JP2010177030A - Surface treating agent of lithium based composite oxide, surface treating liquid of lithium based composite oxide, electrolyte for lithium-ion secondary battery, positive electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, negative electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery and method of manufacturing the same - Google Patents

Surface treating agent of lithium based composite oxide, surface treating liquid of lithium based composite oxide, electrolyte for lithium-ion secondary battery, positive electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, negative electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery and method of manufacturing the same Download PDF

Info

Publication number
JP2010177030A
JP2010177030A JP2009018212A JP2009018212A JP2010177030A JP 2010177030 A JP2010177030 A JP 2010177030A JP 2009018212 A JP2009018212 A JP 2009018212A JP 2009018212 A JP2009018212 A JP 2009018212A JP 2010177030 A JP2010177030 A JP 2010177030A
Authority
JP
Japan
Prior art keywords
lithium
ion secondary
secondary battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009018212A
Other languages
Japanese (ja)
Inventor
Fumihiro Yonekawa
文広 米川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2009018212A priority Critical patent/JP2010177030A/en
Publication of JP2010177030A publication Critical patent/JP2010177030A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery using a lithium based composite oxide as a positive electrode active material or a negative electrode active material, and having excellent cycle characteristics, quick charge and discharge characteristics, and preservation stability. <P>SOLUTION: This lithium-ion secondary battery uses the lithium based oxide subjected to surface treatment with a surface treating agent expressed by a general formula (1): M<SP>1</SP><SB>(a)</SB>X<SB>(b)</SB>(1) (in the formula, M<SP>1</SP>is a polyvalent cation of one or more than two kinds among Mg, Ca, Sr, Ba, Zn, Al, Ge, Ti, and Zr. X is an anion of lithium salt for electrolyte of a lithium secondary battery. a>0, and b>0 ). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池の正極活物質用、負極活物質用等のリチウム系複合酸化物の表面を処理するための表面処理剤、それを含有する表面処理液及び電解液、それにより表面処理されたリチウムイオン二次電池用正極活物質又は負極活物質、それらの製造方法、それを用いるリチウムイオン二次電池及びその製造方法に関する。   The present invention relates to a surface treatment agent for treating the surface of a lithium-based composite oxide for a positive electrode active material, a negative electrode active material, etc. of a lithium ion secondary battery, a surface treatment liquid and an electrolyte containing the same, and thereby The present invention relates to a surface-treated positive electrode active material or negative electrode active material for a lithium ion secondary battery, a production method thereof, a lithium ion secondary battery using the same, and a production method thereof.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、リチウム系複合酸化物を正極活物質とするリチウムイオン二次電池に関する研究開発が活発に進められており、これまで多くの提案がなされている。   In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. With regard to this lithium ion secondary battery, research and development on lithium ion secondary batteries using a lithium-based composite oxide as a positive electrode active material has been actively promoted, and many proposals have been made so far.

例えば、特開平04−56064号公報(特許文献1)には、リチウムイオン二次電池の正極活物質として残留LiCOが10質量%以下であるLiCoOを用いることが開示されている。また、特開平02−40861号公報(特許文献2)には、リチウム二次電池用の正極活物質としてLib Ni2-b2 及びLiNi1-d Cod2 (但し、0.84≦b≦1.22、0.09≦d≦0.5)を用いることが開示されている。また、特開平07−335261号公報(特許文献3)には、リチウム二次電池用の負極活物質としてLi4/3Ti5/3を用いることが開示されている。 For example, Japanese Laid-Open Patent Publication No. 04-56064 (Patent Document 1) discloses using LiCoO 2 having a residual Li 2 CO 3 content of 10% by mass or less as a positive electrode active material of a lithium ion secondary battery. Further, Japanese Unexamined 02-40861 (Patent Document 2), Li b Ni 2- b O 2 and LiNi as a positive electrode active material for lithium secondary batteries 1-d Co d O 2 (where 0.84 ≦ b ≦ 1.22, 0.09 ≦ d ≦ 0.5) is disclosed. Japanese Unexamined Patent Publication No. 07-335261 (Patent Document 3) discloses the use of Li 4/3 Ti 5/3 O 4 as a negative electrode active material for a lithium secondary battery.

特開平04−56064号公報(特許請求の範囲)Japanese Patent Laid-Open No. 04-56064 (Claims) 特開平02−40861号公報(特許請求の範囲)Japanese Patent Laid-Open No. 02-40861 (Claims) 特開平07−335261号公報(特許請求の範囲)JP 07-335261 A (Claims)

しかしながら、リチウム系複合酸化物は、リチウム源として、水酸化リチウムや炭酸リチウム等のアルカリを用いて製造されるために、得られるリチウム系複合酸化物中には、アルカリが残存してしまう。   However, since the lithium-based composite oxide is produced using an alkali such as lithium hydroxide or lithium carbonate as a lithium source, the alkali remains in the obtained lithium-based composite oxide.

そして、リチウム系複合酸化物中の残存アルカリは、絶縁性の化合物であるため放電容量を低下させるとされている。また、リチウム系複合酸化物表面において強アルカリ成分として働くため電解液が分解され易いという問題点を有している。   The remaining alkali in the lithium-based composite oxide is an insulating compound, and thus is said to reduce the discharge capacity. Moreover, since it acts as a strong alkali component on the surface of the lithium-based composite oxide, there is a problem that the electrolytic solution is easily decomposed.

そのため、従来のリチウム系複合酸化物を正極活物質とするリチウム二次電池には、充放電を繰り返すと、放電容量が低下するという問題、急速充放電したときの充放電特性が悪いという問題、電解質の分解によりガスが発生するという問題、保存安定性、特に、高温での保存安定性が十分でないという問題があった。   Therefore, the conventional lithium secondary battery using a lithium-based composite oxide as a positive electrode active material has a problem that the discharge capacity decreases when charging and discharging are repeated, a problem that charging / discharging characteristics are poor when rapidly charging and discharging, There are problems that gas is generated due to decomposition of the electrolyte, and storage stability, particularly storage stability at high temperatures is not sufficient.

従って、本発明の課題は、リチウム系複合酸化物を正極活物質又は負極活物質として用いるリチウムイオン二次電池であって、サイクル特性、急速充放電特性及び保存安定性に優れるリチウムイオン二次電池を提供することにある。   Accordingly, an object of the present invention is a lithium ion secondary battery that uses a lithium-based composite oxide as a positive electrode active material or a negative electrode active material, and is excellent in cycle characteristics, rapid charge / discharge characteristics, and storage stability. Is to provide.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、リチウムイオン二次電池用の正極活物質又は負極活物質として用いられるリチウム系複合酸化物に、特定の多価のカチオンと、リチウムイオン二次電池の電解質用リチウム塩のアニオンと、からなる化合物を接触させると、該化合物が、リチウム系複合酸化物の残存アルカリと容易に反応して、該残存アルカリが、アルカリ性の低いアルカリ化合物に変換されるため、残存アルカリによる電解質の分解を防ぐことができ、また、生じた低アルカリ性のアルカリ化合物により、リチウム系複合酸化物の表面が被覆されるため、リチウム系複合酸化物による電解質の分解を防ぐことができ、さらに、該化合物由来のリチウムイオン二次電池の電解質用リチウム塩のアニオンと残存アルカリ由来のリチウムイオンにより生じる化合物は、リチウム塩電解質として活用され得る。そのため、リチウムイオン二次電池のサイクル特性、急速充放電特性及び保存安定性が向上することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have found that a lithium-based composite oxide used as a positive electrode active material or a negative electrode active material for a lithium ion secondary battery has a specific When a compound consisting of a valent cation and an anion of a lithium salt for electrolyte of a lithium ion secondary battery is contacted, the compound easily reacts with the remaining alkali of the lithium-based composite oxide, and the remaining alkali Since it is converted into an alkaline compound having low alkalinity, it is possible to prevent decomposition of the electrolyte due to residual alkali, and since the surface of the lithium-based composite oxide is covered with the generated low alkaline alkaline compound, the lithium-based The decomposition of the electrolyte by the composite oxide can be prevented, and further, the lithium salt for the electrolyte of the lithium ion secondary battery derived from the compound can be prevented. Compounds resulting from the the remaining alkali from the lithium ion anion can be used as a lithium salt electrolyte. Therefore, it has been found that the cycle characteristics, rapid charge / discharge characteristics and storage stability of the lithium ion secondary battery are improved, and the present invention has been completed.

すなわち、本発明(1)は、下記一般式(1):
(a)(b) (1)
(式中、Mは、Mg、Ca、Sr、Ba、Zn、Al、Ge、Ti及びZrのうちの1種又は2種以上の多価のカチオンである。Xは、リチウムイオン二次電池の電解質用リチウム塩のアニオンである。a>0であり、b>0である。)
で表わされる化合物であることを特徴とするリチウム系複合酸化物の表面処理剤を提供するものである。
That is, the present invention (1) includes the following general formula (1):
M 1 (a) X (b) (1)
(In the formula, M 1 is one or more polyvalent cations of Mg, Ca, Sr, Ba, Zn, Al, Ge, Ti, and Zr. X is a lithium ion secondary battery. An anion of the lithium salt for electrolytes, a> 0 and b> 0.)
A surface treatment agent for a lithium-based composite oxide, which is a compound represented by the formula:

また、本発明(2)は、本発明(1)のリチウム系複合酸化物の表面処理剤を含有することを特徴とするリチウム系複合酸化物の表面処理液を提供するものである。   In addition, the present invention (2) provides a surface treatment liquid for a lithium-based composite oxide characterized by containing the surface treatment agent for a lithium-based composite oxide of the present invention (1).

また、本発明(3)は、本発明(1)のリチウム系複合酸化物の表面処理剤を含有することを特徴とするリチウムイオン二次電池用電解液を提供するものである。   Moreover, this invention (3) provides the electrolyte solution for lithium ion secondary batteries characterized by including the surface treating agent of lithium type complex oxide of this invention (1).

また、本発明(4)は、リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を、本発明(1)のリチウム系複合酸化物の表面処理剤で、表面処理して得られたものであることを特徴とする表面処理リチウムイオン二次電池用正極活物質を提供するものである。   Moreover, this invention (4) was obtained by surface-treating the lithium composite oxide for positive electrode active materials of a lithium ion secondary battery with the surface treatment agent for the lithium composite oxide of the present invention (1). The present invention provides a positive electrode active material for a surface-treated lithium ion secondary battery.

また、本発明(5)は、リチウムイオン二次電池の負極活物質用リチウム系複合酸化物を、本発明(1)のリチウム系複合酸化物の表面処理剤で、表面処理して得られたものであることを特徴とする表面処理リチウムイオン二次電池用負極活物質を提供するものである。   In addition, the present invention (5) was obtained by surface-treating a lithium-based composite oxide for a negative electrode active material of a lithium ion secondary battery with the surface treatment agent for a lithium-based composite oxide of the present invention (1). The present invention provides a negative electrode active material for a surface-treated lithium ion secondary battery.

また、本発明(6)は、リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を、本発明(2)のリチウム系複合酸化物の表面処理液、又は本発明(3)のリチウムイオン二次電池用電解液と、接触させることを特徴とする表面処理リチウムイオン二次電池用正極活物質の製造方法を提供するものである。   Further, the present invention (6) includes a lithium-based composite oxide for a positive electrode active material of a lithium ion secondary battery, a surface treatment solution for the lithium-based composite oxide of the present invention (2), or the lithium of the present invention (3). The present invention provides a method for producing a positive electrode active material for a surface-treated lithium ion secondary battery, which is brought into contact with an electrolytic solution for an ion secondary battery.

また、本発明(7)は、リチウムイオン二次電池の負極活物質用リチウム系複合酸化物を、本発明(2)のリチウム系複合酸化物の表面処理液、又は本発明(3)のリチウムイオン二次電池用電解液と、接触させることを特徴とする表面処理リチウムイオン二次電池用負極活物質の製造方法を提供するものである。   Further, the present invention (7) includes a lithium-based composite oxide for a negative electrode active material of a lithium ion secondary battery, a surface treatment solution for the lithium-based composite oxide of the present invention (2), or the lithium of the present invention (3). The present invention provides a method for producing a negative electrode active material for a surface-treated lithium ion secondary battery, which is brought into contact with an electrolytic solution for an ion secondary battery.

また、本発明(8)は、正極活物質が、リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を、本発明(1)のリチウム系複合酸化物の表面処理剤で表面処理して得た表面処理リチウムイオン二次電池用正極活物質を含有することを特徴とするリチウムイオン二次電池を提供するものである。   In the present invention (8), the positive electrode active material is obtained by surface-treating the lithium composite oxide for the positive electrode active material of the lithium ion secondary battery with the surface treatment agent for the lithium composite oxide of the present invention (1). A lithium ion secondary battery comprising the positive electrode active material for a surface-treated lithium ion secondary battery obtained as described above is provided.

また、本発明(9)負極活物質が、リチウムイオン二次電池の負極活物質用リチウム系複合酸化物を、本発明(1)のリチウム系複合酸化物の表面処理剤で表面処理して得た表面処理リチウムイオン二次電池用負極活物質を含有することを特徴とするリチウムイオン二次電池を提供するものである。   Moreover, this invention (9) negative electrode active material obtained by surface-treating the lithium type complex oxide for negative electrode active materials of a lithium ion secondary battery with the surface treatment agent of the lithium type complex oxide of this invention (1). The present invention provides a lithium ion secondary battery comprising a negative electrode active material for a surface-treated lithium ion secondary battery.

また、本発明(10)は、リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を含有する正極活物質と負極活物質とを、あるいは、正極活物質とリチウムイオン二次電池の負極活物質用リチウム系複合酸化物を含有する負極活物質とを、あるいは、リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を含有する正極活物質とリチウムイオン二次電池の負極活物質用リチウム系複合酸化物を含有する負極活物質とを、リチウムイオン二次電池の容器の所定の位置に配置し、次いで、該リチウムイオン二次電池の容器に、本発明(3)のリチウムイオン二次電池用電解液を注入して、該正極活物質及び該負極活物質と、該リチウムイオン二次電池用電解液とを接触させることを特徴とするリチウムイオン二次電池の製造方法を提供するものである。   Further, the present invention (10) provides a positive electrode active material and a negative electrode active material containing a lithium-based composite oxide for a positive electrode active material of a lithium ion secondary battery, or a positive electrode active material and a negative electrode of a lithium ion secondary battery. A negative electrode active material containing a lithium-based composite oxide for an active material, or a positive electrode active material containing a lithium-based composite oxide for a positive electrode active material of a lithium ion secondary battery and a negative electrode active material of a lithium ion secondary battery And a negative electrode active material containing a lithium-based composite oxide for use in a predetermined position of a container of a lithium ion secondary battery, and then the lithium ion of the present invention (3) in the container of the lithium ion secondary battery A method for producing a lithium ion secondary battery, comprising injecting an electrolyte solution for a secondary battery, and bringing the positive electrode active material and the negative electrode active material into contact with the electrolyte solution for a lithium ion secondary battery It is intended to provide.

本発明によれば、リチウム系複合酸化物を正極活物質又は負極活物質として用いるリチウムイオン二次電池であって、サイクル特性、急速充放電特性及び保存安定性に優れるリチウムイオン二次電池を提供することができる。   According to the present invention, there is provided a lithium ion secondary battery that uses a lithium-based composite oxide as a positive electrode active material or a negative electrode active material, and is excellent in cycle characteristics, rapid charge / discharge characteristics, and storage stability. can do.

実施例10及び比較例4の放電レート特性を示すグラフである。It is a graph which shows the discharge rate characteristic of Example 10 and Comparative Example 4. 実施例11のDSC測定結果を示すグラフである。10 is a graph showing DSC measurement results of Example 11. 比較例5のDSC測定結果を示すグラフである。10 is a graph showing a DSC measurement result of Comparative Example 5. 実施例12のDSC測定結果を示すグラフである。It is a graph which shows the DSC measurement result of Example 12. 比較例6のDSC測定結果を示すグラフである。14 is a graph showing a DSC measurement result of Comparative Example 6.

本発明のリチウム系複合酸化物の表面処理剤(以下、本発明の表面処理剤(a)とも記載する。)は、下記一般式(1):
(a)(b) (1)
(式中、Mは、Mg、Ca、Sr、Ba、Zn、Al、Ge、Ti及びZrのうちの1種又は2種以上の多価のカチオンである。Xは、リチウムイオン二次電池の電解質用リチウム塩のアニオンである。a>0であり、b>0である。)
で表わされる化合物であるリチウム系複合酸化物の表面処理剤である。
The surface treatment agent of the lithium-based composite oxide of the present invention (hereinafter also referred to as the surface treatment agent (a) of the present invention) is represented by the following general formula (1)
M 1 (a) X (b) (1)
(In the formula, M 1 is one or more polyvalent cations of Mg, Ca, Sr, Ba, Zn, Al, Ge, Ti, and Zr. X is a lithium ion secondary battery. An anion of the lithium salt for electrolytes, a> 0 and b> 0.)
A surface treatment agent for a lithium-based composite oxide, which is a compound represented by the formula:

本発明の表面処理剤(a)は、リチウムイオン二次電池の活物質、すなわち、正極活物質又は負極活物質として用いられるリチウム系複合酸化物の表面を処理するための表面処理剤である。   The surface treatment agent (a) of the present invention is a surface treatment agent for treating the surface of an active material of a lithium ion secondary battery, that is, a lithium composite oxide used as a positive electrode active material or a negative electrode active material.

そして、本発明の表面処理剤(a)は、前記一般式(1)で表わされる化合物である。前記一般式(1)中、Mは、Mg、Ca、Sr、Ba、Zn、Al、Ge、Ti及びZrのうちの1種又は2種以上のカチオンであり、且つ、2価以上の多価カチオンである。これらのうち、Mとしては、Mg、Ca、Sr、Zn、Al、Ti及びZrが、サイクル特性、急速充放電特性及び保存安定性が高くなる点で好ましい。 And the surface treating agent (a) of this invention is a compound represented by the said General formula (1). In the general formula (1), M 1 is one or two or more cations of Mg, Ca, Sr, Ba, Zn, Al, Ge, Ti, and Zr, and a divalent or higher cation. It is a valent cation. Among these, M 1, Mg, Ca, Sr , Zn, Al, Ti and Zr, the cycle characteristics, preferable because rapid charge and discharge characteristics and storage stability is increased.

前記一般式(1)中、Xは、リチウムイオン二次電池の電解質用リチウム塩のアニオンであり、サイクル特性、急速充放電特性及び保存安定性が高くなる点で、B(C、ClO、PF、BF、N(SOCF、CFHCOO、PF(C、B1212、B(CN)、N(SOF)、CFCOCHCOCF、CHCOCHCOCF、が好ましい。これらは、1種単独又は2種以上の組み合わせでもよい。なお、リチウムイオン二次電池の電解質として用いられているリチウム塩には、アニオンとして、塩化物イオン、臭素化物イオン又はヨウ化物イオンを有するものもあるが、本発明に係るリチウムイオン二次電池の電解質用リチウム塩のアニオンとしては、Cl、Br及びIは除かれる。本発明において、リチウムイオン二次電池の電解質用リチウム塩とは、リチウムイオン二次電池の電解質として用いられているリチウム塩のことであり、例えば、LiClO、LiBF、LiB10Cl10、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、CHSOLi、CFSOLi、(CFSONLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、イミド類等が挙げられる。 In the general formula (1), X is an anion of a lithium salt for an electrolyte of a lithium ion secondary battery, and B (C 2 O 4 ) is improved in terms of cycle characteristics, rapid charge / discharge characteristics, and storage stability. 2 , ClO 4 , PF 6 , BF 4 , N (SO 2 CF 3 ) 2 , CF 2 HCOO, PF 4 (C 2 O 4 ) 2 , B 12 F 12 , B (CN) 4 , N (SO 2 F ) 2 , CF 3 COCHCOCF 3 , and CH 3 COCHCOCF 3 . These may be used alone or in combination of two or more. In addition, some lithium salts used as electrolytes of lithium ion secondary batteries have chloride ions, bromide ions or iodide ions as anions, but the lithium ion secondary batteries according to the present invention As the anion of the electrolyte lithium salt, Cl , Br and I are excluded. In the present invention, the lithium salt for an electrolyte of a lithium ion secondary battery is a lithium salt used as an electrolyte of a lithium ion secondary battery. For example, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxyl Lithium acid, lithium tetraphenylborate, imides and the like can be mentioned.

なお、本発明において、リチウムイオン二次電池の電解質用リチウム塩のアニオンとは、リチウムイオン二次電池の電解質用リチウム塩として用いることがきるリチウム塩のアニオンという意味であり、本発明の表面処理剤を用いて表面処理した活物質用リチウム系複合酸化物が用いられるリチウムイオン二次電池で、実際に電解質として用いられるリチウム塩と、同じアニオンに限定されるものではない。例えば、XがB(Cである本発明の表面処理剤(a)で、正極活物質用リチウム複合酸化物を処理し、次いで、表面処理された正極活物質用リチウム複合酸化物を、正極活物質として用いてリチウムイオン二次電池を製造する際に、電解質として用いられるリチウム塩は、XがB(Cであるリチウム塩に限定されず、XがClOであるリチウム塩であってもよい。 In the present invention, the anion of the lithium salt for electrolyte of the lithium ion secondary battery means an anion of lithium salt that can be used as the lithium salt for electrolyte of the lithium ion secondary battery, and the surface treatment of the present invention. The lithium ion secondary battery using the active material lithium composite oxide surface-treated with an agent is not limited to the same anion as the lithium salt actually used as the electrolyte. For example, with the surface treating agent (a) of the present invention in which X is B (C 2 O 4 ) 2 , the lithium composite oxide for positive electrode active material is treated, and then the surface-treated lithium composite oxide for positive electrode active material is treated. When a lithium ion secondary battery is manufactured using a product as a positive electrode active material, a lithium salt used as an electrolyte is not limited to a lithium salt where X is B (C 2 O 4 ) 2 , and X is ClO 4 may be a lithium salt.

前記一般式(1)中、a>0であり、b>0であり、a及びbは、M及びXの価数により異なる。   In the general formula (1), a> 0, b> 0, and a and b differ depending on the valence of M and X.

本発明の表面処理剤(a)は、前記一般式(1)で表わされる化合物のうちの1種単独又は2種以上の組み合わせであってもよい。   The surface treating agent (a) of the present invention may be a single compound or a combination of two or more compounds among the compounds represented by the general formula (1).

本発明の表面処理剤(a)により表面処理されるリチウムイオン二次電池の正極活物質用リチウム系複合酸化物(以下、本発明に係る正極活物質用リチウム系複合酸化物(b1))は、リチウムイオン二次電池の正極活物質として用いられるリチウム系複合酸化物であれば、特に制限されないが、サイクル特性、急速充放電特性及び保存安定性が高くなる点で、下記一般式(3):
Li(c)Ni(d)Co(e)Mn(f)Al(g) (3)
(式中、0.8≦c≦1.2、0≦d≦1、0≦e≦1、0≦f≦1、0≦g≦0.1、d+e+f+g=1である。)
で表わされるリチウム系複合酸化物が、特に好ましい。
The lithium-based composite oxide for a positive electrode active material of a lithium ion secondary battery surface-treated with the surface treatment agent (a) of the present invention (hereinafter, the lithium-based composite oxide for positive electrode active material (b1) according to the present invention) is The lithium-based composite oxide used as the positive electrode active material of the lithium ion secondary battery is not particularly limited, but the following general formula (3) is provided in that the cycle characteristics, rapid charge / discharge characteristics, and storage stability are enhanced. :
Li (c) Ni (d) Co (e) Mn (f) Al (g) O 2 (3)
(In the formula, 0.8 ≦ c ≦ 1.2, 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, 0 ≦ f ≦ 1, 0 ≦ g ≦ 0.1, d + e + f + g = 1)
A lithium-based composite oxide represented by

また、本発明の表面処理剤(a)により表面処理されるリチウムイオン二次電池の負極活物質用リチウム系複合酸化物(以下、本発明に係る負極活物質用リチウム系複合酸化物(b2))は、リチウムイオン二次電池の負極活物質として用いられるリチウム系複合酸化物であれば、特に制限されないが、サイクル特性、急速充放電特性及び保存安定性が高くなる点で、チタン酸リチウム(LiTi12)、リチウムサイトの一部が他の1種以上の金属元素で置換されたチタン酸リチウム、チタンサイトの一部が他の1種以上の金属元素で置換されたチタン酸リチウム、又はリチウムサイトの一部が他の1種以上の金属元素で置換され且つチタンサイトの一部が他の1種以上の金属元素で置換されたチタン酸リチウムが、特に好ましい。ここで、チタン酸リチウムのリチウム元素又はチタン元素と置換される上記他の金属元素は、Liを除くアルカリ金属、アルカリ土類金属、Al、Si、P及び遷移金属である。 Further, the lithium-based composite oxide for a negative electrode active material of a lithium ion secondary battery surface-treated with the surface treatment agent (a) of the present invention (hereinafter, the lithium-based composite oxide for negative electrode active material (b2) according to the present invention) ) Is not particularly limited as long as it is a lithium-based composite oxide used as a negative electrode active material for a lithium ion secondary battery, but lithium titanate (in terms of improving cycle characteristics, rapid charge / discharge characteristics, and storage stability) Li 4 Ti 5 O 12 ), lithium titanate in which part of the lithium site is substituted with one or more other metal elements, titanic acid in which part of the titanium site is substituted with one or more other metal elements Lithium or lithium titanate in which part of the lithium site is replaced with one or more other metal elements and part of the titanium site is replaced with one or more other metal elements is particularly preferred. . Here, the above-mentioned other metal elements substituted for lithium element or titanium element of lithium titanate are alkali metals, alkaline earth metals, Al, Si, P and transition metals except Li.

なお、以下、本発明に係る正極活物質用リチウム系複合酸化物(b1)及び本発明に係る負極活物質用リチウム系複合酸化物(b2)を総称して、リチウムイオン二次電池の正極又は負極用の活物質として用いられるリチウム系複合酸化物を、本発明に係る活物質用リチウム系複合酸化物(b)とも記載する。   Hereinafter, the lithium-based composite oxide for positive electrode active material (b1) according to the present invention and the lithium-based composite oxide for negative electrode active material (b2) according to the present invention are collectively referred to as a positive electrode of a lithium ion secondary battery or The lithium composite oxide used as the negative electrode active material is also referred to as the active material lithium composite oxide (b) according to the present invention.

リチウムイオン二次電池の正極活物質用のリチウム系複合酸化物及びリチウムイオン二次電池の負極活物質用のリチウム系複合酸化物は、水酸化リチウム、炭酸リチウム等のリチウム系のアルカリを原料に用いて製造されるため、これらのリチウム系複合酸化物中には、原料の由来のリチウム系のアルカリが残存している。本発明では、このようなリチウム系複合酸化物の表面に残存しているリチウム系アルカリに、本発明の表面処理剤(a)を反応させることにより、リチウム系複合酸化物を表面処理することができる。   The lithium-based composite oxide for the positive electrode active material of the lithium ion secondary battery and the lithium-based composite oxide for the negative electrode active material of the lithium ion secondary battery are made from lithium-based alkali such as lithium hydroxide and lithium carbonate. Therefore, lithium-based alkalis derived from the raw materials remain in these lithium-based composite oxides. In the present invention, the lithium-based composite oxide can be surface-treated by reacting the surface-treating agent (a) of the present invention with the lithium-based alkali remaining on the surface of the lithium-based composite oxide. it can.

本発明の表面処理剤(a)により、本発明に係る活物質用リチウム系複合酸化物(b)を表面処理する方法としては、本発明の表面処理剤(a)を含有する表面処理液と、本発明に係る活物質用リチウム系複合酸化物(b)を接触させる方法が挙げられる。   As a method for surface-treating the lithium composite oxide for active material (b) according to the present invention with the surface treatment agent (a) of the present invention, a surface treatment liquid containing the surface treatment agent (a) of the present invention and And a method of contacting the lithium-based composite oxide for active material (b) according to the present invention.

このような表面処理に用いられる表面処理液、すなわち、本発明のリチウム系複合酸化物の表面処理液(以下、本発明の表面処理液(c)とも記載する。)は、本発明の表面処理剤(a)を含有する。   The surface treatment liquid used for such surface treatment, that is, the surface treatment liquid of the lithium composite oxide of the present invention (hereinafter also referred to as the surface treatment liquid (c) of the present invention) is the surface treatment of the present invention. Contains agent (a).

本発明の表面処理液(c)では、本発明の表面処理剤(a)が、溶剤に分散又は溶解されている。本発明の表面処理液(c)に係る溶剤としては、本発明の表面処理剤(a)及び本発明に係る活物質用リチウム系複合酸化物(b)に対して不活性なものであればよく、例えば、アルコール、アセトン、プロピレンカーボネート、ジメチルカーボネート/エチレンカーボネート混合溶媒等が挙げられる。   In the surface treatment liquid (c) of the present invention, the surface treatment agent (a) of the present invention is dispersed or dissolved in a solvent. As the solvent for the surface treatment liquid (c) of the present invention, any solvent that is inactive with respect to the surface treatment agent (a) of the present invention and the lithium composite oxide for active material (b) of the present invention may be used. For example, alcohol, acetone, propylene carbonate, dimethyl carbonate / ethylene carbonate mixed solvent and the like can be mentioned.

本発明の表面処理液(c)中、本発明の表面処理剤(a)の含有量は、好ましくは0.01〜10質量%、特に好ましくは0.1〜5質量%である。本発明の表面処理液(c)中の本発明の表面処理剤(a)の含有量が上記範囲にあることにより、効率的にリチウム系複合酸化物の表面を処理できると共に未反応処理剤の残留を抑制できる。   In the surface treatment liquid (c) of the present invention, the content of the surface treatment agent (a) of the present invention is preferably 0.01 to 10% by mass, particularly preferably 0.1 to 5% by mass. When the content of the surface treatment agent (a) of the present invention in the surface treatment liquid (c) of the present invention is in the above range, the surface of the lithium composite oxide can be efficiently treated and an unreacted treatment agent Residual can be suppressed.

本発明の表面処理剤(a)により、本発明に係る活物質用リチウム系複合酸化物(b)を表面処理する方法としては、他には、本発明の表面処理剤(a)を含有する電解液と、本発明に係る活物質用リチウム系複合酸化物(b)を接触させる方法が挙げられる。   In addition, the surface treatment agent (a) of the present invention includes the surface treatment agent (a) of the present invention as a method for surface-treating the lithium composite oxide for active material (b) of the present invention. Examples include a method of bringing the electrolytic solution into contact with the lithium-based composite oxide for active material (b) according to the present invention.

このような表面処理に用いられる電解液、すなわち、本発明のリチウムイオン二次電池用電解液(以下、本発明の電解液(d)とも記載する。)は、本発明の表面処理剤(a)を含有する。   The electrolytic solution used for such surface treatment, that is, the electrolytic solution for a lithium ion secondary battery of the present invention (hereinafter also referred to as the electrolytic solution (d) of the present invention) is the surface treating agent (a ).

本発明の電解液(d)では、本発明の表面処理剤(a)が、リチウムイオン二次電池用の電解液に分散又は溶解されている。本発明の電解液(d)に係るリチウムイオン二次電池用の電解液としては、通常、リチウムイオン二次電池用の電解液として用いられるものであればよく、例えば、ジメチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、γブチロラクトンやこれらのフッ素化溶媒等の非水溶媒を適宜混合したものに、例えば、LiPF、LiBF、LiN(SOCF、LiB(C、LiClO等の電解質を、溶解させた電解液が挙げられる。 In the electrolytic solution (d) of the present invention, the surface treating agent (a) of the present invention is dispersed or dissolved in an electrolytic solution for a lithium ion secondary battery. The electrolyte solution for the lithium ion secondary battery according to the electrolyte solution (d) of the present invention may be any one that is usually used as an electrolyte solution for a lithium ion secondary battery, such as dimethyl carbonate, ethyl methyl carbonate. For example, LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiB (C 2 O 4 ) can be appropriately mixed with nonaqueous solvents such as ethylene carbonate, propylene carbonate, γ-butyrolactone, and fluorinated solvents thereof. ) 2 , and an electrolyte solution in which an electrolyte such as LiClO 4 is dissolved.

本発明の電解液(d)中、本発明の表面処理剤(a)の含有量は、好ましくは0.001〜5質量%、特に好ましくは0.05〜2質量%である。本発明の電解液(d)中の本発明の表面処理剤(a)の含有量が上記範囲にあることにより、効率的にリチウム系複合酸化物の表面を処理することができると共に未反応処理剤による性能低下を抑制することができる。   In the electrolytic solution (d) of the present invention, the content of the surface treatment agent (a) of the present invention is preferably 0.001 to 5% by mass, particularly preferably 0.05 to 2% by mass. When the content of the surface treating agent (a) of the present invention in the electrolytic solution (d) of the present invention is in the above range, the surface of the lithium composite oxide can be efficiently treated and unreacted treatment Performance degradation due to the agent can be suppressed.

本発明の電解液(d)を用いて、本発明の表面処理剤(a)により、本発明に係る活物質用リチウム系複合酸化物(b)の表面処理を行う方法の形態例としては、例えば、リチウムイオン二次電池を組み立てる際に、先ず、正極、負極、セパレータ等の材料を電池内の所定の位置に配置し、次いで、電池内に本発明の電解液(d)を注入することにより、電池内で、本発明の電解液(d)と本発明に係る活物質用リチウム系複合酸化物(b)を接触させる方法が挙げられる。そして、本発明の電解液(d)を注入後、電池を密閉して、リチウムイオン二次電池を製造することができる。   As an embodiment of the method for performing the surface treatment of the lithium-based composite oxide for active material (b) according to the present invention with the surface treatment agent (a) of the present invention using the electrolytic solution (d) of the present invention, For example, when assembling a lithium ion secondary battery, first, materials such as a positive electrode, a negative electrode, and a separator are arranged at predetermined positions in the battery, and then the electrolyte solution (d) of the present invention is injected into the battery. In the battery, a method of bringing the electrolytic solution (d) of the present invention into contact with the lithium composite oxide for active material (b) according to the present invention can be mentioned. And after inject | pouring the electrolyte solution (d) of this invention, a battery can be sealed and a lithium ion secondary battery can be manufactured.

また、上記で、電池内に本発明の電解液(d)を注入して、本発明の電解液(d)と本発明に係る活物質用リチウム系複合酸化物(b)との接触を十分に行った後、密閉せずに、必要に応じて注入した電解液を電池外に排出し、次いで、電池内に、新たな本発明の電解液(d)又はそれ以外のリチウムイオン二次電池用の電解液を注入して、電池を密閉し、リチウムイオン二次電池を製造することもできる。   In addition, in the above, the electrolytic solution (d) of the present invention is injected into the battery, and sufficient contact between the electrolytic solution (d) of the present invention and the lithium-based composite oxide for active material (b) according to the present invention is ensured. Then, the electrolytic solution injected as needed is discharged out of the battery without sealing, and then the new electrolytic solution (d) of the present invention or other lithium ion secondary battery is put in the battery. A lithium ion secondary battery can also be manufactured by injecting an electrolyte solution for sealing and sealing the battery.

本発明の表面処理剤(a)により、本発明に係る活物質用リチウム複合酸化物(b)の表面処理を行う方法としては、他には、リチウムイオン二次電池を組み立てる際に、予め、本発明の表面処理剤(a)を、正極、負極又はセパレータ中に存在させておき、次いで、電池内に電解液を注入して、正極、負極又はセパレータに、電解液を接触させることにより、電池内で、本発明の表面処理剤(a)を電解液に溶解させ、そして、本発明の表面処理剤(a)が溶解した電解液と正極又は負極の本発明に係る活物質用リチウム系複合酸化物(b)を接触させる方法が挙げられる。ここで、本発明の表面処理剤(a)を正極又は負極中に存在させる方法としては、例えば、固体の本発明の表面処理剤(a)と固体の正極材又は負極材とを撹拌混合する方法が挙げられる。また、本発明に係る活物質用リチウム複合酸化物(b)の表面処理を行う方法としては、他には、正極ペースト又は負極ペーストを調製するための溶媒に、本発明の表面処理剤(a)を溶解又は分散させておき、得られた溶液又は分散液を用いたペーストにより電極シートを作製する方法、本発明の表面処理液(c)と固体の正極材又は負極材とを接触させた後電極シートを作製する方法、正極又は負極の電極シートを作製した後、得られた電極シート上の正極材又は負極材と本発明の表面処理液(c)とを接触させる方法等が挙げられ、また、本発明の表面処理剤(a)をセパレータ中に存在させる方法としては、例えば、本発明の表面処理剤を溶解又は分散したセパレータを製膜する方法、セパレータを本発明の表面処理液(c)に浸漬し乾燥させて表面処理剤を担持させる方法等が挙げられる。   As a method of performing the surface treatment of the lithium composite oxide for active material (b) according to the present invention with the surface treatment agent (a) of the present invention, in addition, when assembling a lithium ion secondary battery, By causing the surface treatment agent (a) of the present invention to exist in the positive electrode, the negative electrode or the separator, and then injecting the electrolytic solution into the battery and bringing the electrolytic solution into contact with the positive electrode, the negative electrode or the separator, In a battery, the surface treatment agent (a) of the present invention is dissolved in an electrolytic solution, and the electrolytic solution in which the surface treatment agent (a) of the present invention is dissolved and a positive electrode or a negative electrode for an active material according to the present invention The method of making a complex oxide (b) contact is mentioned. Here, as a method for causing the surface treatment agent (a) of the present invention to exist in the positive electrode or the negative electrode, for example, the solid surface treatment agent (a) of the present invention and the solid positive electrode material or negative electrode material are mixed by stirring. A method is mentioned. In addition, as a method for performing the surface treatment of the lithium composite oxide for active material (b) according to the present invention, the surface treatment agent (a) of the present invention may be used in a solvent for preparing a positive electrode paste or a negative electrode paste. ) Is dissolved or dispersed, and the surface treatment liquid (c) of the present invention and the solid positive electrode material or negative electrode material are brought into contact with each other, a method for producing an electrode sheet with the obtained solution or paste using the dispersion liquid Examples thereof include a method of preparing a post electrode sheet, a method of contacting a positive electrode material or a negative electrode material on the obtained electrode sheet and the surface treatment liquid (c) of the present invention after preparing a positive electrode or negative electrode sheet. In addition, examples of the method for causing the surface treatment agent (a) of the present invention to exist in the separator include, for example, a method of forming a separator in which the surface treatment agent of the present invention is dissolved or dispersed, and the separator as a surface treatment liquid of the present invention. Immersion in (c) Method in which dried by carrying a surface treatment agent.

このように、本発明の表面処理剤(a)により、本発明に係る正極活物質用リチウム系複合酸化物(b1)を表面処理することにより、表面処理されたリチウムイオン二次電池用正極活物質が得られる。   In this way, the surface treatment agent (a) of the present invention is used to surface-treat the lithium-based composite oxide (b1) for a positive electrode active material according to the present invention, so that the surface-treated positive electrode active for a lithium ion secondary battery is treated. A substance is obtained.

本発明の表面処理リチウムイオン二次電池用正極活物質(以下、本発明の表面処理正極活物質(e)とも記載する。)は、本発明に係る正極活物質用リチウム系複合酸化物(b1)を、本発明の表面処理剤(a)で表面処理して得られたものである。   The positive electrode active material for a surface-treated lithium ion secondary battery of the present invention (hereinafter also referred to as the surface-treated positive electrode active material (e) of the present invention) is a lithium-based composite oxide (b1) for a positive electrode active material according to the present invention. ) Is surface-treated with the surface treating agent (a) of the present invention.

本発明に係る正極活物質用リチウム系複合酸化物(b1)中の残存アルカリ量は、好ましくは0.02〜3質量%、特に好ましくは0.05〜2質量%である。本発明に係る正極活物質用リチウム系複合酸化物(b1)中の残存アルカリ量が0.02質量%より小さいと、表面処理によるサイクル特性、急速充放電特性及び保存安定性改善効果が小さくなり易くなり、3質量%より大きいと表面処理による被覆量が大きくなり過ぎることにより急速充放電特性が低くなり易くなる。正極活物質用リチウム系複合酸化物(b1)中の残存アルカリ量が上記範囲にあることにより、サイクル特性、急速充放電特性及び保存安定性を高くすることができる。   The residual alkali amount in the lithium composite oxide (b1) for the positive electrode active material according to the present invention is preferably 0.02 to 3% by mass, particularly preferably 0.05 to 2% by mass. When the residual alkali amount in the lithium-based composite oxide (b1) for the positive electrode active material according to the present invention is smaller than 0.02% by mass, the cycle characteristics, rapid charge / discharge characteristics and storage stability improving effect due to the surface treatment are reduced. If it exceeds 3% by mass, the amount of coating by the surface treatment becomes too large, so that the rapid charge / discharge characteristics tend to be lowered. When the residual alkali amount in the lithium-based composite oxide (b1) for the positive electrode active material is in the above range, cycle characteristics, rapid charge / discharge characteristics, and storage stability can be enhanced.

また、本発明の表面処理剤(a)により、本発明に係る負極活物質用リチウム系複合酸化物(b2)を表面処理することにより、表面処理されたリチウムイオン二次電池用負極活物質が得られる。   Moreover, the surface-treated negative electrode active material for a lithium ion secondary battery is obtained by surface-treating the lithium-based composite oxide for negative electrode active material (b2) according to the present invention with the surface treatment agent (a) of the present invention. can get.

本発明の表面処理リチウムイオン二次電池用負極活物質(以下、本発明の表面処理負極活物質(f)とも記載する。)は、本発明に係る負極活物質用リチウム系複合酸化物(b2)を、本発明の表面処理剤(a)で表面処理して得られたものである。   The negative electrode active material for a surface-treated lithium ion secondary battery of the present invention (hereinafter also referred to as the surface-treated negative electrode active material (f) of the present invention) is a lithium-based composite oxide (b2) for a negative electrode active material according to the present invention. ) Is surface-treated with the surface treating agent (a) of the present invention.

本発明に係る負極活物質用リチウム系複合酸化物(b2)中の残存アルカリ量は、好ましくは0.02〜3質量%、特に好ましくは0.05〜2質量%である。本発明に係る負極活物質用リチウム系複合酸化物(b2)中の残存アルカリ量が0.02質量%より小さいと表面処理によるサイクル特性、急速充放電特性及び保存安定性改善効果が小さくなり易くなり、3質量%より大きいと表面処理による被覆量が大きくなり過ぎることにより急速充放電特性が低くなり易くなる。負極活物質用リチウム系複合酸化物(b2)中の残存アルカリ量が上記範囲にあることにより、サイクル特性、急速充放電特性及び保存安定性を高くすることができる。   The residual alkali amount in the lithium-based composite oxide for negative electrode active material (b2) according to the present invention is preferably 0.02 to 3% by mass, particularly preferably 0.05 to 2% by mass. When the residual alkali amount in the lithium-based composite oxide (b2) for the negative electrode active material according to the present invention is smaller than 0.02% by mass, the cycle characteristics, rapid charge / discharge characteristics and storage stability improvement effect due to surface treatment tend to be small. When the content is larger than 3% by mass, the amount of coating by the surface treatment becomes too large, and the rapid charge / discharge characteristics tend to be lowered. When the residual alkali amount in the lithium-based composite oxide (b2) for the negative electrode active material is in the above range, cycle characteristics, rapid charge / discharge characteristics, and storage stability can be enhanced.

なお、本発明に係る正極活物質用リチウム系複合酸化物(b1)及び本発明に係る負極活物質用リチウム系複合酸化物(b2)中の残存アルカリ量は、これらのリチウム系複合酸化物の製造原料として用いるリチウム系のアルカリの量を選択することにより、調節することができる。そして、本発明に係る正極活物質用リチウム系複合酸化物(b1)及び本発明に係る負極活物質用リチウム系複合酸化物(b2)中の残存アルカリ量を調節することにより、本発明の表面処理剤(a)よる表面処理量を調節することができる。   The residual alkali amount in the lithium-based composite oxide (b1) for the positive electrode active material according to the present invention and the lithium-based composite oxide (b2) for the negative electrode active material according to the present invention is the amount of these lithium-based composite oxides. It can be adjusted by selecting the amount of the lithium-based alkali used as the production raw material. And the surface of this invention is adjusted by adjusting the residual alkali amount in the lithium type complex oxide (b1) for positive electrode active materials which concerns on this invention, and the lithium type complex oxide for negative electrode active materials which concerns on this invention (b2). The amount of surface treatment by the treatment agent (a) can be adjusted.

また、本発明の表面処理リチウムイオン二次電池用正極活物質の製造方法は、本発明に係る正極活物質用リチウム系複合酸化物(b1)を、本発明の表面処理液(c)、又は本発明の電解液(d)と、接触させることにより、本発明の表面処理正極活物質(e)を得る表面処理リチウムイオン二次電池用正極活物質の製造方法である。また、本発明の表面処理リチウムイオン二次電池用負極活物質の製造方法は、本発明に係る負極活物質用リチウム系複合酸化物(b2)を、本発明の表面処理液(c)、又は本発明の電解液(d)と、接触させることにより、本発明の表面処理負極活物質(f)を得る表面処理リチウムイオン二次電池用負極活物質の製造方法である。   Moreover, the manufacturing method of the positive electrode active material for surface treatment lithium ion secondary batteries of this invention makes the surface treatment liquid (c) of this invention for the lithium type complex oxide (b1) for positive electrode active materials which concerns on this invention, or It is a manufacturing method of the positive electrode active material for surface treatment lithium ion secondary batteries which obtains the surface treatment positive electrode active material (e) of this invention by making it contact with the electrolyte solution (d) of this invention. Moreover, the manufacturing method of the negative electrode active material for surface treatment lithium ion secondary batteries of this invention makes the surface treatment liquid (c) of this invention for the lithium type complex oxide (b2) for negative electrode active materials which concerns on this invention, or It is a manufacturing method of the negative electrode active material for surface treatment lithium ion secondary batteries which obtains the surface treatment negative electrode active material (f) of this invention by making it contact with the electrolyte solution (d) of this invention.

本発明のリチウムイオン二次電池は、正極活物質が、リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を、本発明の表面処理剤(a)で表面処理して得た本発明の表面処理リチウムイオン二次電池用正極活物質(e)を含有するリチウムイオン二次電池である。   The lithium ion secondary battery of the present invention is obtained by subjecting a lithium-based composite oxide for a positive electrode active material of a lithium ion secondary battery to surface treatment with the surface treatment agent (a) of the present invention. It is a lithium ion secondary battery containing the positive electrode active material (e) for surface treatment lithium ion secondary batteries.

また、本発明のリチウムイオン二次電池は、負極活物質が、リチウムイオン二次電池の負極活物質用リチウム系複合酸化物を、本発明の表面処理剤(a)で表面処理して得た本発明の表面処理リチウムイオン二次電池用負極活物質(f)を含有するリチウムイオン二次電池である。   Moreover, the lithium ion secondary battery of the present invention was obtained by subjecting a lithium-based composite oxide for a negative electrode active material of a lithium ion secondary battery to a surface treatment with the surface treatment agent (a) of the present invention. It is a lithium ion secondary battery containing the negative electrode active material (f) for surface treatment lithium ion secondary batteries of this invention.

また、リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を含有する正極活物質と負極活物質とを、あるいは、正極活物質とリチウムイオン二次電池の負極活物質用リチウム系複合酸化物を含有する負極活物質とを、あるいは、リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を含有する正極活物質とリチウムイオン二次電池の負極活物質用リチウム系複合酸化物を含有する負極活物質とを、リチウムイオン二次電池の容器の所定の位置に配置し、次いで、該リチウムイオン二次電池の容器に、本発明の電解液(d)を注入して、該正極活物質及び該負極活物質と、本発明の電解液(d)とを接触させるリチウムイオン二次電池の製造方法である。   Also, a positive electrode active material and a negative electrode active material containing a lithium composite oxide for a positive electrode active material of a lithium ion secondary battery, or a lithium composite oxide for a negative electrode active material of a positive electrode active material and a lithium ion secondary battery A negative active material containing a product, or a positive active material containing a lithium composite oxide for a positive active material of a lithium ion secondary battery and a lithium composite oxide for a negative active material of a lithium ion secondary battery The negative electrode active material contained is disposed at a predetermined position of a container of a lithium ion secondary battery, and then the electrolyte solution (d) of the present invention is injected into the container of the lithium ion secondary battery, It is a manufacturing method of the lithium ion secondary battery which makes an active material and this negative electrode active material contact the electrolyte solution (d) of this invention.

リチウム系複合酸化物の表面には、未反応の原料由来のリチウム系アルカリが残存しており、このリチウム系アルカリは、水酸化リチウム、炭酸リチウム等の強アルカリ性のリチウム塩である。これに対して、本発明の表面処理剤(a)は、2価以上の多価カチオンを有しているので、リチウム系アルカリと反応することにより、リチウムイオンと本発明の表面処理剤(a)に由来する多価カチオンとがイオン交換し、多価のアルカリと、Li(n)X塩(nはXの価数により異なる。)とが生成する。そして、イオン交換によって生じる多価のアルカリは、リチウム系アルカリに比べると、アルカリ性が低いため、正極活物質又は負極活物質中の残存アルカリによる悪影響を少なくすることができる。加えて、イオン交換によって生じるLi(n)X塩は、リチウムイオン二次電池の電解質用のリチウム塩なので、リチウムイオン二次電池に対して、悪影響を与えることはない。 An unreacted raw material-derived lithium-based alkali remains on the surface of the lithium-based composite oxide, and this lithium-based alkali is a strong alkaline lithium salt such as lithium hydroxide or lithium carbonate. On the other hand, since the surface treatment agent (a) of the present invention has a divalent or higher polyvalent cation, the surface treatment agent (a) of the present invention (a) reacts with a lithium-based alkali. ) Are ion-exchanged with each other to produce a polyvalent alkali and a Li (n) X salt (n is different depending on the valence of X). And since the polyvalent alkali produced by ion exchange has a lower alkalinity than a lithium-based alkali, adverse effects due to residual alkali in the positive electrode active material or the negative electrode active material can be reduced. In addition, since the Li (n) X salt generated by ion exchange is a lithium salt for an electrolyte of a lithium ion secondary battery, it does not adversely affect the lithium ion secondary battery.

更に、本発明の表面処理剤とリチウム系アルカリとの反応によりリチウム系複合酸化物の表面に生じる多価のアルカリは、そのまま存在するか、又は酸化物になる。そして、このような多価のアルカリ及びその酸化物は、リチウム系複合酸化物に比べ、非水溶媒の分解に対する活性が低いため、リチウム系複合酸化物の表面は、活性が低い物質で被覆されることになる。そのため、リチウム系複合酸化物の高過ぎる表面活性を、低く抑えることができ、非水電解液の分解を抑制することができる。   Furthermore, the polyvalent alkali generated on the surface of the lithium composite oxide by the reaction between the surface treatment agent of the present invention and the lithium alkali is present as it is or becomes an oxide. Such polyvalent alkalis and oxides thereof are less active against decomposition of non-aqueous solvents than lithium-based composite oxides, so the surface of lithium-based composite oxides is coated with a less active substance. Will be. Therefore, the surface activity of the lithium composite oxide that is too high can be kept low, and the decomposition of the nonaqueous electrolytic solution can be suppressed.

また、従来より行われてきた水洗等によるアルカリ成分の除去方法では水分の残存等による電池特性の低下や保存特性の低下が生じてしまうという問題点があった。また、酸化物やリン酸塩等によるリチウム系複合酸化物の被覆方法では、リチウム系複合酸化物に、固体の酸化物やリン酸塩の微粒子を表面に付着させることによって被覆を行うため、表面に均一に被覆することが困難であり、添加量も多く、アルカリ成分が残存するため保存特性を改善することができないなどの問題点があった。またリチウム系複合酸化物をアルコキシドのアルコール溶液などに浸漬し、次いで焼成することによりリチウム系複合酸化物表面に酸化物を析出させる方法では、工程が複雑で生産性が悪く、アルカリ成分が残存するため保存特性を改善することが出来ない等の問題点があった。それに対し、本発明の表面処理剤(a)で表面処理する場合は、本発明の表面処理剤(a)が強アルカリ性のアルカリ成分と選択的に反応するため、極めて少量の本発明の表面処理剤(a)と残存アルカリ成分との反応物で被覆して、活物質表面のアルカリ性を低下させることができる。また、表面処理後の焼成や乾燥といった工程が不要であるため生産性に優れ、被覆ムラや被覆量が多過ぎることによる容量低下や表面抵抗の低下ということは起こり難い。   In addition, the conventional method for removing an alkali component by washing or the like has a problem in that battery characteristics and storage characteristics are deteriorated due to moisture remaining. In addition, in the method of coating a lithium-based composite oxide with an oxide, phosphate, or the like, the surface of the lithium-based composite oxide is coated by attaching solid oxide or phosphate fine particles to the surface. In other words, it is difficult to coat uniformly, the amount added is large, and the alkali component remains, so that the storage characteristics cannot be improved. Moreover, in the method of depositing an oxide on the surface of a lithium-based composite oxide by immersing the lithium-based composite oxide in an alcohol solution of an alkoxide and then firing, the process is complicated, the productivity is poor, and an alkali component remains. Therefore, there are problems such as inability to improve storage characteristics. On the other hand, when the surface treatment with the surface treatment agent (a) of the present invention is carried out, the surface treatment agent (a) of the present invention selectively reacts with a strongly alkaline alkaline component, so that a very small amount of the surface treatment of the present invention is performed. It can coat | cover with the reaction material of an agent (a) and a residual alkali component, and can reduce the alkalinity of the active material surface. Further, since steps such as baking and drying after the surface treatment are unnecessary, the productivity is excellent, and it is difficult to cause a decrease in capacity or a decrease in surface resistance due to coating unevenness or excessive coating amount.

これらのことから、本発明の表面処理剤(a)により、リチウムイオン二次電池の活物質用リチウム系複合酸化物を表面処理し、得られる表面処理リチウムイオン二次電池の活物質用リチウム系複合酸化物を、活物質として用いることにより、リチウムイオン二次電池のサイクル特性、急速充放電特性及び保存安定性を高くすることができる。   From these facts, the surface treatment agent (a) of the present invention surface-treats the lithium-based composite oxide for the active material of the lithium ion secondary battery, and the resulting lithium-based active material for the surface-treated lithium ion secondary battery. By using the composite oxide as an active material, the cycle characteristics, rapid charge / discharge characteristics, and storage stability of the lithium ion secondary battery can be enhanced.

本発明の表面処理剤(a)を製造する方法としては、特に制限されず、例えば、Mの炭酸塩、水酸化物、炭酸水素塩、硝酸塩等のMの塩と、前記一般式(1)中のXをアニオンとする酸と、を反応させる方法や、Mの炭酸塩、水酸化物、炭酸水素塩、硝酸塩等のMの塩と、前記一般式(1)中のXをアニオンとする酸を生成する化合物の組み合わせと、を反応させる方法が挙げられる。また、これらの反応は、液相反応であっても、固相反応であってもよい。 As a method for producing a surface treatment agent (a) of the present invention is not particularly limited, for example, carbonates of M 1, hydroxides, hydrogen carbonates, and salts of M 1 of the nitrates, the general formula ( and acid X-1) in the anion, and a method of reacting a carbonate salt of M 1, hydroxides, hydrogen carbonates, and salts of M 1 of nitrates, X in the general formula (1) And a combination of compounds that generate an acid having an anion as the anion. In addition, these reactions may be liquid phase reactions or solid phase reactions.

更に具体的には、例えば、Mg(B(Cを製造する場合、(i)Mの塩として、水酸化マグネシウムを用い、前記一般式(1)中のXをアニオンとする酸を生成する化合物の組み合わせとして、無水蓚酸及びホウ酸を用い、水酸化マグネシウムと、無水蓚酸及びホウ酸とを、混合し、得られた混合物を不活性雰囲気下で焼成することにより、固相で反応を行い、Mg(B(Cを得る方法や、(ii)Mの塩として、炭酸マグネシウムを用い、前記一般式(1)中のXをアニオンとする酸を生成する化合物の組み合わせとして、蓚酸2水和物及びホウ酸を用い、反応溶媒となる水中に、炭酸マグネシウムと、蓚酸2水和物及びホウ酸とを添加して、液相中で反応を行い、Mg(B(Cを得る方法が挙げられる。 More specifically, for example, when producing Mg (B (C 2 O 4 ) 2 ) 2 , (i) magnesium hydroxide is used as the salt of M 1 , and X in the general formula (1) is By combining succinic anhydride and boric acid as a combination of compounds that generate an anion acid, magnesium hydroxide, succinic anhydride and boric acid are mixed, and the resulting mixture is baked in an inert atmosphere. , By reacting in a solid phase to obtain Mg (B (C 2 O 4 ) 2 ) 2 , or (ii) using magnesium carbonate as a salt of M 1 , X in the general formula (1) is anion As a combination of compounds that produce acid, oxalic acid dihydrate and boric acid are used, and magnesium carbonate, oxalic acid dihydrate and boric acid are added to water as a reaction solvent, and in the liquid phase in carrying out the reaction, Mg (B (C 2 O 4) ) Method and the like to obtain a 2.

なお、本発明の表面処理剤(a)を製造するための製造条件、例えば、反応温度、反応時間、撹拌方式等は、適宜選択される。   In addition, the manufacturing conditions for manufacturing the surface treating agent (a) of the present invention, for example, the reaction temperature, the reaction time, the stirring method, and the like are appropriately selected.

以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

<表面処理剤:Mg(B(Cの調製>
(実施例1)
無水蓚酸を12.3g、ホウ酸を4.2gと水酸化マグネシウム2.0gを量りとり、乳鉢で粉砕しながら十分混合した。このとき、Mg/B/C=1/2/4(モル比)である。得られた混合物を窒素雰囲気下で250℃で5時間焼成し、白色粉末を得た。この白色粉末のXRD測定(Bruker社製 D8 ADVANCE)を行ったところ、得られたXRDチャートからは、原料化合物のピークは観察されなかった。また、この白色粉末のFT−IR測定(JASCO社製 FT/IR−430)を行ったところ、Mg(B(Cであることが確認された。
<Preparation of surface treatment agent: Mg (B (C 2 O 4 ) 2 ) 2 >
Example 1
12.3 g of succinic anhydride, 4.2 g of boric acid and 2.0 g of magnesium hydroxide were weighed and mixed well while being pulverized in a mortar. At this time, it is Mg / B / C 2 O 4 = 1/2/4 (molar ratio). The obtained mixture was baked at 250 ° C. for 5 hours under a nitrogen atmosphere to obtain a white powder. When XRD measurement (D8 ADVANCE manufactured by Bruker) of this white powder was performed, no peak of the raw material compound was observed from the obtained XRD chart. When it was FT-IR measurement of the white powder (JASCO Corporation FT / IR-430), it was confirmed Mg (B (C 2 O 4 ) 2) 2.

<LiTi12負極の調製>
(参考例1)
二酸化チタンと炭酸リチウムをLi/Tiモル比がLi/Ti=4/5となるように混合し、大気雰囲気中で750℃で10時間焼成した。得られた白色粉末を粉砕分級しXRD測定を行ったところ、LiTi12であることを確認した。
<Preparation of Li 4 Ti 5 O 12 negative electrode>
(Reference Example 1)
Titanium dioxide and lithium carbonate were mixed so that the Li / Ti molar ratio was Li / Ti = 4/5, and fired at 750 ° C. for 10 hours in an air atmosphere. When the obtained white powder was pulverized and classified and subjected to XRD measurement, it was confirmed to be Li 4 Ti 5 O 12 .

<電解液の調製>
(実施例2)
10mlのエチレンカーボネート/ジメチルカーボネート=1/1(体積比)の混合溶媒に1MのLiPFを溶解させた電解液E0(キシダ化学社製、リチウムバッテリーグレード)に、実施例1で調製したMg(B(C 0.05gを溶解させて、電解液E1を調製した。
<Preparation of electrolyte>
(Example 2)
Mg prepared in Example 1 in an electrolytic solution E0 (made by Kishida Chemical Co., Ltd., lithium battery grade) in which 1 M LiPF 6 was dissolved in a mixed solvent of 10 ml of ethylene carbonate / dimethyl carbonate = 1/1 (volume ratio). B (C 2 O 4 ) 2 ) 2 0.05 g was dissolved to prepare an electrolytic solution E1.

(実施例3)
10mlのエチレンカーボネート/ジメチルカーボネート=1/1(体積比)の混合溶媒に1MのLiClOを溶解させた電解液E2(キシダ化学社製、リチウムバッテリーグレード)に、市販のCa(ClO(キシダ化学社製)0.05gを溶解させて、電解液E3を調製した。
(Example 3)
Commercially available Ca (ClO 4 ) 2 in an electrolytic solution E2 (Kishida Chemical Co., Ltd., lithium battery grade) in which 1M LiClO 4 is dissolved in a mixed solvent of 10 ml of ethylene carbonate / dimethyl carbonate = 1/1 (volume ratio). 0.05 g (Kishida Chemical Co., Ltd.) was dissolved to prepare an electrolytic solution E3.

<表面処理液の調製>
(実施例4)
市販のエチレンカーボネート(キシダ化学社製、リチウムバッテリーグレード)と市販のジメチルカーボネート(キシダ化学社製、リチウムバッテリーグレード)を体積比で1:1の割合で混合した。当該混合液10mlに、実施例1で調製したMg(B(Cを0.05g溶解させて、表面処理液S1を調製した。
<Preparation of surface treatment solution>
Example 4
Commercially available ethylene carbonate (manufactured by Kishida Chemical Co., Ltd., lithium battery grade) and commercially available dimethyl carbonate (manufactured by Kishida Chemical Co., Ltd., lithium battery grade) were mixed at a volume ratio of 1: 1. 0.05 g of Mg (B (C 2 O 4 ) 2 ) 2 prepared in Example 1 was dissolved in 10 ml of the mixed solution to prepare a surface treatment solution S1.

<正極板の作製>
正極活物質としてLiNi0.8Mn0.1Co0.1(日本化学工業社製、セルシードN(登録商標)、残留アルカリ量1.8質量%)91質量%、炭素粉末(TIMCAL社製、SUPER P)6質量%、ポリフッ化ビニリデン3質量%を混合して正極材とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板C1を得た。
<Preparation of positive electrode plate>
LiNi 0.8 Mn 0.1 Co 0.1 O 2 (manufactured by Nippon Chemical Industry Co., Ltd., Cellseed N (registered trademark), residual alkali amount 1.8% by mass) 91% by mass, carbon powder (TIMCAL) Manufactured by SUPER P) and 6% by mass of polyvinylidene fluoride were mixed to obtain a positive electrode material, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive plate C1.

<正極板の作製>
正極活物質としてLiCoO(日本化学工業社製、セルシードC20(登録商標)、残留アルカリ量0.04質量%)91質量%、炭素粉末(TIMCAL社製、SUPER P)6質量%、ポリフッ化ビニリデン3質量%を混合して正極材とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板C2を得た。
<Preparation of positive electrode plate>
As a positive electrode active material, LiCoO 2 (manufactured by Nippon Chemical Industry Co., Ltd., Cellseed C20 (registered trademark), residual alkali amount 0.04% by mass) 91% by mass, carbon powder (manufactured by TIMCAL, SUPER P) 6% by mass, polyvinylidene fluoride 3% by mass was mixed to obtain a positive electrode material, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive plate C2.

正極活物質としてLiCoO(日本化学工業社製、セルシードC20(登録商標)、残留アルカリ量0.04質量%)を水洗したLiCoO(残留アルカリ量0.01質量%)91質量%、炭素粉末(TIMCAL社製、SUPER P)6質量%、ポリフッ化ビニリデン3質量%を混合して正極材とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板C3を得た。 LiCoO 2 as a positive electrode active material (Nippon Chemical Industrial Co., Cellseed C20 (registered trademark), the residual alkali content 0.04 wt%) LiCoO 2 (residual alkali content 0.01 wt%) was washed with water 91% by mass, carbon powder (SUPAL P, manufactured by TIMCAL) 6% by mass and 3% by mass of polyvinylidene fluoride were mixed to prepare a positive electrode material, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive plate C3.

<負極板の作製>
負極活物質として黒鉛(昭和電工社製、SCMG(登録商標))91質量%、ポリフッ化ビニリデン9質量%を混合して負極材とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストを銅箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて負極板A1を得た。
<Preparation of negative electrode plate>
As a negative electrode active material, graphite (SCMG (registered trademark), 91% by mass) and 9% by mass of polyvinylidene fluoride are mixed to make a negative electrode material, which is dispersed in N-methyl-2-pyrrolidinone and kneaded paste Was prepared. The kneaded paste was applied to a copper foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a negative electrode plate A1.

<負極板の作製>
負極活物質として参考例1で調製したLiTi1270質量%、炭素粉末(TIMCAL社製、SUPER P)15質量%、ポリフッ化ビニリデン15質量%を混合して負極材とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストを銅箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて負極板A2を得た。
<Preparation of negative electrode plate>
As a negative electrode active material, 70% by mass of Li 4 Ti 5 O 12 prepared in Reference Example 1, 15% by mass of carbon powder (SUPER P, manufactured by TIMCAL), and 15% by mass of polyvinylidene fluoride were mixed to obtain a negative electrode material. A kneaded paste was prepared by dispersing in N-methyl-2-pyrrolidinone. The kneaded paste was applied to a copper foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a negative electrode plate A2.

<表面処理正極板の作製>
(実施例5)
実施例4で調製した表面処理液S1を10mlのPFA樹脂製容器に入れ、その中に正極板C1を完全に浸漬した。1時間後、正極板C1を取り出し、ジメチルカーボネートで洗浄、乾燥させて表面処理正極板C4を得た。
<Production of surface-treated positive electrode plate>
(Example 5)
The surface treatment liquid S1 prepared in Example 4 was placed in a 10 ml PFA resin container, and the positive electrode plate C1 was completely immersed therein. After 1 hour, the positive electrode plate C1 was taken out, washed with dimethyl carbonate, and dried to obtain a surface-treated positive electrode plate C4.

<リチウムイオン二次電池の作製>
(実施例6〜8、比較例1〜2、参考例2)
表1に示す正極板、負極板及び電解液を用いて、セパレータ、スペーサー、バネ等の各部材を使用して、2032タイプコインセル型リチウムイオン二次電池を作製した。
<Production of lithium ion secondary battery>
(Examples 6-8, Comparative Examples 1-2, Reference Example 2)
Using the positive electrode plate, the negative electrode plate, and the electrolytic solution shown in Table 1, each member such as a separator, a spacer, and a spring was used to produce a 2032 type coin cell type lithium ion secondary battery.

<初期放電容量及び容量維持率の測定>
室温にて、正極に対して1.5mA/cmで4.3Vまで充電した後、2.7Vまで0.6mA/cmで放電させる充放電を1サイクル行い、初期放電容量を測定した。結果を表2に示す。
次いで、上記放電容量の測定における充放電を100サイクル行い、下記式により容量維持率を算出した。結果を表2に示す。
容量維持率(%)={(100サイクル目の放電容量/1サイクル目の放電容量)}×100
<Measurement of initial discharge capacity and capacity maintenance ratio>
At room temperature was charged to 4.3V at 1.5 mA / cm 2 to the cathode, performs one cycle of charge and discharge to be discharged at 0.6 mA / cm 2 to 2.7V, was measured and the initial discharge capacity. The results are shown in Table 2.
Next, 100 cycles of charge / discharge in the measurement of the discharge capacity were performed, and the capacity retention rate was calculated by the following formula. The results are shown in Table 2.
Capacity maintenance rate (%) = {(discharge capacity at the 100th cycle / discharge capacity at the first cycle)} × 100

(実施例9、比較例3)
正極にLi金属を用い、表3に示す負極板及び電解液を用いて、セパレータ、スペーサー、バネ等の各部材を使用して、2032タイプコインセル型リチウムイオン二次電池を製作した。作製した電池を用い、1.5mA/cmで1.0Vまで充電した後(負極板の活物質にLiイオン挿入)、2.0Vまで0.5mA/cmで放電させる充放電を1サイクル行い、初期放電容量を測定した。結果を表3に示す。
次いで、上記放電容量の測定における充放電を100サイクル行い、下記式により容量維持率を算出した。結果を表3に示す。
容量維持率(%)={(100サイクル目の放電容量/1サイクル目の放電容量)}×100
(Example 9, Comparative Example 3)
A 2032 type coin cell type lithium ion secondary battery was manufactured using Li metal for the positive electrode, using the negative electrode plate and the electrolyte shown in Table 3, and using each member such as a separator, a spacer, and a spring. Using the produced battery, 1.5 mA / cm 2 after charged to 1.0 V (Li-ion insertion into the active material of the negative electrode plate), charged and discharged 1 cycle to discharge at 0.5 mA / cm 2 to 2.0V The initial discharge capacity was measured. The results are shown in Table 3.
Next, 100 cycles of charge / discharge in the measurement of the discharge capacity were performed, and the capacity retention rate was calculated by the following formula. The results are shown in Table 3.
Capacity maintenance rate (%) = {(discharge capacity at the 100th cycle / discharge capacity at the first cycle)} × 100

<負荷試験>
(実施例10、比較例4)
実施例6及び比較例1と同様にして作製したコインセルを用いて、室温にて正極に対して1.5mA/cmで4.2Vまで充電した後、2.7Vまで0.6mA/cmで放電させる充放電を1サイクル行い、その初期放電容量を基準として、0.2C、0.5C、1.0C、2.0C、3.0Cの放電電流を計算した。次いで室温にて正極に対して1.5mA/cmで4.2Vまで充電した後、0.2Cの放電電流で2.7Vまで放電させる充放電を3サイクル行って平均値を0.2C放電時の放電容量とした。0.5C〜3.0Cについても同様に測定を行い、0.2C放電時の放電容量に対する比を測定した。結果を図1に示す。その結果、本発明に係る表面処理を行うことによって負荷特性が向上していることが分かる。
<Load test>
(Example 10, comparative example 4)
Using the coin cells were prepared in the same manner as in Example 6 and Comparative Example 1 was charged to 4.2V at 1.5 mA / cm 2 to the cathode at room temperature, 0.6 mA / cm 2 until 2.7V 1 cycle of charge / discharge was performed, and discharge currents of 0.2C, 0.5C, 1.0C, 2.0C, and 3.0C were calculated based on the initial discharge capacity. Next, after charging to 4.2 V at 1.5 mA / cm 2 with respect to the positive electrode at room temperature, 3 cycles of charge / discharge were performed to discharge to 2.7 V with a discharge current of 0.2 C, and the average value was 0.2 C discharge. The discharge capacity at the time. The same measurement was performed for 0.5C to 3.0C, and the ratio to the discharge capacity at the time of 0.2C discharge was measured. The results are shown in FIG. As a result, it is understood that the load characteristics are improved by performing the surface treatment according to the present invention.

<正極活物質と電解液の示差走査熱量測定(Differential Scanning Calorimetry, DSC)>
(実施例11〜12、比較例5〜6)
実施例6、7及び比較例1、2と同様に作製したリチウム二次電池をそれぞれ室温(25℃)にて正極に対して1.5mA/cmで4.2Vまで充電した後、電池を分解し、充電状態の正極を取り出してジメチルカーボネートで洗浄した。この正極を乾燥させた後削り取り、SUS製密封型DSC測定セルに電極5mgと電池作製時に使用した電解液と同じ電解液5μLを封入した。この測定セルをDSC測定装置(セイコーインスツルメンタル社製、DSC6200)で昇温速度2℃/min.にて150〜300℃の範囲でDSC測定を行った。150〜300℃の範囲での電極と電解液の重量あたりの発熱量を表4に、DSC測定結果をそれぞれ図2、図3、図4及び図5に示す。
<Differential Scanning Calorimetry (DSC)>
(Examples 11-12, Comparative Examples 5-6)
The lithium secondary batteries produced in the same manner as in Examples 6 and 7 and Comparative Examples 1 and 2 were charged to 4.2 V at 1.5 mA / cm 2 with respect to the positive electrode at room temperature (25 ° C.), respectively. After decomposition, the charged positive electrode was taken out and washed with dimethyl carbonate. The positive electrode was dried and then scraped off, and 5 mg of the electrode and 5 μL of the same electrolyte as the electrolyte used for battery production were sealed in a sealed DSC measurement cell made of SUS. This measurement cell was measured with a DSC measuring apparatus (DSC6200, manufactured by Seiko Instrumental Co., Ltd.) at a temperature rising rate of 2 ° C./min. DSC measurement was performed in the range of 150 to 300 ° C. Table 4 shows the calorific value per weight of the electrode and the electrolyte in the range of 150 to 300 ° C., and DSC measurement results are shown in FIG. 2, FIG. 3, FIG. 4 and FIG.

Claims (17)

下記一般式(1):
(a)(b) (1)
(式中、Mは、Mg、Ca、Sr、Ba、Zn、Al、Ge、Ti及びZrのうちの1種又は2種以上の多価のカチオンである。Xは、リチウムイオン二次電池の電解質用リチウム塩のアニオンである。a>0であり、b>0である。)
で表わされる化合物であることを特徴とするリチウム系複合酸化物の表面処理剤。
The following general formula (1):
M 1 (a) X (b) (1)
(In the formula, M 1 is one or more polyvalent cations of Mg, Ca, Sr, Ba, Zn, Al, Ge, Ti, and Zr. X is a lithium ion secondary battery. An anion of the lithium salt for electrolytes, a> 0 and b> 0.)
A surface treatment agent for a lithium-based composite oxide, which is a compound represented by the formula:
前記一般式(1)中のXが、B(C、ClO、PF、BF、N(SOCF、CFHCOO、PF(C、B1212のうちの1種又は2種以上であることを特徴とする請求項1記載のリチウム系複合酸化物の表面処理剤。 X in the general formula (1) is B (C 2 O 4 ) 2 , ClO 4 , PF 6 , BF 4 , N (SO 2 CF 3 ) 2 , CF 2 HCOO, PF 4 (C 2 O 4 ). The surface treatment agent for a lithium-based composite oxide according to claim 1, wherein the surface treatment agent is one or more of 2 and B 12 F 12 . 請求項1又は2いずれか1項記載のリチウム系複合酸化物の表面処理剤を含有することを特徴とするリチウム系複合酸化物の表面処理液。   A surface treatment solution for a lithium-based composite oxide, comprising the surface treatment agent for a lithium-based composite oxide according to claim 1. 前記リチウム系複合酸化物の表面処理剤の含有量が0.1〜10質量%であることを特徴とする請求項3記載のリチウム系複合酸化物の表面処理液。   The surface treatment liquid for a lithium-based composite oxide according to claim 3, wherein the content of the surface treatment agent for the lithium-based composite oxide is 0.1 to 10% by mass. 請求項1又は2いずれか1項記載のリチウム系複合酸化物の表面処理剤を含有することを特徴とするリチウムイオン二次電池用電解液。   An electrolyte for a lithium ion secondary battery, comprising the surface treatment agent for a lithium-based composite oxide according to claim 1. 前記リチウム系複合酸化物の表面処理剤の含有量が0.001〜5質量%であることを特徴とする請求項5記載のリチウムイオン二次電池用電解液。   6. The electrolyte solution for a lithium ion secondary battery according to claim 5, wherein the content of the surface treatment agent of the lithium-based composite oxide is 0.001 to 5 mass%. リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を、請求項1又は2いずれか1項記載のリチウム系複合酸化物の表面処理剤で、表面処理して得られたものであることを特徴とする表面処理リチウムイオン二次電池用正極活物質。   The lithium-based composite oxide for a positive electrode active material of a lithium ion secondary battery is obtained by surface treatment with the surface treatment agent for a lithium-based composite oxide according to claim 1 or 2. A positive electrode active material for a surface-treated lithium ion secondary battery, characterized by: 前記リチウムイオン二次電池の正極活物質用リチウム系複合酸化物が、下記一般式(3):
Li(c)Ni(d)Co(e)Mn(f)Al(g) (3)
(式中、0.8≦c≦1.2、0≦d≦1、0≦e≦1、0≦f≦1、0≦g≦0.1、d+e+f+g=1である。)
で表わされるリチウム系複合酸化物であることを特徴とする請求項7記載の表面処理リチウムイオン二次電池用正極活物質。
The lithium-based composite oxide for the positive electrode active material of the lithium ion secondary battery has the following general formula (3):
Li (c) Ni (d) Co (e) Mn (f) Al (g) O 2 (3)
(In the formula, 0.8 ≦ c ≦ 1.2, 0 ≦ d ≦ 1, 0 ≦ e ≦ 1, 0 ≦ f ≦ 1, 0 ≦ g ≦ 0.1, d + e + f + g = 1)
The positive electrode active material for a surface-treated lithium ion secondary battery according to claim 7, wherein the lithium-based composite oxide is represented by the formula:
リチウムイオン二次電池の負極活物質用リチウム系複合酸化物を、請求項1又は2いずれか1項記載のリチウム系複合酸化物の表面処理剤で、表面処理して得られたものであることを特徴とする表面処理リチウムイオン二次電池用負極活物質。   The lithium-based composite oxide for a negative electrode active material of a lithium ion secondary battery is obtained by surface treatment with the surface treatment agent for a lithium-based composite oxide according to claim 1 or 2. A negative electrode active material for a surface-treated lithium ion secondary battery. 前記リチウムイオン二次電池の負極活物質用リチウム系複合酸化物が、チタン酸リチウム、又はリチウムサイトの一部又はチタンサイトの一部が他の金属元素で置換されたチタン酸リチウムであることを特徴とする請求項9記載の表面処理リチウムイオン二次電池用負極活物質。   The lithium-based composite oxide for a negative electrode active material of the lithium ion secondary battery is lithium titanate, or lithium titanate in which a part of the lithium site or a part of the titanium site is substituted with another metal element. The negative electrode active material for a surface-treated lithium ion secondary battery according to claim 9. リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を、請求項3若しくは4いずれか1項記載のリチウム系複合酸化物の表面処理液、又は請求項5若しくは6いずれか1項記載のリチウムイオン二次電池用電解液と、接触させることを特徴とする表面処理リチウムイオン二次電池用正極活物質の製造方法。   The lithium-based composite oxide for a positive electrode active material of a lithium ion secondary battery is a surface treatment solution for a lithium-based composite oxide according to any one of claims 3 or 4, or any one of claims 5 or 6. The manufacturing method of the positive electrode active material for surface treatment lithium ion secondary batteries characterized by making it contact with the electrolyte solution for lithium ion secondary batteries. 前記リチウムイオン二次電池の正極活物質用リチウム系複合酸化物中の残存アルカリ量が、0.02〜3質量%であることを特徴とする請求項11記載の表面処理リチウムイオン二次電池用正極活物質の製造方法。   The surface-treated lithium ion secondary battery according to claim 11, wherein the remaining alkali amount in the lithium-based composite oxide for a positive electrode active material of the lithium ion secondary battery is 0.02 to 3 mass%. A method for producing a positive electrode active material. リチウムイオン二次電池の負極活物質用リチウム系複合酸化物を、請求項3若しくは4いずれか1項記載のリチウム系複合酸化物の表面処理液、又は請求項5若しくは6いずれか1項記載のリチウムイオン二次電池用電解液と、接触させることを特徴とする表面処理リチウムイオン二次電池用負極活物質の製造方法。   The lithium-based composite oxide for a negative electrode active material of a lithium ion secondary battery is a surface treatment solution for a lithium-based composite oxide according to any one of claims 3 or 4, or according to any one of claims 5 or 6. The manufacturing method of the negative electrode active material for surface treatment lithium ion secondary batteries characterized by making it contact with the electrolyte solution for lithium ion secondary batteries. 前記リチウムイオン二次電池の負極活物質用リチウム系複合酸化物中の残存アルカリ量が、0.02〜3質量%であることを特徴とする請求項13記載の表面処理リチウムイオン二次電池用負極活物質の製造方法。   14. The surface-treated lithium ion secondary battery according to claim 13, wherein the remaining alkali amount in the lithium-based composite oxide for negative electrode active material of the lithium ion secondary battery is 0.02 to 3% by mass. A method for producing a negative electrode active material. 正極活物質が、リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を、請求項1又は2いずれか1項記載のリチウム系複合酸化物の表面処理剤で表面処理して得た表面処理リチウムイオン二次電池用正極活物質を含有することを特徴とするリチウムイオン二次電池。   A surface obtained by subjecting a lithium-based composite oxide for a positive-electrode active material of a lithium ion secondary battery to a surface treatment with the surface-treating agent for a lithium-based composite oxide according to claim 1 or 2. A lithium ion secondary battery comprising a positive electrode active material for a treated lithium ion secondary battery. 負極活物質が、リチウムイオン二次電池の負極活物質用リチウム系複合酸化物を、請求項1又は2いずれか1項記載のリチウム系複合酸化物の表面処理剤で表面処理して得た表面処理リチウムイオン二次電池用負極活物質を含有することを特徴とするリチウムイオン二次電池。   A surface obtained by subjecting a lithium-based composite oxide for a negative-electrode active material of a lithium-ion secondary battery to a surface treatment with the surface-treating agent for a lithium-based composite oxide according to claim 1 or 2. A lithium ion secondary battery comprising a negative active material for a treated lithium ion secondary battery. リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を含有する正極活物質と負極活物質とを、あるいは、正極活物質とリチウムイオン二次電池の負極活物質用リチウム系複合酸化物を含有する負極活物質とを、あるいは、リチウムイオン二次電池の正極活物質用リチウム系複合酸化物を含有する正極活物質とリチウムイオン二次電池の負極活物質用リチウム系複合酸化物を含有する負極活物質とを、リチウムイオン二次電池の容器の所定の位置に配置し、次いで、該リチウムイオン二次電池の容器に、請求項5又は6いずれか1項記載のリチウムイオン二次電池用電解液を注入して、該正極活物質及び該負極活物質と、該リチウムイオン二次電池用電解液とを接触させることを特徴とするリチウムイオン二次電池の製造方法。   A positive electrode active material and a negative electrode active material containing a lithium-based composite oxide for a positive electrode active material of a lithium ion secondary battery, or a positive electrode active material and a lithium-based composite oxide for a negative electrode active material of a lithium ion secondary battery A negative electrode active material containing, or a positive electrode active material containing a lithium-based composite oxide for a positive electrode active material of a lithium ion secondary battery and a lithium-based composite oxide for a negative electrode active material of a lithium ion secondary battery The negative electrode active material is disposed at a predetermined position of a container of a lithium ion secondary battery, and then the container of the lithium ion secondary battery is used for the lithium ion secondary battery according to claim 5 or 6. A method for producing a lithium ion secondary battery, comprising injecting an electrolyte solution and bringing the positive electrode active material and the negative electrode active material into contact with the electrolyte solution for a lithium ion secondary battery.
JP2009018212A 2009-01-29 2009-01-29 Surface treating agent of lithium based composite oxide, surface treating liquid of lithium based composite oxide, electrolyte for lithium-ion secondary battery, positive electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, negative electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery and method of manufacturing the same Pending JP2010177030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018212A JP2010177030A (en) 2009-01-29 2009-01-29 Surface treating agent of lithium based composite oxide, surface treating liquid of lithium based composite oxide, electrolyte for lithium-ion secondary battery, positive electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, negative electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018212A JP2010177030A (en) 2009-01-29 2009-01-29 Surface treating agent of lithium based composite oxide, surface treating liquid of lithium based composite oxide, electrolyte for lithium-ion secondary battery, positive electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, negative electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010177030A true JP2010177030A (en) 2010-08-12

Family

ID=42707765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018212A Pending JP2010177030A (en) 2009-01-29 2009-01-29 Surface treating agent of lithium based composite oxide, surface treating liquid of lithium based composite oxide, electrolyte for lithium-ion secondary battery, positive electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, negative electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010177030A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249058A (en) * 2010-05-25 2011-12-08 Toyota Central R&D Labs Inc Anode for lithium ion secondary battery, lithium ion secondary battery and method of manufacturing anode for lithium ion secondary battery
CN102479951A (en) * 2010-11-19 2012-05-30 日本化学工业株式会社 Anode material for lithium secondary battery, method of fabricating the same and lithium secondary battery
JP2015099794A (en) * 2012-01-19 2015-05-28 株式会社東芝 Non-aqueous electrolyte battery and battery pack
US10020503B2 (en) 2013-03-25 2018-07-10 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
WO2018139338A1 (en) 2017-01-27 2018-08-02 ユミコア Positive electrode active substance for high-performance lithium ion battery and method for producing positive electrode active substance
US10217995B2 (en) 2013-09-18 2019-02-26 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
CN110305151A (en) * 2019-07-29 2019-10-08 兰州理工大学 A kind of synthetic method and application of double oxalic acid antifungins
CN110305152A (en) * 2019-07-29 2019-10-08 兰州理工大学 A kind of synthetic method and application of double oxalic acid manganese borates
CN110380049A (en) * 2019-07-29 2019-10-25 兰州理工大学 A kind of synthetic method and application of double oxalic acid aluminium borates
CN110767900A (en) * 2019-07-29 2020-02-07 兰州理工大学 Synthesis method and application of cobalt bisoxalato borate
WO2021039178A1 (en) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208728A (en) * 1997-01-21 1998-08-07 Nippon Chem Ind Co Ltd Positive electrode composition for lithium secondary battery and lithium secondary battery
JP2000058120A (en) * 1998-08-07 2000-02-25 Kyushu Electric Power Co Inc Electrolyte for lithium secondary battery
JP2001023685A (en) * 1999-07-07 2001-01-26 Sony Corp Electrolyte and secondary battery using it
JP2001313033A (en) * 2000-04-17 2001-11-09 Korea Advanced Inst Of Science & Technol Surface treating method of lithium-manganese oxide for lithium secondary cell cathode electrode
JP2001527686A (en) * 1996-07-12 2001-12-25 デュラセル、インコーポレーテッド Method of treating lithium manganese oxide spinel
JP2002324551A (en) * 2001-04-27 2002-11-08 Titan Kogyo Kk Titanic acid lithium powder and its use
JP2004296315A (en) * 2003-03-27 2004-10-21 Sony Corp Electrolyte and battery using it
JP2007018883A (en) * 2005-07-07 2007-01-25 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery and battery pack

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527686A (en) * 1996-07-12 2001-12-25 デュラセル、インコーポレーテッド Method of treating lithium manganese oxide spinel
JPH10208728A (en) * 1997-01-21 1998-08-07 Nippon Chem Ind Co Ltd Positive electrode composition for lithium secondary battery and lithium secondary battery
JP2000058120A (en) * 1998-08-07 2000-02-25 Kyushu Electric Power Co Inc Electrolyte for lithium secondary battery
JP2001023685A (en) * 1999-07-07 2001-01-26 Sony Corp Electrolyte and secondary battery using it
JP2001313033A (en) * 2000-04-17 2001-11-09 Korea Advanced Inst Of Science & Technol Surface treating method of lithium-manganese oxide for lithium secondary cell cathode electrode
JP2002324551A (en) * 2001-04-27 2002-11-08 Titan Kogyo Kk Titanic acid lithium powder and its use
JP2004296315A (en) * 2003-03-27 2004-10-21 Sony Corp Electrolyte and battery using it
JP2007018883A (en) * 2005-07-07 2007-01-25 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery and battery pack

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249058A (en) * 2010-05-25 2011-12-08 Toyota Central R&D Labs Inc Anode for lithium ion secondary battery, lithium ion secondary battery and method of manufacturing anode for lithium ion secondary battery
CN102479951A (en) * 2010-11-19 2012-05-30 日本化学工业株式会社 Anode material for lithium secondary battery, method of fabricating the same and lithium secondary battery
JP2012113823A (en) * 2010-11-19 2012-06-14 Nippon Chem Ind Co Ltd Positive electrode active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery
JP2015099794A (en) * 2012-01-19 2015-05-28 株式会社東芝 Non-aqueous electrolyte battery and battery pack
US10020503B2 (en) 2013-03-25 2018-07-10 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
US10217995B2 (en) 2013-09-18 2019-02-26 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
WO2018139338A1 (en) 2017-01-27 2018-08-02 ユミコア Positive electrode active substance for high-performance lithium ion battery and method for producing positive electrode active substance
KR20190099534A (en) 2017-01-27 2019-08-27 유미코아 High-performance lithium ion battery positive electrode active material and its manufacturing method
CN110305151A (en) * 2019-07-29 2019-10-08 兰州理工大学 A kind of synthetic method and application of double oxalic acid antifungins
CN110305152A (en) * 2019-07-29 2019-10-08 兰州理工大学 A kind of synthetic method and application of double oxalic acid manganese borates
CN110380049A (en) * 2019-07-29 2019-10-25 兰州理工大学 A kind of synthetic method and application of double oxalic acid aluminium borates
CN110767900A (en) * 2019-07-29 2020-02-07 兰州理工大学 Synthesis method and application of cobalt bisoxalato borate
WO2021039178A1 (en) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP7493165B2 (en) 2019-08-30 2024-05-31 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP7247263B2 (en) Non-aqueous electrolyte composition
JP2010177030A (en) Surface treating agent of lithium based composite oxide, surface treating liquid of lithium based composite oxide, electrolyte for lithium-ion secondary battery, positive electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, negative electrode active material for surface-treated lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery and method of manufacturing the same
CN103636038B (en) Non-aqueous electrolyte battery positive active material, its manufacture method and use its non-aqueous electrolyte battery
JP6054956B2 (en) Lithium ion electrochemical cell containing fluorocarbon electrolyte additive
JP5208353B2 (en) Positive electrode active material and manufacturing method thereof
JP4794866B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5835107B2 (en) Nonaqueous electrolyte secondary battery
JP5831268B2 (en) Secondary battery active material and method for producing the same
JP5078113B2 (en) Lithium manganate for positive electrode secondary active material for lithium secondary battery, method for producing lithium manganate for positive electrode secondary active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
US11862793B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery and method for producing the same
JPWO2017199891A1 (en) Non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, non-aqueous electrolyte secondary battery positive electrode mixture paste, and non-aqueous electrolyte secondary battery
US7749660B2 (en) Electrolyte for improving life characteristics at high temperature and lithium secondary battery comprising the same
CN102754253A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
JP2012505520A (en) Cathode materials for lithium ion batteries with high specific discharge capacity and processes for synthesizing these materials
CN106935798A (en) For the positive pole and secondary cell of secondary cell
CN112514115B (en) Positive electrode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
JP2010086922A (en) Lithium complex compound particle powder and method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2020521285A (en) Positive electrode additive, method for producing the same, positive electrode containing the same, and lithium secondary battery
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP3959333B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
KR101449421B1 (en) Surface-treated cathode material for oxide-based litium secondary battery with solid super acids and manufacturing method thereof
JP6935380B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2008258030A (en) Negative active material for nonaqueous electrolyte secondary battery, its manufacturing method, and manufacturing method of nonaqueous electrolyte secondary battery
JP2006526878A (en) Lithium ion battery with improved high-temperature storage characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131002