JP4153192B2 - Lithium titanate for electrodes and uses thereof - Google Patents

Lithium titanate for electrodes and uses thereof Download PDF

Info

Publication number
JP4153192B2
JP4153192B2 JP2001333831A JP2001333831A JP4153192B2 JP 4153192 B2 JP4153192 B2 JP 4153192B2 JP 2001333831 A JP2001333831 A JP 2001333831A JP 2001333831 A JP2001333831 A JP 2001333831A JP 4153192 B2 JP4153192 B2 JP 4153192B2
Authority
JP
Japan
Prior art keywords
particle size
lithium titanate
lithium
discharge
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001333831A
Other languages
Japanese (ja)
Other versions
JP2003137547A (en
Inventor
清 中原
良介 中島
朋子 松島
宏 真嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP2001333831A priority Critical patent/JP4153192B2/en
Publication of JP2003137547A publication Critical patent/JP2003137547A/en
Application granted granted Critical
Publication of JP4153192B2 publication Critical patent/JP4153192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池の活物質として有用なチタン酸リチウム及びそれを用いたリチウム二次電池に関するものである。
【0002】
【従来の技術】
リチウム二次電池はそのエネルギー密度の高さから携帯電話やノートパソコン用の電源として進歩してきたが、近年のIT技術の進歩により携帯端末機器の小型、軽量化に伴って、その電源である電池にも更に小型、高容量化が求められるようになってきた。またエネルギー密度の高さを生かし電気自動車やハイブリッド自動車用としての電源や電力貯蔵用電源として注目され始めている。
【0003】
リチウムチタン複合酸化物であるチタン酸リチウムは、代表的なものにLi4Ti512があり、リチウム二次電池の活物質とした場合、リチウム基準で1.5Vの電圧を有し、サイクル劣化が小さく長寿命であることが特徴である。また、時計用小型リチウム二次電池の活物質として実績を持ち、充放電に際して膨張・収縮が無視できるという特徴から大型電池用の活物質としても注目されている。この材料は正極活物質としての利用の他、負極活物質としての利用面も開けており、その将来が期待されるものである。
【0004】
電池の小型、高容量化のためには活物質自体の電気容量を大きくする方法があり、例えばWO99/03784にはチタン酸リチウムの1部をプロトンで置換して水素化することにより、理論容量を上回る充放電容量が得られることが提案されている。しかしながらHEV自動車や電力貯蔵用電池を考えた場合、短時間に大電流を取り出す必要があるため、小電流放出時の放電容量はさることながら、大電流放出時の放電容量も問題となる。通常大電流放出時の容量低下は避けられないが、それを極力抑制するために電極や電池の作製方法により種々の工夫がなされている。しかしながら、活物質自体の改良によりレ−ト特性を高める方法については未だに報告がない。
【0005】
【発明が解決しようとする課題】
本発明はチタン酸リチウムを用いるリチウム二次電池特性を改良する為に、粒径及び粒度分布が制御されたチタン酸リチウム粉体を製造すること、及び該チタン酸リチウムを用いたリチウム二次電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、チタン酸リチウムの粒径を制御することでチタン酸リチウムの放電特性が向上し、このチタン酸リチウムを活物質として使用したリチウム二次電池は、優れた充放電特性を示すことを見い出し、本発明を完成させた。
【0007】
すなわち、本発明の電極用チタン酸リチウムは、原料として純度95質量%以上のアナターゼ型二酸化チタンを用いたチタン酸リチウムであって、Li4Ti512を主成分とし、その平均粒径が0.5〜1.5μm、その最大粒径が25μm以下であり、かつ、次式
【数2】

Figure 0004153192
(なお、d84%とは粒径の累積カーブが84%となる点の粒径を示し、d16%とは粒径の累積カーブが16%となる点の粒径を示す。)
で示されるSD値が0.5μm以下であることを特徴とする。
【0008】
また、本発明の電極用チタン酸リチウムにおいて、その粉体としてのタップ密度が0.75g/mL以上であるとよい。
【0009】
また、前記電極用チタン酸リチウムが正極または負極活物質として用いられた電池用電極を提供することができる。
【0010】
また、前記電池用電極が用いられたリチウム二次電池を提供することができる。
【0011】
更に、前記電極用チタン酸リチウムを正極活物質とし、金属Liを負極として作製したリチウム二次電池であって、充・放電試験の結果について、放電レート0.15Cにおける放電電圧が1.5〜1.6Vかつ初期放電容量が155mAh/g以上であり、そして、放電レート10.0Cにおける放電容量が放電レート0.15Cにおける放電容量に対して80%以上であることを特徴とするリチウム二次電池を提供することができる。
【0012】
【発明の実施の形態】
本発明の電極用チタン酸リチウムは、Li4Ti512を主成分とし平均粒径が0.5〜1.5μmであって最大粒径が25μm以下であり、かつ、次式で示されるSD値が0.5μm以下であることを特徴とする。SD値は粒度分布を示すパラメーターであり、数値が小さい程、分布範囲が狭いことを示し、0.5μm以下の範囲において、電極とした時に良好な充放電特性を示す。更に、タップ密度が0.75g/mL以上であることが好ましい。
【数3】
Figure 0004153192
d84%:粒径の累積カーブが84%となる点の粒径
d16%:粒径の累積カーブが16%となる点の粒径
【0013】
本発明の電極用チタン酸リチウムは、代表的には原料を水中で均一に混合する工程、該混合物を乾燥する工程及び熱処理する工程により製造できる。
【0014】
まず、リチウム原料として水酸化リチウム、水酸化リチウム・1水和物、酸化リチウム、炭酸水素リチウム、炭酸リチウム等を水に混合または溶解する。この液にLi2OとTiO2のモル比が2:5となるように酸化チタンを混合する。使用する酸化チタンはアナターゼ型二酸化チタンまたは含水酸化チタンが好ましい。アナターゼ型二酸化チタンについては、純度が少なくとも95質量%以上が必要であり、好ましくは98質量%以上のものである。純度が95質量%未満の場合、単位活物質当たりの容量が下がってしまうため好ましくない。含水酸化チタンについては、焼成してアナターゼ型二酸化チタンとしたときに、上記の範囲となるものであり、その焼成前の純度の目安は90質量%以上である。
【0015】
混合液のスラリー濃度はLi原料が0.48〜4.8モル/L、酸化チタンが0.60〜6.00モル/Lであるとよい。前記範囲より濃度が高いと均一混合に強い撹拌力が必要となる。また、乾燥時の配管閉塞等のトラブルの原因となり好ましくない。上記範囲より濃度が低いと蒸発水分量が増加し、乾燥コストが上がり好ましくない。乾燥方法はそのまま乾燥しても良いし、噴霧乾燥、流動層乾燥、転動造粒乾燥あるいは凍結乾燥を単独または組み合わせて使用してもよい。
【0016】
乾燥物を大気中で熱処理し、チタン酸リチウムを得る。熱処理温度は700〜1000℃で1〜10時間であるが、800〜900℃で5〜10時間が好ましい。700℃未満では酸化チタンとリチウム化合物の反応が不十分となり、1000℃を超えた場合、顕著にチタン酸リチウムの焼結が起こり、電池特性が悪くなるので好ましくない。
【0017】
前記チタン酸リチウムに粉砕処理を行う。
【0018】
粉砕機は一般的な装置を使用することができ、例えばライカイ機、ジェットミル、ボールミル、ハンマーミル等を使用することができる。また、粉砕前にポリオール等の有機物を添加し粉砕効率を上げても、本発明の効果は損なわれるものではない。
【0019】
上記により合成したチタン酸リチウムを正極活物質として使用し、負極にLi金属を使用したコイン型二次電池を作製し、充・放電試験を行った。その結果、本発明によるチタン酸リチウムは放電レート0.15Cでの放電電圧が1.5〜1.6Vを満足し、初期放電容量が155mAh/g以上と高い値を得ることができ、また放電レート10.0Cの放電容量が0.15Cに対して80%以上であることを見出した。
【0020】
【実施例】
以下、実施例及び比較例を基に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0021】
【実施例1】
水酸化リチウム(LiOH・H2O)を12質量%濃度で水に溶解し、該溶解液にアナターゼ型二酸化チタンをLi2OとTiO2のモル比が2:5となる量を添加し混合した。混合物を110℃で噴霧乾燥し、875℃で6時間熱処理を行いチタン酸リチウムを作製した。このチタン酸リチウムを振動ボールミルにより4時間粉砕した。本試料のタップ密度をJIS−K−5101タップ法により測定した。粒度分布及び平均粒径はレーザー回折散乱法(HONEYWELL社製マイクロトラック 9320−X100)により測定した。また本試料82重量部とアセチレンブラック9重量部及びポリフッ化ビニリデン9重量部を混合後、N−メチル−2−ピロリドンに固形分濃度46.5質量%でハイシェアーミキサーにより5分間混練し、塗料を作製した。
【0022】
次に上記塗料をアルミ箔上にドクターブレード法で乾燥後の有効物質の質量が0.01g/cm2になるように塗布した。110℃で真空乾燥後、初期電極合剤の厚みに対して80%にロールプレスした。1cm2に打ち抜き後、図1に示すコイン電池の正極とした。図1において負極は金属リチウム板を、電解液はエチレンカーボネートとジメチルカーボネートの等容量混合物にLiPF6を1mol/Lで溶解したものを、セパレーターはポリプロピレン多孔膜を使用した。上記により作製したコイン電池を用いて放電レート0.15Cで1.0Vまで放電後、同レ−トで3.0Vまで充電し、このサイクルを3回繰り返した。その後、放電レートを10.0Cとして1.0Vまで放電を行った。結果を表1及び図2に示す。
【0023】
【実施例2】
チタン酸リチウムをライカイ機により粉砕した以外は実施例1と同様に行い、タップ密度、粒度分布、平均粒径及び放電容量を測定した。結果を表1及び図2に示す。
【0024】
【比較例1】
チタン酸リチウムを粉砕しなかった以外は実施例1と同様に行い、タップ密度、粒度分布、平均粒径及び放電容量を測定した。結果を表1及び図2に示す。
【0025】
【表1】
Figure 0004153192
【0026】
【発明の効果】
以上説明したように、本発明のチタン酸リチウムは粒径及び粒度分布を制御することにより、大電流放電時の放電容量を大きくすることができる。
【図面の簡単な説明】
【図1】本実施例及び比較例のチタン酸リチウム粉体を正極に使用したコイン電池の断面図である。
【図2】本実施例のチタン酸リチウム及び比較例のチタン酸リチウムを正極に使用したコイン電池の放電曲線を示す線図である。
【符号の説明】
3 正極
4 負極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to lithium titanate useful as an active material for a lithium secondary battery and a lithium secondary battery using the same.
[0002]
[Prior art]
Lithium secondary batteries have made progress as power sources for mobile phones and notebook PCs due to their high energy density, but with the recent advances in IT technology, the battery that is the power source has become smaller and lighter. In addition, further miniaturization and higher capacity have been demanded. Also, taking advantage of its high energy density, it has begun to attract attention as a power source for electric vehicles and hybrid vehicles and a power storage power source.
[0003]
Lithium titanate which is a lithium-titanium composite oxide is typically Li 4 Ti 5 O 12 , and has a voltage of 1.5 V based on lithium when used as an active material for a lithium secondary battery. It is characterized by small deterioration and long life. In addition, it has a track record as an active material for small lithium secondary batteries for watches, and has attracted attention as an active material for large batteries due to the feature that expansion and contraction can be ignored during charging and discharging. In addition to being used as a positive electrode active material, this material is also open to use as a negative electrode active material, and its future is expected.
[0004]
In order to reduce the size and increase the capacity of the battery, there is a method of increasing the electric capacity of the active material itself. For example, in WO99 / 03784, a part of lithium titanate is replaced with a proton and hydrogenated to obtain a theoretical capacity. It has been proposed that a charge / discharge capacity greater than 1 can be obtained. However, when considering HEV automobiles and power storage batteries, since it is necessary to take out a large current in a short time, not only the discharge capacity when discharging a small current but also the discharge capacity when discharging a large current becomes a problem. Usually, a capacity drop during large current discharge is unavoidable, but in order to suppress it as much as possible, various devices have been made by electrode and battery manufacturing methods. However, there is still no report on a method for enhancing the rate characteristics by improving the active material itself.
[0005]
[Problems to be solved by the invention]
In order to improve the characteristics of a lithium secondary battery using lithium titanate, the present invention provides a lithium titanate powder having a controlled particle size and particle size distribution, and a lithium secondary battery using the lithium titanate. Is to provide.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have improved the discharge characteristics of lithium titanate by controlling the particle size of lithium titanate, and lithium using this lithium titanate as an active material. The secondary battery was found to exhibit excellent charge / discharge characteristics, and the present invention was completed.
[0007]
That is, the lithium titanate for an electrode of the present invention is a lithium titanate using anatase-type titanium dioxide having a purity of 95% by mass or more as a raw material, mainly composed of Li 4 Ti 5 O 12 and having an average particle size. 0.5 to 1.5 μm, the maximum particle size is 25 μm or less, and the following formula:
Figure 0004153192
(Note that d84% indicates the particle size at which the cumulative curve of particle size is 84%, and d16% indicates the particle size at which the cumulative curve of particle size becomes 16%.)
The SD value indicated by is not more than 0.5 μm.
[0008]
Moreover, in the lithium titanate for electrodes of the present invention, the tap density as the powder is preferably 0.75 g / mL or more.
[0009]
Further, it is possible to the lithium electrode titanate to provide a battery electrode that was used as a positive electrode or a negative electrode active material.
[0010]
Moreover, the lithium secondary battery using the said battery electrode can be provided.
[0011]
Furthermore, the lithium secondary battery produced using the lithium titanate for an electrode as a positive electrode active material and a metal Li as a negative electrode , wherein the discharge voltage at a discharge rate of 0.15C is 1.5 to 1.5 as a result of the charge / discharge test. Lithium secondary, characterized in that the initial discharge capacity is 1.6 V or more and 155 mAh / g or more, and the discharge capacity at a discharge rate of 10.0 C is 80% or more of the discharge capacity at a discharge rate of 0.15 C. A battery can be provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The lithium titanate for an electrode of the present invention is mainly composed of Li 4 Ti 5 O 12 and has an average particle size of 0.5 to 1.5 μm and a maximum particle size of 25 μm or less, and is represented by the following formula: The SD value is 0.5 μm or less. The SD value is a parameter indicating the particle size distribution, and the smaller the numerical value, the narrower the distribution range. In the range of 0.5 μm or less, good charge / discharge characteristics are exhibited when an electrode is used. Furthermore, the tap density is preferably 0.75 g / mL or more.
[Equation 3]
Figure 0004153192
d84%: particle size at the point where the cumulative curve of particle size is 84% d16%: particle size at the point where the cumulative curve of particle size becomes 16%
The lithium titanate for electrodes of the present invention can be typically produced by a step of uniformly mixing raw materials in water, a step of drying the mixture, and a step of heat treatment.
[0014]
First, lithium hydroxide, lithium hydroxide monohydrate, lithium oxide, lithium hydrogen carbonate, lithium carbonate or the like is mixed or dissolved in water as a lithium raw material. Titanium oxide is mixed with this solution so that the molar ratio of Li 2 O and TiO 2 is 2: 5. The titanium oxide used is preferably anatase type titanium dioxide or hydrous titanium oxide. The anatase type titanium dioxide needs to have a purity of at least 95% by mass, preferably 98% by mass or more. When the purity is less than 95% by mass, the capacity per unit active material decreases, which is not preferable. The hydrous titanium oxide is within the above range when calcined to form anatase titanium dioxide, and the standard of purity before calcining is 90% by mass or more.
[0015]
The slurry concentration of the mixture is preferably 0.48 to 4.8 mol / L for the Li raw material and 0.60 to 6.00 mol / L for the titanium oxide. When the concentration is higher than the above range, a strong stirring force is required for uniform mixing. Moreover, it becomes a cause of troubles, such as piping blockage at the time of drying, and is unpreferable. If the concentration is lower than the above range, the amount of evaporated water increases, and the drying cost increases, which is not preferable. The drying method may be as it is, or spray drying, fluidized bed drying, rolling granulation drying or freeze drying may be used alone or in combination.
[0016]
The dried product is heat-treated in the atmosphere to obtain lithium titanate. The heat treatment temperature is 700 to 1000 ° C. for 1 to 10 hours, but preferably 800 to 900 ° C. for 5 to 10 hours. When the temperature is lower than 700 ° C., the reaction between titanium oxide and the lithium compound becomes insufficient. When the temperature exceeds 1000 ° C., lithium titanate is remarkably sintered and battery characteristics are deteriorated.
[0017]
The lithium titanate is pulverized.
[0018]
A general apparatus can be used for the pulverizer, and for example, a reika machine, a jet mill, a ball mill, a hammer mill, or the like can be used. Moreover, even if organic substances, such as a polyol, are added before grinding | pulverization and a grinding | pulverization efficiency is raised, the effect of this invention is not impaired.
[0019]
Using the lithium titanate synthesized as described above as a positive electrode active material, a coin-type secondary battery using Li metal for the negative electrode was produced, and a charge / discharge test was performed. As a result, the lithium titanate according to the present invention satisfies a discharge voltage of 1.5 to 1.6 V at a discharge rate of 0.15 C, and can obtain a high initial discharge capacity of 155 mAh / g or more. It was found that the discharge capacity at a rate of 10.0 C was 80% or more with respect to 0.15 C.
[0020]
【Example】
Hereinafter, although concretely demonstrated based on an Example and a comparative example, this invention is not limited to these Examples.
[0021]
[Example 1]
Lithium hydroxide (LiOH.H 2 O) is dissolved in water at a concentration of 12% by mass, and an anatase-type titanium dioxide is added to the solution so that the molar ratio of Li 2 O and TiO 2 is 2: 5 and mixed. did. The mixture was spray-dried at 110 ° C. and heat-treated at 875 ° C. for 6 hours to produce lithium titanate. This lithium titanate was pulverized by a vibration ball mill for 4 hours. The tap density of this sample was measured by the JIS-K-5101 tap method. The particle size distribution and average particle size were measured by a laser diffraction scattering method (Microtrack 9320-X100 manufactured by HONEYWELL). Also, 82 parts by weight of this sample, 9 parts by weight of acetylene black and 9 parts by weight of polyvinylidene fluoride were mixed and then kneaded with N-methyl-2-pyrrolidone at a solid content concentration of 46.5% by mass for 5 minutes using a high shear mixer. Was made.
[0022]
Next, the paint was applied onto an aluminum foil by a doctor blade method so that the mass of the active substance after drying was 0.01 g / cm 2 . After vacuum drying at 110 ° C., roll pressing was performed to 80% with respect to the thickness of the initial electrode mixture. After punching into 1 cm 2 , the positive electrode of the coin battery shown in FIG. 1 was obtained. In FIG. 1, a metal lithium plate was used as the negative electrode, a solution obtained by dissolving LiPF 6 at 1 mol / L in an equal volume mixture of ethylene carbonate and dimethyl carbonate, and a polypropylene porous film was used as the separator. Using the coin battery produced as described above, the battery was discharged to 1.0 V at a discharge rate of 0.15 C, charged to 3.0 V at the same rate, and this cycle was repeated three times. Thereafter, discharging was performed to 1.0 V at a discharge rate of 10.0C. The results are shown in Table 1 and FIG.
[0023]
[Example 2]
Except that the lithium titanate was pulverized with a likai machine, the same operation as in Example 1 was performed, and the tap density, particle size distribution, average particle size, and discharge capacity were measured. The results are shown in Table 1 and FIG.
[0024]
[Comparative Example 1]
The tap density, particle size distribution, average particle size and discharge capacity were measured in the same manner as in Example 1 except that lithium titanate was not pulverized. The results are shown in Table 1 and FIG.
[0025]
[Table 1]
Figure 0004153192
[0026]
【The invention's effect】
As described above, the lithium titanate of the present invention can increase the discharge capacity during large current discharge by controlling the particle size and particle size distribution.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a coin battery using lithium titanate powders of Examples and Comparative Examples as a positive electrode.
FIG. 2 is a diagram showing a discharge curve of a coin battery using lithium titanate of this example and lithium titanate of a comparative example as positive electrodes.
[Explanation of symbols]
3 Positive electrode 4 Negative electrode

Claims (5)

原料として純度95質量%以上のアナターゼ型二酸化チタンを用いたチタン酸リチウムであって、Li4Ti512を主成分とし、その平均粒径が0.5〜1.5μm、その最大粒径が25μm以下であり、かつ、次式
Figure 0004153192
(なお、d84%とは粒径の累積カーブが84%となる点の粒径を示し、d16%とは粒径の累積カーブが16%となる点の粒径を示す。)で示されるSD値が0.5μm以下であることを特徴とする電極用チタン酸リチウム。
A lithium titanate using anatase-type titanium dioxide having a purity of 95% by mass or more as a raw material, mainly composed of Li 4 Ti 5 O 12 , an average particle size of 0.5 to 1.5 μm, and a maximum particle size Is 25 μm or less, and
Figure 0004153192
(Note that d84% indicates the particle size at the point where the cumulative curve of particle size is 84%, and d16% indicates the particle size at the point where the cumulative curve of particle size becomes 16%). A lithium titanate for electrodes having a value of 0.5 μm or less.
前記チタン酸リチウムの粉体としてのタップ密度が、0.75g/mL以上であることを特徴とする請求項1に記載の電極用チタン酸リチウム。2. The lithium titanate for an electrode according to claim 1, wherein a tap density of the lithium titanate powder is 0.75 g / mL or more. 請求項1または2に記載の電極用チタン酸リチウムが、正極または負極活物質として用いられたことを特徴とする電池用電極。A battery electrode, wherein the lithium titanate for an electrode according to claim 1 or 2 is used as a positive electrode or a negative electrode active material. 請求項3に記載の電池用電極が用いられたことを特徴とするリチウム二次電池。  A lithium secondary battery comprising the battery electrode according to claim 3. 請求項1または2に記載の電極用チタン酸リチウムを正極活物質とし、金属Liを負極として作製されたリチウム二次電池であって、充・放電試験の結果について、放電レート0.15Cにおける放電電圧が1.5〜1.6Vかつ初期放電容量が155mAh/g以上であり、そして、放電レート10.0Cにおける放電容量が放電レート0.15Cにおける放電容量に対して80%以上であることを特徴とするリチウム二次電池。A lithium secondary battery produced using the lithium titanate for an electrode according to claim 1 or 2 as a positive electrode active material and a metal Li as a negative electrode, and the discharge at a discharge rate of 0.15 C with respect to the results of the charge / discharge test. The voltage is 1.5 to 1.6 V, the initial discharge capacity is 155 mAh / g or more, and the discharge capacity at a discharge rate of 10.0 C is 80% or more with respect to the discharge capacity at a discharge rate of 0.15 C. A featured lithium secondary battery.
JP2001333831A 2001-10-31 2001-10-31 Lithium titanate for electrodes and uses thereof Expired - Lifetime JP4153192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333831A JP4153192B2 (en) 2001-10-31 2001-10-31 Lithium titanate for electrodes and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333831A JP4153192B2 (en) 2001-10-31 2001-10-31 Lithium titanate for electrodes and uses thereof

Publications (2)

Publication Number Publication Date
JP2003137547A JP2003137547A (en) 2003-05-14
JP4153192B2 true JP4153192B2 (en) 2008-09-17

Family

ID=19149044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333831A Expired - Lifetime JP4153192B2 (en) 2001-10-31 2001-10-31 Lithium titanate for electrodes and uses thereof

Country Status (1)

Country Link
JP (1) JP4153192B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137272A1 (en) 2012-03-15 2013-09-19 株式会社 東芝 Non-aqueous electrolyte secondary battery and battery pack
US8758940B2 (en) 2012-03-29 2014-06-24 Taiyo Yuden Co., Ltd. Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using same
WO2014196462A1 (en) * 2013-06-04 2014-12-11 石原産業株式会社 Lithium titanate, production method for same, and electrical storage device employing same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006469A1 (en) * 2003-07-15 2005-01-20 Itochu Corporation Current collecting structure and electrode structure
US7468224B2 (en) * 2004-03-16 2008-12-23 Toyota Motor Engineering & Manufacturing North America, Inc. Battery having improved positive electrode and method of manufacturing the same
US7267908B2 (en) * 2004-08-30 2007-09-11 Toyota Technical Center Usa, Inc. In cycling stability of Li-ion battery with molten salt electrolyte
FR2874603B1 (en) * 2004-08-31 2006-11-17 Commissariat Energie Atomique MIXED TITANIUM AND DENSE LITHIUM MIXED OXIDE POWDER COMPOUND, PROCESS FOR PRODUCING THE SAME, AND ELECTRODE COMPRISING SUCH COMPOUND
JP2007018883A (en) * 2005-07-07 2007-01-25 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery and battery pack
KR101440884B1 (en) 2007-12-18 2014-09-18 삼성에스디아이 주식회사 Anode comprising surface treated anode active material and lithium battery using the same
DE102008064651A1 (en) 2008-06-03 2010-06-02 Süd-Chemie AG Lithium-ion battery with an anode containing lithium titanium spinel
CN103080010B (en) 2010-08-31 2016-05-04 户田工业株式会社 Lithium titanate particle powder and manufacture method thereof, containing Mg lithium titanate particle powder and manufacture method, anode for nonaqueous electrolyte secondary battery active material particle powder and rechargeable nonaqueous electrolytic battery
JP5810752B2 (en) * 2011-08-31 2015-11-11 戸田工業株式会社 Lithium titanate particle powder, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101542050B1 (en) * 2012-04-17 2015-08-06 주식회사 엘지화학 Electrode Active Material of Low Humidity and Lithium Secondary Battery Comprising The Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137272A1 (en) 2012-03-15 2013-09-19 株式会社 東芝 Non-aqueous electrolyte secondary battery and battery pack
US8758940B2 (en) 2012-03-29 2014-06-24 Taiyo Yuden Co., Ltd. Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using same
WO2014196462A1 (en) * 2013-06-04 2014-12-11 石原産業株式会社 Lithium titanate, production method for same, and electrical storage device employing same
JPWO2014196462A1 (en) * 2013-06-04 2017-02-23 石原産業株式会社 Lithium titanate, method for producing the same, and power storage device using the same
US9966599B2 (en) 2013-06-04 2018-05-08 Ishihara Sangyo Kaisha, Ltd. Process for manufacturing lithium titanium oxides

Also Published As

Publication number Publication date
JP2003137547A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP4768901B2 (en) Lithium titanium composite oxide, method for producing the same, and use thereof
EP2786969B1 (en) Preparation method of lithium titanium composite oxide doped with dissimilar metal, and lithium titanium composite oxide doped with dissimilar metal prepared thereby
JP6207400B2 (en) Lithium titanium mixed oxide
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4804045B2 (en) Method for producing lithium iron composite oxide
JP2007184145A (en) Lithium secondary battery
US20120021292A1 (en) Anode active material for lithium secondary battery and method for preparing the same
JP5980472B2 (en) Titanium dioxide, method for producing titanium dioxide, lithium ion battery, and electrode for lithium ion battery
JP5000811B2 (en) Lithium titanate powder and its use
JP2007230784A (en) Manufacturing process of lithium-iron complex oxide
KR20090086198A (en) Li-ni composite oxide particle powder for rechargeable battery with nonaqueous electrolyte, process for producing the li-ni composite oxide particle powder, and rechargeable battery with nonaqueous electrolyte
JP4153192B2 (en) Lithium titanate for electrodes and uses thereof
JP2011113795A (en) Manufacturing method of lithium titanate for lithium secondary battery active material
JP2011111361A (en) Method for producing lithium titanate for lithium secondary battery active material
WO2012002122A1 (en) Method for producing porous lithium titanate, porous lithium titanate and lithium battery using same
JP4435926B2 (en) High crystalline lithium titanate
JP2016095980A (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP2018160432A (en) Negative electrode active material composite for lithium ion secondary battery and method of manufacturing the same
JP6361841B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode including the same, and lithium ion secondary battery including the positive electrode
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP6098670B2 (en) Method for producing titanium dioxide
JP2021114409A (en) Positive electrode active material for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery
JP2014024724A (en) Production method of lithium titanate powder, and lithium ion secondary battery and lithium ion capacitor using the lithium titanate powder
JP5585847B2 (en) Method for producing electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080703

R150 Certificate of patent or registration of utility model

Ref document number: 4153192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term