JP5083743B2 - Lithium battery - Google Patents

Lithium battery Download PDF

Info

Publication number
JP5083743B2
JP5083743B2 JP2005198128A JP2005198128A JP5083743B2 JP 5083743 B2 JP5083743 B2 JP 5083743B2 JP 2005198128 A JP2005198128 A JP 2005198128A JP 2005198128 A JP2005198128 A JP 2005198128A JP 5083743 B2 JP5083743 B2 JP 5083743B2
Authority
JP
Japan
Prior art keywords
active material
battery
electrode active
negative electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005198128A
Other languages
Japanese (ja)
Other versions
JP2007018828A (en
Inventor
新一 脇
信晴 小柴
雅文 阿尻
Original Assignee
株式会社 東北テクノアーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東北テクノアーチ filed Critical 株式会社 東北テクノアーチ
Priority to JP2005198128A priority Critical patent/JP5083743B2/en
Publication of JP2007018828A publication Critical patent/JP2007018828A/en
Application granted granted Critical
Publication of JP5083743B2 publication Critical patent/JP5083743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオンを挿入可能な正極と、リチウムイオンを脱離可能な負極と、リチウム塩を溶解した非水電解液とを具備するリチウム電池に関する。   The present invention relates to a lithium battery including a positive electrode into which lithium ions can be inserted, a negative electrode from which lithium ions can be removed, and a nonaqueous electrolytic solution in which a lithium salt is dissolved.

近年の電子機器のポータブル化、多機能化に伴い、電子機器の電源として用いられる電池の放電特性や長期信頼性に対してさらなる高性能化が求められている。
なかでも、リチウムイオンを脱離可能な負極活物質と、リチウムイオンを挿入可能な正極活物質と、リチウム塩を溶解した非水電解液とを具備するリチウム電池は、エネルギー密度が高く、長期信頼性に優れている。このため、リチウム電池に対する需要が急速に伸びている。
As electronic devices become more portable and multifunctional in recent years, higher performance is required for the discharge characteristics and long-term reliability of batteries used as power sources for electronic devices.
In particular, a lithium battery including a negative electrode active material capable of desorbing lithium ions, a positive electrode active material capable of inserting lithium ions, and a non-aqueous electrolyte in which a lithium salt is dissolved has high energy density and long-term reliability. Excellent in properties. For this reason, the demand for lithium batteries is growing rapidly.

リチウム電池の負極活物質は電位が卑であるため、電解液には、プロピレンカーボネイト(PC)、エチレンカーボネイト(EC)、1,2―ジメトキシエタン(DME)等の単体、あるいはこれらの混合有機溶媒に、LiClOやLiPF等のリチウム塩を溶解した非水電解液が用いられ、水溶液は用いられない。 Since the negative electrode active material of the lithium battery has a low potential, the electrolyte solution may be a simple substance such as propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), or a mixed organic solvent thereof. In addition, a non-aqueous electrolyte solution in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used, and an aqueous solution is not used.

リチウム二次電池の正極活物質には、MnO、LiCoO、LiNiO、LiMnなどの金属酸化物が用いられる。また、負極活物質には、リチウム金属、黒鉛などの炭素材料、Si、Sn、もしくはAlなどの金属材料、Ti-Si、Zr-Si、もしくはNi-Siなどを含む合金材料、またはLiTi12などの金属酸化物が用いられる。 Metal oxides such as MnO 2 , LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are used for the positive electrode active material of the lithium secondary battery. The negative electrode active material includes lithium metal, carbon materials such as graphite, metal materials such as Si, Sn, or Al, alloy materials including Ti—Si, Zr—Si, or Ni—Si, or Li 4 Ti. A metal oxide such as 5 O 12 is used.

一次電池用の正極活物質には二酸化マンガン(MnO)が用いられるが、二酸化マンガンを水酸化リチウムとともに焼成することにより、非水電解液の濡れ性を向上させることができることが開示されている(例えば、特許文献1参照)。
特開平08−115728号公報
Manganese dioxide (MnO 2 ) is used as the positive electrode active material for primary batteries, but it is disclosed that the wettability of the non-aqueous electrolyte can be improved by firing manganese dioxide with lithium hydroxide. (For example, refer to Patent Document 1).
JP 08-115728 A

正負極には、リチウム電池の正極活物質や負極活物質を、カーボンなどの導電助剤やフッ素樹脂などの結着剤と共に混合した後、加圧成型したものが用いられる。しかしながら、金属酸化物、金属材料、または合金材料からなる活物質粒子は凝集しやすく、導電助剤と均一に混合するのは困難であった。そのために、放電特性の低下や充放電時の活物質粒子の膨張により、活物質粒子の集電性が低下し、充放電の繰り返しにともない放電容量が低下しやすい問題があった。   For the positive and negative electrodes, a positive electrode active material or a negative electrode active material of a lithium battery is mixed with a conductive additive such as carbon and a binder such as a fluororesin, and then pressure-molded. However, active material particles made of a metal oxide, a metal material, or an alloy material tend to agglomerate, and it has been difficult to uniformly mix with a conductive additive. Therefore, there has been a problem that due to the deterioration of the discharge characteristics and the expansion of the active material particles during charging / discharging, the current collecting property of the active material particles is decreased, and the discharge capacity is likely to decrease with repeated charging / discharging.

また、これらの活物質は通常表面が水酸基により覆われているために親水性であり、これらをリチウム電池の電極に使用する場合、電極内への非水電解液の含浸が充分になされず、電極の実効反応面積が減少するという問題があった。   Also, these active materials are usually hydrophilic because the surface is covered with a hydroxyl group, and when these are used for the electrode of a lithium battery, impregnation of the non-aqueous electrolyte into the electrode is not sufficient, There was a problem that the effective reaction area of the electrode was reduced.

また、上記のように、特許文献1では、一次電池用正極活物質である二酸化マンガンを、水酸化リチウムとともに焼成することにより、非水電解液の濡れ性が向上することが開示されているが、焼成前の混合が固相混合であるため表面改質にむらが生じやすい。
そこで、本発明は、上記従来の問題を解決するため、電極の反応性を改善することにより、放電特性および充放電サイクル特性に優れたリチウム電池を提供することを目的とする。
Further, as described above, Patent Document 1 discloses that the wettability of the non-aqueous electrolyte is improved by firing manganese dioxide, which is a positive electrode active material for a primary battery, together with lithium hydroxide. Further, since the mixing before firing is solid phase mixing, unevenness in surface modification is likely to occur.
Accordingly, an object of the present invention is to provide a lithium battery excellent in discharge characteristics and charge / discharge cycle characteristics by improving electrode reactivity in order to solve the above-described conventional problems.

本発明は、リチウムイオンを挿入可能な正極活物質を含む正極と、リチウムイオンを脱離可能な負極活物質を含む負極と、リチウム塩を溶解した非水電解液とを具備するリチウム電池であって、前記正極活物質および負極活物質の少なくとも一方が、表面に有機基を有することを特徴とする。
これにより、活物質粒子同士の分子間力を低下させて、粒子の凝集を抑制することができる。また、活物質粒子の表面が疎水性であるため、非水電解液を電極内に含浸させやすくなる。
The present invention is a lithium battery comprising a positive electrode including a positive electrode active material capable of inserting lithium ions, a negative electrode including a negative electrode active material capable of detaching lithium ions, and a non-aqueous electrolyte solution in which a lithium salt is dissolved. In addition, at least one of the positive electrode active material and the negative electrode active material has an organic group on the surface.
Thereby, the intermolecular force between active material particles can be reduced and aggregation of particles can be suppressed. In addition, since the surface of the active material particles is hydrophobic, the electrode can be easily impregnated with the nonaqueous electrolytic solution.

有機基は、アルコキシル基であるのが好ましい。
アルコキシル基が−O−Cn2n+1(n=3〜10)で表される構造を有することが好ましい。これにより、粒子の凝集を抑制することができ、粒子表面も疎水性となる。
また、アルコキシル基の炭素数は3〜10(n=3〜10)であることが好ましい。アルコキシル基の炭素数が3以上(n≧3)であると、アルコキシル基の層が厚くなり、粒子の凝集を防ぐことができ、粒子表面も疎水性となる。また、炭素数が10を超えると、粒子表面の電子伝導性が低下するため、アルコキシ基の炭素数は10以下(n≦10)であることが好ましい。
The organic group is preferably an alkoxyl group.
Preferably it has a structure alkoxyl group represented by -O-C n H 2n + 1 (n = 3~10). Thereby, aggregation of particles can be suppressed and the particle surface is also hydrophobic.
Moreover, it is preferable that carbon number of an alkoxyl group is 3-10 (n = 3-10). When the number of carbon atoms of the alkoxyl group is 3 or more (n ≧ 3), the alkoxyl group layer becomes thick, aggregation of particles can be prevented, and the particle surface is also hydrophobic. Moreover, since the electronic conductivity of the particle | grain surface will fall when carbon number exceeds 10, it is preferable that carbon number of an alkoxy group is 10 or less (n <= 10).

表面に−O−Cn2n+1(n=3〜10)を有する活物質は、HO−Cn2n+1(n=3〜10)と、活物質とを熱縮合させることにより得られる。HO−Cn2n+1の水酸基と、活物質表面の水酸基との間で脱水反応が起こり、活物質表面に有機基を容易に結合させることができる。 An active material having —O—C n H 2n + 1 (n = 3 to 10) on the surface is obtained by thermally condensing HO—C n H 2n + 1 (n = 3 to 10) and the active material. can get. A dehydration reaction occurs between the hydroxyl group of HO—C n H 2n + 1 and the hydroxyl group on the active material surface, and an organic group can be easily bonded to the active material surface.

本発明によれば、リチウム電池において活物質表面に有機基を結合することにより、活物質の凝集が抑制され、活物質と導電助剤とが均一に混ざりやすくなる。また、活物質表面が疎水性を有するため、電極の非水電解液の含浸性が向上する。
リチウム電池が一次電池の場合、放電特性が向上する。また、リチウム電池が二次電池の場合、放電特性が向上するとともに、充放電サイクル特性が向上する。
According to the present invention, by bonding an organic group to the surface of an active material in a lithium battery, the aggregation of the active material is suppressed, and the active material and the conductive additive are easily mixed uniformly. In addition, since the surface of the active material has hydrophobicity, the impregnation property of the nonaqueous electrolyte solution of the electrode is improved.
When the lithium battery is a primary battery, the discharge characteristics are improved. When the lithium battery is a secondary battery, the discharge characteristics are improved and the charge / discharge cycle characteristics are improved.

本発明は、リチウムイオンを挿入可能な正極活物質を含む正極と、リチウムイオンを脱離可能な負極活物質を含む負極と、リチウム塩を溶解した非水電解液とを具備し、前記正極活物質および負極活物質の少なくとも一方が、表面に有機基を有するリチウム電池に関する。
これにより、活物質粒子同士の分子間力が低下し、活物質粒子の凝集を抑制することができ、活物質粒子と導電助材とが均一に混ざりやすくなる。また、活物質粒子の表面が疎水性であるため、非水電解液を電極内に含浸させやすくなる。従って、リチウム電池が一次電池の場合は、放電特性が向上する。リチウム電池が二次電池の場合は、放電特性が向上するとともに、充放電サイクル特性も向上する。
The present invention comprises a positive electrode including a positive electrode active material into which lithium ions can be inserted, a negative electrode including a negative electrode active material from which lithium ions can be desorbed, and a non-aqueous electrolyte in which a lithium salt is dissolved. At least one of the substance and the negative electrode active material relates to a lithium battery having an organic group on the surface.
Thereby, the intermolecular force between the active material particles is reduced, the aggregation of the active material particles can be suppressed, and the active material particles and the conductive additive are easily mixed uniformly. In addition, since the surface of the active material particles is hydrophobic, the electrode can be easily impregnated with the nonaqueous electrolytic solution. Therefore, when the lithium battery is a primary battery, the discharge characteristics are improved. When the lithium battery is a secondary battery, the discharge characteristics are improved and the charge / discharge cycle characteristics are also improved.

前記有機基は、アルコキシル基、−NH−R(Rはアルキル基)、エステル基、アシル基、−SO−R(Rはアルキル基)、または−S−R(Rはアルキル基)であるのが好ましい。
さらに、上記の各官能基としては、−O−Cn2n+1(n=3〜10)、−NH−Cn2n+1(n=3〜10)、−COO−Cn2n+1(n=2〜9)、−CO−Cn2n+1(n=2〜9)、−SO−Cn2n+1(n=3〜10)、および−S−Cn2n+1(n=3〜10)が好ましい。
n値が上記の範囲では、活物質粒子の凝集を抑制する効果が十分に得られ、かつ十分に疎水性を有する粒子表面が得られる。しかし、n値が上記の範囲を超えると、粒子表面の有機基の層が厚くなりすぎて、粒子表面の電子伝導性が低下する。
The organic group is an alkoxyl group, —NH—R (R is an alkyl group), an ester group, an acyl group, —SO 2 —R (R is an alkyl group), or —S—R (R is an alkyl group). Is preferred.
Furthermore, as each of the above functional groups, —O—C n H 2n + 1 (n = 3 to 10), —NH—C n H 2n + 1 (n = 3 to 10), —COO—C n H 2n + 1 (n = 2~9) , - CO-C n H 2n + 1 (n = 2~9), - SO 2 -C n H 2n + 1 (n = 3~10), and -S- C n H 2n + 1 (n = 3 to 10) is preferable.
When the n value is in the above range, the effect of suppressing aggregation of the active material particles can be sufficiently obtained, and a sufficiently hydrophobic particle surface can be obtained. However, if the n value exceeds the above range, the organic group layer on the particle surface becomes too thick, and the electron conductivity on the particle surface decreases.

表面に有機基を有する活物質粒子は、例えば、活物質粒子と、有機基の構成部位を含む修飾材料とを熱縮合することにより得られる。
活物質粒子の表面に上記の有機基を結合させるためには、修飾材料には、HO−Cn2n+1(n=3〜10)、Cn2n+1−NH(n=3〜10)、Cn2n+1 −COOH(n=2〜9)、Cn2n+1 −CHO(n=2〜9)、Cn2n+1−SOH(n=3〜10)、およびCn2n+1−SH(n=3〜10)がそれぞれ用いられる。
The active material particles having an organic group on the surface can be obtained, for example, by thermally condensing the active material particles and a modifying material containing a constituent site of the organic group.
In order to bond the organic group to the surface of the active material particles, the modifying material includes HO—C n H 2n + 1 (n = 3 to 10), C n H 2n + 1 —NH 2 (n = 3~10), C n H 2n + 1 -COOH (n = 2~9), C n H 2n + 1 -CHO (n = 2~9), C n H 2n + 1 -SO 3 H (n = 3-10), and C n H 2n + 1 -SH ( n = 3~10) are used, respectively.

正極は、例えば、表面に有機基を有する正極活物質、カーボンブラックなどの導電助材、およびフッ素樹脂などの結着剤からなる。
負極は、例えば、表面に有機基を有する負極活物質、黒鉛などの導電助材、およびポリアクリル酸などの結着剤からなる。
The positive electrode includes, for example, a positive electrode active material having an organic group on the surface, a conductive aid such as carbon black, and a binder such as a fluororesin.
The negative electrode includes, for example, a negative electrode active material having an organic group on the surface, a conductive aid such as graphite, and a binder such as polyacrylic acid.

リチウム電池が二次電池の場合、リチウムイオンを挿入・脱離可能な正極活物質および負極活物質が用いられる。
正極活物質には、例えば、MnO、LiCoO、LiNiO、LiMnなどの金属酸化物が用いられる。負極活物質には、例えば、リチウム金属、黒鉛などの炭素材料、Si、Sn、もしくはAlなどの金属材料、Ti−Si、Zr−Ti、もしくはNi−Siなどの合金材料、またはLiTi12などの金属酸化物が用いられる。
また、リチウム電池が一次電池の場合、例えば、リチウムを挿入可能な正極活物質には、二酸化マンガンなどが用いられ、リチウムを脱離可能な負極活物質には、リチウム金属などが用いられる。
When the lithium battery is a secondary battery, a positive electrode active material and a negative electrode active material capable of inserting and removing lithium ions are used.
As the positive electrode active material, for example, a metal oxide such as MnO 2 , LiCoO 2 , LiNiO 2 , or LiMn 2 O 4 is used. Examples of the negative electrode active material include lithium materials, carbon materials such as graphite, metal materials such as Si, Sn, and Al, alloy materials such as Ti—Si, Zr—Ti, and Ni—Si, or Li 4 Ti 5. A metal oxide such as O 12 is used.
When the lithium battery is a primary battery, for example, manganese dioxide or the like is used as a positive electrode active material into which lithium can be inserted, and lithium metal or the like is used as a negative electrode active material from which lithium can be removed.

非水電解液には、例えば、プロピレンカーボネイト(PC)、エチレンカーボネイト(EC)、1,2―ジメトキシエタン(DME)等の単体、あるいはこれらの混合有機溶媒に、LiClOやLiPF等のリチウム塩を溶解したものが用いられる。 Nonaqueous electrolytes include, for example, propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), or a mixed organic solvent such as LiClO 4 or LiPF 6. What dissolved the salt is used.

表面に有機基を有する活物質粒子は、例えば、以下に示す図1の装置を用いて作製することができる。
図1は本実施形態に用いた装置の構成を示す。管状炉2には、管状炉2内の温度を測定するための熱電対3が配置されている。熱電対3により計測された管状炉2内の温度に応じて、管状炉2の加熱を制御することで、管状炉2内が所定温度に制御される。この管状炉2内に反応管1を挿入し、この反応管1において表面に有機基を有する活物質を生成する。
The active material particles having an organic group on the surface can be produced, for example, using the apparatus shown in FIG.
FIG. 1 shows the configuration of the apparatus used in this embodiment. The tubular furnace 2 is provided with a thermocouple 3 for measuring the temperature in the tubular furnace 2. By controlling the heating of the tubular furnace 2 according to the temperature in the tubular furnace 2 measured by the thermocouple 3, the inside of the tubular furnace 2 is controlled to a predetermined temperature. A reaction tube 1 is inserted into the tubular furnace 2, and an active material having an organic group on the surface is generated in the reaction tube 1.

まず、反応管1内に原料液を投入する。原料液には、活物質粉末と、活物質表面に結合させるアルコール等の有機基の構成部位を含む修飾材料とを蒸留水中に分散させたものが用いられる。
この原料液は、管状炉2内の温度に応じて、目的の圧力に調整される。この圧力は、原料液を純水であると仮定して、スチームテーブル(Steam Table)により算出される。例えば、反応温度200℃および反応圧力30MPaにおける水の密度は0.88g/cmであることから、反応管1の容積が10cmであれば、反応管1内に8.8cmの原料液を投入する。
First, the raw material liquid is charged into the reaction tube 1. As the raw material liquid, a material obtained by dispersing active material powder and a modifying material containing a constituent site of an organic group such as alcohol to be bonded to the active material surface in distilled water is used.
This raw material liquid is adjusted to a target pressure according to the temperature in the tubular furnace 2. This pressure is calculated by a steam table assuming that the raw material liquid is pure water. For example, since the density of water at the reaction temperature 200 ° C. and the reaction pressure 30MPa is 0.88 g / cm 3, if the reaction tube at 1 volume of 10 cm 3, the raw material solution of 8.8 cm 3 into the reaction tube 1 .

反応管1内に原料液を入れた後、反応管1を管状炉2内に挿入し、所定の反応時間(例えば5〜20分程度)放置する。所定時間経過した後、反応管1を管状炉2内から取り出し、冷水浴中に入れて、反応を速やかに停止させる。
そして、反応管1の内容物を取り出し、ろ過した後、水洗して、反応結果物である表面に有機基を有する活物質が得られる。
以下、本発明の実施例を詳細に説明する。但し、本実施例は本発明の一例を示すものであり、本発明は以下に示す実施例に限定されない。
After putting the raw material liquid into the reaction tube 1, the reaction tube 1 is inserted into the tubular furnace 2 and left for a predetermined reaction time (for example, about 5 to 20 minutes). After a predetermined time has elapsed, the reaction tube 1 is taken out of the tubular furnace 2 and placed in a cold water bath to quickly stop the reaction.
And after taking out the content of the reaction tube 1, filtering, and washing with water, the active material which has an organic group on the surface which is a reaction result product is obtained.
Hereinafter, embodiments of the present invention will be described in detail. However, this example shows an example of the present invention, and the present invention is not limited to the following example.

《実施例1》
本発明のリチウム電池が一次電池である場合を以下に示す。
(1)表面に有機基を有する正極活物質の作製
上記の図1と同じ装置を用いて、表面にアルコキシル基を有する二酸化マンガン粒子を作製した。反応管1には、容積5cmのSUS316製のものを用いた。
正極活物質として0.1gの二酸化マンガン粉末と、有機基を構成する部位を含む修飾材料として1.5×10−molのCH−(CH)−OHとを分散させた蒸留水4.41cmを反応管1内に投入し、200℃に調整した管状炉2内で10分間反応させた。反応後、反応管1を水浴に投入して反応を停止させた。
Example 1
The case where the lithium battery of the present invention is a primary battery is shown below.
(1) Production of Positive Electrode Active Material Having Organic Group on Surface Using the same apparatus as in FIG. 1, manganese dioxide particles having an alkoxyl group on the surface were produced. The reaction tube 1 was made of SUS316 having a volume of 5 cm 3 .
Manganese dioxide powder 0.1g as a cathode active material, CH of 1.5 × 10- 8 mol as modified material containing portion constituting an organic group 3 - (CH 2) 7 distilled water and -OH dispersed 4.41 cm 3 was put into the reaction tube 1 and reacted in the tubular furnace 2 adjusted to 200 ° C. for 10 minutes. After the reaction, the reaction tube 1 was put into a water bath to stop the reaction.

(2)正極の作製
上記で得られた表面に有機機を有する二酸化マンガンと、導電剤であるカーボンブラックと、結着剤であるフッ素樹脂とを、重量比90:5:5で混合し、正極合剤を得た。この正極合剤を加圧成形し円柱状の正極を作製した。
(2) Preparation of positive electrode Manganese dioxide having an organic machine on the surface obtained above, carbon black as a conductive agent, and fluororesin as a binder are mixed at a weight ratio of 90: 5: 5, A positive electrode mixture was obtained. This positive electrode mixture was pressure-molded to produce a cylindrical positive electrode.

(3)負極の作製
リチウム圧延板を円盤状に打ち抜いて負極とした。
(4)非水電解液の調製
プロピレンカーボネイト(PC)と、1,2―ジメトキシエタン(DME)とを体積比1:1で混合した溶媒に、過塩素酸リチウム(LiClO)を1モル/リットル溶解させて、非水電解液を得た。
(3) Production of negative electrode A lithium rolled plate was punched into a disc shape to obtain a negative electrode.
(4) Preparation of non-aqueous electrolyte In a solvent obtained by mixing propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1, 1 mol / liter of lithium perchlorate (LiClO 4 ) was added. A non-aqueous electrolyte was obtained by dissolving 1 liter.

(5)電池の作製
上記の正極、負極、および非水電解液を用いて、図2に示す構造を有する、外径20.0mmおよび厚さ3.2mmのコイン形電池(一次電池)を以下の手順で作製した。
ガスケット7と組み合わせた封口板8に負極5を圧着した。セパレータ6としてポリプロピレン製の不織布を円形に打ち抜いたものを封口板8に挿入した。さらに、正極4を挿入した後、電解液を注入した。電池ケース9を被せた後、封口金型に入れプレス機により、電池ケース9の端縁部を、ガスケット7を介して封口板8にかしめつけることにより、電池ケース9を封口した。なお、電池ケース9の正極4と接触する部分には、カーボン塗料10を塗布した。
(5) Production of Battery A coin-shaped battery (primary battery) having an outer diameter of 20.0 mm and a thickness of 3.2 mm having the structure shown in FIG. It was produced by the procedure.
The negative electrode 5 was pressure bonded to the sealing plate 8 combined with the gasket 7. As the separator 6, a polypropylene non-woven fabric punched out in a circle was inserted into the sealing plate 8. Further, after the positive electrode 4 was inserted, an electrolytic solution was injected. After covering the battery case 9, the battery case 9 was sealed by placing it in a sealing mold and caulking the edge of the battery case 9 to the sealing plate 8 via the gasket 7 with a press. A carbon paint 10 was applied to the portion of the battery case 9 that contacts the positive electrode 4.

《実施例2》
修飾材料にCH−(CH)−NHを使用した以外は、実施例1と同様に電池を作製した。
Example 2
A battery was fabricated in the same manner as in Example 1 except that CH 3 — (CH 2 ) 7 —NH 2 was used as the modifying material.

《実施例3》
修飾材料にCH−(CH)−COOHを使用した以外は、実施例1と同様に電池を作製した。
Example 3
A battery was fabricated in the same manner as in Example 1 except that CH 3 — (CH 2 ) 6 —COOH was used as the modifying material.

《実施例4》
修飾材料にCH−(CH)−CHOを使用した以外は実施例1と同様に電池を作製した。
Example 4
A battery was fabricated in the same manner as in Example 1 except that CH 3 — (CH 2 ) 6 —CHO was used as the modifying material.

《実施例5》
修飾材料にCH−(CH)−SOHを使用した以外は実施例1と同様に電池を作製した。
Example 5
A battery was fabricated in the same manner as in Example 1 except that CH 3 — (CH 2 ) 7 —SO 3 H was used as the modifying material.

《実施例6》
修飾材料にCH−(CH)−SHを使用した以外は実施例1と同様に電池を作製した。
Example 6
A battery was fabricated in the same manner as in Example 1 except that CH 3 — (CH 2 ) 7 —SH was used as the modifying material.

《実施例7》
修飾材料にCH−(CH)−OHを使用した以外は実施例1と同様に電池を作製した。
Example 7
A battery was fabricated in the same manner as in Example 1 except that CH 3 — (CH 2 ) 2 —OH was used as the modifying material.

《実施例8》
修飾材料にCH−OHを使用した以外は、実施例1と同様に電池を作製した。
Example 8
A battery was produced in the same manner as in Example 1 except that CH 3 —OH was used as the modifying material.

《実施例9》
修飾材料にCH−(CH)11−OHを使用した以外は、実施例1と同様に電池を作製した。
Example 9
A battery was fabricated in the same manner as in Example 1 except that CH 3 — (CH 2 ) 11 —OH was used as the modifying material.

《比較例1》
未処理(表面に有機基を結合させない)の二酸化マンガンを正極活物質に使用した以外は、実施例1と同様に電池を作製した。
<< Comparative Example 1 >>
A battery was produced in the same manner as in Example 1 except that untreated manganese dioxide (which did not bind organic groups to the surface) was used as the positive electrode active material.

《実施例10》
本発明のリチウム電池が二次電池の場合を以下に示す。
(1)表面に有機基を有する正極活物質および負極活物質の作製
正極活物質にLiCoOを用い、負極活物質にSi金属を用い、上記の図1と同じ装置を用いて、表面にアルコキシル基を有するLiCoO粉末およびSi粉末を、以下の手順で作製した。反応管1には、容積5cmのSUS316製のものを用いた。
0.1gのLiCoO粉末またはSi粉末と、修飾材料として1.5×10−8molのCH−(CH)−OHとを分散させた蒸留水4.41cmを反応管1内に投入し、200℃に調整した管状炉2内で10分間反応させた。反応後、反応管1を水浴に投入して反応を停止させた。
Example 10
The case where the lithium battery of the present invention is a secondary battery is shown below.
(1) Preparation of positive electrode active material and negative electrode active material having organic group on surface Using LiCoO 2 for the positive electrode active material, Si metal for the negative electrode active material, and using the same apparatus as in FIG. LiCoO 2 powder and Si powder having a group were prepared by the following procedure. The reaction tube 1 was made of SUS316 having a volume of 5 cm 3 .
4.41 cm 3 of distilled water in which 0.1 g of LiCoO 2 powder or Si powder and 1.5 × 10 −8 mol of CH 3 — (CH 2 ) 7 —OH were dispersed as a modifying material was added in the reaction tube 1. And reacted for 10 minutes in the tubular furnace 2 adjusted to 200 ° C. After the reaction, the reaction tube 1 was put into a water bath to stop the reaction.

(2)正極の作製
上記で得られた、表面に有機基を有するLiCoOと、導電剤としてカーボンブラックと、結着剤としてフッ素樹脂とを、重量比90:5:5で混合し、正極合剤を得た。この正極合剤を加圧成形し円柱状の正極を作製した。
(2) Production of positive electrode LiCoO 2 having an organic group on the surface obtained above, carbon black as a conductive agent, and fluororesin as a binder are mixed in a weight ratio of 90: 5: 5 to obtain a positive electrode A mixture was obtained. This positive electrode mixture was pressure-molded to produce a cylindrical positive electrode.

(3)負極の作製
上記で得られた、表面に有機基を有するSiと、導電剤として黒鉛と、結着剤としてポリアクリル酸とを、重量比70:20:10で混合し、負極合剤を得た。この負極合剤を加圧成形し円柱状の負極を作製した。
(3) Production of negative electrode The above-obtained Si having an organic group on the surface, graphite as a conductive agent, and polyacrylic acid as a binder were mixed at a weight ratio of 70:20:10 to obtain a negative electrode composite. An agent was obtained. This negative electrode mixture was pressure-molded to produce a cylindrical negative electrode.

(4)非水電解液の調製
プロピレンカーボネイト(PC)と、1,2―ジメトキシエタン(DME)とを体積比1:1で混合した溶媒に、過塩素酸リチウム(LiClO)を1モル/リットル溶解させて、非水電解液を得た。
(4) Preparation of non-aqueous electrolyte In a solvent obtained by mixing propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1, 1 mol / liter of lithium perchlorate (LiClO 4 ) was added. A non-aqueous electrolyte was obtained by dissolving 1 liter.

(5)電池の作製
上記で得られた正極、負極、および非水電解液を用いて、図3に示す構造を有する外径20.0mmおよび厚さ3.2mmのコイン形電池(二次電池)を以下の手順で作製した。
ガスケット15と組み合わせた封口板16に圧延板から円盤状に打ち抜いたリチウム12を圧着し、負極13を挿入した。ポリプロピレン製の不織布を円形に打ち抜いたセパレータ14を封口板16に挿入した。正極11を挿入した後、電解液を注入し、電池ケース17を被せた後、封口金型に入れプレス機により、電池ケース17の端縁部を、ガスケット15を介して封口板16にかしめつけることにより、電池ケース17を封口した。なお、電池ケース17の正極11と接触する部分、および封口板16のリチウム12と接触する部分には、カーボン塗料18を塗布した。
(5) Production of Battery Using the positive electrode, negative electrode, and nonaqueous electrolyte obtained above, a coin-type battery (secondary battery) having an outer diameter of 20.0 mm and a thickness of 3.2 mm having the structure shown in FIG. ) Was prepared by the following procedure.
Lithium 12 punched out from a rolled plate into a disc shape was pressure-bonded to a sealing plate 16 combined with a gasket 15, and a negative electrode 13 was inserted. A separator 14 in which a polypropylene nonwoven fabric was punched out in a circle was inserted into the sealing plate 16. After the positive electrode 11 is inserted, an electrolytic solution is injected, and the battery case 17 is covered. Then, the battery case 17 is put in a sealing mold, and the edge of the battery case 17 is caulked to the sealing plate 16 via the gasket 15 by a press machine. As a result, the battery case 17 was sealed. A carbon paint 18 was applied to a portion of the battery case 17 that contacts the positive electrode 11 and a portion of the sealing plate 16 that contacts the lithium 12.

《実施例11》
正極活物質にLiNiOを使用した以外は、実施例10と同様に電池を作製した。
Example 11
A battery was produced in the same manner as in Example 10 except that LiNiO 2 was used as the positive electrode active material.

《実施例12》
正極活物質にLiMnを使用した以外は、実施例10と同様に電池を作製した。
Example 12
A battery was produced in the same manner as in Example 10 except that LiMn 2 O 4 was used as the positive electrode active material.

《実施例13》
負極活物質にSn金属を使用した以外は、実施例10と同様に電池を作製した。
Example 13
A battery was produced in the same manner as in Example 10 except that Sn metal was used for the negative electrode active material.

《実施例14》
負極活物質にAl金属を使用した以外は、実施例10と同様に電池を作製した。
Example 14
A battery was produced in the same manner as in Example 10 except that Al metal was used as the negative electrode active material.

《実施例15》
負極活物質にSiを主体とするA相と、TiおよびSiの金属間化合物からなるB相とを含むTi−Si合金を使用した。Ti−Si合金は以下のように作製した。
Ti粉末(純度99.99%、粒径100〜150μm)とSi粉末(純度99.9%、平均粒径3μm)とを混合して、混合粉末を得た。このとき、Si粉末とTi粉末の混合割合は、B相がTiSiを構成すると仮定した場合に、生成する合金材料中のA相とB相の合計重量に占めるA相の重量割合が約80%となるように調整した。
Example 15
A Ti—Si alloy containing an A phase mainly composed of Si and a B phase composed of an intermetallic compound of Ti and Si was used as the negative electrode active material. The Ti—Si alloy was produced as follows.
Ti powder (purity 99.99%, particle size 100-150 μm) and Si powder (purity 99.9%, average particle size 3 μm) were mixed to obtain a mixed powder. At this time, the mixing ratio of the Si powder and the Ti powder is such that, when it is assumed that the B phase constitutes TiSi 2 , the weight ratio of the A phase to the total weight of the A phase and the B phase in the generated alloy material is about 80%. % Was adjusted.

混合粉末を3.5kg秤量して、振動ミル装置(中央化工機(株)製、型番FV−20)に投入し、さらにステンレス鋼製ボール(直径2cm)をミル装置内容量の70体積%を占めるように投入した。容器内部を真空に引いた後、Ar(純度99.999%、日本酸素(株)製)を導入して、1気圧とした。そして、メカニカルアロイング操作を80時間行い、Ti−Si合金粉末を得た。なお、メカニカルアロイング操作時におけるミル装置の作動条件は、振幅8mm、回転数1200rpmとした。
上記で得られたTi−Si合金を負極活物質として用いた以外は実施例10と同様に電池を作製した。
3.5 kg of the mixed powder is weighed and put into a vibration mill apparatus (manufactured by Chuo Kako Co., Ltd., model number FV-20). It was thrown to occupy. After the inside of the container was evacuated, Ar (purity 99.999%, manufactured by Nippon Oxygen Co., Ltd.) was introduced to make 1 atmosphere. And mechanical alloying operation was performed for 80 hours and Ti-Si alloy powder was obtained. The operating conditions of the mill apparatus during the mechanical alloying operation were an amplitude of 8 mm and a rotation speed of 1200 rpm.
A battery was fabricated in the same manner as in Example 10 except that the Ti—Si alloy obtained above was used as the negative electrode active material.

《実施例16》
Ti粉末の代わりに、Zr粉末(純度99.99%、粒径100〜150μm)を用いた以外は、実施例15と同様の方法により、負極活物質にSiを主体とするA相と、ZrおよびSiの金属間化合物からなるB相とを含むZr−Si合金を作製した。
上記で得られたZr−Si合金を負極活物質として用いた以外は実施例10と同様に電池を作製した。
Example 16
Instead of Ti powder, Zr powder (purity 99.99%, particle size 100 to 150 μm) was used in the same manner as in Example 15 except that A phase mainly composed of Si and Zr And a Zr—Si alloy containing a B phase composed of an intermetallic compound of Si.
A battery was fabricated in the same manner as in Example 10 except that the Zr—Si alloy obtained above was used as the negative electrode active material.

《実施例17》
Ti粉末の代わりに、Ni粉末(純度99.99%、粒径100〜150μm)を用いた以外は、実施例15と同様の方法により、負極活物質にSiを主体とするA相と、NiおよびSiの金属間化合物からなるB相とを含むNi−Si合金を作製した。
上記で得られたNi−Si合金を負極活物質として用いた以外は実施例10と同様に電池を作製した。
Example 17
A phase mainly composed of Si as the negative electrode active material and Ni were obtained in the same manner as in Example 15 except that Ni powder (purity 99.99%, particle size 100 to 150 μm) was used instead of Ti powder. And a Ni-Si alloy containing a B phase composed of an intermetallic compound of Si.
A battery was fabricated in the same manner as in Example 10 except that the Ni—Si alloy obtained above was used as the negative electrode active material.

《比較例2》
未処理のLiCoOおよび未処理のSi金属を使用した以外は、実施例10と同様に電池を作製した。
<< Comparative Example 2 >>
A battery was fabricated in the same manner as in Example 10 except that untreated LiCoO 2 and untreated Si metal were used.

《比較例3》
未処理のLiNiOおよび未処理のSi金属を使用した以外は、実施例11と同様に電池を作製した。
<< Comparative Example 3 >>
A battery was fabricated in the same manner as in Example 11 except that untreated LiNiO 2 and untreated Si metal were used.

《比較例4》
未処理のLiMn4および未処理のSi金属を使用した以外は、実施例12と同様に電池を作製した。
<< Comparative Example 4 >>
A battery was fabricated in the same manner as in Example 12 except that untreated LiMn 2 O 4 and untreated Si metal were used.

《比較例5》
未処理のLiCoOおよび未処理のSn金属を使用した以外は、実施例13と同様に電池を作製した。
<< Comparative Example 5 >>
A battery was fabricated in the same manner as in Example 13 except that untreated LiCoO 2 and untreated Sn metal were used.

《比較例6》
未処理のLiCoOおよび未処理のAl金属を使用した以外は、実施例14と同様に電池を作製した。
<< Comparative Example 6 >>
A battery was fabricated in the same manner as in Example 14 except that untreated LiCoO 2 and untreated Al metal were used.

《比較例7》
未処理のLiCoOおよび未処理のTi−Si合金を使用した以外は、実施例15と同様に電池を作製した。
<< Comparative Example 7 >>
A battery was fabricated in the same manner as in Example 15 except that untreated LiCoO 2 and untreated Ti—Si alloy were used.

《比較例8》
未処理のLiCoOおよび未処理のZr−Si合金を使用した以外は、実施例16と同様に電池を作製した。
<< Comparative Example 8 >>
A battery was fabricated in the same manner as in Example 16 except that untreated LiCoO 2 and untreated Zr—Si alloy were used.

《比較例9》
未処理のLiCoOおよび未処理のNi−Si合金を使用した以外は、実施例17と同様に電池を作製した。
<< Comparative Example 9 >>
A battery was fabricated in the same manner as in Example 17 except that untreated LiCoO 2 and untreated Ni—Si alloy were used.

[電池の評価]
一次電池である実施例1〜9および比較例1の電池については、各10個ずつ保護抵抗15kΩで2.0Vまで放電を行った。
また、二次電池である実施例10〜17および比較例2〜9の電池については、充放電サイクル試験として、充電レートおよび放電レート1Cで、電池電圧3.5〜4.5Vの範囲で充電と放電を交互に繰り返した。そして、50サイクル時の容量維持率を下記の式より求めた。
50サイクル時の容量維持率(%)
=(50サイクル時の放電容量/2サイクル時の放電容量)×100
本発明の実施例1〜9および比較例1の評価結果を表1に示す。
[Battery evaluation]
For the batteries of Examples 1 to 9 and Comparative Example 1 which are primary batteries, 10 batteries each were discharged to 2.0 V with a protective resistance of 15 kΩ.
Moreover, about the battery of Examples 10-17 which is a secondary battery, and Comparative Examples 2-9, it charges in the range of battery voltage 3.5-4.5V by the charge rate and the discharge rate 1C as a charging / discharging cycle test. And discharge were repeated alternately. And the capacity | capacitance maintenance factor at the time of 50 cycles was calculated | required from the following formula.
Capacity maintenance rate at 50 cycles (%)
= (Discharge capacity at 50 cycles / discharge capacity at 2 cycles) × 100
Table 1 shows the evaluation results of Examples 1 to 9 and Comparative Example 1 of the present invention.

Figure 0005083743
Figure 0005083743

表1より、本発明の実施例1〜9の電池は、従来の比較例1の電池に比べ放電容量が大きいことがわかった。これは、本発明の二酸化マンガンが表面に有機基の層を有していることにより、二酸化マンガン粒子間の凝集が抑えられ、導電助剤と均一に混合することができたためである。また、活物質表面が疎水性を有するため、電極内に電解液が含浸され易くなったためである。   From Table 1, it was found that the batteries of Examples 1 to 9 of the present invention had a larger discharge capacity than the battery of Comparative Example 1 of the related art. This is because the manganese dioxide of the present invention has an organic group layer on the surface, so that aggregation between the manganese dioxide particles can be suppressed and can be uniformly mixed with the conductive assistant. Further, since the surface of the active material is hydrophobic, the electrode is easily impregnated with the electrolytic solution.

実施例8の電池と比べて、実施例7の電池のほうが放電容量が大きかった。これは、実施例7で使用した二酸化マンガンの方が有機基の分子量が大きく二酸化マンガン表面のアルコキシル基からなる層が厚いため、活物質粒子の凝集を防ぐ効果および活物質表面が疎水性を有することによる効果がより大きくなったためと考えられる。   Compared with the battery of Example 8, the battery of Example 7 had a larger discharge capacity. This is because the manganese dioxide used in Example 7 has a larger organic group molecular weight and a thick layer of alkoxyl groups on the surface of the manganese dioxide, so that the effect of preventing the aggregation of the active material particles and the surface of the active material are hydrophobic. This is thought to be due to the greater effect.

また、実施例9の電池と比べて実施例1の電池のほうが放電容量が大きかった。これは、実施例9で使用した二酸化マンガン表面のアルコキシル基の分子量が大きすぎるため、二酸化マンガン表面のアルコキシル基からなる層が厚くなり、活物質粒子表面の電子伝導を阻害したためである。
次に、本発明の実施例10〜17および比較例2〜9の評価結果を表2に示す。
Moreover, the battery of Example 1 had a larger discharge capacity than the battery of Example 9. This is because the molecular weight of the alkoxyl group on the surface of manganese dioxide used in Example 9 is too large, so that the layer composed of the alkoxyl group on the surface of manganese dioxide becomes thick and the electron conduction on the surface of the active material particles is inhibited.
Next, Table 2 shows the evaluation results of Examples 10 to 17 and Comparative Examples 2 to 9 of the present invention.

Figure 0005083743
Figure 0005083743

比較例2〜9の電池と比べて、本発明の実施例10〜17の電池のほうが、活物質表面に有機基を有することにより、活物質と導電助剤であるカーボンとが均一に分散し、充放電時における活物質の集電性が向上したため、充放電サイクル特性が向上した。   Compared with the batteries of Comparative Examples 2 to 9, the batteries of Examples 10 to 17 of the present invention have an organic group on the surface of the active material, so that the active material and the carbon as the conductive auxiliary agent are more uniformly dispersed. Since the current collecting property of the active material during charge / discharge was improved, the charge / discharge cycle characteristics were improved.

本発明のリチウム電池は、携帯機器や情報機器等の電子機器の電源として好適に用いられる。   The lithium battery of the present invention is suitably used as a power source for electronic devices such as portable devices and information devices.

表面に有機基を有する活物質を作製するための装置を示す図である。It is a figure which shows the apparatus for producing the active material which has an organic group on the surface. 本発明の実施例のコイン形電池(一次電池)の縦断面図である。It is a longitudinal cross-sectional view of the coin-type battery (primary battery) of the Example of this invention. 本発明の他の実施例のコイン形電池(二次電池)の縦断面図である。It is a longitudinal cross-sectional view of the coin-type battery (secondary battery) of the other Example of this invention.

符号の説明Explanation of symbols

1 反応管
2 管状炉
3 熱電対
4、11 正極
5、12 リチウム金属
6、14 セパレータ
7、15 ガスケット
8、16 封口板
9、17 電池ケース
10、18 カーボン塗料
13 負極

DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Tubular furnace 3 Thermocouple 4, 11 Positive electrode 5, 12 Lithium metal 6, 14 Separator 7, 15 Gasket 8, 16 Sealing plate 9, 17 Battery case 10, 18 Carbon paint 13 Negative electrode

Claims (5)

リチウムイオンを挿入・脱離可能な正極活物質を含む正極と、リチウムイオンを挿入・脱離可能な負極活物質を含む負極と、リチウム塩を溶解した非水電解液とを具備するリチウム二次電池であって、
前記正極活物質は金属酸化物であり、
前記負極活物質は、金属酸化物、金属又は合金のいずれかであり、
前記正極活物質および負極活物質の少なくとも一方、表面に、−O−Cn2n+1(n=3〜10)で表されるアルコキシル基が結合したものであることを特徴とするリチウム二次電池。
Lithium secondary comprising a positive electrode including a positive electrode active material capable of inserting / extracting lithium ions, a negative electrode including a negative electrode active material capable of inserting / extracting lithium ions, and a non-aqueous electrolyte in which a lithium salt is dissolved A battery,
The positive electrode active material is a metal oxide,
The negative electrode active material is one of a metal oxide, a metal, or an alloy,
At least one of the positive electrode active material and the negative electrode active material is obtained by bonding an alkoxyl group represented by —O—C n H 2n + 1 (n = 3 to 10) to the surface of lithium. Secondary battery.
表面に、−O−Cn2n+1(n=3〜10)で表されるアルコキシル基が結合した前記活物質が、HO−Cn2n+1(n=3〜10)で表されるアルコールと、活物質とを熱縮合させることにより得られることを特徴とする請求項1に記載のリチウム二次電池。 On the surface, Table with -O-C n H 2n + 1 wherein active material alkoxyl group is bonded, represented by (n = 3 to 10) is, HO-C n H 2n + 1 (n = 3~10) 2. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is obtained by thermally condensing an alcohol and an active material. 前記負極活物質または正極活物質が金属酸化物であることを特徴とする請求項1または2に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the negative electrode active material or the positive electrode active material is a metal oxide. 前記負極活物質が金属であることを特徴とする請求項1または2に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the negative electrode active material is a metal. 前記負極活物質が合金であることを特徴とする請求項1または2に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the negative electrode active material is an alloy.
JP2005198128A 2005-07-06 2005-07-06 Lithium battery Expired - Fee Related JP5083743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198128A JP5083743B2 (en) 2005-07-06 2005-07-06 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198128A JP5083743B2 (en) 2005-07-06 2005-07-06 Lithium battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011184435A Division JP5268123B2 (en) 2011-08-26 2011-08-26 Lithium battery

Publications (2)

Publication Number Publication Date
JP2007018828A JP2007018828A (en) 2007-01-25
JP5083743B2 true JP5083743B2 (en) 2012-11-28

Family

ID=37755820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198128A Expired - Fee Related JP5083743B2 (en) 2005-07-06 2005-07-06 Lithium battery

Country Status (1)

Country Link
JP (1) JP5083743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064907A1 (en) * 2016-10-08 2018-04-12 宁德时代新能源科技股份有限公司 Preparation method for modified positive electrode material and lithium-ion battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233352A (en) * 2010-04-27 2011-11-17 Semiconductor Energy Lab Co Ltd Power storage device
US9449729B2 (en) 2010-09-21 2016-09-20 Basf Se Process for producing electrode materials
WO2012038412A1 (en) * 2010-09-21 2012-03-29 Basf Se Method for producing surface-modified electrode materials
JP6070243B2 (en) * 2013-02-14 2017-02-01 日本ゼオン株式会社 Method for producing composite particles for electrochemical device positive electrode
KR101751574B1 (en) 2014-09-30 2017-06-27 주식회사 엘지화학 Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery comprising same
JP6869706B2 (en) * 2015-12-11 2021-05-12 株式会社半導体エネルギー研究所 Negative electrode for power storage device, power storage device, and electrical equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000811B2 (en) * 2001-04-27 2012-08-15 チタン工業株式会社 Lithium titanate powder and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064907A1 (en) * 2016-10-08 2018-04-12 宁德时代新能源科技股份有限公司 Preparation method for modified positive electrode material and lithium-ion battery

Also Published As

Publication number Publication date
JP2007018828A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4949018B2 (en) Lithium secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4876468B2 (en) Nonaqueous electrolyte secondary battery
JP5225342B2 (en) Battery electrode and method for manufacturing the same, non-aqueous electrolyte battery, battery pack and active material
WO2000060681A1 (en) Nonaqueous electrolyte secondary cell and its negative plate
JP5083743B2 (en) Lithium battery
CN1293655C (en) Positive plate material and cell comprising it
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2006261092A (en) Electrolyte and battery
JP3588885B2 (en) Non-aqueous electrolyte battery
JP2005011650A (en) Negative electrode material and battery using the same
JP4626679B2 (en) Negative electrode active material and secondary battery
JP2008198524A (en) Nonaqueous electrolyte secondary battery
JP3755506B2 (en) Anode material for secondary battery and secondary battery using the same
JP4055207B2 (en) Negative electrode active material and battery using the same
JP2003187798A (en) Lithium secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2002170566A (en) Lithium secondary cell
JP2008288049A (en) Lithium ion secondary battery
JP2004006188A (en) Non-aqueous electrolyte battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP3696159B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061228

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131127

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20140327

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees