / discharging current is detected based on the ON resistance of the switch unit 222, for example.
 温度検出部224は、電源211の温度を測定して、その測定結果を制御部221に出力するものであり、例えば、サーミスタ等の温度検出素子を含んでいる。なお、温度検出部224による測定結果は、異常発熱時において制御部221が充放電制御を行う場合や、制御部221が残容量の算出時において補正処理を行う場合等に用いられる。 The temperature detection unit 224 measures the temperature of the power supply 211 and outputs the measurement result to the control unit 221. For example, the temperature detection unit 224 includes a temperature detection element such as a thermistor. The measurement result by the temperature detection unit 224 is used when the control unit 221 performs charge / discharge control during abnormal heat generation or when the control unit 221 performs correction processing when calculating the remaining capacity.
 なお、回路基板216は、PTC223を備えていなくてもよい。この場合には、別途、回路基板216にPTC素子が付設されていてもよい。 The circuit board 216 may not include the PTC 223. In this case, a PTC element may be attached to the circuit board 216 separately.
9.第9の実施の形態
 図11は、本技術の第1の実施~第6の実施の形態による電池(以下、二次電池と適宜称する)を電池パックに適用した場合の回路構成例を示すブロック図である。電池パックは、組電池301、外装、充電制御スイッチ302aと、放電制御スイッチ303a、を備えるスイッチ部304、電流検出抵抗307、温度検出素子308、制御部310を備えている。
9. Ninth Embodiment FIG. 11 is a block diagram showing a circuit configuration example when the batteries according to the first to sixth embodiments of the present technology (hereinafter appropriately referred to as secondary batteries) are applied to a battery pack. FIG. The battery pack includes a switch unit 304 including an assembled battery 301, an exterior, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310.
 また、電池パックは、正極端子321および負極端子322を備え、充電時には正極端子321および負極端子322がそれぞれ充電器の正極端子、負極端子に接続され、充電が行われる。また、電子機器使用時には、正極端子321および負極端子322がそれぞれ電子機器の正極端子、負極端子に接続され、放電が行われる。 The battery pack also includes a positive electrode terminal 321 and a negative electrode terminal 322. During charging, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when the electronic device is used, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
 組電池301は、複数の二次電池301aを直列および/または並列に接続してなる。この二次電池301aは本技術の二次電池である。なお、図11では、6つの二次電池301aが、2並列3直列(2P3S)に接続された場合が例として示されているが、その他、n並列m直列(n,mは整数)のように、どのような接続方法でもよい。 The assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel. The secondary battery 301a is a secondary battery of the present technology. In addition, in FIG. 11, although the case where the six secondary batteries 301a are connected to 2 parallel 3 series (2P3S) is shown as an example, other n parallel m series (n and m are integers) Any connection method may be used.
 スイッチ部304は、充電制御スイッチ302aおよびダイオード302b、ならびに放電制御スイッチ303aおよびダイオード303bを備え、制御部310によって制御される。ダイオード302bは、正極端子321から組電池301の方向に流れる充電電流に対して逆方向で、負極端子322から組電池301の方向に流れる放電電流に対して順方向の極性を有する。ダイオード303bは、充電電流に対して順方向で、放電電流に対して逆方向の極性を有する。尚、図11に示す例では+側にスイッチ部304を設けているが、-側に設けても良い。 The switch unit 304 includes a charge control switch 302a and a diode 302b, and a discharge control switch 303a and a diode 303b, and is controlled by the control unit 310. The diode 302b has a reverse polarity with respect to the charging current flowing from the positive terminal 321 in the direction of the assembled battery 301 and the forward polarity with respect to the discharging current flowing from the negative terminal 322 in the direction of the assembled battery 301. The diode 303b has a forward polarity with respect to the charging current and a reverse polarity with respect to the discharging current. In the example shown in FIG. 11, the switch unit 304 is provided on the + side, but may be provided on the − side.
 充電制御スイッチ302aは、電池電圧が過充電検出電圧となった場合にOFFされて、組電池301の電流経路に充電電流が流れないように充放電制御部によって制御される。充電制御スイッチ302aのOFF後は、ダイオード302bを介することによって放電のみが可能となる。また、充電時に大電流が流れた場合にOFFされて、組電池301の電流経路に流れる充電電流を遮断するように、制御部310によって制御される。 The charge control switch 302a is turned off when the battery voltage becomes the overcharge detection voltage, and is controlled by the charge / discharge control unit so that the charge current does not flow in the current path of the assembled battery 301. After the charging control switch 302a is turned off, only discharging is possible via the diode 302b. Further, it is turned off when a large current flows during charging, and is controlled by the control unit 310 so that the charging current flowing in the current path of the assembled battery 301 is cut off.
 放電制御スイッチ303aは、電池電圧が過放電検出電圧となった場合にOFFされて、組電池301の電流経路に放電電流が流れないように制御部310によって制御される。放電制御スイッチ303aのOFF後は、ダイオード303bを介することによって充電のみが可能となる。また、放電時に大電流が流れた場合にOFFされて、組電池301の電流経路に流れる放電電流を遮断するように、制御部310によって制御される。 The discharge control switch 303 a is turned off when the battery voltage becomes the overdischarge detection voltage, and is controlled by the control unit 310 so that the discharge current does not flow in the current path of the assembled battery 301. After the discharge control switch 303a is turned off, only charging is possible via the diode 303b. Further, it is turned off when a large current flows during discharging, and is controlled by the control unit 310 so as to cut off the discharging current flowing in the current path of the assembled battery 301.
 温度検出素子308は例えばサーミスタであり、組電池301の近傍に設けられ、組電池301の温度を測定して測定温度を制御部310に供給する。電圧検出部311は、組電池301およびそれを構成する各二次電池301aの電圧を測定し、この測定電圧をA/D変換して、制御部310に供給する。電流測定部313は、電流検出抵抗307を用いて電流を測定し、この測定電流を制御部310に供給する。 The temperature detection element 308 is, for example, a thermistor, is provided in the vicinity of the assembled battery 301, measures the temperature of the assembled battery 301, and supplies the measured temperature to the control unit 310. The voltage detection unit 311 measures the voltage of the assembled battery 301 and each secondary battery 301a constituting the assembled battery 301, performs A / D conversion on the measured voltage, and supplies it to the control unit 310. The current measurement unit 313 measures the current using the current detection resistor 307 and supplies this measurement current to the control unit 310.
 スイッチ制御部314は、電圧検出部311および電流測定部313から入力された電圧および電流を基に、スイッチ部304の充電制御スイッチ302aおよび放電制御スイッチ303aを制御する。スイッチ制御部314は、二次電池301aのいずれかの電圧が過充電検出電圧もしくは過放電検出電圧以下になったとき、また、大電流が急激に流れたときに、スイッチ部304に制御信号を送ることにより、過充電および過放電、過電流充放電を防止する。 The switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313. The switch control unit 314 sends a control signal to the switch unit 304 when any voltage of the secondary battery 301a falls below the overcharge detection voltage or overdischarge detection voltage, or when a large current flows suddenly. By sending, overcharge, overdischarge, and overcurrent charge / discharge are prevented.
 充放電スイッチは、例えばMOSFET等の半導体スイッチを使用できる。この場合MOSFETの寄生ダイオードがダイオード302bおよび303bとして機能する。充放電スイッチとして、Pチャンネル型FETを使用した場合は、スイッチ制御部314は、充電制御スイッチ302aおよび放電制御スイッチ303aのそれぞれのゲートに対して、制御信号DOおよびCOをそれぞれ供給する。充電制御スイッチ302aおよび放電制御スイッチ303aはPチャンネル型である場合、ソース電位より所定値以上低いゲート電位によってONする。すなわち、通常の充電および放電動作では、制御信号COおよびDOをローレベルとし、充電制御スイッチ302aおよび放電制御スイッチ303aをON状態とする。 As the charge / discharge switch, for example, a semiconductor switch such as a MOSFET can be used. In this case, the parasitic diode of the MOSFET functions as the diodes 302b and 303b. When a P-channel FET is used as the charge / discharge switch, the switch control unit 314 supplies control signals DO and CO to the gates of the charge control switch 302a and the discharge control switch 303a, respectively. When the charge control switch 302a and the discharge control switch 303a are P-channel type, they are turned on by a gate potential that is lower than the source potential by a predetermined value or more. That is, in normal charging and discharging operations, the control signals CO and DO are set to the low level, and the charging control switch 302a and the discharging control switch 303a are turned on.
 そして、例えば過充電もしくは過放電の際には、制御信号COおよびDOをハイレベルとし、充電制御スイッチ302aおよび放電制御スイッチ303aをOFF状態とする。 For example, in the case of overcharge or overdischarge, the control signals CO and DO are set to the high level, and the charge control switch 302a and the discharge control switch 303a are turned off.
 メモリ317は、RAMやROMからなり例えば不揮発性メモリであるEPROM(Erasable Programmable Read Only Memory)等からなる。メモリ317では、制御部310で演算された数値や、製造工程の段階で測定された各二次電池301aの初期状態における電池の内部抵抗値等が予め記憶され、また適宜、書き換えも可能である。(また、二次電池301aの満充電容量を記憶させておくことで、制御部310とともに例えば残容量を算出することができる。 The memory 317 includes a RAM and a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) that is a nonvolatile memory. In the memory 317, the numerical value calculated by the control unit 310, the internal resistance value of the battery in the initial state of each secondary battery 301a measured in the manufacturing process, and the like are stored in advance, and can be appropriately rewritten. . (Also, by storing the full charge capacity of the secondary battery 301a, for example, the remaining capacity can be calculated together with the control unit 310.
 温度検出部318では、温度検出素子308を用いて温度を測定し、異常発熱時に充放電制御を行ったり、残容量の算出における補正を行う。 The temperature detection unit 318 measures the temperature using the temperature detection element 308, performs charge / discharge control at the time of abnormal heat generation, and performs correction in the calculation of the remaining capacity.
10.第10の実施の形態
 上述した本技術の第1の実施の形態~第6の実施の形態による電池、第7の実施の形態によるバッテリモジュールおよび第8の実施の形態~第9実施の形態による電池パックは、例えば電子機器や電動車両、蓄電装置等の機器に搭載または電力を供給するために使用することができる。
10. Tenth Embodiment According to the first to sixth embodiments of the present technology, the battery module according to the seventh embodiment, and the eighth to ninth embodiments. The battery pack can be used for mounting or supplying electric power to devices such as electronic devices, electric vehicles, and power storage devices.
 電子機器として、例えばノート型パソコン、PDA(携帯情報端末)、携帯電話、コードレスフォン子機、ビデオムービー、デジタルスチルカメラ、電子書籍、電子辞書、音楽プレイヤー、ラジオ、ヘッドホン、ゲーム機、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機等が挙げられる。 Examples of electronic devices include notebook computers, PDAs (personal digital assistants), mobile phones, cordless phones, video movies, digital still cameras, electronic books, electronic dictionaries, music players, radios, headphones, game consoles, navigation systems, Memory card, pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, TV, stereo, water heater, microwave oven, dishwasher, washing machine, dryer, lighting equipment, toys, medical equipment, robots, road conditioners, traffic lights Etc.
 また、電動車両としては鉄道車両、ゴルフカート、電動カート、電気自動車(ハイブリッド自動車を含む)等が挙げられ、これらの駆動用電源または補助用電源として用いられる。 Also, examples of the electric vehicle include a railway vehicle, a golf cart, an electric cart, an electric vehicle (including a hybrid vehicle), and the like, and these are used as a driving power source or an auxiliary power source.
 蓄電装置としては、住宅をはじめとする建築物用または発電設備用の電力貯蔵用電源等が挙げられる。 Examples of power storage devices include power storage power supplies for buildings such as houses or power generation facilities.
 以下では、上述した適用例のうち、上述した本技術の電池を適用した蓄電装置を用いた蓄電システムの具体例を説明する。 Hereinafter, a specific example of a power storage system using a power storage device to which the above-described battery of the present technology is applied will be described among the application examples described above.
 この蓄電システムは、例えば下記の様な構成が挙げられる。第1の蓄電システムは、再生可能エネルギーから発電を行う発電装置によって蓄電装置が充電される蓄電システムである。第2の蓄電システムは、蓄電装置を有し、蓄電装置に接続される電子機器に電力を供給する蓄電システムである。第3の蓄電システムは、蓄電装置から、電力の供給を受ける電子機器である。これらの蓄電システムは、外部の電力供給網と協働して電力の効率的な供給を図るシステムとして実施される。 This power storage system has the following configuration, for example. The first power storage system is a power storage system in which a power storage device is charged by a power generation device that generates power from renewable energy. The second power storage system is a power storage system that includes a power storage device and supplies power to an electronic device connected to the power storage device. The third power storage system is an electronic device that receives power supply from the power storage device. These power storage systems are implemented as a system for efficiently supplying power in cooperation with an external power supply network.
 さらに、第4の蓄電システムは、蓄電装置から電力の供給を受けて車両の駆動力に変換する変換装置と、蓄電装置に関する情報に基づいて車両制御に関する情報処理を行なう制御装置とを有する電動車両である。第5の蓄電システムは、他の機器とネットワークを介して信号を送受信する電力情報送受信部とを備え、送受信部が受信した情報に基づき、上述した蓄電装置の充放電制御を行う電力システムである。第6の蓄電システムは、上述した蓄電装置から、電力の供給を受け、または発電装置または電力網から蓄電装置に電力を供給する電力システムである。以下、蓄電システムについて説明する。 Furthermore, the fourth power storage system includes an electric vehicle having a conversion device that receives power supplied from the power storage device and converts the power into a driving force of the vehicle, and a control device that performs information processing related to vehicle control based on information related to the power storage device. It is. The fifth power storage system is a power system that includes a power information transmission / reception unit that transmits / receives signals to / from other devices via a network, and performs charge / discharge control of the power storage device described above based on information received by the transmission / reception unit. . The sixth power storage system is a power system that receives power from the power storage device described above or supplies power from the power generation device or the power network to the power storage device. Hereinafter, the power storage system will be described.
(10-1)応用例としての住宅における蓄電システム
 本技術の電池を用いた蓄電装置を住宅用の蓄電システムに適用した例について、図12を参照して説明する。例えば住宅401用の蓄電システム400においては、火力発電402a、原子力発電402b、水力発電402c等の集中型電力系統402から電力網409、情報網412、スマートメータ407、パワーハブ408等を介し、電力が蓄電装置403に供給される。これと共に、家庭内の発電装置404等の独立電源から電力が蓄電装置403に供給される。蓄電装置403に供給された電力が蓄電される。蓄電装置403を使用して、住宅401で使用する電力が給電される。住宅401に限らずビルに関しても同様の蓄電システムを使用できる。
(10-1) Residential Power Storage System as Application Example An example in which a power storage device using a battery of the present technology is applied to a residential power storage system will be described with reference to FIG. For example, in a power storage system 400 for a house 401, power is stored from a centralized power system 402 such as a thermal power generation 402a, a nuclear power generation 402b, and a hydroelectric power generation 402c through a power network 409, an information network 412, a smart meter 407, a power hub 408, and the like. Supplied to the device 403. At the same time, power is supplied to the power storage device 403 from an independent power source such as the power generation device 404 in the home. The electric power supplied to the power storage device 403 is stored. Electric power used in the house 401 is supplied using the power storage device 403. The same power storage system can be used not only for the house 401 but also for buildings.
 住宅401には、発電装置404、電力消費装置405、蓄電装置403、各装置を制御する制御装置410、スマートメータ407、各種情報を取得するセンサ411が設けられている。各装置は、電力網409および情報網412によって接続されている。発電装置404として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置405および/または蓄電装置403に供給される。電力消費装置405は、冷蔵庫405a、空調装置405b、テレビジョン受信機405c、風呂405d等である。さらに、電力消費装置405には、電動車両406が含まれる。電動車両406は、電気自動車406a、ハイブリッドカー406b、電気バイク406cである。 The house 401 is provided with a power generation device 404, a power consumption device 405, a power storage device 403, a control device 410 that controls each device, a smart meter 407, and a sensor 411 that acquires various types of information. Each device is connected by a power network 409 and an information network 412. A solar cell, a fuel cell, or the like is used as the power generation device 404, and the generated power is supplied to the power consumption device 405 and / or the power storage device 403. The power consuming device 405 is a refrigerator 405a, an air conditioner 405b, a television receiver 405c, a bath 405d, and the like. Furthermore, the electric power consumption device 405 includes an electric vehicle 406. The electric vehicle 406 is an electric vehicle 406a, a hybrid car 406b, and an electric motorcycle 406c.
 蓄電装置403に対して、本技術の電池が適用される。本技術の電池は、例えば上述したリチウムイオン二次電池によって構成されていてもよい。スマートメータ407は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網409は、直流給電、交流給電、非接触給電の何れか一つまたは複数を組み合わせても良い。 The battery of the present technology is applied to the power storage device 403. The battery of the present technology may be configured by, for example, the above-described lithium ion secondary battery. The smart meter 407 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company. The power network 409 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
 各種のセンサ411は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサ等である。各種のセンサ411により取得された情報は、制御装置410に送信される。センサ411からの情報によって、気象の状態、人の状態等が把握されて電力消費装置405を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置410は、住宅401に関する情報をインターネットを介して外部の電力会社等に送信することができる。 The various sensors 411 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by various sensors 411 is transmitted to the control device 410. Based on the information from the sensor 411, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 405 can be automatically controlled to minimize the energy consumption. Furthermore, the control apparatus 410 can transmit the information regarding the house 401 to an external electric power company etc. via the internet.
 パワーハブ408によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置410と接続される情報網412の通信方式としては、UART(Universal Asynchronous Receiver-Transceiver:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth、ZigBee、Wi-Fi、NFC等の無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers)802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network)またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。NFC(Near Field Communication)は近距離無線通信技術の名称である。 The power hub 408 performs processing such as branching of power lines and DC / AC conversion. Communication methods of the information network 412 connected to the control device 410 include a method using a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth, ZigBee, Wi-Fi, NFC, etc. There is a method of using a sensor network based on a wireless communication standard. The Bluetooth method is applied to multimedia communication and can perform one-to-many connection communication. ZigBee uses the physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4). IEEE802.15.4 is a name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN. NFC (Near Field Communication) is the name of short-range wireless communication technology.
 制御装置410は、外部のサーバ413と接続されている。このサーバ413は、住宅401、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ413が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)等に、表示されても良い。 The control device 410 is connected to an external server 413. The server 413 may be managed by any one of the house 401, the power company, and the service provider. The information transmitted and received by the server 413 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
 各部を制御する制御装置410は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等で構成され、この例では、蓄電装置403に格納されている。制御装置410は、蓄電装置403、家庭内の発電装置404、電力消費装置405、各種のセンサ411、サーバ413と情報網412により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていても良い。 The control device 410 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 403 in this example. The control device 410 is connected to the power storage device 403, the domestic power generation device 404, the power consumption device 405, various sensors 411, the server 413 and the information network 412, and adjusts, for example, the amount of commercial power used and the amount of power generation It has a function to do. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
 以上のように、電力が火力発電402a、原子力発電402b、水力発電402c等の集中型電力系統402のみならず、家庭内の発電装置404(太陽光発電、風力発電)の発電電力を蓄電装置403に蓄えることができる。したがって、家庭内の発電装置404の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置403に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置403に蓄え、昼間の料金が高い時間帯に蓄電装置403によって蓄電した電力を放電して利用するといった使い方もできる。 As described above, not only the centralized power system 402 such as the thermal power generation 402a, the nuclear power generation 402b, and the hydroelectric power generation 402c but also the power generation device 404 (solar power generation, wind power generation) in the home is used as the power storage device 403. Can be stored. Therefore, even if the generated power of the power generation device 404 in the home fluctuates, it is possible to perform control such that the amount of power transmitted to the outside is constant or discharge is performed as necessary. For example, the power obtained by solar power generation is stored in the power storage device 403, and the nighttime power at a low charge is stored in the power storage device 403 at night, and the power stored by the power storage device 403 is discharged during a high daytime charge. You can also use it.
 なお、この例では、制御装置410が蓄電装置403内に格納される例を説明したが、スマートメータ407内に格納されても良いし、単独で構成されていても良い。さらに、蓄電システム400は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。 In this example, the example in which the control device 410 is stored in the power storage device 403 has been described. However, the control device 410 may be stored in the smart meter 407 or may be configured independently. Furthermore, the power storage system 400 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
(10-2)応用例としての車両における蓄電システム
 本技術を車両用の蓄電システムに適用した例について、図13を参照して説明する。図13に、本技術が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
(10-2) Power Storage System in Vehicle as Application Example An example in which the present technology is applied to a power storage system for a vehicle will be described with reference to FIG. FIG. 13 schematically shows an example of the configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied. A series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
 このハイブリッド車両500には、エンジン501、発電機502、電力駆動力変換装置503、駆動輪504a、駆動輪504b、車輪505a、車輪505b、バッテリー508、車両制御装置509、各種センサ510、充電口511が搭載されている。バッテリー508に対して、上述した本技術の電池が適用される。 The hybrid vehicle 500 includes an engine 501, a generator 502, a power driving force conversion device 503, driving wheels 504 a, driving wheels 504 b, wheels 505 a, wheels 505 b, a battery 508, a vehicle control device 509, various sensors 510, and a charging port 511. Is installed. The battery of the present technology described above is applied to the battery 508.
 ハイブリッド車両500は、電力駆動力変換装置503を動力源として走行する。電力駆動力変換装置503の一例は、モータである。バッテリー508の電力によって電力駆動力変換装置503が作動し、この電力駆動力変換装置503の回転力が駆動輪504a、504bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置503が交流モータでも直流モータでも適用可能である。各種センサ510は、車両制御装置509を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ510には、速度センサ、加速度センサ、エンジン回転数センサ等が含まれる。 Hybrid vehicle 500 travels using power driving force conversion device 503 as a power source. An example of the power / driving force conversion device 503 is a motor. The electric power / driving force converter 503 is operated by the electric power of the battery 508, and the rotational force of the electric power / driving force converter 503 is transmitted to the driving wheels 504a and 504b. In addition, by using DC-AC (DC-AC) or reverse conversion (AC-DC conversion) at a required place, the power driving force converter 503 can be applied to either an AC motor or a DC motor. The various sensors 510 control the engine speed through the vehicle control device 509 and control the opening (throttle opening) of a throttle valve (not shown). Various sensors 510 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 エンジン501の回転力は発電機502に伝えられ、その回転力によって発電機502により生成された電力をバッテリー508に蓄積することが可能である。 The rotational force of the engine 501 is transmitted to the generator 502, and the electric power generated by the generator 502 by the rotational force can be stored in the battery 508.
 図示しない制動機構によりハイブリッド車両500が減速すると、その減速時の抵抗力が電力駆動力変換装置503に回転力として加わり、この回転力によって電力駆動力変換装置503により生成された回生電力がバッテリー508に蓄積される。 When the hybrid vehicle 500 decelerates by a braking mechanism (not shown), the resistance force at the time of deceleration is applied as a rotational force to the electric power driving force conversion device 503, and the regenerative electric power generated by the electric power driving force conversion device 503 by this rotational force becomes the battery 508. Accumulated in.
 バッテリー508は、ハイブリッド車両500の外部の電源に接続されることで、その外部電源から充電口511を入力口として電力供給を受け、受けた電力を蓄積することも可能である。 The battery 508 is connected to an external power source of the hybrid vehicle 500, so that it can receive power from the external power source using the charging port 511 as an input port and store the received power.
 図示しないが、二次電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置等がある。 Although not shown, an information processing device that performs information processing related to vehicle control based on information related to the secondary battery may be provided. As such an information processing apparatus, for example, there is an information processing apparatus that displays a battery remaining amount based on information on the remaining amount of the battery.
 なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれをバッテリーに一旦貯めておいた電力を用いて、モータで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモータの出力がいずれも駆動源とし、エンジンのみで走行、モータのみで走行、エンジンとモータ走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本技術は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本技術は有効に適用可能である。 In the above description, the series hybrid vehicle that runs on the motor using the power generated by the generator driven by the engine or the power stored once in the battery has been described as an example. However, the present technology is also effective for a parallel hybrid vehicle in which the engine and motor outputs are both driving sources, and the system is switched between the three modes of driving with only the engine, driving with the motor, and engine and motor. Applicable. Furthermore, the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
 以下、実施例により本技術を詳細に説明する。なお、本技術は、下記の実施例の構成に限定されるものではない。 Hereinafter, the present technology will be described in detail by way of examples. In addition, this technique is not limited to the structure of the following Example.
<実施例1-1>
 以下の手順により、正極活物質としてコバルト酸リチウム(LiCoO2)、負極活物質として、充放電時の電位がリチウム電位に対して約1.55Vに平坦部を有するチタン酸リチウム(Li4Ti512)を用いて、図3および図4に示したラミネートフィルム型の二次電池を作製した。
<Example 1-1>
According to the following procedure, lithium cobaltate (LiCoO 2 ) as a positive electrode active material, and lithium titanate (Li 4 Ti 5) having a flat portion at a charge / discharge potential of about 1.55 V with respect to the lithium potential as a negative electrode active material. The laminate film type secondary battery shown in FIGS. 3 and 4 was produced using O 12 ).
(正極の作製)
 まず、正極活物質としてコバルト酸リチウム(LiCoO2)90質量部と、導電剤としてケッチェンブラック5質量部と、結着剤としてポリフッ化ビニリデン5質量部を均質に混合してN-メチルピロリドンを添加し、正極合剤スラリーを得た。
(Preparation of positive electrode)
First, 90 parts by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 5 parts by mass of ketjen black as a conductive agent, and 5 parts by mass of polyvinylidene fluoride as a binder were mixed homogeneously to obtain N-methylpyrrolidone. The positive electrode mixture slurry was obtained.
 次に、この正極合剤スラリーを、厚み10μmのアルミニウム箔上の両面に、均一に塗布し、乾燥させ圧縮成型し、片面あたりの厚さが30μmの正極活物質層(活物質層の体積密度:3.5g/cc)を形成した。これを幅50mm、長さ300mmの形状に切断して正極を得た。 Next, this positive electrode mixture slurry is uniformly coated on both sides of an aluminum foil having a thickness of 10 μm, dried and compression-molded, and a positive electrode active material layer having a thickness of 30 μm per side (volume density of the active material layer) : 3.5 g / cc). This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a positive electrode.
(負極の作製)
 負極活物質としてチタン酸リチウム(Li4Ti512)85質量部と、結着剤としてポリフッ化ビニリデン5質量部と、導電剤としてケッチェンブラック10質量部とを均質に混合して、N-メチルピロリドンを添加し負極合剤スラリー得た。
(Preparation of negative electrode)
85 parts by mass of lithium titanate (Li 4 Ti 5 O 12 ) as a negative electrode active material, 5 parts by mass of polyvinylidene fluoride as a binder, and 10 parts by mass of ketjen black as a conductive agent are mixed uniformly. -Methylpyrrolidone was added to obtain a negative electrode mixture slurry.
 次に、この負極合剤スラリーを、負極集電体となる厚み10μmのアルミニウム箔上の片面に、均一に塗布し、乾燥させ圧縮成型し、片面当たりの厚さが30μmの負極活物質層を形成した。これを幅50mm、長さ300mmの形状に切断して負極(合剤の体積密度:1.8g/cc)を得た。 Next, this negative electrode mixture slurry is uniformly applied to one side of an aluminum foil having a thickness of 10 μm to be a negative electrode current collector, dried and compression-molded, and a negative electrode active material layer having a thickness of 30 μm per side is formed. Formed. This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a negative electrode (volume density of the mixture: 1.8 g / cc).
(セパレータ)
 セパレータとしては、厚さ16μmの微多孔性ポリエチレンフィルムを用いた。
(Separator)
As the separator, a microporous polyethylene film having a thickness of 16 μm was used.
(電解液の調製)
 液状の非水電解質である電解液(非水電解液)としては、溶媒を調製し、六フッ化リン酸リチウム(LiPF6)を1.0mol/kgとなるように溶解させ、さらに添加剤として、3-メルカプトプロピルトリメトキシシラン〔(CH3O)3)Si(CH23SH〕を1質量%添加したものを用いた。溶媒は、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とエチルイソプロピルスルホン(EiPS)とを、PC:EMC:VC:EiPS=37:56:1:5(質量比)で混合した混合溶媒を用いた。
(Preparation of electrolyte)
As an electrolytic solution (nonaqueous electrolytic solution) that is a liquid nonaqueous electrolyte, a solvent is prepared, lithium hexafluorophosphate (LiPF 6 ) is dissolved to 1.0 mol / kg, and an additive is further added. , 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 ) Si (CH 2 ) 3 SH] added at 1% by mass was used. The solvent is propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and ethyl isopropyl sulfone (EiPS), and PC: EMC: VC: EiPS = 37: 56: 1: 5 (mass ratio). The mixed solvent mixed in was used.
 なお、この電解液を用いた電池では、式(1-2)で表される化合物〔(CH3O)3Si(CH23S-S(=O)2CH2CH3〕が電解液中に、電解液に対する質量百分率で0.05質量%含まれており、負極中にも、電解液中と同じ式(1-2)で表される化合物が含まれる。式(1-2)で表される化合物は、3-メルカプトトリメトキシシランおよびエチルイソプロピルスルホンに由来する化合物であり、3-メルカプトトリメトキシシランおよびエチルイソプロピルスルホンの分解物から生成される。 In the battery using this electrolytic solution, the compound [(CH 3 O) 3 Si (CH 2 ) 3 SS (═O) 2 CH 2 CH 3 ] represented by the formula (1-2) is electrolyzed. The liquid contains 0.05 mass% as a percentage by mass with respect to the electrolytic solution, and the negative electrode also contains the compound represented by the same formula (1-2) as in the electrolytic solution. The compound represented by the formula (1-2) is a compound derived from 3-mercaptotrimethoxysilane and ethylisopropylsulfone, and is produced from a decomposition product of 3-mercaptotrimethoxysilane and ethylisopropylsulfone.
(電池の組み立て)
 正極と負極とを、セパレータを介して巻回した後、アルミニウムラミネートフィルムからなる袋状の外装部材に入れたのち、電解液を2g注液し、その後、袋を熱融着した。以上により、実施例1-1のラミネートフィルム型電池を作製した。
(Battery assembly)
After winding the positive electrode and the negative electrode through a separator, the positive electrode and the negative electrode were put in a bag-shaped exterior member made of an aluminum laminate film, and then 2 g of an electrolyte was injected, and then the bag was heat-sealed. Thus, a laminated film type battery of Example 1-1 was produced.
<実施例1-2~実施例1-3>
 電解液中のプロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とエチルイソプロピルスルホン(EiPS)との質量比(PC:EMC:VC:EiPS)を下掲の表1に示す通りに変えた。3-メルカプトプロピルトリメトキシシラン〔(CH3O)3Si(CH23SH〕の濃度を下掲の表1に示す通りに変えた。式(1-2)で表される化合物〔(CH3O)Si(CH23-S-S(=O)2CH2CH3〕の濃度を下掲の表1に示す通りに変えた。以上のこと以外は、実施例1-1と同様にしてラミネートフィルム型電池を作製した。
<Example 1-2 to Example 1-3>
Table 1 shows the mass ratio (PC: EMC: VC: EiPS) of propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and ethyl isopropyl sulfone (EiPS) in the electrolytic solution. I changed it to the street. The concentration of 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH] was varied as shown in Table 1 below. The concentration of the compound represented by formula (1-2) [(CH 3 O) Si (CH 2 ) 3 —SS (═O) 2 CH 2 CH 3 ] was changed as shown in Table 1 below. It was. Except for the above, a laminated film type battery was produced in the same manner as in Example 1-1.
<実施例1-4~実施例1-6>
 電解液中の添加剤を3-メルカプトプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23SH〕に変えた。負極中の化合物を式(1-4)で表される化合物〔(CH3)(CH3O)2Si(CH23-S-S(=O)2C(CH32〕に変えた。以上のこと以外は、実施例1-1~実施例1-5と同様にしてラミネートフィルム型電池を作製した。
<Example 1-4 to Example 1-6>
The additive in the electrolyte was changed to 3-mercaptopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 SH]. The compound in the negative electrode is changed to the compound represented by the formula (1-4) [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —SS (═O) 2 C (CH 3 ) 2 ]. changed. Except for the above, laminate film type batteries were produced in the same manner as in Examples 1-1 to 1-5.
<比較例1-1>
 電解液として、エチルイソプロピルスルホン(EiPS)および3-メルカプトプロピルトリメトキシシラン〔(CH3O)3Si(CH23SH〕を含有しないものを用いた。すなわち、電解液の溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とを、PC:EMC:VC=40:59:1(質量比)で混合した混合溶媒を用いた。3-メルカプトプロピルトリメトキシシラン〔(CH3O)3Si(CH23SH〕を添加しなかった。以上のこと以外は、実施例1-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1-1>
As the electrolytic solution, one containing no ethyl isopropyl sulfone (EiPS) and 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH] was used. That is, a solvent mixture of propylene carbonate (PC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC) in a ratio of PC: EMC: VC = 40: 59: 1 (mass ratio) is used as a solvent for the electrolytic solution. Using. 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH] was not added. Except for the above, a laminated film type battery was produced in the same manner as in Example 1-1.
<比較例1-2~比較例1-4>
 電解液として、鎖状スルホン化合物を含有しないものを用いた。すなわち、電解液の溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とを、PC:EMC:VC=39:59:1(質量比)で混合した混合溶媒を用いた。添加剤として、3-メルカプトプロピルトリメトキシシラン〔(CH3O)3Si(CH23SH〕を1質量%になるように添加した。負極に含まれる化合物を3-メルカプトプロピルトリメトキシシラン〔(CH3O)3Si(CH23SH〕にした。以上のこと以外は、実施例1-1~実施例1-3と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1-2 to Comparative Example 1-4>
As the electrolytic solution, one containing no chain sulfone compound was used. That is, a solvent mixture of propylene carbonate (PC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC) in a ratio of PC: EMC: VC = 39: 59: 1 (mass ratio) is used as a solvent for the electrolytic solution. Using. As an additive, 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH] was added to 1% by mass. The compound contained in the negative electrode was 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH]. Except for the above, a laminate film type battery was produced in the same manner as in Examples 1-1 to 1-3.
<比較例1-5~比較例1-7>
 電解液中の添加剤を3-メルカプトプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23SH〕に変えた。負極に含まれる化合物を〔(CH3)(CH3O)2Si(CH23SH〕に変えた。以上のこと以外は、比較例1-2~比較例1-4と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1-5 to Comparative Example 1-7>
The additive in the electrolyte was changed to 3-mercaptopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 SH]. The compound contained in the negative electrode was changed to [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 SH]. Except for the above, a laminate film type battery was produced in the same manner as in Comparative Examples 1-2 to 1-4.
<比較例1-8~比較例1-10>
 電解液として、添加剤を含有しないものを用いた。すなわち、溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とエチルイソプロピルスルホン(EiPS)とを、PC:EMC:VC:EiPS=38:56:1:5(質量比)で混合した混合溶媒を用い、3-メルカプトプロピルトリメトキシシラン〔(CH3O)3Si(CH23SH〕を添加しなかった電解液を用いた。負極に含まれる化合物を式(2-2)で表される化合物〔HS(=O)225〕とした。以上のこと以外は、実施例1-1~実施例1-3と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1-8 to Comparative Example 1-10>
As the electrolytic solution, one containing no additive was used. That is, as a solvent, propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and ethyl isopropyl sulfone (EiPS), PC: EMC: VC: EiPS = 38: 56: 1: 5 (mass) The electrolytic solution to which 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH] was not added was used. The compound contained in the negative electrode was a compound represented by the formula (2-2) [HS (= O) 2 C 2 H 5 ]. Except for the above, a laminate film type battery was produced in the same manner as in Examples 1-1 to 1-3.
<比較例1-11~比較例1-13>
 電解液として、シラン・シロキサン化合物を含有しないものを用いた。すなわち、溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とエチルイソプロピルスルホン(EiPS)とを、PC:EMC:VC:EiPS=40:59:1:1(質量比)で混合した混合溶媒を用い、3-メルカプトプロピルトリメトキシシラン〔(CH3O)3Si(CH23SH〕を添加しなかった電解液を用いた。負極に含まれる化合物を式(2-4)で表される化合物〔HS(=O)2CH(CH32〕とした。以上のこと以外は、実施例1-1~実施例1-3と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1-11 to Comparative Example 1-13>
An electrolyte solution containing no silane / siloxane compound was used. That is, as a solvent, propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and ethyl isopropyl sulfone (EiPS), PC: EMC: VC: EiPS = 40: 59: 1: 1 (mass) The electrolytic solution to which 3-mercaptopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 SH] was not added was used. The compound contained in the negative electrode was a compound represented by the formula (2-4) [HS (= O) 2 CH (CH 3 ) 2 ]. Except for the above, a laminate film type battery was produced in the same manner as in Examples 1-1 to 1-3.
<比較例1-14>
 負極活物質として黒鉛((C6;Graphite))を用いたこと以外は、実施例1-2と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1-14>
A laminate film type battery was produced in the same manner as in Example 1-2, except that graphite ((C 6 ; Graphite)) was used as the negative electrode active material.
(評価)
 作製した各電池について以下の評価を行った。
(Evaluation)
The following evaluation was performed about each produced battery.
(高温サイクル試験)
 最初に、各電池を23℃の雰囲気中において0.2Cの電流で2サイクル充放電させて、2サイクル目の放電容量を測定した。続いて、65℃の雰囲気中において300サイクルの充放電を繰り返し、2サイクル目の放電容量に対する300サイクルにおける放電容量維持率を、(300サイクル目の放電容量÷2サイクル目の放電容量)×100(%)として求めた。
(High temperature cycle test)
First, each battery was charged and discharged for 2 cycles at a current of 0.2 C in an atmosphere of 23 ° C., and the discharge capacity at the second cycle was measured. Subsequently, 300 cycles of charge and discharge were repeated in an atmosphere at 65 ° C., and the discharge capacity maintenance rate at 300 cycles with respect to the discharge capacity at the second cycle was calculated as (discharge capacity at 300th cycle / discharge capacity at the second cycle) × 100. (%).
 充放電条件としては、0.2Cの電流で上限電圧まで定電流定電圧充電し、さらに上限電圧での定電圧で電流値が0.05Cに達するまで充電したのち、0.2Cの電流で終止電圧まで定電流放電した。この「0.2C」とは、理論容量を5時間で放電しきる電流値である。上限電圧は、2.7Vに設定した。なお、後述のリン酸マンガン鉄リチウムを用いた電池(実施例3-3)では2.7V、リン酸鉄リチウムを用いた電池(実施例3-2等)では2.4Vにそれぞれ設定した。 The charge / discharge conditions are constant current and constant voltage charge up to the upper limit voltage at a current of 0.2 C, and further charge until the current value reaches 0.05 C at a constant voltage at the upper limit voltage, and then ends at a current of 0.2 C. A constant current was discharged to the voltage. This “0.2 C” is a current value at which the theoretical capacity can be discharged in 5 hours. The upper limit voltage was set to 2.7V. The battery using lithium manganese phosphate described below (Example 3-3) was set to 2.7 V, and the battery using lithium iron phosphate (Example 3-2 etc.) was set to 2.4 V.
(高温保存時の膨れの測定)
 初回容量測定後の各電池を、23℃の雰囲気中において上記と同様の上限電圧で3時間充電した後、充電状態において80℃の恒温槽中に24時間保存し、保存後の電池厚さと保存前の電池厚さとの差から、下記により高温保存時のセル厚の増加率を求めた。
 高温保存時のセル厚の増加率(%)={(「保存後の電池厚さ」-「保存前の電池厚さ」)÷「保存前の電池厚さ」}×100(%)
(Measures swelling when stored at high temperature)
Each battery after the initial capacity measurement is charged for 3 hours at the same upper limit voltage as described above in an atmosphere at 23 ° C., and then stored in a constant temperature bath at 80 ° C. for 24 hours in a charged state. From the difference from the previous battery thickness, the increase rate of the cell thickness during high temperature storage was determined as follows.
Increase rate of cell thickness during high temperature storage (%) = {("Battery thickness after storage"-"Battery thickness before storage") / "Battery thickness before storage"} x 100 (%)
 表1に評価結果を示す。 Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1-1~実施例1-6では、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。これらの電池では、鎖状スルホン化合物およびシランカップリング剤を含む電解液を用いることで、負極に式(1-2)または式(1-14)で表される化合物を含ませることによって、高温サイクル特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。なお、鎖状スルホン化合物として、他の鎖状スルホン化合物を用いた場合も同様の効果を得られる。シランカップリング剤として他のシランカップリング剤を用いた場合も同様の効果を得られる。シランカップリング剤に代えて、シロキサン化合物を用いた場合も同様の効果を得られる。負極に他のジスルフィド結合を有する化合物(例えば、式(1-1)、式(1-3)~式(1-13)、式(1-15)~式(1-25)の化合物等)を含む場合も同様の効果を得られる。(以下の実施例でも同様)また、実施例1-1において、電解液中および負極中に、式(1-2)で表される化合物と式(2-2)で表される化合物、式(2-6)で表される化合物とが共存した状態になっていてもよい。実施例1-4において、電解液中および負極中に、式(1-14)で表される化合物と式(2-4)で表される化合物、式(2-8)で表される化合物とが共存した状態になっていてもよい。 As shown in Table 1, in Examples 1-1 to 1-6, gas generation during high-temperature storage could be suppressed and increase in battery cell thickness could be reduced. In these batteries, by using an electrolytic solution containing a chain sulfone compound and a silane coupling agent, the negative electrode contains the compound represented by the formula (1-2) or the formula (1-14), thereby increasing the temperature. The cycle characteristics could be improved, gas generation during high temperature storage could be suppressed, and the increase in battery cell thickness could be reduced. The same effect can be obtained when another chain sulfone compound is used as the chain sulfone compound. The same effect can be obtained when another silane coupling agent is used as the silane coupling agent. Similar effects can be obtained when a siloxane compound is used instead of the silane coupling agent. Compounds having other disulfide bonds at the negative electrode (eg, compounds of formula (1-1), formula (1-3) to formula (1-13), formula (1-15) to formula (1-25), etc.) The same effect can be obtained also when including. (The same applies to the following examples) In Example 1-1, the compound represented by the formula (1-2), the compound represented by the formula (2-2), the formula, The compound represented by (2-6) may coexist. In Example 1-4, the compound represented by the formula (1-14), the compound represented by the formula (2-4), and the compound represented by the formula (2-8) in the electrolytic solution and the negative electrode And may coexist.
<実施例2-1~実施例2-5>
 実施例1-2と同様にして実施例2-4のラミネートフィルム型電池を作製した。電解液中の鎖状スルホン化合物、エチルイソプロピルスルホン(EiPS)の組成を下掲の表2の通りに変えた以外は、実施例2-4と同様にして、実施例2-1~実施例2-2、実施例2-3~実施例2-5のラミネートフィルム型電池を作製した。
<Example 2-1 to Example 2-5>
A laminated film type battery of Example 2-4 was produced in the same manner as Example 1-2. Example 2-1 to Example 2 were carried out in the same manner as Example 2-4, except that the composition of the chain sulfone compound, ethyl isopropyl sulfone (EiPS) in the electrolytic solution was changed as shown in Table 2 below. -2, laminate film type batteries of Examples 2-3 to 2-5 were produced.
(評価)
 作製した各電池について実施例1-1と同様の評価を行った。評価結果を表2に示す。
(Evaluation)
Each of the fabricated batteries was evaluated in the same manner as in Example 1-1. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例2-1~実施例2-5では、高温サイクル特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。また、電解液中の鎖状スルホン化合物の濃度が、0.5質量%以上5質量%以下の場合に、高温サイクル維持率がより高くなり、また、高温保存時のガス発生をより抑制できることが確認できた。 As shown in Table 2, in Examples 2-1 to 2-5, high-temperature cycle characteristics can be improved, gas generation during high-temperature storage can be suppressed, and an increase in battery cell thickness can be reduced. did it. In addition, when the concentration of the chain sulfone compound in the electrolytic solution is 0.5% by mass or more and 5% by mass or less, the high-temperature cycle maintenance rate becomes higher, and gas generation during high-temperature storage can be further suppressed. It could be confirmed.
<実施例3-1>
 実施例1-2と同様にして、ラミネートフィルム型電池を作製した。
<Example 3-1>
A laminated film type battery was produced in the same manner as Example 1-2.
<実施例3-2>
 正極活物質としてオリビン型リン酸鉄リチウム(LiFePO4)を用いたこと以外は、実施例3-1と同様にしてラミネートフィルム型電池を作製した。
<Example 3-2>
A laminated film type battery was produced in the same manner as in Example 3-1, except that olivine type lithium iron phosphate (LiFePO 4 ) was used as the positive electrode active material.
<実施例3-3>
 正極活物質としてオリビン型リン酸マンガン鉄リチウム(LiFe0.25Mn0.75PO4)を用いたこと以外は、実施例3-1と同様にしてラミネートフィルム型電池を作製した。
<Example 3-3>
A laminate film type battery was produced in the same manner as in Example 3-1, except that olivine-type lithium iron manganese phosphate (LiFe 0.25 Mn 0.75 PO 4 ) was used as the positive electrode active material.
(評価)
 作製した各電池について実施例1-1と同様の評価を行った。評価結果を表3に示す。
(Evaluation)
Each of the fabricated batteries was evaluated in the same manner as in Example 1-1. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例3-1~実施例3-3では、高温サイクル特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。実施例3-1~実施例3-3によれば、正極活物質種としては、オリビン構造を有するリン酸鉄リチウム(LiFePO4)、リン酸マンガン鉄リチウム(LiMnFePO4)を用いた場合が、より優れた効果得られた。 As shown in Table 3, in Examples 3-1 to 3-3, high-temperature cycle characteristics can be improved, gas generation during high-temperature storage can be suppressed, and increase in battery cell thickness can be reduced. did it. According to Example 3-1 to Example 3-3, as the positive electrode active material species, lithium iron phosphate (LiFePO 4 ) having an olivine structure, lithium manganese iron phosphate (LiMnFePO 4 ) was used. A better effect was obtained.
<実施例4-1>
 実施例3-2と同様にしてラミネートフィルム型電池を作製した。
<Example 4-1>
A laminated film type battery was produced in the same manner as in Example 3-2.
<実施例4-2>
 負極活物質として酸化チタン(TiO2)を用いたこと以外は、実施例4-1と同様にして電池を作製した。
<Example 4-2>
A battery was fabricated in the same manner as in Example 4-1, except that titanium oxide (TiO 2 ) was used as the negative electrode active material.
(評価)
 作製した各電池について実施例1-1と同様の評価を行った。評価結果を表4に示す。
(Evaluation)
Each of the fabricated batteries was evaluated in the same manner as in Example 1-1. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例4-1~実施例4-2では、高温サイクル特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。実施例4-1~実施例4-2によれば、負極活物質種が酸化チタン(TiO2)の場合でも、負極活物質種がLi4Ti512と同様の効果を得られることができた。 As shown in Table 4, in Examples 4-1 to 4-2, high-temperature cycle characteristics can be improved, gas generation during high-temperature storage can be suppressed, and increase in battery cell thickness can be reduced. did it. According to Example 4-1 to Example 4-2, even when the negative electrode active material species is titanium oxide (TiO 2 ), it is possible to obtain the same effect as the negative electrode active material species as Li 4 Ti 5 O 12. did it.
<実施例5-1>
 実施例3-2と同様にしてラミネートフィルム型電池を作製した。
<Example 5-1>
A laminated film type battery was produced in the same manner as in Example 3-2.
<実施例5-2>
 電解質塩としてリチウムビス(フルオロスルホニル)イミド(LiFSI)を用いたこと以外は、実施例5-1と同様にしてラミネートフィルム型電池を作製した。
<Example 5-2>
A laminated film type battery was produced in the same manner as in Example 5-1, except that lithium bis (fluorosulfonyl) imide (LiFSI) was used as the electrolyte salt.
<実施例5-3>
 電解質塩としてリチウムビス(トリフルオロスルホニル)イミド(LiTFSI)を用いたこと以外は、実施例5-1と同様にしてラミネートフィルム型電池を作製した。
<Example 5-3>
A laminate film type battery was produced in the same manner as in Example 5-1, except that lithium bis (trifluorosulfonyl) imide (LiTFSI) was used as the electrolyte salt.
(評価)
 作製した各電池について実施例1-1と同様の評価を行った。評価結果を表5に示す。
(Evaluation)
Each of the fabricated batteries was evaluated in the same manner as in Example 1-1. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例5-1~実施例5-3では、高温サイクル特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。実施例5-2~実施例5-3によれば、電解質塩種が、LiFSIまたはLiTFSIである場合には、LiPF6由来のHFによる劣化がなく、高温サイクル特性および高温保存時のガス発生抑制効果がより優れていた。
Figure JPOXMLDOC01-appb-T000005
As shown in Table 5, in Examples 5-1 to 5-3, high-temperature cycle characteristics can be improved, gas generation during high-temperature storage can be suppressed, and increase in battery cell thickness can be reduced. did it. According to Examples 5-2 to 5-3, when the electrolyte salt species is LiFSI or LiTFSI, there is no deterioration due to HF derived from LiPF 6 , high-temperature cycle characteristics, and suppression of gas generation during high-temperature storage. The effect was more excellent.
<実施例6-1>
 実施例1-2と同様にしてラミネートフィルム型電池を作製した。
<Example 6-1>
A laminated film type battery was produced in the same manner as in Example 1-2.
<実施例6-2>
 実施例3-2と同様にしてラミネートフィルム型電池を作製した。
<Example 6-2>
A laminated film type battery was produced in the same manner as in Example 3-2.
<比較例6-1>
 負極活物質として黒鉛((C6;Graphite))を用いた。下掲の表6に示す電解液を用いた。以上のこと以外は、実施例6-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6-1>
Graphite ((C 6 ; Graphite)) was used as the negative electrode active material. The electrolytic solution shown in Table 6 below was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6-1.
<比較例6-2>
 正極活物質としてオリビン型リン酸鉄リチウム(LiFePO4)を用いた。負極活物質として黒鉛(Graphite)を用いた。下掲の表6に示す電解液を用いた。以上のこと以外は、実施例6-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6-2>
Olivine type lithium iron phosphate (LiFePO 4 ) was used as the positive electrode active material. Graphite was used as the negative electrode active material. The electrolytic solution shown in Table 6 below was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6-1.
<比較例6-3>
 正極にオリビン型リン酸鉄リチウム(LiFePO4)を用いた。比較例6-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6-3>
Olivine type lithium iron phosphate (LiFePO 4 ) was used for the positive electrode. A laminated film type battery was produced in the same manner as in Comparative Example 6-1.
<比較例6-4>
 下掲の表6に示す電解液を用いたこと以外は、実施例6-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6-4>
A laminated film type battery was produced in the same manner as in Example 6-1 except that the electrolytic solution shown in Table 6 below was used.
(評価)
 作製した各電池について以下の評価を行った。
(Evaluation)
The following evaluation was performed about each produced battery.
(サイクル(5C)試験)
 サイクル特性(5C)を調べる場合には、電池状態を安定化させるために常温(23℃)環境中で電池を1サイクル充放電させたのち、同環境下で電池をさらに1サイクル充放電させて放電容量を測定した。
(Cycle (5C) test)
When investigating the cycle characteristics (5C), charge and discharge the battery for one cycle in a normal temperature (23 ° C.) environment in order to stabilize the battery state, and then charge and discharge the battery for another cycle in the same environment. The discharge capacity was measured.
 続いて、同環境下でのサイクル数合計が1000サイクルになるまで充放電を繰り返して放電容量を測定した。 Subsequently, charge and discharge were repeated until the total number of cycles under the same environment reached 1000 cycles, and the discharge capacity was measured.
 この結果から、5Cサイクル容量維持率(%)=(1000サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。 From this result, 5C cycle capacity retention rate (%) = (discharge capacity at 1000th cycle / discharge capacity at 2nd cycle) × 100 was calculated.
 充電時には、5.0Cの電流で上限電圧まで定電流充電したのち、上限電圧で電流が0.05Cになるまで定電圧充電を行った。なお、「上限電圧-終止電圧)」は、実例6-1および比較例6-3:4.3V-3.0V、実施例6-2および比較例6-4:2.4V-0.5V、比較例6-1:4.2V-2.5V、比較例6-2:3.6V-2.0Vとした。「5.0C」および「0.05C」は、それぞれ電池容量(理論容量)を12分、20時間で放電しきる電流値である。 During charging, constant current charging was performed up to the upper limit voltage at a current of 5.0 C, and then constant voltage charging was performed until the current reached 0.05 C at the upper limit voltage. “Upper limit voltage−end voltage” are as follows: Example 6-1 and Comparative Example 6-3: 4.3V-3.0V, Example 6-2 and Comparative Example 6-4: 2.4V-0.5V Comparative Example 6-1: 4.2V-2.5V, Comparative Example 6-2: 3.6V-2.0V. “5.0 C” and “0.05 C” are current values at which the battery capacity (theoretical capacity) can be discharged in 12 minutes and 20 hours, respectively.
 評価結果を表6に示す。 Table 6 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、実施例6-1~実施例6-2では、負極活物質種として、チタン酸リチウム(Li4Ti512)を用い、鎖状スルホン化合物およびシランカップリング剤を含む電解液を用いて、負極に式(1-2)で表される化合物を含ませることによって、高出力サイクル特性をより優れたものとすることができた。なお、比較例6-1のように正極:コバルト酸リチウム(LiCoO2)、負極:黒鉛の場合では、5C相当の高い電流値をかけたサイクル維持率は大幅に低下してしまう。 As shown in Table 6, in Examples 6-1 to 6-2, lithium titanate (Li 4 Ti 5 O 12 ) was used as the negative electrode active material species, and the chain sulfone compound and the silane coupling agent were used. By using the electrolyte solution containing the compound represented by the formula (1-2) in the negative electrode, the high output cycle characteristics could be further improved. In the case of the positive electrode: lithium cobalt oxide (LiCoO 2 ) and the negative electrode: graphite as in Comparative Example 6-1, the cycle retention ratio when a high current value equivalent to 5 C is applied is significantly reduced.
 以下、実施例により本技術を詳細に説明する。なお、本技術は、下記の実施例の構成に限定されるものではない。 Hereinafter, the present technology will be described in detail by way of examples. In addition, this technique is not limited to the structure of the following Example.
<実施例1A-1>
 以下の手順により、正極活物質としてコバルト酸リチウム(LiCoO2)、負極活物質として、充放電時の電位がリチウム電位に対して約1.55Vに平坦部を有するチタン酸リチウム(Li4Ti512)を用いて、図3および図4に示したラミネートフィルム型の二次電池を作製した。
<Example 1A-1>
According to the following procedure, lithium cobaltate (LiCoO 2 ) as a positive electrode active material, and lithium titanate (Li 4 Ti 5) having a flat portion at a charge / discharge potential of about 1.55 V with respect to the lithium potential as a negative electrode active material. The laminate film type secondary battery shown in FIGS. 3 and 4 was produced using O 12 ).
(正極の作製)
 まず、正極活物質としてコバルト酸リチウム(LiCoO2)90質量部と、導電剤としてケッチェンブラック5質量部と、結着剤としてポリフッ化ビニリデン5質量部を均質に混合してN-メチルピロリドンを添加し、正極合剤スラリーを得た。
(Preparation of positive electrode)
First, 90 parts by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 5 parts by mass of ketjen black as a conductive agent, and 5 parts by mass of polyvinylidene fluoride as a binder were mixed homogeneously to obtain N-methylpyrrolidone. The positive electrode mixture slurry was obtained.
 次に、この正極合剤スラリーを、厚み10μmのアルミニウム箔上の両面に、均一に塗布し、乾燥させ圧縮成型し、片面あたりの厚さが30μmの正極活物質層(活物質層の体積密度:3.5g/cc)を形成した。これを幅50mm、長さ300mmの形状に切断して正極を得た。 Next, this positive electrode mixture slurry is uniformly coated on both sides of an aluminum foil having a thickness of 10 μm, dried and compression-molded, and a positive electrode active material layer having a thickness of 30 μm per side (volume density of the active material layer) : 3.5 g / cc). This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a positive electrode.
(負極の作製)
 負極活物質としてチタン酸リチウム(Li4Ti512)85質量部と、結着剤としてポリフッ化ビニリデン5質量部と、導電剤としてケッチェンブラック10質量部とを均質に混合して、N-メチルピロリドンを添加し負極合剤スラリー得た。
(Preparation of negative electrode)
85 parts by mass of lithium titanate (Li 4 Ti 5 O 12 ) as a negative electrode active material, 5 parts by mass of polyvinylidene fluoride as a binder, and 10 parts by mass of ketjen black as a conductive agent are mixed uniformly. -Methylpyrrolidone was added to obtain a negative electrode mixture slurry.
 次に、この負極合剤スラリーを、負極集電体となる厚み10μmのアルミニウム箔上の片面に、均一に塗布し、乾燥させ圧縮成型し、片面当たりの厚さが30μmの負極活物質層を形成した。これを幅50mm、長さ300mmの形状に切断して負極(合剤の体積密度:1.8g/cc)を得た。 Next, this negative electrode mixture slurry is uniformly applied to one side of an aluminum foil having a thickness of 10 μm to be a negative electrode current collector, dried and compression-molded, and a negative electrode active material layer having a thickness of 30 μm per side is formed. Formed. This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a negative electrode (volume density of the mixture: 1.8 g / cc).
(セパレータ)
 セパレータとしては、厚さ16μmの微多孔性ポリエチレンフィルムを用いた。
(Separator)
As the separator, a microporous polyethylene film having a thickness of 16 μm was used.
(電解液の調製)
 液状の非水電解質である電解液(非水電解液)としては、溶媒を調製し、六フッ化リン酸リチウム(LiPF6)を1.0mol/kgとなるように溶解させ、さらに添加剤として、3-アミノプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23-NH2)〕を1質量%添加したものを用いた。溶媒は、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とエチルイソプロピルスルホン(EiPS)とを、PC:EMC:VC:EiPS=37:56:1:5(質量比)で混合した混合溶媒を用いた。
(Preparation of electrolyte)
As an electrolytic solution (nonaqueous electrolytic solution) that is a liquid nonaqueous electrolyte, a solvent is prepared, lithium hexafluorophosphate (LiPF 6 ) is dissolved to 1.0 mol / kg, and an additive is further added. 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 )] added at 1% by mass was used. The solvent is propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and ethyl isopropyl sulfone (EiPS), and PC: EMC: VC: EiPS = 37: 56: 1: 5 (mass ratio). The mixed solvent mixed in was used.
 なお、この電解液を用いた電池では、式(1A-25)で表される化合物が電解液中に、電解液に対する質量百分率で0.05質量%含まれており、負極中にも、電解液中と同じ式(1A-25)で表される化合物が含まれる。式(1A-25)で表される化合物は、3-アミノプロピルメチルジメトキシシランおよびカーボネート溶媒に由来する化合物であり、3-アミノプロピルメチルジメトキシシランおよびカーボネート溶媒の分解物から生成される。 In the battery using this electrolytic solution, the compound represented by the formula (1A-25) is contained in the electrolytic solution in a mass percentage of 0.05% by mass with respect to the electrolytic solution. A compound represented by the same formula (1A-25) as in the liquid is included. The compound represented by the formula (1A-25) is a compound derived from 3-aminopropylmethyldimethoxysilane and a carbonate solvent, and is generated from a decomposition product of 3-aminopropylmethyldimethoxysilane and a carbonate solvent.
(電池の組み立て)
 正極と負極とを、セパレータを介して巻回した後、アルミニウムラミネートフィルムからなる袋状の外装部材に入れたのち、電解液を2g注液し、その後、袋を熱融着した。以上により、実施例1A-1のラミネートフィルム型電池を作製した。
(Battery assembly)
After winding the positive electrode and the negative electrode through a separator, the positive electrode and the negative electrode were put in a bag-shaped exterior member made of an aluminum laminate film, and then 2 g of an electrolyte was injected, and then the bag was heat-sealed. Thus, a laminate film type battery of Example 1A-1 was produced.
<実施例1A-2~実施例1A-3>
 電解液中の、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とエチルイソプロピルスルホン(EiPS)との質量比(PC:EMC:VC:EiPS)を下掲の表7に示す通りに変えた。3-アミノプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23-NH2)〕の濃度を下掲の表7に示す通りに変えた。式(1A-25)で表される化合物の濃度を下掲の表7に示す通りに変えた。以上のこと以外は、実施例1A-1と同様にしてラミネートフィルム型電池を作製した。
<Example 1A-2 to Example 1A-3>
Table 7 below shows the mass ratio (PC: EMC: VC: EiPS) of propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and ethyl isopropyl sulfone (EiPS) in the electrolyte. Changed as shown. The concentration of 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 )] was varied as shown in Table 7 below. The concentration of the compound represented by the formula (1A-25) was changed as shown in Table 7 below. Except for the above, a laminated film type battery was produced in the same manner as in Example 1A-1.
<実施例1A-4~実施例1A-6>
 負極中の化合物を式(2A-10)で表される化合物に変えた。以上のこと以外は、実施例1A-1~実施例1A-3と同様にしてラミネートフィルム型電池を作製した。
<Example 1A-4 to Example 1A-6>
The compound in the negative electrode was changed to a compound represented by the formula (2A-10). Except for the above, laminated film type batteries were produced in the same manner as in Examples 1A-1 to 1A-3.
<実施例1A-7~実施例1A-9>
 負極中の化合物を式(3A-1)で表される化合物に変えた。以上のこと以外は、実施例1A-1~実施例1A-3と同様にしてラミネートフィルム型電池を作製した。
<Example 1A-7 to Example 1A-9>
The compound in the negative electrode was changed to a compound represented by the formula (3A-1). Except for the above, laminated film type batteries were produced in the same manner as in Examples 1A-1 to 1A-3.
<実施例1A-10~実施例1A-12>
 電解液として、鎖状スルホン化合物を含まないものを用いた。すなわち、電解液の溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とを、PC:EMC:VC=39:59:1(質量比)で混合した混合溶媒を用いた。添加剤として、3-アミノプロピルトリメトキシシラン〔(CH3O)3Si(CH23NH2〕を1質量%になるように添加した。負極中の化合物を式(1A-26)で表される化合物に変えた。以上のこと以外は、実施例1A-1~実施例1A-3と同様にしてラミネートフィルム型電池を作製した。
<Example 1A-10 to Example 1A-12>
As the electrolytic solution, one containing no chain sulfone compound was used. That is, a solvent mixture of propylene carbonate (PC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC) in a ratio of PC: EMC: VC = 39: 59: 1 (mass ratio) is used as a solvent for the electrolytic solution. Using. As an additive, 3-aminopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 NH 2 ] was added to 1% by mass. The compound in the negative electrode was changed to a compound represented by the formula (1A-26). Except for the above, laminated film type batteries were produced in the same manner as in Examples 1A-1 to 1A-3.
<実施例1A-13~実施例1A-15>
 電解液として、鎖状スルホン化合物を含まないものを用いた。すなわち、電解液の溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とを、PC:EMC:VC=39:59:1(質量比)で混合した混合溶媒を用いた。添加剤として、3-アミノプロピルトリエトキシシラン〔(C25O)3Si(CH23NH2〕を1質量%になるように添加した。負極中の化合物を式(2A-12)で表される化合物に変えた。以上のこと以外は、実施例1A-1~実施例1A-3と同様にしてラミネートフィルム型電池を作製した。
<Example 1A-13 to Example 1A-15>
As the electrolytic solution, one containing no chain sulfone compound was used. That is, a solvent mixture of propylene carbonate (PC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC) in a ratio of PC: EMC: VC = 39: 59: 1 (mass ratio) is used as a solvent for the electrolytic solution. Using. As an additive, 3-aminopropyltriethoxysilane [(C 2 H 5 O) 3 Si (CH 2 ) 3 NH 2 ] was added to 1% by mass. The compound in the negative electrode was changed to a compound represented by the formula (2A-12). Except for the above, laminated film type batteries were produced in the same manner as in Examples 1A-1 to 1A-3.
<比較例1A-1>
 電解液として、エチルイソプロピルスルホン(EiPS)および3-アミノプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23-NH2)〕を含有しないものを用いた。すなわち、電解液の溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とエチルイソプロピルスルホン(EiPS)とを、PC:EMC:VC=40:59:1(質量比)で混合した混合溶媒を用いた。3-アミノプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23-NH2)〕を添加しなかった。以上のこと以外は、実施例1A-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1A-1>
As the electrolytic solution, one containing no ethyl isopropyl sulfone (EiPS) and 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 )] was used. That is, propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and ethyl isopropyl sulfone (EiPS) were used as the solvent of the electrolytic solution, and PC: EMC: VC = 40: 59: 1 (mass ratio). ) Was used. 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 )] was not added. Except for the above, a laminated film type battery was produced in the same manner as in Example 1A-1.
<比較例1A-2~比較例1A-4>
 電解液として、添加剤を含有しないものを用いた。すなわち、溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とエチルイソプロピルスルホン(EiPS)とを、PC:EMC:VC:EiPS=38:56:1:5(質量比)で混合した混合溶媒を用い、3-アミノプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23-NH2)〕を添加しなかった電解液を用いた。以上のこと以外は、実施例1A-1~実施例1A-3と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1A-2 to Comparative Example 1A-4>
As the electrolytic solution, one containing no additive was used. That is, as a solvent, propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and ethyl isopropyl sulfone (EiPS), PC: EMC: VC: EiPS = 38: 56: 1: 5 (mass) The electrolytic solution in which 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 ]] was not added was used. Except for the above, laminated film type batteries were produced in the same manner as in Examples 1A-1 to 1A-3.
<比較例1A-5>
 負極活物質として黒鉛((C6;Graphite))を用いたこと以外は、実施例1A-2と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1A-5>
A laminated film type battery was produced in the same manner as in Example 1A-2 except that graphite ((C 6 ; Graphite)) was used as the negative electrode active material.
(評価)
 作製した各電池について以下の評価を行った。
(Evaluation)
The following evaluation was performed about each produced battery.
(低温-30℃放電容量維持率の測定)
 充電後の各電池を測定温度下に1時間以上放置し、電池が所定温度に達した後、放電電流0.6Aにて定電流放電し、セル下限電圧が0.5Vになるまでの放電容量を測定した。雰囲気温度を-30℃から10℃毎に温度上昇させた。表7中の低温-30℃放電容量維持率は、雰囲気温度25℃での放電容量を100とした時の百分率を表している。
(Measurement of low temperature – 30 ° C discharge capacity retention rate)
Each charged battery is allowed to stand at the measured temperature for 1 hour or longer, and after the battery reaches a predetermined temperature, the battery is discharged at a constant discharge current of 0.6 A, and the discharge capacity until the cell lower limit voltage reaches 0.5 V. Was measured. The ambient temperature was increased from −30 ° C. every 10 ° C. The low temperature −30 ° C. discharge capacity retention ratio in Table 7 represents a percentage when the discharge capacity at an ambient temperature of 25 ° C. is defined as 100.
(高温保存時の膨れの測定)
 初回容量測定後の各電池を、23℃の雰囲気中において上限電圧で3時間充電した後、充電状態において80℃の恒温槽中に24時間保存し、保存後の電池厚さと保存前の電池厚さとの差から、下記により高温保存時のセル厚の増加率を求めた。
 高温保存時のセル厚の増加率(%)={(「保存後の電池厚さ」-「保存前の電池厚さ」)÷「保存前の電池厚さ」}×100(%)
(Measures swelling when stored at high temperature)
Each battery after the initial capacity measurement is charged at an upper limit voltage for 3 hours in an atmosphere at 23 ° C., and then stored in a constant temperature bath at 80 ° C. for 24 hours in a charged state. The battery thickness after storage and the battery thickness before storage From this difference, the rate of increase in cell thickness during high temperature storage was determined as follows.
Increase rate of cell thickness during high temperature storage (%) = {("Battery thickness after storage"-"Battery thickness before storage") / "Battery thickness before storage"} x 100 (%)
 表7に評価結果を示す。 Table 7 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、実施例1A-1~実施例1A-15では、低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。これらの電池では、アミノ基を有するシランカップリング剤を含む電解液を用いることで、負極に式(1A-25)、式(2A-10)、式(3A-1)、式(1A-26)または式(2A-12)で表される化合物を含ませることによって、低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。なお、鎖状スルホン化合物として、他の鎖状スルホン化合物を用いた場合も同様の効果を得られる。シランカップリング剤として他のシランカップリング剤を用いた場合も同様の効果を得られる。シランカップリング剤に代えて、シロキサン化合物を用いた場合も同様の効果を得られる。負極に他の化合物(例えば、式(1A-1)~式(1A-24)、式(1A-25)~式(1A-78)の化合物、式(2A-1)~式(2A-9)、式(2A-11)~式(2A-12)の化合物、式(3A-2)~式(3A-3)の化合物等)を含む場合も同様の効果を得られる。(以下の実施例でも同様) As shown in Table 7, in Examples 1A-1 to 1A-15, the low temperature characteristics can be improved, gas generation during high temperature storage can be suppressed, and the increase in battery cell thickness can be reduced. It was. In these batteries, an electrolyte containing an amino group-containing silane coupling agent is used, so that the negative electrode has the formula (1A-25), formula (2A-10), formula (3A-1), formula (1A-26). ) Or the compound represented by the formula (2A-12) can improve low-temperature characteristics, suppress gas generation during high-temperature storage, and reduce the increase in battery cell thickness. . The same effect can be obtained when another chain sulfone compound is used as the chain sulfone compound. The same effect can be obtained when another silane coupling agent is used as the silane coupling agent. Similar effects can be obtained when a siloxane compound is used instead of the silane coupling agent. Other compounds (for example, compounds of formula (1A-1) to formula (1A-24), formula (1A-25) to formula (1A-78), formula (2A-1) to formula (2A-9)) ), Compounds of formula (2A-11) to formula (2A-12), compounds of formula (3A-2) to formula (3A-3), etc.), the same effect can be obtained. (The same applies to the following examples)
<実施例2A-1~実施例2A-5>
 実施例1A-5と同様にして実施例2A-4のラミネートフィルム型電池を作製した。電解液中の鎖状スルホン化合物、エチルイソプロピルスルホン(EiPS)の組成を下掲の表8の通りに変えた以外は、実施例2A-4と同様にして、実施例2A-1~実施例2A-2、実施例2A-3~実施例2A-5のラミネートフィルム型電池を作製した。
<Example 2A-1 to Example 2A-5>
A laminated film type battery of Example 2A-4 was produced in the same manner as Example 1A-5. Example 2A-1 to Example 2A were the same as Example 2A-4 except that the composition of the chain sulfone compound, ethyl isopropyl sulfone (EiPS) in the electrolyte was changed as shown in Table 8 below. -2, laminate film type batteries of Examples 2A-3 to 2A-5 were produced.
(評価)
 作製した各電池について実施例1A-1と同様の評価を行った。評価結果を表8に示す。
(Evaluation)
Each battery produced was evaluated in the same manner as in Example 1A-1. The evaluation results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、実施例2A-1~実施例2A-5では、低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。 As shown in Table 8, in Examples 2A-1 to 2A-5, the low temperature characteristics can be improved, the generation of gas during high temperature storage can be suppressed, and the increase in battery cell thickness can be reduced. It was.
<実施例3A-1>
 実施例1A-5と同様にして、ラミネートフィルム型電池を作製した。
<Example 3A-1>
A laminated film type battery was produced in the same manner as Example 1A-5.
<実施例3A-2>
 正極活物質としてオリビン型リン酸鉄リチウム(LiFePO4)を用いたこと以外は、実施例3A-1と同様にしてラミネートフィルム型電池を作製した。
<Example 3A-2>
A laminate film type battery was produced in the same manner as in Example 3A-1, except that olivine type lithium iron phosphate (LiFePO 4 ) was used as the positive electrode active material.
<実施例3A-3>
 正極活物質としてオリビン型リン酸マンガン鉄リチウム(LiFe0.25Mn0.75PO4)を用いたこと以外は、実施例3A-1と同様にしてラミネートフィルム型電池を作製した。
<Example 3A-3>
A laminated film type battery was produced in the same manner as in Example 3A-1, except that olivine-type lithium iron manganese phosphate (LiFe 0.25 Mn 0.75 PO 4 ) was used as the positive electrode active material.
(評価)
 作製した各電池について実施例1A-1と同様の評価を行った。評価結果を表9に示す。
(Evaluation)
Each battery produced was evaluated in the same manner as in Example 1A-1. Table 9 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、実施例3A-1~実施例3A-3では、低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。実施例3A-1~実施例3A-3によれば、正極活物質種としては、オリビン構造を有するリン酸鉄リチウム(LiFePO4)、リン酸マンガン鉄リチウム(LiMnFePO4)を用いた場合が、より優れた効果得られた。 As shown in Table 9, in Examples 3A-1 to 3A-3, the low temperature characteristics can be improved, the generation of gas during high temperature storage can be suppressed, and the increase in battery cell thickness can be reduced. It was. According to Example 3A-1 to Example 3A-3, as the positive electrode active material species, lithium iron phosphate (LiFePO 4 ) having an olivine structure and lithium manganese iron phosphate (LiMnFePO 4 ) were used. A better effect was obtained.
<実施例4A-1>
 実施例3A-2と同様にしてラミネートフィルム型電池を作製した。
<Example 4A-1>
A laminated film type battery was produced in the same manner as Example 3A-2.
<実施例4A-2>
 負極活物質として酸化チタン(TiO2)を用いたこと以外は、実施例4A-1と同様にして電池を作製した。
<Example 4A-2>
A battery was fabricated in the same manner as in Example 4A-1, except that titanium oxide (TiO 2 ) was used as the negative electrode active material.
(評価)
 作製した各電池について実施例1A-1と同様の評価を行った。評価結果を表10に示す。
(Evaluation)
Each battery produced was evaluated in the same manner as in Example 1A-1. Table 10 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、実施例4A-1~実施例4A-2では、低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。実施例4A-1~実施例4A-2によれば、負極活物質種が酸化チタン(TiO2)の場合でも、負極活物質種がLi4Ti512と同様の効果を得られることができた。 As shown in Table 10, in Examples 4A-1 to 4A-2, the low temperature characteristics can be improved, the generation of gas during high temperature storage can be suppressed, and the increase in battery cell thickness can be reduced. It was. According to Example 4A-1 to Example 4A-2, even when the negative electrode active material species is titanium oxide (TiO 2 ), it is possible to obtain the same effect as that of the negative electrode active material species as Li 4 Ti 5 O 12. did it.
<実施例5A-1>
 実施例3A-2と同様にしてラミネートフィルム型電池を作製した。
<Example 5A-1>
A laminated film type battery was produced in the same manner as Example 3A-2.
<実施例5A-2>
 下掲の表11に示す濃度で電解質塩として、六フッ化リン酸リチウム(LiPF6)およびリチウムビス(フルオロスルホニル)イミド(LiFSI)を用いたこと以外は、実施例5A-1と同様にしてラミネートフィルム型電池を作製した。
<Example 5A-2>
Example 5A-1 except that lithium hexafluorophosphate (LiPF 6 ) and lithium bis (fluorosulfonyl) imide (LiFSI) were used as electrolyte salts at concentrations shown in Table 11 below. A laminate film type battery was produced.
<実施例5A-3>
 下掲の表11に示す濃度で電解質塩として、六フッ化リン酸リチウム(LiPF6)およびリチウムビス(トリフルオロスルホニル)イミド(LiTFSI)を用いたこと以外は、実施例5A-1と同様にしてラミネートフィルム型電池を作製した。
<Example 5A-3>
Example 5A-1 except that lithium hexafluorophosphate (LiPF 6 ) and lithium bis (trifluorosulfonyl) imide (LiTFSI) were used as electrolyte salts at the concentrations shown in Table 11 below. Thus, a laminated film type battery was produced.
(評価)
 作製した各電池について実施例1A-1と同様の評価を行った。評価結果を表11に示す。
(Evaluation)
Each battery produced was evaluated in the same manner as in Example 1A-1. The evaluation results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、実施例5A-1~実施例5A-3では、低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。実施例5A-2~実施例5A-3によれば、電解質塩種が、LiFSIまたはLiTFSIである場合には、LiPF6由来のHFによる劣化を抑制でき、低温特性および高温保存時のガス発生抑制効果がより優れていた。
Figure JPOXMLDOC01-appb-T000011
As shown in Table 11, in Examples 5A-1 to 5A-3, the low temperature characteristics can be improved, gas generation during high temperature storage can be suppressed, and the increase in battery cell thickness can be reduced. It was. According to Example 5A-2 to Example 5A-3, when the electrolyte salt species is LiFSI or LiTFSI, deterioration due to LiPF 6 -derived HF can be suppressed, and low temperature characteristics and gas generation suppression during high temperature storage can be suppressed. The effect was more excellent.
<実施例6A-1>
 実施例1A-5と同様にしてラミネートフィルム型電池を作製した。
<Example 6A-1>
A laminated film type battery was produced in the same manner as Example 1A-5.
<実施例6A-2>
 実施例3A-2と同様にしてラミネートフィルム型電池を作製した。
<Example 6A-2>
A laminated film type battery was produced in the same manner as Example 3A-2.
<比較例6A-1>
 負極活物質として黒鉛((C6;Graphite))を用いた。電解液として、鎖状スルホン化合物およびシランカップリング剤を含有させなかったものを用いた。以上のこと以外は、実施例6A-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6A-1>
Graphite ((C 6 ; Graphite)) was used as the negative electrode active material. As the electrolytic solution, one containing no chain sulfone compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6A-1.
<比較例6A-2>
負極活物質として黒鉛((C6;Graphite))を用いた。電解液として、鎖状スルホン化合物およびシランカップリング剤を含有させなかったものを用いた。以上のこと以外は、実施例6A-2と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6A-2>
Graphite ((C 6 ; Graphite)) was used as the negative electrode active material. As the electrolytic solution, one containing no chain sulfone compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6A-2.
<比較例6A-3>
 電解液として、鎖状スルホン化合物およびシランカップリング剤を含有させなかったものを用いた。以上のこと以外は、実施例6A-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6A-3>
As the electrolytic solution, one containing no chain sulfone compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6A-1.
<比較例6A-4>
 電解液として、鎖状スルホン化合物およびシランカップリング剤を含有させなかったものを用いた。以上のこと以外は、実施例6A-2と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6A-4>
As the electrolytic solution, one containing no chain sulfone compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6A-2.
(評価)
 作製した各電池について以下の評価を行った。
(Evaluation)
The following evaluation was performed about each produced battery.
(サイクル(5C)試験)
 サイクル特性(5C)を調べる場合には、電池状態を安定化させるために常温(23℃)環境中で二次電池を1サイクル充放電させたのち、同環境下で二次電池をさらに1サイクル充放電させて放電容量を測定した。
(Cycle (5C) test)
When investigating the cycle characteristics (5C), in order to stabilize the battery state, after charging and discharging the secondary battery in a normal temperature (23 ° C.) environment for one cycle, the secondary battery is further cycled in the same environment. The discharge capacity was measured by charging and discharging.
 続いて、同環境下でのサイクル数合計が1000サイクルになるまで充放電を繰り返して放電容量を測定した。 Subsequently, charge and discharge were repeated until the total number of cycles under the same environment reached 1000 cycles, and the discharge capacity was measured.
 充電時には、5.0Cの電流で上限電圧まで定電流充電したのち、上限電圧で電流が0.05Cになるまで定電圧充電を行った。なお、「上限電圧-終止電圧)」は、実例6-1および比較例6A-3:4.3V-3.0V、実施例6A-2および比較例6A-4:2.4V-0.5V、比較例6A-1:4.2V-2.5V、比較例6A-2:3.6V-2.0Vとした。「5.0C」および「0.05C」は、それぞれ電池容量(理論容量)を12分、20時間で放電しきる電流値である。 During charging, constant current charging was performed up to the upper limit voltage at a current of 5.0 C, and then constant voltage charging was performed until the current reached 0.05 C at the upper limit voltage. “Upper limit voltage−end voltage” are as follows: Example 6-1 and Comparative Example 6A-3: 4.3V-3.0V, Example 6A-2 and Comparative Example 6A-4: 2.4V-0.5V Comparative Example 6A-1: 4.2V-2.5V, Comparative Example 6A-2: 3.6V-2.0V. “5.0 C” and “0.05 C” are current values at which the battery capacity (theoretical capacity) can be discharged in 12 minutes and 20 hours, respectively.
 評価結果を表12に示す。 Table 12 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12に示すように、実施例6A-1~実施例6A-2では、負極活物質種として、チタン酸リチウム(Li4Ti512)を用い、シランカップリング剤を含む電解液を用いて、負極に式(2A-10)で表される化合物を含ませることによって、高出力サイクル特性をより優れたものとすることができた。なお、比較例6A-1のように正極:コバルト酸リチウム(LiCoO2)、負極:黒鉛の場合では、5C相当の高い電流値をかけたサイクル維持率は大幅に低下してしまう。 As shown in Table 12, in Examples 6A-1 to 6A-2, lithium titanate (Li 4 Ti 5 O 12 ) was used as the negative electrode active material species, and an electrolytic solution containing a silane coupling agent was used. In addition, by including the compound represented by the formula (2A-10) in the negative electrode, the high output cycle characteristics could be further improved. In the case of the positive electrode: lithium cobalt oxide (LiCoO 2 ) and the negative electrode: graphite as in Comparative Example 6A-1, the cycle retention ratio when a high current value equivalent to 5C is applied is significantly reduced.
 以下、実施例により本技術を詳細に説明する。なお、本技術は、下記の実施例の構成に限定されるものではない。 Hereinafter, the present technology will be described in detail by way of examples. In addition, this technique is not limited to the structure of the following Example.
<実施例1B-1>
 以下の手順により、正極活物質としてコバルト酸リチウム(LiCoO2)、負極活物質として、充放電時の電位がリチウム電位に対して約1.55Vに平坦部を有するチタン酸リチウム(Li4Ti512)を用いて、図3および図4に示したラミネートフィルム型の二次電池を作製した。
<Example 1B-1>
According to the following procedure, lithium cobaltate (LiCoO 2 ) as a positive electrode active material, and lithium titanate (Li 4 Ti 5) having a flat portion at a charge / discharge potential of about 1.55 V with respect to the lithium potential as a negative electrode active material. The laminate film type secondary battery shown in FIGS. 3 and 4 was produced using O 12 ).
(正極の作製)
 まず、正極活物質としてコバルト酸リチウム(LiCoO2)90質量部と、導電剤としてケッチェンブラック5質量部と、結着剤としてポリフッ化ビニリデン5質量部を均質に混合してN-メチルピロリドンを添加し、正極合剤スラリーを得た。
(Preparation of positive electrode)
First, 90 parts by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 5 parts by mass of ketjen black as a conductive agent, and 5 parts by mass of polyvinylidene fluoride as a binder were mixed homogeneously to obtain N-methylpyrrolidone. The positive electrode mixture slurry was obtained.
 次に、この正極合剤スラリーを、厚み10μmのアルミニウム箔上の両面に、均一に塗布し、乾燥させ圧縮成型し、片面あたりの厚さが30μmの正極活物質層(活物質層の体積密度:3.5g/cc)を形成した。これを幅50mm、長さ300mmの形状に切断して正極を得た。 Next, this positive electrode mixture slurry is uniformly coated on both sides of an aluminum foil having a thickness of 10 μm, dried and compression-molded, and a positive electrode active material layer having a thickness of 30 μm per side (volume density of the active material layer) : 3.5 g / cc). This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a positive electrode.
(負極の作製)
 負極活物質としてチタン酸リチウム(Li4Ti512)85質量部と、結着剤としてポリフッ化ビニリデン5質量部と、導電剤としてケッチェンブラック10質量部とを均質に混合して、N-メチルピロリドンを添加し負極合剤スラリー得た。
(Preparation of negative electrode)
85 parts by mass of lithium titanate (Li 4 Ti 5 O 12 ) as a negative electrode active material, 5 parts by mass of polyvinylidene fluoride as a binder, and 10 parts by mass of ketjen black as a conductive agent are mixed uniformly. -Methylpyrrolidone was added to obtain a negative electrode mixture slurry.
 次に、この負極合剤スラリーを、負極集電体となる厚み10μmのアルミニウム箔上の片面に、均一に塗布し、乾燥させ圧縮成型し、片面当たりの厚さが30μmの負極活物質層を形成した。これを幅50mm、長さ300mmの形状に切断して負極(合剤の体積密度:1.8g/cc)を得た。 Next, this negative electrode mixture slurry is uniformly applied to one side of an aluminum foil having a thickness of 10 μm to be a negative electrode current collector, dried and compression-molded, and a negative electrode active material layer having a thickness of 30 μm per side is formed. Formed. This was cut into a shape having a width of 50 mm and a length of 300 mm to obtain a negative electrode (volume density of the mixture: 1.8 g / cc).
(セパレータ)
 セパレータとしては、厚さ16μmの微多孔性ポリエチレンフィルムを用いた。
(Separator)
As the separator, a microporous polyethylene film having a thickness of 16 μm was used.
(電解液の調製)
 液状の非水電解質である電解液(非水電解液)としては、溶媒を調製し、フッ素含有リチウム塩である六フッ化リン酸リチウム(LiPF6)を1.0mol/kgとなるように溶解させ、さらに添加剤として、3-アミノプロピルトリメトキシシラン〔(CH33Si(CH23-NH2〕を1質量%添加したものを用いた。溶媒は、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とガンマブチロラクトン(GBL)とを、PC:EMC:VC:GBL=31:47:1:20(質量比)で混合した混合溶媒を用いた。
(Preparation of electrolyte)
As an electrolytic solution (nonaqueous electrolytic solution) that is a liquid nonaqueous electrolyte, a solvent is prepared, and lithium hexafluorophosphate (LiPF 6 ) that is a fluorine-containing lithium salt is dissolved so as to be 1.0 mol / kg. Further, as an additive, one added with 1% by mass of 3-aminopropyltrimethoxysilane [(CH 3 ) 3 Si (CH 2 ) 3 —NH 2 ] was used. The solvent is propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and gamma butyrolactone (GBL), with PC: EMC: VC: GBL = 31: 47: 1: 20 (mass ratio). A mixed solvent mixture was used.
 なお、この電解液を用いた電池では、式(1B-4)で表される化合物が電解液中に、電解液に対する質量百分率で0.05質量%含まれており、負極中にも、電解液中と同じ式(1B-4)で表される化合物が含まれる。式(1B-4)で表される化合物は、3-アミノプロピルトリメトキシシランに由来する化合物である。 In the battery using this electrolytic solution, the compound represented by the formula (1B-4) is contained in the electrolytic solution in a mass percentage of 0.05% by mass with respect to the electrolytic solution. A compound represented by the same formula (1B-4) as in the liquid is included. The compound represented by the formula (1B-4) is a compound derived from 3-aminopropyltrimethoxysilane.
(電池の組み立て)
 正極と負極とを、セパレータを介して巻回した後、アルミニウムラミネートフィルムからなる袋状の外装部材に入れたのち、電解液を2g注液し、その後、袋を熱融着した。以上により、実施例1B-1のラミネートフィルム型電池を作製した。
(Battery assembly)
After winding the positive electrode and the negative electrode through a separator, the positive electrode and the negative electrode were put in a bag-shaped exterior member made of an aluminum laminate film, and then 2 g of an electrolyte was injected, and then the bag was heat-sealed. Thus, a laminated film type battery of Example 1B-1 was produced.
<実施例1B-2~実施例1B-3>
 電解液中の、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とガンマブチロラクトン(GBL)との質量比(PC:EMC:VC:GBL)を下掲の表13に示す通りに変えた。3-アミノプロピルトリメトキシシランを3-アミノプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23-NH2〕に変えた。3-アミノプロピルメチルジメトキシシラン〔(CH3)(CH3O)2Si(CH23-NH2〕の濃度を下掲の表13に示す通りに変えた。式(1B-4)で表される化合物の濃度を下掲の表13に示す通りに変えた。以上のこと以外は、実施例1B-1と同様にしてラミネートフィルム型電池を作製した。
<Example 1B-2 to Example 1B-3>
Table 13 shows mass ratios (PC: EMC: VC: GBL) of propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and gamma butyrolactone (GBL) in the electrolytic solution. Changed to the street. 3-aminopropyltrimethoxysilane was changed to 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 ]. The concentration of 3-aminopropylmethyldimethoxysilane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 —NH 2 ] was varied as shown in Table 13 below. The concentration of the compound represented by the formula (1B-4) was changed as shown in Table 13 below. Except for the above, a laminated film type battery was produced in the same manner as in Example 1B-1.
<実施例1B-4~実施例1B-6>
 電解液の溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とガンマブチロラクトン(GBL)とを、PC:EMC:VC:GBL=31:47:1:20(質量比)で混合した混合溶媒を用いた。添加剤として、3-アミノプロピルメチルジメトキシシシラン〔(CH3)(CH3O)2Si(CH23NH2〕を1質量%になるように添加した。負極中の化合物を式(2B-1)で表される化合物に変えた。式(2B-1)で表される化合物は、カルボン酸エステル化合物および3-アミノプロピルメチルジメトキシシシランに由来する化合物である。以上のこと以外は、実施例1B-1~実施例1B-3と同様にしてラミネートフィルム型電池を作製した。
<Example 1B-4 to Example 1B-6>
As a solvent of the electrolytic solution, propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and gamma butyrolactone (GBL) are used as PC: EMC: VC: GBL = 31: 47: 1: 20 (mass). Ratio) was used. As an additive, 3-aminopropylmethyldimethoxy silane [(CH 3 ) (CH 3 O) 2 Si (CH 2 ) 3 NH 2 ] was added to 1% by mass. The compound in the negative electrode was changed to a compound represented by the formula (2B-1). The compound represented by the formula (2B-1) is a compound derived from a carboxylic acid ester compound and 3-aminopropylmethyldimethoxysilane. Except for the above, laminated film type batteries were produced in the same manner as in Examples 1B-1 to 1B-3.
<実施例1B-7~実施例1B-9>
 電解液の溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とガンマブチロラクトン(GBL)とを、PC:EMC:VC:GBL=31:47:1:20(質量比)で混合した混合溶媒を用いた。添加剤として、3-アミノプロピルトリエトキシシラン〔(C25O)3Si(CH23NH2〕を1質量%になるように添加した。負極中の化合物を式(3B-5)で表される化合物に変えた。式(2B-1)で表される化合物は、カルボン酸エステル化合物および3-アミノプロピルトリエトキシシシランに由来する化合物である。以上のこと以外は、実施例1B-1~実施例1B-3と同様にしてラミネートフィルム型電池を作製した。
<Example 1B-7 to Example 1B-9>
As a solvent of the electrolytic solution, propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and gamma butyrolactone (GBL) are used as PC: EMC: VC: GBL = 31: 47: 1: 20 (mass). Ratio) was used. As an additive, 3-aminopropyltriethoxysilane [(C 2 H 5 O) 3 Si (CH 2 ) 3 NH 2 ] was added to 1% by mass. The compound in the negative electrode was changed to a compound represented by formula (3B-5). The compound represented by the formula (2B-1) is a compound derived from a carboxylic acid ester compound and 3-aminopropyltriethoxysilane. Except for the above, laminated film type batteries were produced in the same manner as in Examples 1B-1 to 1B-3.
<比較例1B-1>
 電解液として、ガンマブチロラクトン(GBL)および3-アミノプロピルトリメトキシシランを含有しないものを用いた。すなわち、電解液の溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とガンマブチロラクトン(GBL)とを、PC:EMC:VC=40:59:1(質量比)で混合した混合溶媒を用いた。3-アミノプロピルトリメトキシシランを添加しなかった。以上のこと以外は、実施例1B-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1B-1>
As the electrolytic solution, one containing no gamma-butyrolactone (GBL) and 3-aminopropyltrimethoxysilane was used. That is, propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and gamma butyrolactone (GBL) were used as the solvent of the electrolytic solution, and PC: EMC: VC = 40: 59: 1 (mass ratio). The mixed solvent mixed in was used. 3-aminopropyltrimethoxysilane was not added. Except for the above, a laminated film type battery was produced in the same manner as in Example 1B-1.
<比較例1B-2~比較例1B-4>
 電解液として、環状カルボン酸エステルを含まないものを用いた。すなわち、電解液の溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とを、PC:EMC:VC=39:59:1(質量比)で混合した混合溶媒を用いた。添加剤として、3-アミノプロピルトリメトキシシラン〔(CH3O)3Si(CH23NH2〕を1質量%になるように添加した。負極中の化合物を式(3B-9)で表される化合物に変えた。以上のこと以外は、実施例1B-1~実施例1B-3と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1B-2 to Comparative Example 1B-4>
As the electrolytic solution, one containing no cyclic carboxylic acid ester was used. That is, a solvent mixture of propylene carbonate (PC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC) in a ratio of PC: EMC: VC = 39: 59: 1 (mass ratio) is used as a solvent for the electrolytic solution. Using. As an additive, 3-aminopropyltrimethoxysilane [(CH 3 O) 3 Si (CH 2 ) 3 NH 2 ] was added to 1% by mass. The compound in the negative electrode was changed to a compound represented by formula (3B-9). Except for the above, laminated film type batteries were produced in the same manner as in Examples 1B-1 to 1B-3.
<比較例1B-5~比較例1B-7>
 電解液として、添加剤を含有しないものを用いた。すなわち、溶媒として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)と炭酸ビニレン(VC)とガンマブチロラクトン(GBL)とを、PC:EMC:VC:GBL=31.5:47.5:1:20(質量比)で混合した混合溶媒を用い、3-アミノプロピルトリメトキシシランを添加しなかった電解液を用いた。以上のこと以外は、実施例1B-1~実施例1B-3と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1B-5 to Comparative Example 1B-7>
As the electrolytic solution, one containing no additive was used. That is, as a solvent, propylene carbonate (PC), ethyl methyl carbonate (EMC), vinylene carbonate (VC), and gamma butyrolactone (GBL), and PC: EMC: VC: GBL = 31.5: 47.5: 1: Using a mixed solvent mixed at 20 (mass ratio), an electrolytic solution to which 3-aminopropyltrimethoxysilane was not added was used. Except for the above, laminated film type batteries were produced in the same manner as in Examples 1B-1 to 1B-3.
<比較例1B-8>
 電解質塩として六フッ化リン酸リチウム(LiPF6)に代えて、フッ素を含有しないリチウム塩であるリチウムビス(オキサラト)ホウ酸〔LiC4BO8(LiBOB)〕を1.0mol/kg溶解させた電解液を用いた。以上のこと以外は実施例1B-2と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1B-8>
Instead of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt, 1.0 mol / kg of lithium bis (oxalato) boric acid [LiC 4 BO 8 (LiBOB)], which is a lithium salt containing no fluorine, was dissolved. An electrolytic solution was used. A laminate film type battery was produced in the same manner as in Example 1B-2 except for the above.
<比較例1B-9>
 負極活物質として黒鉛((C6;Graphite))を用いたこと以外は、実施例1B-2と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 1B-9>
A laminated film type battery was produced in the same manner as in Example 1B-2 except that graphite ((C 6 ; Graphite)) was used as the negative electrode active material.
(評価)
 作製した各電池について以下の評価を行った。
(Evaluation)
The following evaluation was performed about each produced battery.
(高温サイクル試験)
 最初に、各電池を23℃の雰囲気中において0.2Cの電流で2サイクル充放電させて、2サイクル目の放電容量を測定した。続いて、65℃の雰囲気中において300サイクルの充放電を繰り返し、2サイクル目の放電容量に対する300サイクルにおける放電容量維持率を、(300サイクル目の放電容量÷2サイクル目の放電容量)×100(%)として求めた。
(High temperature cycle test)
First, each battery was charged and discharged for 2 cycles at a current of 0.2 C in an atmosphere of 23 ° C., and the discharge capacity at the second cycle was measured. Subsequently, 300 cycles of charge and discharge were repeated in an atmosphere at 65 ° C., and the discharge capacity maintenance rate at 300 cycles with respect to the discharge capacity at the second cycle was calculated as (discharge capacity at 300th cycle / discharge capacity at the second cycle) × 100. (%).
 充放電条件としては、0.2Cの電流で上限電圧まで定電流定電圧充電し、さらに上限電圧での定電圧で電流値が0.05Cに達するまで充電したのち、0.2Cの電流で終止電圧まで定電流放電した。この「0.2C」とは、理論容量を5時間で放電しきる電流値である。上限電圧は、2.7Vに設定した。なお、後述のリン酸マンガン鉄リチウムを用いた電池(実施例3B-3)では2.7V、リン酸鉄リチウムを用いた電池(実施例3B-2等)では2.4Vにそれぞれ設定した。 The charge / discharge conditions are constant current and constant voltage charge up to the upper limit voltage at a current of 0.2 C, and further charge until the current value reaches 0.05 C at a constant voltage at the upper limit voltage, and then ends at a current of 0.2 C. A constant current was discharged to the voltage. This “0.2 C” is a current value at which the theoretical capacity can be discharged in 5 hours. The upper limit voltage was set to 2.7V. The battery using lithium manganese phosphate described below (Example 3B-3) was set to 2.7 V, and the battery using lithium iron phosphate (Example 3B-2 etc.) was set to 2.4 V.
(低温-30℃放電容量維持率の測定)
 充電後の各電池を測定温度下に1時間以上放置し、電池が所定温度に達した後、放電電流0.6Aにて定電流放電し、セル下限電圧が0.5Vになるまでの放電容量を測定した。雰囲気温度を-30℃から10℃毎に温度上昇させた。表13中の低温-30℃放電容量維持率は、雰囲気温度25℃での放電容量を100とした時の百分率を表している。
(Measurement of low temperature – 30 ° C discharge capacity retention rate)
Each charged battery is allowed to stand at the measured temperature for 1 hour or longer, and after the battery reaches a predetermined temperature, the battery is discharged at a constant discharge current of 0.6 A, and the discharge capacity until the cell lower limit voltage reaches 0.5 V. Was measured. The ambient temperature was increased from −30 ° C. every 10 ° C. The low temperature −30 ° C. discharge capacity retention ratio in Table 13 represents a percentage when the discharge capacity at an ambient temperature of 25 ° C. is defined as 100.
(高温保存時の膨れの測定)
 初回容量測定後の各電池を、23℃の雰囲気中において上限電圧で3時間充電した後、充電状態において80℃の恒温槽中に24時間保存し、保存後の電池厚さと保存前の電池厚さとの差から、下記により高温保存時のセル厚の増加率を求めた。
 高温保存時のセル厚の増加率(%)={(「保存後の電池厚さ」-「保存前の電池厚さ」)÷「保存前の電池厚さ」}×100(%)
(Measures swelling when stored at high temperature)
Each battery after the initial capacity measurement is charged at an upper limit voltage for 3 hours in an atmosphere at 23 ° C., and then stored in a constant temperature bath at 80 ° C. for 24 hours in a charged state. The battery thickness after storage and the battery thickness before storage From this difference, the rate of increase in cell thickness during high temperature storage was determined as follows.
Increase rate of cell thickness during high temperature storage (%) = {("Battery thickness after storage"-"Battery thickness before storage") / "Battery thickness before storage"} x 100 (%)
 表13に評価結果を示す。 Table 13 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表13に示すように、実施例1B-1~実施例1B-9では、高温サイクル特性および低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。これらの電池では、アミノ基を有するシランカップリング剤を含む電解液を用いることで、負極に式(1B-4)、式(2B-1)、または式(3B-5)で表される化合物を含ませることによって、高温サイクル特性および低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。ガス発生抑制のメカニズムとしては、負極で水の分解物であるOH-による加水分解をしてCO2を発生するカーボネート溶媒の量を、少なくしたことで、CO2ガスの総量が少なくなったことが考えられる。また、式(1B-1)で表される化合物、式(2B-1)で表される化合物、または式(3B-5)で表される化合物が、活性な負極表面を覆うことで、電解液溶媒の還元分解が抑制されることが考えられる。さらに実施例1B-1~1-3では、電池内の種々の劣化をもたらすHF(LiPF6と水の反応により生成する)を効果的にトラップすることで、特性の劣化を抑制できることが考えられる。なお、環状カルボン酸エステル化合物として、他の環状カルボン酸エステル化合物を用いた場合も同様の効果を得られる。シランカップリング剤として他のシランカップリング剤を用いた場合も同様の効果を得られる。シランカップリング剤に代えて、シロキサン化合物を用いた場合も同様の効果を得られる。負極に他の化合物(例えば、式(1B-1)~式(1B-2)、式(1B-3)、式(1B-5)の化合物、式(2B-2)~式(2B-20)の化合物、式(3B-1)~式(3B-4)、式(3B-6)~式(3B-20)の化合物等)を含む場合も同様の効果を得られる。(以下の実施例でも同様) As shown in Table 13, in Examples 1B-1 to 1B-9, high temperature cycle characteristics and low temperature characteristics can be improved, gas generation during high temperature storage can be suppressed, and increase in battery cell thickness is reduced. We were able to. In these batteries, the compound represented by the formula (1B-4), the formula (2B-1), or the formula (3B-5) is used for the negative electrode by using an electrolytic solution containing a silane coupling agent having an amino group. Including, the high-temperature cycle characteristics and low-temperature characteristics can be improved, gas generation during high-temperature storage can be suppressed, and the increase in battery cell thickness can be reduced. As a mechanism for suppressing gas generation, the total amount of CO 2 gas was reduced by reducing the amount of carbonate solvent that generates CO 2 by hydrolysis with OH-, which is a decomposition product of water, at the negative electrode. Can be considered. Further, the compound represented by the formula (1B-1), the compound represented by the formula (2B-1), or the compound represented by the formula (3B-5) covers the active negative electrode surface, so that It is considered that reductive decomposition of the liquid solvent is suppressed. Further, in Examples 1B-1 to 1-3, it is conceivable that deterioration of characteristics can be suppressed by effectively trapping HF (generated by the reaction of LiPF 6 and water) that causes various deteriorations in the battery. . In addition, the same effect is acquired also when another cyclic carboxylic acid ester compound is used as a cyclic carboxylic acid ester compound. The same effect can be obtained when another silane coupling agent is used as the silane coupling agent. Similar effects can be obtained when a siloxane compound is used instead of the silane coupling agent. Other compounds (for example, compounds of formula (1B-1) to formula (1B-2), formula (1B-3), formula (1B-5), formula (2B-2) to formula (2B-20) ), Compounds of formula (3B-1) to formula (3B-4), formula (3B-6) to formula (3B-20), etc.), the same effect can be obtained. (The same applies to the following examples)
<実施例2B-1~実施例2B-4>
 実施例1B-2と同様にして実施例2B-2のラミネートフィルム型電池を作製した。電解液中のガンマブチロラクトン(GBL)の組成を下掲の表14の通りに変えた以外は、実施例2B-2と同様にして、実施例2B-1、実施例2B-3~実施例2B-4のラミネートフィルム型電池を作製した。
<Example 2B-1 to Example 2B-4>
A laminated film type battery of Example 2B-2 was produced in the same manner as Example 1B-2. Example 2B-1, Example 2B-3 to Example 2B were the same as Example 2B-2 except that the composition of gamma-butyrolactone (GBL) in the electrolyte was changed as shown in Table 14 below. -4 laminate film type battery was produced.
(評価)
 作製した各電池について実施例1B-1と同様の評価を行った。評価結果を表14に示す。
(Evaluation)
Each battery fabricated was evaluated in the same manner as in Example 1B-1. The evaluation results are shown in Table 14.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表14に示すように、実施例2B-1~実施例2B-4では、高温サイクル特性および低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。 As shown in Table 14, in Examples 2B-1 to 2B-4, high-temperature cycle characteristics and low-temperature characteristics can be improved, gas generation during high-temperature storage can be suppressed, and increase in battery cell thickness is reduced. We were able to.
<実施例3B-1>
 実施例1B-2と同様にして、ラミネートフィルム型電池を作製した。
<Example 3B-1>
A laminated film type battery was produced in the same manner as Example 1B-2.
<実施例3B-2>
 正極活物質としてオリビン型リン酸鉄リチウム(LiFePO4)を用いたこと以外は、実施例3B-1と同様にしてラミネートフィルム型電池を作製した。
<Example 3B-2>
A laminated film type battery was produced in the same manner as in Example 3B-1, except that olivine type lithium iron phosphate (LiFePO 4 ) was used as the positive electrode active material.
<実施例3B-3>
 正極活物質としてオリビン型リン酸マンガン鉄リチウム(LiFe0.25Mn0.75PO4)を用いたこと以外は、実施例3B-1と同様にしてラミネートフィルム型電池を作製した。
<Example 3B-3>
A laminated film type battery was produced in the same manner as in Example 3B-1, except that olivine-type lithium manganese iron phosphate (LiFe 0.25 Mn 0.75 PO 4 ) was used as the positive electrode active material.
(評価)
 作製した各電池について実施例1B-1と同様の評価を行った。評価結果を表15に示す。
(Evaluation)
Each battery fabricated was evaluated in the same manner as in Example 1B-1. The evaluation results are shown in Table 15.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表15に示すように、実施例3B-1~実施例3B-3では、高温サイクル特性および低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。実施例3B-1~実施例3B-3によれば、正極活物質種としては、オリビン構造を有するリン酸鉄リチウム(LiFePO4)、リン酸マンガン鉄リチウム(LiMnFePO4)を用いた場合が、より優れた効果得られた。 As shown in Table 15, in Examples 3B-1 to 3B-3, the high-temperature cycle characteristics and the low-temperature characteristics can be improved, gas generation during high-temperature storage can be suppressed, and the increase in battery cell thickness is reduced. We were able to. According to Example 3B-1 to Example 3B-3, as the positive electrode active material species, lithium iron phosphate (LiFePO 4 ) having an olivine structure and lithium manganese iron phosphate (LiMnFePO 4 ) were used. A better effect was obtained.
<実施例4B-1>
 実施例3B-2と同様にしてラミネートフィルム型電池を作製した。
<Example 4B-1>
A laminated film type battery was produced in the same manner as Example 3B-2.
<実施例4B-2>
 負極活物質として酸化チタン(TiO2)を用いたこと以外は、実施例4B-1と同様にして電池を作製した。
<Example 4B-2>
A battery was fabricated in the same manner as in Example 4B-1, except that titanium oxide (TiO 2 ) was used as the negative electrode active material.
(評価)
 作製した各電池について実施例1B-1と同様の評価を行った。評価結果を表16に示す。
(Evaluation)
Each battery fabricated was evaluated in the same manner as in Example 1B-1. The evaluation results are shown in Table 16.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表16に示すように、実施例4B-1~実施例4B-2では、高温サイクル特性および低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。実施例4B-1~実施例4B-2によれば、負極活物質種が酸化チタン(TiO2)の場合でも、負極活物質種がLi4Ti512と同様の効果を得られることができた。 As shown in Table 16, in Examples 4B-1 to 4B-2, high temperature cycle characteristics and low temperature characteristics can be improved, gas generation during high temperature storage can be suppressed, and the increase in battery cell thickness is reduced. We were able to. According to Examples 4B-1 to 4B-2, even when the negative electrode active material species is titanium oxide (TiO 2 ), the same effect as that of the Li 4 Ti 5 O 12 negative electrode active material species can be obtained. did it.
<実施例5B-1>
 実施例3B-2と同様にしてラミネートフィルム型電池を作製した。
<Example 5B-1>
A laminated film type battery was produced in the same manner as Example 3B-2.
<実施例5B-2>
 下掲の表17に示す濃度で電解質塩として、リチウムビス(フルオロスルホニル)イミド(LiFSI)を用いたこと以外は、実施例5B-1と同様にしてラミネートフィルム型電池を作製した。
<Example 5B-2>
A laminate film type battery was produced in the same manner as in Example 5B-1, except that lithium bis (fluorosulfonyl) imide (LiFSI) was used as the electrolyte salt at the concentrations shown in Table 17 below.
<実施例5B-3>
 下掲の表17に示す濃度で電解質塩として、リチウムビス(トリフルオロスルホニル)イミド(LiTFSI)を用いたこと以外は、実施例5B-1と同様にしてラミネートフィルム型電池を作製した。
<Example 5B-3>
A laminate film type battery was produced in the same manner as in Example 5B-1, except that lithium bis (trifluorosulfonyl) imide (LiTFSI) was used as the electrolyte salt at the concentrations shown in Table 17 below.
(評価)
 作製した各電池について実施例1B-1と同様の評価を行った。評価結果を表17に示す。
(Evaluation)
Each battery fabricated was evaluated in the same manner as in Example 1B-1. The evaluation results are shown in Table 17.
Figure JPOXMLDOC01-appb-T000017
 表17に示すように、実施例5B-1~実施例5B-3では、高温サイクル特性および低温特性を向上できると共に、高温保存時のガス発生を抑制でき、電池セルの厚さの増加を低減することができた。実施例5B-2~実施例5B-3によれば、電解質塩種が、LiFSIまたはLiTFSIである場合には、LiPF6由来のHFによる劣化を抑制でき、高温サイクル特性および高温保存時のガス発生抑制効果がより優れていた。
Figure JPOXMLDOC01-appb-T000017
As shown in Table 17, in Examples 5B-1 to 5B-3, high temperature cycle characteristics and low temperature characteristics can be improved, gas generation during high temperature storage can be suppressed, and an increase in battery cell thickness is reduced. We were able to. According to Example 5B-2 to Example 5B-3, when the electrolyte salt species is LiFSI or LiTFSI, deterioration due to LiPF 6 -derived HF can be suppressed, high-temperature cycle characteristics and gas generation during high-temperature storage The suppression effect was more excellent.
<実施例6B-1>
 実施例1B-5と同様にしてラミネートフィルム型電池を作製した。
<Example 6B-1>
A laminated film type battery was produced in the same manner as in Example 1B-5.
<実施例6B-2>
 実施例3B-2と同様にしてラミネートフィルム型電池を作製した。
<Example 6B-2>
A laminated film type battery was produced in the same manner as Example 3B-2.
<比較例6B-1>
 負極活物質として黒鉛((C6;Graphite))を用いた。電解液として、環状カルボン酸エステル化合物およびシランカップリング剤を含有させなかったものを用いた。以上のこと以外は、実施例6B-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6B-1>
Graphite ((C 6 ; Graphite)) was used as the negative electrode active material. As the electrolytic solution, a solution containing no cyclic carboxylic acid ester compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6B-1.
<比較例6B-2>
負極活物質として黒鉛((C6;Graphite))を用いた。電解液として、環状カルボン酸エステル化合物およびシランカップリング剤を含有させなかったものを用いた。以上のこと以外は、実施例6B-2と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6B-2>
Graphite ((C 6 ; Graphite)) was used as the negative electrode active material. As the electrolytic solution, a solution containing no cyclic carboxylic acid ester compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6B-2.
<比較例6B-3>
 電解液として、環状カルボン酸エステル化合物およびシランカップリング剤を含有させなかったものを用いた。以上のこと以外は、実施例6B-1と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6B-3>
As the electrolytic solution, a solution containing no cyclic carboxylic acid ester compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6B-1.
<比較例6B-4>
 電解液として、環状カルボン酸エステル化合物およびシランカップリング剤を含有させなかったものを用いた。以上のこと以外は、実施例6B-2と同様にしてラミネートフィルム型電池を作製した。
<Comparative Example 6B-4>
As the electrolytic solution, a solution containing no cyclic carboxylic acid ester compound and no silane coupling agent was used. Except for the above, a laminated film type battery was produced in the same manner as in Example 6B-2.
(評価)
 作製した各電池について以下の評価を行った。
(Evaluation)
The following evaluation was performed about each produced battery.
(サイクル(5C)試験)
 サイクル特性(5C)を調べる場合には、電池状態を安定化させるために常温(23℃)環境中で二次電池を1サイクル充放電させたのち、同環境下で二次電池をさらに1サイクル充放電させて放電容量を測定した。
(Cycle (5C) test)
When investigating the cycle characteristics (5C), in order to stabilize the battery state, after charging and discharging the secondary battery in a normal temperature (23 ° C.) environment for one cycle, the secondary battery is further cycled in the same environment. The discharge capacity was measured by charging and discharging.
 続いて、同環境下でのサイクル数合計が1000サイクルになるまで充放電を繰り返して放電容量を測定した。 Subsequently, charge and discharge were repeated until the total number of cycles under the same environment reached 1000 cycles, and the discharge capacity was measured.
 充電時には、5.0Cの電流で上限電圧まで定電流充電したのち、上限電圧で電流が0.05Cになるまで定電圧充電を行った。なお、「上限電圧-終止電圧)」は、実例6-1および比較例6B-3:4.3V-3.0V、実施例6B-2および比較例6B-4:2.4V-0.5V、比較例6B-1:4.2V-2.5V、比較例6B-2:3.6V-2.0Vとした。「5.0C」および「0.05C」は、それぞれ電池容量(理論容量)を12分、20時間で放電しきる電流値である。 During charging, constant current charging was performed up to the upper limit voltage at a current of 5.0 C, and then constant voltage charging was performed until the current reached 0.05 C at the upper limit voltage. “Upper limit voltage−Ending voltage” are as follows: Example 6-1 and Comparative Example 6B-3: 4.3V-3.0V, Example 6B-2 and Comparative Example 6B-4: 2.4V-0.5V Comparative Example 6B-1: 4.2V-2.5V, Comparative Example 6B-2: 3.6V-2.0V. “5.0 C” and “0.05 C” are current values at which the battery capacity (theoretical capacity) can be discharged in 12 minutes and 20 hours, respectively.
 評価結果を表18に示す。 Table 18 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表18に示すように、実施例6B-1~実施例6B-2では、負極活物質種として、チタン酸リチウム(Li4Ti512)を用い、シランカップリング剤を含む電解液を用いて、負極に式(2B-1)または式(1B-4)で表される化合物を含ませることによって、高出力サイクル特性をより優れたものとすることができた。なお、比較例6B-1のように正極:コバルト酸リチウム(LiCoO2)、負極:黒鉛の場合では、5C相当の高い電流値をかけたサイクル維持率は大幅に低下してしまう。 As shown in Table 18, in Examples 6B-1 to 6B-2, lithium titanate (Li 4 Ti 5 O 12 ) was used as the negative electrode active material species, and an electrolytic solution containing a silane coupling agent was used. In addition, by including the compound represented by the formula (2B-1) or the formula (1B-4) in the negative electrode, the high output cycle characteristics could be further improved. In the case of the positive electrode: lithium cobaltate (LiCoO 2 ) and the negative electrode: graphite as in Comparative Example 6B-1, the cycle retention ratio when a high current value equivalent to 5C is applied is significantly reduced.
11.他の実施の形態
 本技術は、上述した本技術の実施の形態および実施例に限定されるものでは無く、本技術の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
11. Other Embodiments The present technology is not limited to the above-described embodiments and examples of the present technology, and various modifications and applications can be made without departing from the gist of the present technology.
 例えば、上述の実施の形態および実施例において挙げた数値、構造、形状、材料、原料、製造プロセス等はあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、形状、材料、原料、製造プロセス等を用いてもよい。 For example, the numerical values, structures, shapes, materials, raw materials, manufacturing processes and the like given in the above-described embodiments and examples are merely examples, and different numerical values, structures, shapes, materials, raw materials, and the like as necessary. A manufacturing process or the like may be used.
 また、上述の実施の形態および実施例の構成、方法、工程、形状、材料および数値等は、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。 Further, the configurations, methods, processes, shapes, materials, numerical values, and the like of the above-described embodiments and examples can be combined with each other without departing from the gist of the present technology.
 また、上述の実施の形態および実施例では、ラミネートフィルム型、円筒型の電池等について説明したが、角型、コイン型またはボタン型等の電池であってもよい。さらに、上述の実施の形態および実施例では、電極反応にリチウムを用いる場合を説明したが、ナトリウム(Na)またはカリウム(K)などの他のアルカリ金属、またはマグネシウムまたはカルシウム(Ca)などのアルカリ土類金属、またはアルミニウムなどの他の軽金属を用いる場合についても、本技術を適用することができ、同様の効果を得ることができる。 In the above-described embodiments and examples, the laminated film type, cylindrical type battery, and the like have been described. However, a square type, coin type, button type, or the like may be used. Further, in the above-described embodiments and examples, the case where lithium is used for the electrode reaction has been described. However, other alkali metals such as sodium (Na) or potassium (K), or alkalis such as magnesium or calcium (Ca) are used. The present technology can also be applied to the case where an earth metal or other light metal such as aluminum is used, and the same effect can be obtained.
 また、上記実施の形態および実施例では、本技術の電池における化合物の組み合わせについて、実施例の結果から導き出された適正範囲を説明しているが、その説明は、上記した組み合わせ以外となる可能性を完全に否定するものではない。すなわち、上記した適正範囲は、あくまで本技術の効果を得る上で特に好ましい範囲であり、本技術の効果が得られるのであれば、上記した範囲に限定されない。 Moreover, although the said embodiment and Example demonstrate the appropriate range derived | led-out from the result of the Example about the combination of the compound in the battery of this technique, the description may become other than the above-mentioned combination. Is not completely denied. In other words, the appropriate range described above is a particularly preferable range for obtaining the effects of the present technology, and is not limited to the above range as long as the effects of the present technology can be obtained.
 本技術は、以下の構成をとることもできる。
[1]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記非水溶媒は、鎖状スルホン化合物を含み、
 前記添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池。
[2]
 前記一の化合物は、メルカプト基を有するシランカップリング剤である[1]に記載の電池。
[3]
 前記鎖状スルホン化合物の含有量は、前記電解液に対して、0.1質量%以上20質量%以下である[1]~[2]の何れかに記載の電池。
[4]
 前記正極活物質は、オリビン構造を有し、且つ、リチウムと遷移金属元素の少なくとも1種とリンとを少なくとも含むリン酸化合物、または、スピネル構造を有し、且つ、リチウムとマンガンとを少なくとも含むリチウムマンガン複合酸化物である[1]~[3]の何れかに記載の電池。
[5]
 前記チタン含有無機酸化物は、少なくともリチウムおよびチタンを構成元素として有するチタン含有リチウム複合酸化物、または、チタンと酸素とを構成元素として有するチタン酸化物である[1]~[4]の何れかに記載の電池。
[6]
 前記電解質塩は、リチウムビス(フルオロ)スルホニルイミドおよびリチウムビス(トリフルオロメチルスルホニル)イミドの少なくとも1種を含む[1]~[5]の何れかに記載の電池。
[7]
 前記電解質は、前記電解液を保持する高分子化合物をさらに含む[1]~[6]の何れかに記載の電池。
[8]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒および電解質塩を含む電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記負極は、シランカップリング剤またはシロキサン化合物と鎖状スルホン化合物とに由来する第1の化合物を含む電池。
[9]
 前記シランカップリング剤は、メルカプト基を有するシランカップリング剤である[8]に記載の電池。
[10]
 鎖状スルホン化合物に由来する第2の化合物をさらに含む[8]~[9]の何れかに記載の電池。
[11]
 前記第1の化合物は、式(1)で表されるジスルフィド化合物の少なくとも1種を含む[8]~[10]の何れかに記載の電池。
Figure JPOXMLDOC01-appb-C000029
(式中、nは1以上8以下の整数である。R1、R2、R3およびR4は、各々独立してハロゲン基、アルキル基、ハロゲン化アルキル基、アルコキシ基またはシロキサン基である。)
[12]
 前記電解質に含まれる前記式(1)で表されるジスルフィド化合物の含有量は、前記電解液の質量に対して、0.05質量%以上0.5質量%以下である[11]に記載の電池。
[13]
 前記第2の化合物は、式(2)で表されるスルホニル化合物の少なくとも1種を含む[10]に記載の電池。
Figure JPOXMLDOC01-appb-C000030
(式中、R5は、ハロゲン基、アルキル基、ハロゲン化アルキル基またはアルコキシ基である。R6は、HまたはLiである。)
[14]
 [1]~[13] の何れかに記載の電池を複数有するバッテリモジュール。
[15]
 [1]~[13]の何れかに記載の電池と、
 前記電池を制御する制御部と、
 前記電池を内包する外装と
を有する電池パック。
[16]
 [1]~[13]の何れかに記載の電池を有し、前記電池から電力の供給を受ける電子機器。
[17]
 [1]~[13]の何れかに記載の電池と、
 前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
を有する電動車両。
[18]
 [1]~[13]の何れかに記載の電池を有し、前記電池に接続される電子機器に電力を供給する蓄電装置。
[19]
 他の機器とネットワークを介して信号を送受信する電力情報制御装置を備え、
 前記電力情報制御装置が受信した情報に基づき、前記電池の充放電制御を行う[18]に記載の蓄電装置。
[20]
 [1]~[13]の何れかに記載の電池から電力の供給を受け、または、発電装置もしくは電力網から前記電池に電力が供給される電力システム
This technique can also take the following composition.
[1]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The non-aqueous solvent includes a chain sulfone compound,
The battery, wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
[2]
The battery according to [1], wherein the one compound is a silane coupling agent having a mercapto group.
[3]
The battery according to any one of [1] to [2], wherein the content of the chain sulfone compound is 0.1% by mass or more and 20% by mass or less with respect to the electrolytic solution.
[4]
The positive electrode active material has an olivine structure, a phosphate compound containing at least one of lithium, a transition metal element, and phosphorus, or a spinel structure, and containing at least lithium and manganese. The battery according to any one of [1] to [3], which is a lithium manganese composite oxide.
[5]
Any of [1] to [4], wherein the titanium-containing inorganic oxide is a titanium-containing lithium composite oxide having at least lithium and titanium as constituent elements, or a titanium oxide having titanium and oxygen as constituent elements. The battery described in 1.
[6]
The battery according to any one of [1] to [5], wherein the electrolyte salt includes at least one of lithium bis (fluoro) sulfonylimide and lithium bis (trifluoromethylsulfonyl) imide.
[7]
The battery according to any one of [1] to [6], wherein the electrolyte further includes a polymer compound that holds the electrolytic solution.
[8]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The battery includes a first compound derived from a silane coupling agent or a siloxane compound and a chain sulfone compound.
[9]
The battery according to [8], wherein the silane coupling agent is a silane coupling agent having a mercapto group.
[10]
The battery according to any one of [8] to [9], further comprising a second compound derived from a chain sulfone compound.
[11]
The battery according to any one of [8] to [10], wherein the first compound includes at least one disulfide compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000029
(In the formula, n is an integer of 1 to 8. R1, R2, R3 and R4 are each independently a halogen group, an alkyl group, a halogenated alkyl group, an alkoxy group or a siloxane group.)
[12]
The content of the disulfide compound represented by the formula (1) contained in the electrolyte is 0.05% by mass or more and 0.5% by mass or less based on the mass of the electrolytic solution [11]. battery.
[13]
The battery according to [10], wherein the second compound includes at least one sulfonyl compound represented by the formula (2).
Figure JPOXMLDOC01-appb-C000030
(In the formula, R5 is a halogen group, an alkyl group, a halogenated alkyl group or an alkoxy group. R6 is H or Li.)
[14]
[1] A battery module having a plurality of the batteries according to any one of [13].
[15]
The battery according to any one of [1] to [13];
A control unit for controlling the battery;
A battery pack having an exterior housing the battery.
[16]
[1] An electronic device comprising the battery according to any one of [13] and receiving power supply from the battery.
[17]
The battery according to any one of [1] to [13];
A conversion device that receives supply of electric power from the battery and converts it into driving force of a vehicle;
An electric vehicle comprising: a control device that performs information processing related to vehicle control based on information related to the battery.
[18]
[1] A power storage device that includes the battery according to any one of [13] and supplies electric power to an electronic device connected to the battery.
[19]
A power information control device that transmits and receives signals to and from other devices via a network,
The power storage device according to [18], wherein charge / discharge control of the battery is performed based on information received by the power information control device.
[20]
[1] A power system that receives power from the battery according to any one of [13] or that supplies power to the battery from a power generation device or a power network
 本技術は、以下の構成をとることもできる。
[1]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記非水溶媒は、カーボネート化合物を含み、
 前記添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池。
[2]
 前記一の化合物は、アミノ基を有するシランカップリング剤である[1]に記載の電池。
[3]
 前記非水溶媒は、さらに鎖状スルホン化合物を含む[1]~[2]の何れかに記載の電池。
[4]
 前記鎖状スルホン化合物の含有量は、前記電解液に対して、0.1質量%以上20質量%以下である[3]に記載の電池。
[5]
 前記正極活物質は、オリビン構造を有し、且つ、リチウムと遷移金属元素の少なくとも1種とリンとを少なくとも含むリン酸化合物、または、スピネル構造を有し、且つ、リチウムとマンガンとを少なくとも含むリチウムマンガン複合酸化物である[1]~[4]の何れかに記載の電池。
[6]
 前記チタン含有無機酸化物は、少なくともリチウムおよびチタンを構成元素として有するチタン含有リチウム複合酸化物、または、チタンと酸素とを構成元素として有するチタン酸化物である[1]~[5]の何れかに記載の電池。
[7]
 前記電解質塩は、リチウムビス(フルオロ)スルホニルイミドおよびリチウムビス(トリフルオロメチルスルホニル)イミドの少なくとも1種を含む[1]~[6]の何れかに記載の電池。
[8]
 前記電解質は、前記電解液を保持する高分子化合物をさらに含む[1]~[7]の何れかに記載の電池。
[9]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒および電解質塩を含む電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記負極は、シランカップリング剤またはシロキサン化合物とカーボネート化合物とに由来する第1の化合物を含む電池。
[10]
 前記シランカップリング剤は、アミノ基を有するシランカップリング剤である[9]に記載の電池。
[11]
 前記第1の化合物は、式(1A)で表される化合物、式(2A)で表される化合物および式(3A)で表される化合物の少なくとも1種を含む[9]~[10]の何れかに記載の電池。
Figure JPOXMLDOC01-appb-C000031
(式中、R1、R2およびR3は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R4は、アルカリ金属、アルカリ土類金属、水素基、ハロゲン基、アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、アルカリ金属と結合したアルキル基、アルカリ土類金属と結合したアルキル基、ハロゲン化アルケニル基、アルカリ金属と結合したアルケニル基、アルカリ土類金属と結合したアルケニル基、ハロゲン化アルキニル基、アルカリ金属と結合したアルキニル基、アルカリ土類金属と結合したアルキニル基またはアルコキシ基である。R5は、アルカリ金属、アルカリ土類金属、水素基、ハロゲン基、アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、アルカリ金属と結合したアルキル基、アルカリ土類金属と結合したアルキル基、ハロゲン化アルケニル基、アルカリ金属と結合したアルケニル基、アルカリ土類金属と結合したアルケニル基、ハロゲン化アルキニル基、アルカリ金属と結合したアルキニル基、アルカリ土類金属と結合したアルキニル基、アルコキシ基、下記の式(A)で表される置換基、下記の式(B)で表される置換基、下記の式(C)で表される置換基、下記の式(D)で表される置換基、下記の式(E)で表される置換基、下記の式(F)で表される置換基、下記の式(G)で表される置換基、下記の式(H)で表される置換基、または、下記の式(I)で表される置換基である。)
Figure JPOXMLDOC01-appb-C000032
(式中、R6、R7およびR8は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R9、R10およびR11は、各々独立してアルカリ金属、アルカリ土類金属、アルキル基、ハロゲン基、ハロゲン化アルキル基または水素基である。R12は、アルキル基、ハロゲン基、ハロゲン化アルキル基、下記の式(A)で表される置換基、または、水素基である。)
Figure JPOXMLDOC01-appb-C000033
(式中、R13、R14およびR15は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R16は、アルカリ金属、アルカリ土類金属、アルキル基、ハロゲン基、ハロゲン化アルキル基または水素基である。R17は、アルキル基、ハロゲン基、ハロゲン化アルキル基、下記の式(A)で表される置換基、または、水素基である。)
Figure JPOXMLDOC01-appb-C000034
(式中、R20は、アルカリ金属、アルカリ土類金属、アルキル基、ハロゲン基、ハロゲン化アルキル基または水素基である。)
Figure JPOXMLDOC01-appb-I000024
[12]
 前記電解質に含まれる前記式(1A)で表される化合物、式(2A)で表される化合物および式(3A)で表される化合物の少なくとも1種の含有量は、前記電解液の質量に対して、0.05質量%以上0.5質量%以下である[11]に記載の電池。
[13]
 [1]~[12]の何れかに記載の電池を複数有するバッテリモジュール。
[14]
 [1]~[12]の何れかに記載の電池と、
 前記電池を制御する制御部と、
 前記電池を内包する外装と
を有する電池パック。
[15]
 [1]~[12]の何れかに記載の電池を有し、前記電池から電力の供給を受ける電子機器。
[16]
 [1]~[12]の何れかに記載の電池と、
 前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
を有する電動車両。
[17]
 [1]~[12]の何れかに記載の電池を有し、前記電池に接続される電子機器に電力を供給する蓄電装置。
[18]
 他の機器とネットワークを介して信号を送受信する電力情報制御装置を備え、
 前記電力情報制御装置が受信した情報に基づき、前記電池の充放電制御を行う[17]に記載の蓄電装置。
[19]
 [1]~[12]の何れかに記載の電池から電力の供給を受け、または、発電装置もしくは電力網から前記電池に電力が供給される電力システム。
This technique can also take the following composition.
[1]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The non-aqueous solvent includes a carbonate compound,
The battery, wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
[2]
The battery according to [1], wherein the one compound is a silane coupling agent having an amino group.
[3]
The battery according to any one of [1] to [2], wherein the non-aqueous solvent further includes a chain sulfone compound.
[4]
The battery according to [3], wherein the content of the chain sulfone compound is 0.1% by mass or more and 20% by mass or less with respect to the electrolytic solution.
[5]
The positive electrode active material has an olivine structure, a phosphate compound containing at least one of lithium, a transition metal element, and phosphorus, or a spinel structure, and containing at least lithium and manganese. The battery according to any one of [1] to [4], which is a lithium manganese composite oxide.
[6]
Any of [1] to [5], wherein the titanium-containing inorganic oxide is a titanium-containing lithium composite oxide having at least lithium and titanium as constituent elements, or a titanium oxide having titanium and oxygen as constituent elements. The battery described in 1.
[7]
The battery according to any one of [1] to [6], wherein the electrolyte salt includes at least one of lithium bis (fluoro) sulfonylimide and lithium bis (trifluoromethylsulfonyl) imide.
[8]
The battery according to any one of [1] to [7], wherein the electrolyte further includes a polymer compound that holds the electrolytic solution.
[9]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The negative electrode is a battery including a silane coupling agent or a first compound derived from a siloxane compound and a carbonate compound.
[10]
The battery according to [9], wherein the silane coupling agent is a silane coupling agent having an amino group.
[11]
The first compound includes at least one of a compound represented by the formula (1A), a compound represented by the formula (2A), and a compound represented by the formula (3A). The battery according to any one of the above.
Figure JPOXMLDOC01-appb-C000031
(In the formula, R1, R2 and R3 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R4 is an alkali metal, alkaline earth metal, hydrogen group, halogen group or alkyl group. , Alkenyl group, alkynyl group, halogenated alkyl group, alkyl group bonded to alkali metal, alkyl group bonded to alkaline earth metal, alkenyl halide group, alkenyl group bonded to alkali metal, bonded to alkaline earth metal An alkenyl group, a halogenated alkynyl group, an alkynyl group bonded to an alkali metal, an alkynyl group bonded to an alkaline earth metal, or an alkoxy group, wherein R5 is an alkali metal, alkaline earth metal, hydrogen group, halogen group, alkyl group; Alkenyl group, alkynyl group, halogenated alkyl group, alkali metal Bonded alkyl group, alkyl group bonded to alkaline earth metal, halogenated alkenyl group, alkenyl group bonded to alkali metal, alkenyl group bonded to alkaline earth metal, halogenated alkynyl group, alkynyl group bonded to alkali metal , An alkynyl group bonded to an alkaline earth metal, an alkoxy group, a substituent represented by the following formula (A), a substituent represented by the following formula (B), and a formula (C) Substituents, substituents represented by the following formula (D), substituents represented by the following formula (E), substituents represented by the following formula (F), represented by the following formula (G) A substituent represented by the following formula (H), or a substituent represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000032
(Wherein R6, R7 and R8 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R9, R10 and R11 are each independently an alkali metal, an alkaline earth metal, An alkyl group, a halogen group, a halogenated alkyl group, or a hydrogen group, and R12 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group; )
Figure JPOXMLDOC01-appb-C000033
(In the formula, R13, R14 and R15 each independently represents an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R16 represents an alkali metal, an alkaline earth metal, an alkyl group, a halogen group or a halogenated group. R 17 is an alkyl group, a halogen group, a halogenated alkyl group, a substituent represented by the following formula (A), or a hydrogen group.
Figure JPOXMLDOC01-appb-C000034
(Wherein R20 is an alkali metal, alkaline earth metal, alkyl group, halogen group, halogenated alkyl group or hydrogen group.)
Figure JPOXMLDOC01-appb-I000024
[12]
The content of at least one of the compound represented by the formula (1A), the compound represented by the formula (2A) and the compound represented by the formula (3A) contained in the electrolyte depends on the mass of the electrolytic solution. On the other hand, the battery according to [11], which is 0.05% by mass or more and 0.5% by mass or less.
[13]
[1] A battery module having a plurality of the batteries according to any one of [12].
[14]
The battery according to any one of [1] to [12];
A control unit for controlling the battery;
A battery pack having an exterior housing the battery.
[15]
[1] An electronic device comprising the battery according to any one of [12] and receiving power supply from the battery.
[16]
The battery according to any one of [1] to [12];
A conversion device that receives supply of electric power from the battery and converts it into driving force of a vehicle;
An electric vehicle comprising: a control device that performs information processing related to vehicle control based on information related to the battery.
[17]
[1] A power storage device that includes the battery according to any one of [12] and supplies electric power to an electronic device connected to the battery.
[18]
A power information control device that transmits and receives signals to and from other devices via a network,
The power storage device according to [17], wherein charge / discharge control of the battery is performed based on information received by the power information control device.
[19]
[1] A power system that receives power supply from the battery according to any one of [12], or that supplies power to the battery from a power generation device or a power network.
 本技術は、以下の構成をとることもできる。
[1]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記非水溶媒は、環状カルボン酸エステル化合物を含み、
 前記電解質塩は、少なくともフッ素を含有するフッ素含有リチウム塩を含み、
 前記添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池。
[2]
 前記一の化合物は、アミノ基を有するシランカップリング剤である[1]に記載の電池。
[3]
 前記環状カルボン酸エステル化合物の含有量は、前記電解液に対して20質量%以上である[1]~[2]の何れかに記載の電池。
[4]
 前記非水溶媒は、さらにカーボネート化合物を含む[1]~[3]の何れかに記載の電池。
[5]
 前記正極活物質は、オリビン構造を有し、且つ、リチウムと遷移金属元素の少なくとも1種とリンとを少なくとも含むリン酸化合物、または、スピネル構造を有し、且つ、リチウムとマンガンとを少なくとも含むリチウムマンガン複合酸化物である[1]~[4]の何れかに記載の電池。
[6]
 前記チタン含有無機酸化物は、少なくともリチウムおよびチタンを構成元素として有するチタン含有リチウム複合酸化物、または、チタンと酸素とを構成元素として有するチタン酸化物である[1]~[5]の何れかに記載の電池。
[7]
 前記フッ素含有リチウム塩は、リチウムビス(フルオロ)スルホニルイミドおよびリチウムビス(トリフルオロメチルスルホニル)イミドの少なくとも1種を含む[1]~[6]の何れかに記載の電池。
[8]
 前記電解質は、前記電解液を保持する高分子化合物をさらに含む[1]~[7]の何れかに記載の電池。
[9]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒および電解質塩を含む電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記負極は、シランカップリング剤またはシロキサン化合物に由来する第1の化合物、および、
 シランカップリング剤またはシロキサン化合物と環状カルボン酸エステル化合物とに由来する第2の化合物のうちの少なくとも何れかの化合物を含む電池。
[10]
 前記シランカップリング剤は、アミノ基を有するシランカップリング剤である[9]に記載の電池。
[11]
 前記第1の化合物は、式(1B)で表される化合物の少なくとも1種を含み、
 前記第2の化合物は、式(2B)で表される化合物および式(3B)で表される化合物の少なくとも1種を含む[9]~[10]の何れかに記載の電池。
Figure JPOXMLDOC01-appb-C000035
(式中、R1、R2およびR3は、各々独立してアルキル基、フッ素基、フッ素化アルキル基またはアルコキシ基である。n1は1以上8以下の整数である。)
Figure JPOXMLDOC01-appb-C000036
(式中、R4、R5およびR6は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R7およびR8は、各々独立して水素基、アルカリ金属、アルカリ土類金属、アルキル基、またはハロゲン基である。n2は1以上8以下の整数である。n3は1以上8以下の整数である。)
Figure JPOXMLDOC01-appb-C000037
(式中、R9、R10およびR11は、各々独立してアルキル基、ハロゲン基、ハロゲン化アルキル基またはアルコキシ基である。R12およびR13は、各々独立して、水素基
アルキル基、ハロゲン基、またはハロゲン化アルキル基である。R14は、水素基、アルカリ金属、またはアルカリ土類金属である。n4は1以上8以下の整数である。n5は1以上8以下の整数である。n6は1以上8以下の整数である。)
[12]
 前記電解質に含まれる式(1B)で表される化合物、式(2B)で表される化合物および式(3B)で表される化合物の少なくとも1種の含有量は、前記電解液の質量に対して、0.05質量%以上0.5質量%以下である[11]に記載の電池。
[13]
 前記負極は、シランカップリング剤またはシロキサン化合物とカーボネート化合物とに由来する第3の化合物をさらに含む[9]~[12]の何れかに記載の電池。
[14]
 [1]~[13]の何れかに記載の電池を複数有するバッテリモジュール。
[15]
 [1]~[13]の何れかに記載の電池と、
 前記電池を制御する制御部と、
 前記電池を内包する外装と
を有する電池パック。
[16]
 [1]~[13]の何れかに記載の電池を有し、前記電池から電力の供給を受ける電子機器。
[17]
 [1]~[13]の何れかに記載の電池と、
 前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
を有する電動車両。
[18]
 [1]~[13]の何れかに記載の電池を有し、前記電池に接続される電子機器に電力を供給する蓄電装置。
[19]
 他の機器とネットワークを介して信号を送受信する電力情報制御装置を備え、
 前記電力情報制御装置が受信した情報に基づき、前記電池の充放電制御を行う[18]に記載の蓄電装置。
[20]
 [1]~[13]の何れかに記載の電池から電力の供給を受け、または、発電装置もしくは電力網から前記電池に電力が供給される電力システム。
[1]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記非水溶媒は、鎖状スルホン化合物を含み、
 前記添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池。
[2]
 前記一の化合物は、メルカプト基を有するシランカップリング剤である[1]に記載の電池。
[3]
 前記鎖状スルホン化合物の含有量は、前記電解液に対して、0.1質量%以上20質量%以下である[1]~[2]の何れかに記載の電池。
[4]
 前記電解質塩は、リチウムビス(フルオロ)スルホニルイミドおよびリチウムビス(トリフルオロメチルスルホニル)イミドの少なくとも1種を含む[1]~[3]の何れかに記載の電池。
[5]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒および電解質塩を含む電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記負極は、シランカップリング剤またはシロキサン化合物と鎖状スルホン化合物とに由来する第1の化合物を含む電池。
[6]
 前記シランカップリング剤は、メルカプト基を有するシランカップリング剤である[5]に記載の電池。
[7]
 鎖状スルホン化合物に由来する第2の化合物をさらに含む[5]~[6]の何れかに記載の電池。
[8]
 前記第1の化合物は、式(1)で表されるジスルフィド化合物の少なくとも1種を含む[5]~[7]の何れかに記載の電池。
Figure JPOXMLDOC01-appb-C000038
(式中、nは1以上8以下の整数である。R1、R2、R3およびR4は、各々独立してハロゲン基、アルキル基、ハロゲン化アルキル基、アルコキシ基またはシロキサン基である。)
[9]
 前記電解質に含まれる前記式(1)で表されるジスルフィド化合物の含有量は、前記電解液の質量に対して、0.05質量%以上0.5質量%以下である[8]に記載の電池。
[10]
 前記第2の化合物は、式(2)で表されるスルホニル化合物の少なくとも1種を含む[7]~[8]の何れかに記載の電池。
Figure JPOXMLDOC01-appb-C000039
(式中、R5は、ハロゲン基、アルキル基、ハロゲン化アルキル基またはアルコキシ基である。R6は、HまたはLiである。)
[11]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記非水溶媒は、カーボネート化合物を含み、
 前記添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池。
[12]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒および電解質塩を含む電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記負極は、シランカップリング剤またはシロキサン化合物とカーボネート化合物とに由来する第3の化合物を含む電池。
[13]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記非水溶媒は、環状カルボン酸エステル化合物を含み、
 前記電解質塩は、少なくともフッ素を含有するフッ素含有リチウム塩を含み、
 前記添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池。
[14]
 正極活物質を含む正極と、
 負極活物質を含む負極と、
 非水溶媒および電解質塩を含む電解液を含む電解質と
を備え、
 前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
 前記負極は、シランカップリング剤またはシロキサン化合物に由来する第4の化合物、および、
 シランカップリング剤またはシロキサン化合物と環状カルボン酸エステル化合物とに由来する第5の化合物のうちの少なくとも何れかの化合物を含む電池。
[15]
 [1]~[14]の何れかに記載の電池を複数有するバッテリモジュール。
[16]
 [1]~[14]の何れかに記載の電池と、
 前記電池を制御する制御部と、
 前記電池を内包する外装と
を有する電池パック。
[17]
 [1]~[14]の何れかに記載の電池を有し、前記電池から電力の供給を受ける電子機器。
[18]
 [1]~[14]の何れかに記載の電池と、
 前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
を有する電動車両。
[19]
 [1]~[14]の何れかに記載の電池を有し、前記電池に接続される電子機器に電力を供給する蓄電装置。
[20]
 [1]~[14]の何れかに記載の電池から電力の供給を受け、または、発電装置もしくは電力網から前記電池に電力が供給される電力システム。
This technique can also take the following composition.
[1]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The non-aqueous solvent includes a cyclic carboxylic acid ester compound,
The electrolyte salt includes a fluorine-containing lithium salt containing at least fluorine,
The battery, wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
[2]
The battery according to [1], wherein the one compound is a silane coupling agent having an amino group.
[3]
The battery according to any one of [1] to [2], wherein the content of the cyclic carboxylic acid ester compound is 20% by mass or more based on the electrolytic solution.
[4]
The battery according to any one of [1] to [3], wherein the non-aqueous solvent further includes a carbonate compound.
[5]
The positive electrode active material has an olivine structure, a phosphate compound containing at least one of lithium, a transition metal element, and phosphorus, or a spinel structure, and containing at least lithium and manganese. The battery according to any one of [1] to [4], which is a lithium manganese composite oxide.
[6]
Any of [1] to [5], wherein the titanium-containing inorganic oxide is a titanium-containing lithium composite oxide having at least lithium and titanium as constituent elements, or a titanium oxide having titanium and oxygen as constituent elements. The battery described in 1.
[7]
The battery according to any one of [1] to [6], wherein the fluorine-containing lithium salt includes at least one of lithium bis (fluoro) sulfonylimide and lithium bis (trifluoromethylsulfonyl) imide.
[8]
The battery according to any one of [1] to [7], wherein the electrolyte further includes a polymer compound that holds the electrolytic solution.
[9]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The negative electrode is a first compound derived from a silane coupling agent or a siloxane compound, and
A battery comprising at least one of a second compound derived from a silane coupling agent or a siloxane compound and a cyclic carboxylic acid ester compound.
[10]
The battery according to [9], wherein the silane coupling agent is a silane coupling agent having an amino group.
[11]
The first compound includes at least one compound represented by the formula (1B),
The battery according to any one of [9] to [10], wherein the second compound includes at least one of a compound represented by formula (2B) and a compound represented by formula (3B).
Figure JPOXMLDOC01-appb-C000035
(In the formula, R1, R2 and R3 are each independently an alkyl group, a fluorine group, a fluorinated alkyl group or an alkoxy group. N1 is an integer of 1-8)
Figure JPOXMLDOC01-appb-C000036
(Wherein R4, R5 and R6 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R7 and R8 are each independently a hydrogen group, an alkali metal or an alkaline earth metal) An alkyl group or a halogen group, n2 is an integer of 1 to 8, and n3 is an integer of 1 to 8.)
Figure JPOXMLDOC01-appb-C000037
(Wherein R9, R10 and R11 are each independently an alkyl group, a halogen group, a halogenated alkyl group or an alkoxy group. R12 and R13 are each independently a hydrogen group alkyl group, a halogen group, or R14 is a hydrogen group, an alkali metal or an alkaline earth metal, n4 is an integer of 1 to 8, n5 is an integer of 1 to 8. n6 is 1 or more It is an integer of 8 or less.)
[12]
The content of at least one of the compound represented by formula (1B), the compound represented by formula (2B) and the compound represented by formula (3B) contained in the electrolyte is based on the mass of the electrolyte solution. The battery according to [11], which is 0.05% by mass or more and 0.5% by mass or less.
[13]
The battery according to any one of [9] to [12], wherein the negative electrode further includes a silane coupling agent or a third compound derived from a siloxane compound and a carbonate compound.
[14]
A battery module having a plurality of the batteries according to any one of [1] to [13].
[15]
The battery according to any one of [1] to [13];
A control unit for controlling the battery;
A battery pack having an exterior housing the battery.
[16]
[1] An electronic device comprising the battery according to any one of [13] and receiving power supply from the battery.
[17]
The battery according to any one of [1] to [13];
A conversion device that receives supply of electric power from the battery and converts it into driving force of a vehicle;
An electric vehicle comprising: a control device that performs information processing related to vehicle control based on information related to the battery.
[18]
[1] A power storage device that includes the battery according to any one of [13] and supplies electric power to an electronic device connected to the battery.
[19]
A power information control device that transmits and receives signals to and from other devices via a network,
The power storage device according to [18], wherein charge / discharge control of the battery is performed based on information received by the power information control device.
[20]
[1] A power system that receives supply of power from the battery according to any one of [13], or that supplies power to the battery from a power generation device or a power network.
[1]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The non-aqueous solvent includes a chain sulfone compound,
The battery, wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
[2]
The battery according to [1], wherein the one compound is a silane coupling agent having a mercapto group.
[3]
The battery according to any one of [1] to [2], wherein the content of the chain sulfone compound is 0.1% by mass or more and 20% by mass or less with respect to the electrolytic solution.
[4]
The battery according to any one of [1] to [3], wherein the electrolyte salt includes at least one of lithium bis (fluoro) sulfonylimide and lithium bis (trifluoromethylsulfonyl) imide.
[5]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The battery includes a first compound derived from a silane coupling agent or a siloxane compound and a chain sulfone compound.
[6]
The battery according to [5], wherein the silane coupling agent is a silane coupling agent having a mercapto group.
[7]
The battery according to any one of [5] to [6], further comprising a second compound derived from a chain sulfone compound.
[8]
The battery according to any one of [5] to [7], wherein the first compound includes at least one disulfide compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000038
(In the formula, n is an integer of 1 to 8. R1, R2, R3 and R4 are each independently a halogen group, an alkyl group, a halogenated alkyl group, an alkoxy group or a siloxane group.)
[9]
The content of the disulfide compound represented by the formula (1) contained in the electrolyte is 0.05% by mass or more and 0.5% by mass or less with respect to the mass of the electrolytic solution [8]. battery.
[10]
The battery according to any one of [7] to [8], wherein the second compound includes at least one sulfonyl compound represented by the formula (2).
Figure JPOXMLDOC01-appb-C000039
(In the formula, R5 is a halogen group, an alkyl group, a halogenated alkyl group or an alkoxy group. R6 is H or Li.)
[11]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The non-aqueous solvent includes a carbonate compound,
The battery, wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
[12]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The negative electrode is a battery including a silane coupling agent or a third compound derived from a siloxane compound and a carbonate compound.
[13]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The non-aqueous solvent includes a cyclic carboxylic acid ester compound,
The electrolyte salt includes a fluorine-containing lithium salt containing at least fluorine,
The battery, wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
[14]
A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
The negative electrode is a fourth compound derived from a silane coupling agent or a siloxane compound, and
A battery comprising at least one compound of a fifth compound derived from a silane coupling agent or a siloxane compound and a cyclic carboxylic acid ester compound.
[15]
A battery module having a plurality of the batteries according to any one of [1] to [14].
[16]
The battery according to any one of [1] to [14];
A control unit for controlling the battery;
A battery pack having an exterior housing the battery.
[17]
[1] An electronic device comprising the battery according to any one of [14] and receiving power supply from the battery.
[18]
The battery according to any one of [1] to [14];
A conversion device that receives supply of electric power from the battery and converts it into driving force of a vehicle;
An electric vehicle comprising: a control device that performs information processing related to vehicle control based on information related to the battery.
[19]
[1] A power storage device including the battery according to any one of [14] and supplying electric power to an electronic device connected to the battery.
[20]
[1] A power system that receives power from the battery according to any one of [14], or that supplies power to the battery from a power generation device or a power network.
 1-1・・・非水電解質電池、1-1A・・・電池本体、1-2・・・非水電解質電池、1-2A・・・電池本体、3-1・・・正極リード、3-2・・・正極リード、4-1・・・負極リード、4-2・・・負極リード、11・・・電池缶、12,13・・・絶縁板、14・・・電池蓋、15・・・安全弁機構、15A・・・ディスク板、16・・・熱感抵抗素子、17・・・ガスケット、20・・・巻回電極体、21・・・正極、21A・・・正極集電体、21B・・・正極活物質層、22・・・負極、22A・・・負極集電体、22B・・・負極活物質層、23・・・セパレータ、24・・・センターピン、25・・・正極リード、26・・・負極リード、30・・・巻回電極体、31・・・正極リード、32・・・負極リード、33・・・正極、33A・・・正極集電体、33B・・・正極活物質層、34・・・負極、34A・・・負極集電体、34B・・・負極活物質層、35・・・セパレータ、36・・・電解質、37・・・保護テープ、40・・・外装部材、41・・・密着フィルム、60・・・外装部材、61・・・密着フィルム、70・・・積層電極体、71・・・正極リード、72・・・負極リード、73・・・正極、74・・・負極、75・・・セパレータ、76・・・固定部材、100・・・バッテリユニット、110・・・ブラケット、111・・・面取り部、112・・・外周壁、113・・・リブ部、120・・・バスバー、120-1・・バスバー、120-1・・・バスバー、130-1・・・両面テープ、130-2・・・両面テープ、150・・・モジュールケース、151・・・ゴムシート部、160・・・バッテリモジュール、211・・・電源、212・・・正極リード、213・・・負極リード、214、215・・・タブ、216・・・回路基板、217・・・コネクタ付きリード線、218、219・・・粘着テープ、220・・・ラベル、221・・・制御部、222・・・スイッチ部、224・・・温度検出部、225・・・正極端子、227・・・負極端子、231・・・絶縁シート、301・・・組電池、301a・・・二次電池、302a・・・充電制御スイッチ、302b・・・ダイオード、303a・・・放電制御スイッチ、303b・・・ダイオード、304・・・スイッチ部、307・・・電流検出抵抗、308・・・温度検出素子、310・・・制御部、311・・・電圧検出部、313・・・電流測定部、314・・・スイッチ制御部、317・・・メモリ、318・・・温度検出部、321・・・正極端子、322・・・負極端子、400・・・蓄電システム、401・・・住宅、402・・・集中型電力系統、402a・・・火力発電、402b・・・原子力発電、402c・・・水力発電、403・・・蓄電装置、404・・・発電装置、405・・・電力消費装置、405a・・・冷蔵庫、405b・・・エアコン、405c・・・テレビ、405d・・・バス、406・・・電動車両、406a・・・電気自動車、406b・・・ハイブリッドカー、406c・・・電気バイク、407・・・スマートメータ、408・・・パワーハブ、409・・・電力網、410・・・制御装置、411・・・センサ、412・・・情報網、413・・・サーバ、500・・・ハイブリッド車両、501・・・エンジン、502・・・発電機、503・・・電力駆動力変換装置、504a・・・駆動輪、504b・・・駆動輪、505a・・・車輪、505b・・・車輪、508・・・バッテリー、509・・・車両制御装置、510・・・センサ、511・・・充電口 1-1 ... nonaqueous electrolyte battery, 1-1A ... battery body, 1-2 ... nonaqueous electrolyte battery, 1-2A ... battery body, 3-1 ... positive electrode lead, 3 -2 ... Positive electrode lead, 4-1 ... Negative electrode lead, 4-2 ... Negative electrode lead, 11 ... Battery can, 12, 13 ... Insulating plate, 14 ... Battery cover, 15 ... Safety valve mechanism, 15A ... Disc plate, 16 ... Heat sensitive resistance element, 17 ... Gasket, 20 ... Winding electrode body, 21 ... Positive electrode, 21A ... Positive electrode current collector Body, 21B ... positive electrode active material layer, 22 ... negative electrode, 22A ... negative electrode current collector, 22B ... negative electrode active material layer, 23 ... separator, 24 ... center pin, 25. .. Positive electrode lead, 26... Negative electrode lead, 30... Winding electrode body, 31... Positive electrode lead, 32. ... Positive electrode, 33A ... Positive electrode current collector, 33B ... Positive electrode active material layer, 34 ... Negative electrode, 34A ... Negative electrode current collector, 34B ... Negative electrode active material layer, 35 ... Separator 36 ... electrolyte 37 ... protective tape 40 ... exterior member 41 ... adhesion film 60 ... exterior member 61 ... adhesion film 70 ... laminated electrode Body 71, positive electrode lead 72, negative electrode lead 73, positive electrode, 74, negative electrode, 75, separator, 76, fixing member, 100, battery unit, 110. ..Bracket, 111 ... chamfered portion, 112 ... outer peripheral wall, 113 ... rib portion, 120 ... bus bar, 120-1 ... bus bar, 120-1 ... bus bar, 130-1 ..Double-sided tape, 130-2 ... Double-sided tape, 1 0 ... module case, 151 ... rubber sheet, 160 ... battery module, 211 ... power supply, 212 ... positive electrode lead, 213 ... negative electrode lead, 214, 215 ... tab, 216 ... Circuit board, 217 ... Lead wire with connector, 218, 219 ... Adhesive tape, 220 ... Label, 221 ... Control part, 222 ... Switch part, 224 ... Temperature Detection unit, 225... Positive electrode terminal, 227... Negative electrode terminal, 231... Insulating sheet, 301... Assembled battery, 301 a. -Diode, 303a ... Discharge control switch, 303b ... Diode, 304 ... Switch part, 307 ... Current detection resistor, 308 ... Temperature detection element, 310 ... Control unit, 311 ... Voltage detection unit, 313 ... Current measurement unit, 314 ... Switch control unit, 317 ... Memory, 318 ... Temperature detection unit, 321 ... Positive electrode terminal, 322 ... Negative electrode terminal, 400 ... Power storage system, 401 ... Housing, 402 ... Centralized power system, 402a ... Thermal power generation, 402b ... Nuclear power generation, 402c ... Hydroelectric power generation, 403 ... Power storage device, 404 ... Power generation device, 405 ... Power consumption device, 405a ... Refrigerator, 405b ... Air conditioner, 405c ... TV, 405d ... Bus, 406 ... Electric Vehicle, 406a ... Electric vehicle, 406b ... Hybrid car, 406c ... Electric motorcycle, 407 ... Smart meter, 408 ... Power hub, 409 ... Power network, 410 ... Control device, 411 ... sensor, 412 ... information network, 413 ... server, 500 ... hybrid vehicle, 501 ... engine, 502 ... generator, 503 ... electric power driving force conversion Device, 504a ... Drive wheel, 504b ... Drive wheel, 505a ... Wheel, 505b ... Wheel, 508 ... Battery, 509 ... Vehicle control device, 510 ... Sensor, 511 ..Charging port

Claims (20)

  1.  正極活物質を含む正極と、
     負極活物質を含む負極と、
     非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質と
    を備え、
     前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
     前記非水溶媒は、鎖状スルホン化合物を含み、
     前記添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池。
    A positive electrode including a positive electrode active material;
    A negative electrode containing a negative electrode active material;
    An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
    The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
    The non-aqueous solvent includes a chain sulfone compound,
    The battery, wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
  2.  前記一の化合物は、メルカプト基を有するシランカップリング剤である請求項1に記載の電池。 The battery according to claim 1, wherein the one compound is a silane coupling agent having a mercapto group.
  3.  前記鎖状スルホン化合物の含有量は、前記電解液に対して、0.1質量%以上20質量%以下である請求項1に記載の電池。 The battery according to claim 1, wherein the content of the chain sulfone compound is 0.1% by mass or more and 20% by mass or less with respect to the electrolytic solution.
  4.  前記電解質塩は、リチウムビス(フルオロ)スルホニルイミドおよびリチウムビス(トリフルオロメチルスルホニル)イミドの少なくとも1種を含む請求項1に記載の電池。 The battery according to claim 1, wherein the electrolyte salt contains at least one of lithium bis (fluoro) sulfonylimide and lithium bis (trifluoromethylsulfonyl) imide.
  5.  正極活物質を含む正極と、
     負極活物質を含む負極と、
     非水溶媒および電解質塩を含む電解液を含む電解質と
    を備え、
     前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
     前記負極は、シランカップリング剤またはシロキサン化合物と鎖状スルホン化合物とに由来する第1の化合物を含む電池。
    A positive electrode including a positive electrode active material;
    A negative electrode containing a negative electrode active material;
    An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
    The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
    The battery includes a first compound derived from a silane coupling agent or a siloxane compound and a chain sulfone compound.
  6.  前記シランカップリング剤は、メルカプト基を有するシランカップリング剤である請求項5に記載の電池。 The battery according to claim 5, wherein the silane coupling agent is a silane coupling agent having a mercapto group.
  7.  鎖状スルホン化合物に由来する第2の化合物をさらに含む請求項5に記載の電池。 The battery according to claim 5, further comprising a second compound derived from a chain sulfone compound.
  8.  前記第1の化合物は、式(1)で表されるジスルフィド化合物の少なくとも1種を含む請求項5に記載の電池。
    Figure JPOXMLDOC01-appb-C000040
    (式中、nは1以上8以下の整数である。R1、R2、R3およびR4は、各々独立してハロゲン基、アルキル基、ハロゲン化アルキル基、アルコキシ基またはシロキサン基である。)
    The battery according to claim 5, wherein the first compound includes at least one disulfide compound represented by the formula (1).
    Figure JPOXMLDOC01-appb-C000040
    (In the formula, n is an integer of 1 to 8. R1, R2, R3 and R4 are each independently a halogen group, an alkyl group, a halogenated alkyl group, an alkoxy group or a siloxane group.)
  9.  前記電解質に含まれる前記式(1)で表されるジスルフィド化合物の含有量は、前記電解液の質量に対して、0.05質量%以上0.5質量%以下である請求項8に記載の電池。 The content of the disulfide compound represented by the formula (1) contained in the electrolyte is 0.05% by mass or more and 0.5% by mass or less with respect to the mass of the electrolytic solution. battery.
  10.  前記第2の化合物は、式(2)で表されるスルホニル化合物の少なくとも1種を含む請求項7に記載の電池。
    Figure JPOXMLDOC01-appb-C000041
    (式中、R5は、ハロゲン基、アルキル基、ハロゲン化アルキル基またはアルコキシ基である。R6は、HまたはLiである。)
    The battery according to claim 7, wherein the second compound includes at least one sulfonyl compound represented by the formula (2).
    Figure JPOXMLDOC01-appb-C000041
    (In the formula, R5 is a halogen group, an alkyl group, a halogenated alkyl group or an alkoxy group. R6 is H or Li.)
  11.  正極活物質を含む正極と、
     負極活物質を含む負極と、
     非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質と
    を備え、
     前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
     前記非水溶媒は、カーボネート化合物を含み、
     前記添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池。
    A positive electrode including a positive electrode active material;
    A negative electrode containing a negative electrode active material;
    An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
    The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
    The non-aqueous solvent includes a carbonate compound,
    The battery, wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
  12.  正極活物質を含む正極と、
     負極活物質を含む負極と、
     非水溶媒および電解質塩を含む電解液を含む電解質と
    を備え、
     前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
     前記負極は、シランカップリング剤またはシロキサン化合物とカーボネート化合物とに由来する第3の化合物を含む電池。
    A positive electrode including a positive electrode active material;
    A negative electrode containing a negative electrode active material;
    An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
    The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
    The negative electrode is a battery including a silane coupling agent or a third compound derived from a siloxane compound and a carbonate compound.
  13.  正極活物質を含む正極と、
     負極活物質を含む負極と、
     非水溶媒と電解質塩と添加剤とを含有する電解液を含む電解質と
    を備え、
     前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
     前記非水溶媒は、環状カルボン酸エステル化合物を含み、
     前記電解質塩は、少なくともフッ素を含有するフッ素含有リチウム塩を含み、
     前記添加剤は、シランカップリング剤およびシロキサン化合物の少なくとも何れか一の化合物を含む電池。
    A positive electrode including a positive electrode active material;
    A negative electrode containing a negative electrode active material;
    An electrolyte containing an electrolyte solution containing a nonaqueous solvent, an electrolyte salt, and an additive;
    The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
    The non-aqueous solvent includes a cyclic carboxylic acid ester compound,
    The electrolyte salt includes a fluorine-containing lithium salt containing at least fluorine,
    The battery, wherein the additive comprises at least one of a silane coupling agent and a siloxane compound.
  14.  正極活物質を含む正極と、
     負極活物質を含む負極と、
     非水溶媒および電解質塩を含む電解液を含む電解質と
    を備え、
     前記負極活物質は、少なくともチタンと酸素とを構成元素として含有するチタン含有無機酸化物を含み、
     前記負極は、シランカップリング剤またはシロキサン化合物に由来する第4の化合物、および、
     シランカップリング剤またはシロキサン化合物と環状カルボン酸エステル化合物とに由来する第5の化合物のうちの少なくとも何れかの化合物を含む電池。
    A positive electrode including a positive electrode active material;
    A negative electrode containing a negative electrode active material;
    An electrolyte containing a non-aqueous solvent and an electrolyte solution containing an electrolyte salt,
    The negative electrode active material includes a titanium-containing inorganic oxide containing at least titanium and oxygen as constituent elements,
    The negative electrode is a fourth compound derived from a silane coupling agent or a siloxane compound, and
    A battery comprising at least one compound of a fifth compound derived from a silane coupling agent or a siloxane compound and a cyclic carboxylic acid ester compound.
  15.  請求項1に記載の電池を複数有するバッテリモジュール。 A battery module having a plurality of the batteries according to claim 1.
  16.  請求項1に記載の電池と、
     前記電池を制御する制御部と、
     前記電池を内包する外装と
    を有する電池パック。
    A battery according to claim 1;
    A control unit for controlling the battery;
    A battery pack having an exterior housing the battery.
  17.  請求項1に記載の電池を有し、前記電池から電力の供給を受ける電子機器。 An electronic device having the battery according to claim 1 and receiving supply of electric power from the battery.
  18.  請求項1に記載の電池と、
     前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
     前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
    を有する電動車両。
    A battery according to claim 1;
    A conversion device that receives supply of electric power from the battery and converts it into driving force of a vehicle;
    An electric vehicle comprising: a control device that performs information processing related to vehicle control based on information related to the battery.
  19.  請求項1に記載の電池を有し、前記電池に接続される電子機器に電力を供給する蓄電装置。 A power storage device that has the battery according to claim 1 and supplies electric power to an electronic device connected to the battery.
  20.  請求項1に記載の電池から電力の供給を受け、または、発電装置もしくは電力網から前記電池に電力が供給される電力システム。 A power system that receives power from the battery according to claim 1 or that supplies power to the battery from a power generation device or a power network.
PCT/JP2015/001283 2014-05-02 2015-03-10 Battery, battery pack, battery module, electronic device, electric vehicle, electricity storage device and electric power system WO2015166620A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014095261A JP2015213014A (en) 2014-05-02 2014-05-02 Battery, battery pack, battery module, electronic device, electric motor vehicle, power storage device and electric power system
JP2014-095261 2014-05-02
JP2014-095262 2014-05-02
JP2014095262A JP2015213015A (en) 2014-05-02 2014-05-02 Battery, battery pack, battery module, electronic device, electric motor vehicle, power storage device and electric power system
JP2014095263A JP2015213016A (en) 2014-05-02 2014-05-02 Battery, battery pack, battery module, electronic device, electric motor vehicle, power storage device and electric power system
JP2014-095263 2014-05-02

Publications (1)

Publication Number Publication Date
WO2015166620A1 true WO2015166620A1 (en) 2015-11-05

Family

ID=54358367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001283 WO2015166620A1 (en) 2014-05-02 2015-03-10 Battery, battery pack, battery module, electronic device, electric vehicle, electricity storage device and electric power system

Country Status (1)

Country Link
WO (1) WO2015166620A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891653A (en) * 2016-11-02 2019-06-14 株式会社村田制作所 Secondary cell electrolyte, secondary cell, battery pack, electric vehicle and electronic equipment
CN112740459A (en) * 2018-07-31 2021-04-30 昭和电工材料株式会社 Electrolyte solution and electrochemical device
CN113366671A (en) * 2018-12-05 2021-09-07 昭和电工材料株式会社 Electrolyte solution and electrochemical device
US11843092B2 (en) 2019-09-13 2023-12-12 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324551A (en) * 2001-04-27 2002-11-08 Titan Kogyo Kk Titanic acid lithium powder and its use
JP2007214120A (en) * 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2008186803A (en) * 2007-01-04 2008-08-14 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP2012190726A (en) * 2011-03-11 2012-10-04 Dainippon Printing Co Ltd Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
WO2013187380A1 (en) * 2012-06-13 2013-12-19 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
JP2014130694A (en) * 2012-12-28 2014-07-10 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324551A (en) * 2001-04-27 2002-11-08 Titan Kogyo Kk Titanic acid lithium powder and its use
JP2007214120A (en) * 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2008186803A (en) * 2007-01-04 2008-08-14 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP2012190726A (en) * 2011-03-11 2012-10-04 Dainippon Printing Co Ltd Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
WO2013187380A1 (en) * 2012-06-13 2013-12-19 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
JP2014130694A (en) * 2012-12-28 2014-07-10 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891653A (en) * 2016-11-02 2019-06-14 株式会社村田制作所 Secondary cell electrolyte, secondary cell, battery pack, electric vehicle and electronic equipment
CN109891653B (en) * 2016-11-02 2022-02-22 株式会社村田制作所 Electrolyte for secondary battery, battery pack, electric vehicle, and electronic device
CN112740459A (en) * 2018-07-31 2021-04-30 昭和电工材料株式会社 Electrolyte solution and electrochemical device
TWI825137B (en) * 2018-07-31 2023-12-11 日商力森諾科股份有限公司 Electrolytes and electrochemical devices
CN113366671A (en) * 2018-12-05 2021-09-07 昭和电工材料株式会社 Electrolyte solution and electrochemical device
US11843092B2 (en) 2019-09-13 2023-12-12 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US9054364B2 (en) Battery, negative electrode for battery, battery pack, electronic apparatus, electric vehicle, electricity storage apparatus and electric power system
KR101989630B1 (en) Battery, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system
JP6597599B2 (en) Secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP5915804B2 (en) Secondary battery and battery pack, electronic device, electric vehicle, power storage device and power system
JP2013225388A (en) Battery and electrolyte, and battery pack, electronic apparatus, electric vehicle, power storage device and electric power system
JP2012256502A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery, and battery pack, electronic apparatus, electric vehicle, electricity storage device and electric power system including nonaqueous electrolyte battery
JP2015213014A (en) Battery, battery pack, battery module, electronic device, electric motor vehicle, power storage device and electric power system
JP2015213016A (en) Battery, battery pack, battery module, electronic device, electric motor vehicle, power storage device and electric power system
JP5903807B2 (en) Separator, non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2013152825A (en) Battery, battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system
JP5915806B2 (en) Secondary battery and battery pack, electronic device, electric vehicle, power storage device and power system
US20120265385A1 (en) Nonaqueous electrolyte battery and nonaqueous electrolyte, and battery pack, electronic appliance, electric vehicle, electricity storage apparatus, and electric power system
JP2013089468A (en) Nonaqueous electrolyte battery and nonaqueous electrolyte, and battery pack, electronic device, electric vehicle, power storage device, and electric power system
CN107408733B (en) Electrolyte solution, battery pack, electronic device, electric vehicle, power storage device, and power system
JP6276494B2 (en) Batteries and battery packs, electronic devices, electric vehicles, power storage devices, and power systems
US20170358818A1 (en) Electrolyte, battery, battery pack, electronic apparatus, electric vehicle, power storage apparatus, and power system
JP6593324B2 (en) Secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2016154080A (en) Electrolyte, battery, battery pack, electronic device, electric vehicle, power storage device, and electric power system
US11404722B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device
JP2015213015A (en) Battery, battery pack, battery module, electronic device, electric motor vehicle, power storage device and electric power system
WO2015166620A1 (en) Battery, battery pack, battery module, electronic device, electric vehicle, electricity storage device and electric power system
JP6870743B2 (en) Batteries, battery packs, electronic devices, electric vehicles, power storage devices and power systems
JP2014056697A (en) Secondary battery, battery pack, electronic apparatus, electric vehicle, power storage device, and electric power system
WO2015166622A1 (en) Battery, negative electrode, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
JP2013161657A (en) Secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785474

Country of ref document: EP

Kind code of ref document: A1