JP4999528B2 - Positive characteristic thermistor device and manufacturing method thereof - Google Patents

Positive characteristic thermistor device and manufacturing method thereof Download PDF

Info

Publication number
JP4999528B2
JP4999528B2 JP2007111947A JP2007111947A JP4999528B2 JP 4999528 B2 JP4999528 B2 JP 4999528B2 JP 2007111947 A JP2007111947 A JP 2007111947A JP 2007111947 A JP2007111947 A JP 2007111947A JP 4999528 B2 JP4999528 B2 JP 4999528B2
Authority
JP
Japan
Prior art keywords
positive temperature
temperature coefficient
coefficient thermistor
thermal expansion
thermistor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007111947A
Other languages
Japanese (ja)
Other versions
JP2008270551A (en
Inventor
研作 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2007111947A priority Critical patent/JP4999528B2/en
Publication of JP2008270551A publication Critical patent/JP2008270551A/en
Application granted granted Critical
Publication of JP4999528B2 publication Critical patent/JP4999528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

本発明は、正特性サーミスタ素子の表面に、放熱性基板をシリコン系接着剤により接着してなる正特性サーミスタ装置およびその製造方法に関する。   The present invention relates to a positive temperature coefficient thermistor device in which a heat-radiating substrate is bonded to the surface of a positive temperature coefficient thermistor element with a silicon-based adhesive, and a method for manufacturing the same.

チタン酸バリウム系の正特性サーミスタ装置は、主成分であるチタン酸バリウムにY、La等の希土類元素を添加して半導体化させた正特性サーミスタ素子の表面に、接着剤によって金属製の放熱性基板を固着してなるものである。
正特性サーミスタ装置は、抵抗値が常温では低く、キュリー点を超えると急激に増大(ジャンプ)するという、正の抵抗温度特性を有しており、従来からヒータ用、過電流保護、温度検知用等の用途に幅広く用いられている。特に、ヒータ用の正特性サーミスタ装置は、自己温度制御による定温発熱が可能であり、安全かつ取扱い容易であるとして、広く使用されている。
Barium titanate-based positive temperature coefficient thermistor devices are made of metal-based heat dissipation by adhesives on the surface of positive temperature coefficient thermistor elements made by adding rare earth elements such as Y and La to the main component barium titanate. The substrate is fixed.
The positive temperature coefficient thermistor device has a positive resistance temperature characteristic that the resistance value is low at room temperature and suddenly increases (jumps) when the Curie point is exceeded. For conventional heaters, overcurrent protection, and temperature detection It is widely used for such applications. In particular, positive temperature coefficient thermistor devices for heaters are widely used because they can generate heat at a constant temperature by self-temperature control, and are safe and easy to handle.

正特性サーミスタ装置に関する従来の技術を開示するものとして、たとえば、特開平10−92554号公報がある。この公報に記載された正特性サーミスタ装置は、正特性サーミスタ素子の表面に、導電体粒子よりなる凸部を設けることにより、正特性サーミスタ素子と放熱性基板との電気的導通を確保している。   For example, Japanese Patent Laid-Open No. 10-92554 discloses a conventional technique relating to a positive temperature coefficient thermistor device. The positive temperature coefficient thermistor device described in this publication secures electrical conduction between the positive temperature coefficient thermistor element and the heat-dissipating substrate by providing a convex portion made of conductive particles on the surface of the positive temperature coefficient thermistor element. .

特開平10−92554号公報Japanese Patent Laid-Open No. 10-92554

しかしながら、特許文献1記載の正特性サーミスタ装置では、導電体粒子を含む導電性ペーストを、スクリーンを介して正特性サーミスタ素子上に印刷しているため、スクリーンに導電体粒子が詰まる場合があった。
また、導電体粒子と導電性ペーストとを均一に混合することが困難なため、印刷後の導電性粒子は正特性サーミスタ素子上にランダムに存在することになり、均一な凹凸を形成することができなかった。
そのため、正特性サーミスタ素子と放熱性基板との接着状態が不均一となり、十分な接着強度を安定して得ることができなかった。
However, in the positive temperature coefficient thermistor device described in Patent Document 1, since the conductive paste containing the conductive particles is printed on the positive temperature coefficient thermistor element via the screen, the conductive particles may be clogged in the screen. .
In addition, since it is difficult to uniformly mix the conductive particles and the conductive paste, the conductive particles after printing are randomly present on the positive temperature coefficient thermistor element, and uniform unevenness may be formed. could not.
For this reason, the bonding state between the positive temperature coefficient thermistor element and the heat-dissipating substrate becomes non-uniform, and sufficient bonding strength cannot be obtained stably.

また、正特性サーミスタ素子、放熱性基板、導電体粒子を含む導電性ペーストの三者間に熱膨張係数の差があるため、正特性サーミスタ装置に熱ストレスを付加した際、これら三者間に空隙ができ、抵抗値が増加する傾向にあった。   In addition, since there is a difference in thermal expansion coefficient between the three of the positive temperature coefficient thermistor element, the heat dissipation substrate, and the conductive paste containing the conductive particles, when a thermal stress is applied to the positive temperature coefficient thermistor device, There was a gap and the resistance value tended to increase.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、正特性サーミスタ素子と放熱性基板との間の電気的導通を確実に得ることができ、それらの間の十分な接着強度を得ることができる正特性サーミスタ装置およびその製造方法を提供することにある。
また、本発明は、熱膨張係数の異なる、正特性サーミスタ素子とシリコン系接着剤と放熱性基板とを接合させるにあたって、放熱性基板の粗面化度を規定することで、これら三者間の接合強度を向上させ、熱ストレスによる抵抗増加を抑えることを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to ensure electrical continuity between the positive temperature coefficient thermistor element and the heat dissipating substrate, and to provide a sufficient amount between them. An object of the present invention is to provide a positive temperature coefficient thermistor device capable of obtaining adhesive strength and a method for manufacturing the same.
Further, the present invention provides a rough surface of the heat-dissipating substrate when the positive temperature coefficient thermistor element, the silicon-based adhesive, and the heat-dissipating substrate having different thermal expansion coefficients are joined. The purpose is to improve the bonding strength and suppress the increase in resistance due to thermal stress.

上記課題を解決する本発明は、チタン酸バリウム系の正特性サーミスタ素子と、該正特性サーミスタ素子に形成された電極表面にシリコン系接着剤によって接着された放熱性基板とからなる正特性サーミスタ装置であって、前記放熱性基板の熱膨張係数が、20〜300℃のとき、2.1×10 −5 〜3.5×10 −5 /℃であり、前記シリコン系接着剤の熱膨張係数が、20〜250℃のとき、1.1×10 −4 〜2.5×10 −4 /℃であり、前記放熱性基板の熱膨張係数が前記正特性サーミスタ素子の熱膨張係数の2.8〜6.0倍であり、かつ、前記シリコン系接着剤の熱膨張係数が前記正特性サーミスタ素子の熱膨張係数の15.0〜43.1倍であり、前記放熱性基板における前記正特性サーミスタ素子との接着面が、十点平均面粗さRz:15〜65μmに粗面化されていることを特徴とする正特性サーミスタ装置である。 The present invention which solves the above-mentioned problems is a positive temperature coefficient thermistor device comprising a barium titanate-based positive temperature coefficient thermistor element and a heat dissipation substrate bonded to the surface of the electrode formed on the positive temperature coefficient thermistor element with a silicon-based adhesive. And when the thermal expansion coefficient of the heat dissipating substrate is 20 to 300 ° C., the thermal expansion coefficient of the silicon-based adhesive is 2.1 × 10 −5 to 3.5 × 10 −5 / ° C. Is 1.1 × 10 −4 to 2.5 × 10 −4 / ° C. when the temperature is 20 to 250 ° C., and the thermal expansion coefficient of the heat-dissipating substrate is 2. 8 to 6.0 times, and the thermal expansion coefficient of the silicon-based adhesive is 15.0 to 43.1 times the thermal expansion coefficient of the positive temperature coefficient thermistor element. Bonding surface with thermistor element The positive thermistor device is characterized in that the surface roughness Rz is roughened to 15 to 65 μm.

また、本発明は、上記構成において、前記粗面化が、塩酸およびリン酸を主成分とするエッチング溶液を用いた化学エッチングまたは電解エッチングによるものであることを特徴とする正特性サーミスタ装置である。   Further, the present invention is the positive temperature coefficient thermistor device characterized in that, in the above configuration, the roughening is performed by chemical etching or electrolytic etching using an etching solution mainly composed of hydrochloric acid and phosphoric acid. .

そして、本発明は、チタン酸バリウム系の正特性サーミスタ素子に形成された電極表面に、シリコン系接着剤によって放熱性基板を接着する工程を有する正特性サーミスタ装置の製造方法であって、前記放熱性基板の熱膨張係数が、20〜300℃のとき、2.1×10 −5 〜3.5×10 −5 /℃であり、前記シリコン系接着剤の熱膨張係数が、20〜250℃のとき、1.1×10 −4 〜2.5×10 −4 /℃であり、前記放熱性基板の熱膨張係数が前記正特性サーミスタ素子の熱膨張係数の2.8〜6.0倍であり、かつ、前記シリコン系接着剤の熱膨張係数が前記正特性サーミスタ素子の熱膨張係数の15.0〜43.1倍であり、前記接着する工程の前に、前記放熱性基板における前記正特性サーミスタ素子との接着面を、十点平均面粗さRz:15〜65μmに粗面化する工程を有していることを特徴とする正特性サーミスタ装置の製造方法である。 And this invention is a manufacturing method of the positive temperature coefficient thermistor apparatus which has the process of adhere | attaching a heat dissipation board | substrate with the silicon type adhesive agent on the electrode surface formed in the positive temperature coefficient thermistor element of a barium titanate type | system | group , Comprising: When the thermal expansion coefficient of the conductive substrate is 20 to 300 ° C., it is 2.1 × 10 −5 to 3.5 × 10 −5 / ° C., and the thermal expansion coefficient of the silicon-based adhesive is 20 to 250 ° C. In this case, 1.1 × 10 −4 to 2.5 × 10 −4 / ° C., and the thermal expansion coefficient of the heat dissipation substrate is 2.8 to 6.0 times the thermal expansion coefficient of the positive temperature coefficient thermistor element. And the thermal expansion coefficient of the silicon-based adhesive is 15.0 to 43.1 times the thermal expansion coefficient of the positive temperature coefficient thermistor element, and before the bonding step, Ten points of adhesion surface with positive thermistor element An average surface roughness Rz: a method of manufacturing a positive temperature coefficient thermistor device comprising a step of roughening the surface to 15 to 65 μm.

また、本発明は、上記構成において、前記粗面化は、塩酸およびリン酸を主成分とするエッチング溶液を用いた化学エッチングまたは電解エッチングによるものであることを特徴とする正特性サーミスタ装置の製造方法である。   According to the present invention, in the above structure, the roughening is performed by chemical etching or electrolytic etching using an etching solution containing hydrochloric acid and phosphoric acid as main components. Is the method.

なお、本明細書中における「十点平均面粗さRz」は、JIS規格によるものを意味する。   In the present specification, “ten-point average surface roughness Rz” means a value according to the JIS standard.

本発明の正特性サーミスタ装置は、放熱性基板の表面に、エッチングにより、ピット状の凹凸における凸部の高さがほぼ一定に揃った無数の凹凸が均一に形成されている。
したがって、本発明にかかる正特性サーミスタ装置によれば、放熱性基板と正特性サーミスタ素子との電気的導通を均一かつ確実に得ることができる。
In the positive temperature coefficient thermistor device of the present invention, an infinite number of irregularities in which the heights of the convex portions of the pit-shaped irregularities are substantially uniform are formed on the surface of the heat dissipation substrate by etching.
Therefore, according to the positive temperature coefficient thermistor device of the present invention, the electrical conduction between the heat dissipation substrate and the positive temperature coefficient thermistor element can be obtained uniformly and reliably.

また、本発明の正特性サーミスタ装置によれば、放熱性基板と電極が形成された正特性サーミスタ素子との間に供給されたシリコン系接着剤が凹部に十分入り込むことにより、放熱性基板と正特性サーミスタ素子とを強固に接着することができる。   Further, according to the positive temperature coefficient thermistor device of the present invention, the silicon-based adhesive supplied between the heat dissipation substrate and the positive temperature coefficient thermistor element on which the electrode is formed sufficiently enters the recess, so that The characteristic thermistor element can be firmly bonded.

そして、熱膨張係数の異なる、正特性サーミスタ素子とシリコン系接着剤と放熱性基板とを接合させるにあたって、放熱性基板の粗面化度を規定することで、これらの接合強度が向上し、熱ストレスが連続して加えられた時の抵抗増加を抑えることができる。   Then, when bonding a positive temperature coefficient thermistor element, a silicon-based adhesive, and a heat-dissipating substrate having different thermal expansion coefficients, by specifying the roughening degree of the heat-dissipating substrate, these bonding strengths are improved, An increase in resistance when stress is continuously applied can be suppressed.

[放熱性基板の粗面化、シリコン系接着剤の使用]
[実施例1]
以下、図面を参照しつつ、本発明の実施例に基づき、当該実施例にかかる正特性サーミスタ装置の特性について説明する。
図1は本発明にかかる正特性サーミスタ装置を示す斜視図、図2は図1の正特性サーミスタ装置の要部を模式的に示す断面図、図3は放熱性基板における正特性サーミスタ素子との接着面を示す図、図4は引張り強度試験に用いた正特性サーミスタ装置を示す概略斜視図である。
[Roughening of heat-radiating substrate, use of silicon adhesive]
[Example 1]
Hereinafter, characteristics of a positive temperature coefficient thermistor device according to an embodiment of the present invention will be described with reference to the drawings.
1 is a perspective view showing a positive temperature coefficient thermistor device according to the present invention, FIG. 2 is a cross-sectional view schematically showing a main part of the positive temperature coefficient thermistor device of FIG. 1, and FIG. FIG. 4 is a schematic perspective view showing a positive temperature coefficient thermistor device used in a tensile strength test.

まず、チタン酸バリウム系の磁器4を表面研磨にて、サイズ25mm×20mm×1.5mmの角形、平面度10±5μmに加工した後、超音波洗浄した。超音波洗浄後の正特性サーミスタ素子4の両主面に、オーミック電極として厚さが10〜20μmのアルミニウム電極3をスクリーン印刷し、所定の温度で焼付けた(図1参照)。   First, the barium titanate-based porcelain 4 was processed by surface polishing into a square having a size of 25 mm × 20 mm × 1.5 mm and a flatness of 10 ± 5 μm, followed by ultrasonic cleaning. Aluminum electrodes 3 having a thickness of 10 to 20 μm were screen-printed as ohmic electrodes on both main surfaces of the positive temperature coefficient thermistor element 4 after ultrasonic cleaning, and baked at a predetermined temperature (see FIG. 1).

一方、放熱性基板1を、5〜20wt%塩酸、5〜15wt%リン酸を成分とするエッチング溶液に浸漬し、放熱性基板1を陽極として電解エッチングを行った。
このとき、エッチング溶液の温度を30〜40℃、印加電圧を10〜250V、印加時間を0.5〜10分間とし、十点平均面粗さRz:15〜65μmの放熱性基板1を得た。
このうち、エッチングによって十点平均面粗さRzを34.5μmとした放熱性基板1の表面状態図を、図3に示す。
On the other hand, the heat dissipation substrate 1 was immersed in an etching solution containing 5 to 20 wt% hydrochloric acid and 5 to 15 wt% phosphoric acid as components, and electrolytic etching was performed using the heat dissipation substrate 1 as an anode.
At this time, the temperature of the etching solution was 30 to 40 ° C., the applied voltage was 10 to 250 V, the application time was 0.5 to 10 minutes, and the heat-radiating substrate 1 having a ten-point average surface roughness Rz of 15 to 65 μm was obtained. .
Among these, FIG. 3 shows a surface state diagram of the heat-radiating substrate 1 in which the ten-point average surface roughness Rz is 34.5 μm by etching.

次いで、正特性サーミスタ素子4上のアルミニウム電極3と放熱性基板1との間に、熱伝導性および耐熱性に優れた接着剤であるシリコン系接着剤2を供給し、所定の圧力を加えつつ150℃の温度で熱圧着させ、正特性サーミスタ装置5を得た(図1参照)。
このとき、放熱性基板は、熱膨張係数が20〜300℃で2.3×10−5〜2.5×10−5/℃、シリコン系接着剤は、熱膨張係数が20〜250℃で1.5×10−4〜2.0×10−4/℃、正特性サーミスタ素子は、熱膨張係数が20〜250℃で6.5×10−6〜7.0×10−6/℃のものを使用した。
Next, a silicon-based adhesive 2 that is an adhesive having excellent thermal conductivity and heat resistance is supplied between the aluminum electrode 3 on the positive temperature coefficient thermistor element 4 and the heat dissipating substrate 1 while applying a predetermined pressure. Thermocompression bonding was performed at a temperature of 150 ° C. to obtain a positive temperature coefficient thermistor device 5 (see FIG. 1).
At this time, the heat dissipating substrate has a thermal expansion coefficient of 20 to 300 ° C. and 2.3 × 10 −5 to 2.5 × 10 −5 / ° C., and the silicon adhesive has a thermal expansion coefficient of 20 to 250 ° C. 1.5 × 10 −4 to 2.0 × 10 −4 / ° C. The positive temperature coefficient thermistor element has a coefficient of thermal expansion of 20 to 250 ° C. and 6.5 × 10 −6 to 7.0 × 10 −6 / ° C. I used one.

正特性サーミスタ装置5における放熱性基板1の表面は、図2および図3に示す如く、電解エッチングにより粗面化され、ピット状の凹凸における凸部の高さがほぼ一定に揃った無数の凹凸が均一に形成されている。また、該凹凸における凸部は高さがほぼ一定に揃っている。
したがって、本発明にかかる正特性サーミスタ装置5によれば、放熱性基板1と正特性サーミスタ素子4との電気的導通を均一かつ確実に得ることができる。
As shown in FIGS. 2 and 3, the surface of the heat dissipation substrate 1 in the positive temperature coefficient thermistor device 5 is roughened by electrolytic etching, and the infinite number of irregularities in which the heights of the convex portions of the pit-shaped irregularities are almost constant. Are uniformly formed. In addition, the height of the protrusions on the unevenness is substantially constant.
Therefore, according to the positive temperature coefficient thermistor device 5 of the present invention, the electrical conduction between the heat dissipation substrate 1 and the positive temperature coefficient thermistor element 4 can be obtained uniformly and reliably.

また、本発明の正特性サーミスタ装置5によれば、放熱性基板1と正特性サーミスタ素子4上のアルミニウム電極3との間に供給されたシリコン系接着剤が、上記凹部に十分浸入することにより、放熱性基板1と正特性サーミスタ素子4とを強固に接着することができる。   Further, according to the positive temperature coefficient thermistor device 5 of the present invention, the silicon adhesive supplied between the heat dissipation substrate 1 and the aluminum electrode 3 on the positive temperature coefficient thermistor element 4 sufficiently penetrates into the recess. The heat dissipating substrate 1 and the positive temperature coefficient thermistor element 4 can be firmly bonded.

(従来例)
比較のために、導電体粒子を含むペーストを十分に攪拌した後、印刷した従来例にかかる正特性サーミスタ素子の表面図を、図3と同じスケールで図7に示す。
図3および図7より、導電体粒子を印刷した場合では、数個の比較的大きな凹凸が不均一に形成されるだけであるのに対し、エッチングにより粗面化した場合では、表面に微細な凹凸が無数にかつ均一に形成されていることが分かる。
(Conventional example)
For comparison, FIG. 7 shows a surface view of a positive temperature coefficient thermistor element according to a conventional example printed after the paste containing the conductor particles is sufficiently stirred, on the same scale as FIG.
From FIG. 3 and FIG. 7, when the conductive particles are printed, only a few relatively large irregularities are formed unevenly, whereas when roughened by etching, the surface is fine. It can be seen that the irregularities are infinitely and uniformly formed.

[表面粗さと引張り強度との関係調査]
[実施例2]
次に、エッチングにより、放熱性基板1の表面の十点平均面粗さRzを、15.0μm、23.6μm、33.6μm、52.8μm、65.0μmとし、上記と同様の方法にて、本発明にかかる正特性サーミスタ装置5をそれぞれ作製した。
そして、図4に示す如く、上側の放熱性基板1の端部を直角かつ上方に折り曲げ、曲げ部6を形成した。次いで、下側の放熱性基板1を固定冶具にて強固に固定した後、曲げ部6の上端部7を引張り強度試験用の冶具にて固定し、下側の放熱性基板1に対して垂直な方向に引っ張り、引張り強度(接着強度)を測定した。その結果を図5に示す。
[Investigation of relationship between surface roughness and tensile strength]
[Example 2]
Next, the ten-point average surface roughness Rz of the surface of the heat dissipation substrate 1 is set to 15.0 μm, 23.6 μm, 33.6 μm, 52.8 μm, and 65.0 μm by etching, and the same method as above. Each of the positive temperature coefficient thermistor devices 5 according to the present invention was produced.
And as shown in FIG. 4, the edge part of the upper thermal radiation board | substrate 1 was bent at right angle and upwards, and the bending part 6 was formed. Next, after firmly fixing the lower heat dissipating substrate 1 with a fixing jig, the upper end portion 7 of the bent portion 6 is fixed with a jig for tensile strength testing, and is perpendicular to the lower heat dissipating substrate 1. The sample was pulled in any direction, and the tensile strength (adhesive strength) was measured. The result is shown in FIG.

(比較例)
また、比較のために、放熱性基板1の表面の十点平均面粗さRzを、2.0μm(エッチング処理なし)と、5.1μm、7.5μm、75.0μm、85.1μm(エッチング処理あり)とした正特性サーミスタ装置50に対しても、上記と同様の方法で引張り強度を測定した。その結果を図5に示す。
(Comparative example)
For comparison, the ten-point average surface roughness Rz of the surface of the heat dissipation substrate 1 is 2.0 μm (no etching treatment), 5.1 μm, 7.5 μm, 75.0 μm, 85.1 μm (etching). The tensile strength of the positive temperature coefficient thermistor device 50 treated was also measured in the same manner as described above. The result is shown in FIG.

[表面粗さと引張り強度との関係]
図5から分かるように、表面粗さRz:2.0μm〜5.1μmまでは、引張り強度はほとんど変化せず、接着性は弱かった。これは、放熱性基板1の表面粗さがRz:2.0〜5.1μmの範囲では、形成された凹部の容積が非常に小さく、凹部に入り込むシリコン系接着剤の量が少ないためと考えられる。
[Relationship between surface roughness and tensile strength]
As can be seen from FIG. 5, the surface roughness Rz: 2.0 μm to 5.1 μm, the tensile strength hardly changed and the adhesiveness was weak. This is considered to be because when the surface roughness of the heat-dissipating substrate 1 is in the range of Rz: 2.0 to 5.1 μm, the volume of the formed recess is very small and the amount of silicon-based adhesive entering the recess is small. It is done.

これに対し、表面粗さRzを15μm以上にすると、引張り強度が向上していくことが分かる。これは、接着剤が深く形成された凹部に十分に入り込んでいることにより、非常に強固な接着がなされているためと考えられる。   On the other hand, it can be seen that when the surface roughness Rz is 15 μm or more, the tensile strength is improved. This is presumably because very strong adhesion is achieved because the adhesive sufficiently penetrates into the deeply formed recess.

また、図5より、表面粗さRzが65μmを超えると、引張り強度がほとんど変化しなくなることが分かる。これは、凹部に入り込む接着剤の量がある程度以上に増えても、接着強度の増大に寄与しなくなるためと考えられる。   Further, FIG. 5 shows that when the surface roughness Rz exceeds 65 μm, the tensile strength hardly changes. This is presumably because even if the amount of the adhesive entering the recesses is increased to a certain extent, it does not contribute to an increase in adhesive strength.

[表面粗さと抵抗変化率との関係調査]
[実施例3]
次に、エッチングにより放熱性基板1の表面粗さRzを15.7μm(図6中のプロット●)、33.6μm(図6中のプロット■)とした本発明に係る正特性サーミスタ装置5に対し、80℃の雰囲気で100Vの電圧を1分間印加した後、10分間放置する断続サイクルを3000サイクル行った場合の抵抗の変化率を測定した。その結果を図6に示す。
[Investigation of relationship between surface roughness and resistance change rate]
[Example 3]
Next, the positive temperature coefficient thermistor device 5 according to the present invention in which the surface roughness Rz of the heat dissipating substrate 1 is 15.7 μm (plot ● in FIG. 6) and 33.6 μm (plot ■ in FIG. 6) by etching is used. On the other hand, the rate of change in resistance was measured when 3000 cycles of intermittent cycles of applying a voltage of 100 V for 1 minute in an atmosphere of 80 ° C. and leaving it to stand for 10 minutes were measured. The result is shown in FIG.

(比較例)
また、比較のために、放熱性基板1の表面粗さRzを2.0μm(エッチング処理なし、図6中のプロット▲)、85.3μm(図6中のプロット×)とした正特性サーミスタ装置50に対しても、上記と同様の方法で抵抗変化率を測定した。その結果を図6に示す。
(Comparative example)
For comparison, a positive temperature coefficient thermistor device in which the surface roughness Rz of the heat dissipating substrate 1 is 2.0 μm (no etching treatment, plot ▲ in FIG. 6) and 85.3 μm (plot x in FIG. 6). For 50, the resistance change rate was measured by the same method as described above. The result is shown in FIG.

(従来例)
また、導電体粒子を含むペーストを十分に攪拌した後、印刷した従来例に係る正特性サーミスタ装置5’(図6中のプロット*)に対しても、上記と同様の方法で抵抗変化率を測定した。その結果を図6に示す。
(Conventional example)
In addition, after the paste containing the conductor particles is sufficiently stirred, the resistance change rate is also applied to the printed positive characteristic thermistor device 5 ′ (plot * in FIG. 6) according to the conventional example by the same method as described above. It was measured. The result is shown in FIG.

[表面粗さと抵抗変化率との関係]
図6から分かるように、エッチング処理を施していない従来例の場合、10サイクル後には抵抗が初期抵抗より20%高くなり、100サイクル後になると50%高くなった。これは、シリコン系接着剤2の熱膨張係数が、正特性サーミスタ素子4の熱膨張係数の21.4〜30.8倍であり、放熱性基板1の熱膨張係数が正特性サーミスタ素子4の熱膨張係数の3.3〜3.8倍であって、その差が大きいため、熱ストレスによって少しずつ放熱性基板1側から剥離し、オーミック性が低下していったことによると考えられる。
[Relationship between surface roughness and resistance change rate]
As can be seen from FIG. 6, in the case of the conventional example not subjected to the etching treatment, the resistance became 20% higher than the initial resistance after 10 cycles, and increased by 50% after 100 cycles. This is because the thermal expansion coefficient of the silicon-based adhesive 2 is 21.4 to 30.8 times the thermal expansion coefficient of the positive temperature coefficient thermistor element 4, and the thermal expansion coefficient of the heat dissipation substrate 1 is higher than that of the positive temperature coefficient thermistor element 4. It is 3.3 to 3.8 times the thermal expansion coefficient, and the difference is large. Therefore, it is considered that the ohmic property was gradually lowered due to peeling from the heat dissipating substrate 1 side due to thermal stress.

これに対し、図6に示すように、表面粗さRzを15μm以上にすることで、抵抗変化率を低く抑え、3000サイクル後の抵抗変化率を最大でも15%に抑えることができる。
さらに、図6に示すように、本発明に係る正特性サーミスタ装置は、従来例に係る正特性サーミスタ装置と比較して、抵抗変化率を10%以上抑えることができる。
これは、従来例に係る正特性サーミスタでは数個の比較的大きな凹凸が不均一に形成されるだけであるのに対し(図7参照)、本発明にかかる正特性サーミスタ装置5では、放熱性基板1の表面に微細な凹凸が、無数にかつ均一に形成されるため、放熱性基板1と正特性サーミスタ素子4上のアルミニウム電極3との間の電気的導通が均一に得られると共に、凹部にシリコン系接着剤2が十分に入り込み、放熱性基板1と正特性サーミスタ素子4とが強固に接合されていることによる。
On the other hand, as shown in FIG. 6, by setting the surface roughness Rz to 15 μm or more, the resistance change rate can be kept low, and the resistance change rate after 3000 cycles can be kept to 15% at the maximum.
Furthermore, as shown in FIG. 6, the positive temperature coefficient thermistor device according to the present invention can suppress the rate of change of resistance by 10% or more compared to the positive temperature coefficient thermistor device according to the conventional example.
This is because, in the conventional thermistor according to the conventional example, only a few relatively large irregularities are formed unevenly (see FIG. 7), whereas in the positive temperature coefficient thermistor device 5 according to the present invention, heat dissipation is achieved. Since infinite and fine irregularities are formed on the surface of the substrate 1, electrical conduction between the heat-radiating substrate 1 and the aluminum electrode 3 on the positive temperature coefficient thermistor element 4 can be obtained uniformly, and the recesses This is because the silicon-based adhesive 2 is sufficiently penetrated and the heat-radiating substrate 1 and the positive temperature coefficient thermistor element 4 are firmly bonded.

上記の表面粗さと引張り強度、抵抗変化率との関係調査より、放熱性基板1の表面粗さRzは、抵抗率変化が小さく接着強度の高い、15μm〜65μmの範囲が好適であることが分かった。   From the above investigation of the relationship between the surface roughness, the tensile strength, and the resistance change rate, it is found that the surface roughness Rz of the heat-radiating substrate 1 is preferably in the range of 15 μm to 65 μm where the change in resistivity is small and the adhesive strength is high. It was.

また、表面粗さを上記の範囲とする場合、前記放熱性基板の熱膨張係数は正特性サーミスタ素子の熱膨張係数の2.8〜6.0倍、かつ、前記シリコン系接着剤の熱膨張係数は正特性サーミスタ素子の熱膨張係数の15.0〜43.1倍とし、放熱性基板の熱膨張係数は20〜300℃で2.1×10−5〜3.5×10−5/℃、シリコン系接着剤の熱膨張係数は20〜250℃で1.1×10−4〜2.5×10−4/℃、正特性サーミスタ素子の熱膨張係数は20〜250℃で5.8×10−6〜7.3×10−6/℃としておくことが望ましい。
上記範囲を外れると、熱膨張係数の異なる、正特性サーミスタ素子とシリコン系接着剤と放熱性基板との接合強度が低下し、熱ストレスが連続して加えられた時、抵抗増加を抑えることができず、剥離等を生じることもある。
When the surface roughness is in the above range, the thermal expansion coefficient of the heat dissipating substrate is 2.8 to 6.0 times the thermal expansion coefficient of the positive temperature coefficient thermistor element, and the thermal expansion of the silicon-based adhesive. The coefficient is 15.0 to 43.1 times the thermal expansion coefficient of the positive temperature coefficient thermistor element, and the thermal expansion coefficient of the heat-radiating substrate is 2.1 × 10 −5 to 3.5 × 10 −5 / 20 at 20 to 300 ° C. The thermal expansion coefficient of the silicon-based adhesive is 1.1 × 10 −4 to 2.5 × 10 −4 / ° C. at 20 to 250 ° C., and the thermal expansion coefficient of the positive temperature coefficient thermistor element is 20 to 250 ° C. It is desirable to set it as 8 * 10 < -6 > -7.3 * 10 < -6 > / degreeC.
Outside this range, the bonding strength between the positive temperature coefficient thermistor element, silicon adhesive, and heat dissipation substrate with different thermal expansion coefficients will be reduced, and the increase in resistance will be suppressed when thermal stress is applied continuously. It may not be possible to cause peeling.

なお、放熱性基板1の粗面化は、塩酸およびリン酸を主成分とするエッチング溶液に浸漬させ、電解エッチングを行ったが、塩酸およびリン酸を主成分とするエッチング溶液による化学エッチングでも、上記実施例と同等の効果があった。
上記粗面化方法が望ましいが、物理的なエッチングでもよく、例えば三塩化ホウ素(BCl)および四塩化炭素(CCl)の塩素系ガスによるプラズマエッチングでもよい。
The roughening of the heat-dissipating substrate 1 was performed by immersing it in an etching solution mainly containing hydrochloric acid and phosphoric acid and performing electrolytic etching. However, chemical etching using an etching solution mainly containing hydrochloric acid and phosphoric acid also There was an effect equivalent to the said Example.
Although the above roughening method is desirable, physical etching may be used, and plasma etching using a chlorine-based gas such as boron trichloride (BCl 3 ) and carbon tetrachloride (CCl 4 ) may be used.

本発明に係る正特性サーミスタ装置を示す斜視図である。1 is a perspective view showing a positive temperature coefficient thermistor device according to the present invention. 図1の正特性サーミスタ装置の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the positive temperature coefficient thermistor apparatus of FIG. 放熱性基板における正特性サーミスタ素子との接着面を示す図である。It is a figure which shows the adhesion surface with the positive characteristic thermistor element in a heat dissipation board | substrate. 引張り強度試験に用いた正特性サーミスタ装置を示す概略斜視図である。It is a schematic perspective view which shows the positive temperature coefficient thermistor apparatus used for the tensile strength test. 引張り強度測定の結果を示す図である。It is a figure which shows the result of a tensile strength measurement. 抵抗変化率測定の結果を示す図である。It is a figure which shows the result of resistance change rate measurement. 導電性粒子を含むペーストを十分に攪拌した後印刷した従来例にかかる正特性サーミスタ素子の表面図である。It is a surface view of the positive temperature coefficient thermistor element concerning the prior art example printed after fully stirring the paste containing electroconductive particle.

符号の説明Explanation of symbols

1 放熱性基板
2 シリコン系接着剤
3 アルミニウム電極
4 正特性サーミスタ素子
5 正特性サーミスタ装置
6 曲げ部
7 上端部
DESCRIPTION OF SYMBOLS 1 Heat radiation board | substrate 2 Silicone adhesive agent 3 Aluminum electrode 4 Positive characteristic thermistor element 5 Positive characteristic thermistor device 6 Bending part 7 Upper end part

Claims (4)

チタン酸バリウム系の正特性サーミスタ素子と、該正特性サーミスタ素子に形成された電極表面にシリコン系接着剤によって接着された放熱性基板とからなる正特性サーミスタ装置であって、
前記放熱性基板の熱膨張係数が、20〜300℃のとき、2.1×10 −5 〜3.5×10 −5 /℃であり、
前記シリコン系接着剤の熱膨張係数が、20〜250℃のとき、1.1×10 −4 〜2.5×10 −4 /℃であり、
前記放熱性基板の熱膨張係数が前記正特性サーミスタ素子の熱膨張係数の2.8〜6.0倍であり、かつ、前記シリコン系接着剤の熱膨張係数が前記正特性サーミスタ素子の熱膨張係数の15.0〜43.1倍であり、
前記放熱性基板における前記正特性サーミスタ素子との接着面が、十点平均面粗さRz:15〜65μmに粗面化されていることを特徴とする正特性サーミスタ装置。
A positive temperature coefficient thermistor device comprising a barium titanate-based positive temperature coefficient thermistor element and a heat dissipating substrate bonded to the surface of the electrode formed on the positive temperature coefficient thermistor element with a silicon-based adhesive,
When the thermal expansion coefficient of the heat dissipating substrate is 20 to 300 ° C., it is 2.1 × 10 −5 to 3.5 × 10 −5 / ° C.,
When the thermal expansion coefficient of the silicon-based adhesive is 20 to 250 ° C., it is 1.1 × 10 −4 to 2.5 × 10 −4 / ° C.,
The thermal expansion coefficient of the heat-dissipating substrate is 2.8 to 6.0 times the thermal expansion coefficient of the positive temperature coefficient thermistor element, and the thermal expansion coefficient of the silicon-based adhesive is higher than that of the positive temperature coefficient thermistor element. 15.0 to 43.1 times the coefficient,
A positive temperature coefficient thermistor device characterized in that an adhesive surface of the heat dissipation substrate with the positive temperature coefficient thermistor element is roughened to a ten-point average surface roughness Rz of 15 to 65 μm.
前記粗面化は、塩酸およびリン酸を主成分とするエッチング溶液を用いた化学エッチングまたは電解エッチングによるものであることを特徴とする請求項1に記載の正特性サーミスタ装置。   2. The positive temperature coefficient thermistor device according to claim 1, wherein the roughening is performed by chemical etching or electrolytic etching using an etching solution mainly composed of hydrochloric acid and phosphoric acid. チタン酸バリウム系の正特性サーミスタ素子に形成された電極表面に、シリコン系接着剤によって放熱性基板を接着する工程を有する正特性サーミスタ装置の製造方法であって、A method for manufacturing a positive temperature coefficient thermistor device comprising a step of adhering a heat-radiating substrate to a surface of an electrode formed on a barium titanate-based positive temperature coefficient thermistor element with a silicon adhesive,
前記放熱性基板の熱膨張係数が、20〜300℃のとき、2.1×10When the thermal expansion coefficient of the heat dissipation substrate is 20 to 300 ° C., 2.1 × 10 −5-5 〜3.5×10~ 3.5 × 10 −5-5 /℃であり、/ ° C.
前記シリコン系接着剤の線膨張係数が、20〜250℃のとき、1.1×10When the linear expansion coefficient of the silicon-based adhesive is 20 to 250 ° C., 1.1 × 10 −4-4 〜2.5×10~ 2.5 × 10 −4-4 /℃であり、/ ° C.
前記放熱性基板の熱膨張係数が前記正特性サーミスタ素子の熱膨張係数の2.8〜6.0倍であり、かつ、前記シリコン系接着剤の熱膨張係数が前記正特性サーミスタ素子の熱膨張係数の15.0〜43.1倍であり、The thermal expansion coefficient of the heat-dissipating substrate is 2.8 to 6.0 times the thermal expansion coefficient of the positive temperature coefficient thermistor element, and the thermal expansion coefficient of the silicon-based adhesive is higher than that of the positive temperature coefficient thermistor element. 15.0 to 43.1 times the coefficient,
前記接着する工程の前に、前記放熱性基板における前記正特性サーミスタ素子との接着面を、十点平均面粗さRz:15〜65μmに粗面化する工程を有していることを特徴とする正特性サーミスタ装置の製造方法。Before the bonding step, the step of roughening the bonding surface of the heat dissipation substrate with the positive temperature coefficient thermistor element to a 10-point average surface roughness Rz of 15 to 65 μm is provided. To manufacture a positive temperature coefficient thermistor device.
前記粗面化は、塩酸およびリン酸を主成分とするエッチング溶液を用いた化学エッチングまたは電解エッチングによるものであることを特徴とする請求項3に記載の正特性サーミスタ装置の製造方法。4. The method of manufacturing a positive temperature coefficient thermistor device according to claim 3, wherein the roughening is performed by chemical etching or electrolytic etching using an etching solution containing hydrochloric acid and phosphoric acid as main components.
JP2007111947A 2007-04-20 2007-04-20 Positive characteristic thermistor device and manufacturing method thereof Active JP4999528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111947A JP4999528B2 (en) 2007-04-20 2007-04-20 Positive characteristic thermistor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111947A JP4999528B2 (en) 2007-04-20 2007-04-20 Positive characteristic thermistor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008270551A JP2008270551A (en) 2008-11-06
JP4999528B2 true JP4999528B2 (en) 2012-08-15

Family

ID=40049657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111947A Active JP4999528B2 (en) 2007-04-20 2007-04-20 Positive characteristic thermistor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4999528B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5749477B2 (en) * 2010-11-26 2015-07-15 電気化学工業株式会社 Heat dissipation board and electronic components

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059704A (en) * 1983-09-13 1985-04-06 日立電線株式会社 Ptc element heat sink structure
JPH01134901A (en) * 1987-11-20 1989-05-26 Chichibu Cement Co Ltd Thermistor
JPH02262355A (en) * 1989-03-31 1990-10-25 Toshiba Lighting & Technol Corp Heat sink
JPH0974001A (en) * 1995-09-04 1997-03-18 Murata Mfg Co Ltd Thermistor
JPH10313081A (en) * 1997-05-12 1998-11-24 Mitsui High Tec Inc Semiconductor device and manufacture thereof
JP2959629B2 (en) * 1997-08-08 1999-10-06 株式会社デンソー Positive-characteristic thermistor heating element and method of manufacturing positive-characteristic thermistor heating element
JP2001230057A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Positive temperature coefficient thermistor heating device and its manufacturing method

Also Published As

Publication number Publication date
JP2008270551A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
TWI665766B (en) Ceramic circuit board
JP6670240B2 (en) Ceramic circuit board and method of manufacturing the same
KR102454589B1 (en) Semiconductor module and its manufacturing method
WO2018225809A1 (en) Ceramic circuit substrate
JP4999528B2 (en) Positive characteristic thermistor device and manufacturing method thereof
JP2016051778A (en) Metal-ceramic bonded substrate
JP4950255B2 (en) Thermoelectric conversion generator
JP2017011049A (en) Insulation circuit board, and power semiconductor device using the same
JP6797018B2 (en) Brazing material and ceramic substrate using it
US11658015B2 (en) Ceramic structure, electrostatic chuck and substrate fixing device
JP4085330B2 (en) Thick film heater integrated with low temperature component and manufacturing method thereof
JP6650736B2 (en) High thermal conductivity, high insulation heat dissipation sheet
JP4454505B2 (en) Wafer support member
JPH07320538A (en) Insulating material composition and circuit board and module using this insulating material composition
JP2017034042A (en) Wafer support device
JP2017065935A (en) Ceramic circuit board
TW201941226A (en) Thermistor element and method for producing thereof
CN113113702A (en) Electrode assembly and method of manufacturing the same
JP2006165181A (en) Structure for mounting feeding terminal of ceramic base with metal members embedded therein
KR20130031851A (en) Method and device for thermally coupling a heat sink to a component
JP2007165028A (en) Anisotropic conductive material and mounting method using it
JP2007281219A (en) Ceramic circuit board and its manufacturing method
WO2022091808A1 (en) Substrate for semiconductor device
JPH10241828A (en) Electric field apparatus
JP2006005302A (en) Flexible substrate and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250