JP5749477B2 - Heat dissipation board and electronic components - Google Patents

Heat dissipation board and electronic components Download PDF

Info

Publication number
JP5749477B2
JP5749477B2 JP2010263214A JP2010263214A JP5749477B2 JP 5749477 B2 JP5749477 B2 JP 5749477B2 JP 2010263214 A JP2010263214 A JP 2010263214A JP 2010263214 A JP2010263214 A JP 2010263214A JP 5749477 B2 JP5749477 B2 JP 5749477B2
Authority
JP
Japan
Prior art keywords
heat dissipation
layer
adhesive layer
electronic component
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010263214A
Other languages
Japanese (ja)
Other versions
JP2012114314A (en
Inventor
八島 克憲
克憲 八島
清一 山崎
清一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010263214A priority Critical patent/JP5749477B2/en
Publication of JP2012114314A publication Critical patent/JP2012114314A/en
Application granted granted Critical
Publication of JP5749477B2 publication Critical patent/JP5749477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、電子部品と半導体素子の外周を封止した熱硬化性樹脂を有する放熱基板及び電子部品に関する。 The present invention relates to a heat dissipation board and an electronic component having a thermosetting resin that seals the outer periphery of the electronic component and the semiconductor element.

モールド樹脂で成形された電子部品としては、特許文献1や特許文献2がある。これら電子部品は、近年の電子部品のハイパワー化に対応するための絶縁性の向上、放熱性の向上が図られている。 As electronic parts molded with mold resin, there are Patent Document 1 and Patent Document 2. These electronic components have been improved in insulation and heat dissipation to cope with the recent increase in power of electronic components.

特開2005−150595公報JP 2005-150595 A 特開2004−165281公報JP 2004-165281 A

本発明は、接着層と硬化層の界面の破壊を低減させしたことにより接着層と硬化層の絶縁性を高めることができた放熱基板及び電子部品である。 The present invention provides a heat dissipation board and an electronic component that can improve the insulation between the adhesive layer and the hardened layer by reducing the breakage of the interface between the adhesive layer and the hardened layer.

本発明は、金属板と、硬化層と、接着層との順で積層され、硬化層がCステージ状で放熱性を有し、硬化層の接着層側の表面が表面粗さ0.1μm以上20μm以下であり、接着層がBステージ状である放熱基板である。 In the present invention, a metal plate, a hardened layer, and an adhesive layer are laminated in this order, the hardened layer has a C-stage shape and has heat dissipation, and the surface of the hardened layer on the adhesive layer side has a surface roughness of 0.1 μm or more. The heat dissipation substrate is 20 μm or less, and the adhesive layer has a B-stage shape.

放熱基板の硬化層及び接着層は、エポキシ樹脂、硬化剤及び無機フィラーからなり、硬化層の示差走査型熱量計から計算した硬化率が90%以上であり、接着層の硬化率が10%以上75%以下であるのが好ましい。 The cured layer and adhesive layer of the heat dissipation substrate are made of an epoxy resin, a curing agent, and an inorganic filler, the curing rate calculated from the differential scanning calorimeter of the cured layer is 90% or more, and the curing rate of the adhesive layer is 10% or more. It is preferably 75% or less.

放熱基板の硬化層が同一の素材で多層化されたものであるのが好ましい。 It is preferable that the hardened layer of the heat dissipation substrate is made of multiple layers of the same material.

硬化層及び接着層が熱硬化型であるのが好ましい。 It is preferable that the cured layer and the adhesive layer are thermosetting.

無機フィラーが、酸化ケイ素、酸化アルミニウム、窒化アルミニウム、窒化硼素、窒化珪素の1種以上からなり、無機フィラーの充填率が45体積%以上85体積%以下であることが好ましい。 The inorganic filler is preferably composed of one or more of silicon oxide, aluminum oxide, aluminum nitride, boron nitride, and silicon nitride, and the filling rate of the inorganic filler is preferably 45% by volume or more and 85% by volume or less.

他の観点からの発明は、上述の放熱基板と、放熱基板の絶縁層上に搭載されたリードフレームを有する電子部品である。 Another aspect of the invention is an electronic component having the above-described heat dissipation substrate and a lead frame mounted on an insulating layer of the heat dissipation substrate.

他の観点からの発明は、前記電子部品と、リードフレームに電気的に接続された半導体素子と、電子部品と半導体素子の外周を封止した熱硬化性樹脂を有する電子部品である。 Another aspect of the invention is an electronic component including the electronic component, a semiconductor element electrically connected to a lead frame, and a thermosetting resin that seals the outer periphery of the electronic component and the semiconductor element.

本発明に係る放熱基板及び電子部品は、高熱伝導性及び高熱放射性を有し、これにより熱に起因する部品の誤作動、性能の低下や劣化、さらには信頼性低下が生じ難くなった。 The heat dissipation board and the electronic component according to the present invention have high thermal conductivity and high thermal radiation, which makes it difficult for the component to malfunction, deteriorate or deteriorate performance, and further reduce reliability due to heat.

本発明に係る放熱基板を模式的に示した説明図Explanatory drawing which showed typically the heat dissipation board which concerns on this invention

1 接着層
2 硬化層
3 金属シート
1 Adhesive layer 2 Hardened layer 3 Metal sheet

以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.

本発明は、金属板と、硬化層と、接着層との順で積層され、硬化層がCステージ状で放熱性を有し、硬化層の接着層側の表面が表面粗さ0.1μm以上20μm以下であり、接着層がBステージ状である放熱基板である。 In the present invention, a metal plate, a hardened layer, and an adhesive layer are laminated in this order, the hardened layer has a C-stage shape and has heat dissipation, and the surface of the hardened layer on the adhesive layer side has a surface roughness of 0.1 μm or more. The heat dissipation substrate is 20 μm or less, and the adhesive layer has a B-stage shape.

電子部品に用いる放熱基板とモールド樹脂は、双方を固着させる際、高温・高圧の環境下に置かれる。その際、モールド樹脂の硬化収縮や放熱基板の金属板、リードフレーム及びモールド樹脂の線膨張係数が異なることにより、接着層と硬化層の界面で剥離が発生し、放熱基板の絶縁性低下すなわち電子部品の絶縁性を低下させる課題があった。 The heat dissipation substrate and the mold resin used for the electronic component are placed in a high temperature and high pressure environment when both are fixed. At that time, due to the curing shrinkage of the mold resin and the linear expansion coefficients of the metal plate, lead frame, and mold resin of the heat dissipation board, peeling occurs at the interface between the adhesive layer and the hardened layer, resulting in a decrease in insulation of the heat dissipation board, ie, electrons. There was a problem of lowering the insulation of parts.

本発明は、放熱基板の硬化層表面を粗面にして、接着層と硬化層間の接着性を向上させ、の接着層側の表面が表面粗さ0.1μm以上20μm以下であり、接着層がBステージ状である放熱基板であるため、界面の破壊を無くしたことにより接着層と硬化層の絶縁性を高めることができた。 In the present invention, the cured layer surface of the heat dissipation substrate is roughened to improve the adhesion between the adhesive layer and the cured layer, the surface on the adhesive layer side has a surface roughness of 0.1 μm to 20 μm, and the adhesive layer is Since it is a B-stage heat dissipation substrate, the insulation between the adhesive layer and the hardened layer can be improved by eliminating the destruction of the interface.

放熱基板の用いる金属板としては、金属又はその合金が良く、熱伝導性の良好な銅や銅合金、軽量なアルミニウムやアルミニウム合金、線膨張係数が少ない鉄及び鉄合金、アルミ・珪素・炭素合金、アルミ・炭素合金、銅・炭素合金があり、表面上にアルマイト処理、粗化処理、カップリング剤、めっき処理等の各種表面処理を施すことが好ましい。 The metal plate used for the heat dissipation substrate is preferably a metal or an alloy thereof, copper or copper alloy having good thermal conductivity, light aluminum or aluminum alloy, iron or iron alloy having a low linear expansion coefficient, aluminum / silicon / carbon alloy. There are aluminum / carbon alloys and copper / carbon alloys, and it is preferable to subject the surface to various surface treatments such as alumite treatment, roughening treatment, coupling agent, and plating treatment.

硬化層の接着層側の表面が表面粗さは、あまりにその値が小さいと電子部品を作製した際に硬化層と接着層間で剥離が発生する可能性があり、あまりにその値が大きいと粗面にするのに必要以上の時間がかかるので0.1μm以上20μm以下であり、好ましくは0.5μm以上10μm以下である。 If the surface roughness of the surface of the adhesive layer on the hardened layer is too small, peeling may occur between the hardened layer and the adhesive layer when an electronic component is produced. It takes more time than necessary to adjust the thickness to 0.1 μm or more and 20 μm or less, and preferably 0.5 μm or more and 10 μm or less.

硬化層の接着層側の表面を粗面にする方法としては、電解銅箔粗化処理面の凹凸や凹凸のあるポリエチレンテレフタレート製のフィルムを転写させる方法、サンドブラスト法、アルカリ過マンガン酸塩を用いたデスミア処理、プラズマやコロナ放電といった電気的表面処理及びウオータージェットなどによる切削処理、無機フィラーを高充填させて表面に露出させる方法がある。 As a method of roughening the surface of the adhesive layer side of the hardened layer, a method of transferring a film made of polyethylene terephthalate with unevenness or unevenness of the electrolytic copper foil roughening treatment surface, a sandblasting method, or an alkali permanganate is used. There are a desmear treatment, an electrical surface treatment such as plasma and corona discharge, a cutting treatment with a water jet, and a method of exposing the surface by high filling with an inorganic filler.

硬化層及び接着層に用いるエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂があり、具体的には、ナフタレン型、フェニルメタン型、テトラキスフェノールメタン型、ビフェニル型、ビスフェノールAアルキレンオキサイド付加物型のエポキシ樹脂、ビスフェノールA型の水素添加エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ポリテトラメチレングリコール型エポキシ樹脂、ポリサルファイド変性エポキシ樹脂があり、これらを複数組み合わせて用いることもできる。 Epoxy resins used for the hardened layer and the adhesive layer include bisphenol A type epoxy resin and bisphenol F type epoxy resin. Specifically, naphthalene type, phenylmethane type, tetrakisphenolmethane type, biphenyl type, bisphenol A alkylene oxide. There are adduct-type epoxy resins, bisphenol A-type hydrogenated epoxy resins, polypropylene glycol-type epoxy resins, polytetramethylene glycol-type epoxy resins, and polysulfide-modified epoxy resins, and these can be used in combination.

硬化剤としては、芳香族アミン系樹脂、酸無水物系樹脂、フェノール系樹脂及びジシアンアミドからなる群から選ばれる硬化剤の単体又は混合体がある。硬化反応を制御するために、硬化剤や触媒を添加するのが好ましい。 Examples of the curing agent include a simple substance or a mixture of curing agents selected from the group consisting of aromatic amine resins, acid anhydride resins, phenol resins, and dicyanamide. In order to control the curing reaction, it is preferable to add a curing agent or a catalyst.

触媒としては、イミダゾール化合物、有機リン酸化合物、第三級アミン、第四級アンモニウムの単体又は混合体がある。配合する際の配合比は、エポキシ樹脂100質量部に対して0.01質量部以上5質量部以下が好ましい。 Examples of the catalyst include an imidazole compound, an organic phosphate compound, a tertiary amine, and a quaternary ammonium simple substance or mixture. The blending ratio when blending is preferably 0.01 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the epoxy resin.

無機フィラーとしては、電気絶縁性と熱伝導性に優れたものが好ましく、具体的には、酸化ケイ素、酸化アルミニウム、窒化アルミニウム、窒化硼素、窒化珪素の単体又は混合体がある。 As the inorganic filler, those excellent in electrical insulation and thermal conductivity are preferable. Specifically, there are silicon oxide, aluminum oxide, aluminum nitride, boron nitride, and silicon nitride alone or in a mixture.

無機フィラーの配合比は、硬化層及び接着層を構成する組成物の合計量に対して45体積%以上85体積%以下が好ましい。無機フィラーの配合比があまりに少ないと放熱性が不十分になり、あまりに多いと硬化層及び接着層の成形が難しくなる傾向にある。 As for the compounding ratio of an inorganic filler, 45 volume% or more and 85 volume% or less are preferable with respect to the total amount of the composition which comprises a hardening layer and an adhesion layer. If the blending ratio of the inorganic filler is too small, the heat dissipation becomes insufficient, and if it is too large, it tends to be difficult to mold the cured layer and the adhesive layer.

これらフィラーには、カップリング剤、分散剤等の添加剤、溶剤等の粘度調整助剤、酸化チタン、酸化マグネシウム、酸化チタンなどの各種助剤を添加することが好ましい。 It is preferable to add additives such as coupling agents and dispersants, viscosity adjusting aids such as solvents, and various aids such as titanium oxide, magnesium oxide, and titanium oxide to these fillers.

エポキシ樹脂、硬化材、無機フィラーには不純物が少ないことが好ましい。特に塩素イオン、ナトリウムイオン、硫酸イオンは、高温高湿下で電気を印加した際にイオンマイグレーションを起こすため、不純物の少ない材料を選択することが好ましい。 It is preferable that the epoxy resin, the curing material, and the inorganic filler have few impurities. In particular, chlorine ions, sodium ions, and sulfate ions cause ion migration when electricity is applied at high temperature and high humidity. Therefore, it is preferable to select a material with few impurities.

硬化層の示差走査型熱量計から計算した硬化率が90%以上であり、接着層の硬化率が10%以上75%以下であることが好ましい。 The curing rate calculated from the differential scanning calorimeter of the cured layer is preferably 90% or more, and the curing rate of the adhesive layer is preferably 10% or more and 75% or less.

硬化層は、同一素材で、単層又は複数層で形成され、複数層で形成するのが好ましい。複数層にするのが好ましい理由は、仮に一層にボイド等の形成時の不具合があったても他の硬化層によって絶縁信頼性向上させることができるためである。 The hardened layer is made of the same material and is formed of a single layer or a plurality of layers, and is preferably formed of a plurality of layers. The reason why it is preferable to use a plurality of layers is that, even if there is a problem in forming a void or the like in one layer, the insulation reliability can be improved by another cured layer.

硬化層及び接着層にあっては、光硬化型では樹脂モールドしてしまうと光を受けられないため、熱硬化型が好ましい。 In the cured layer and the adhesive layer, the photo-curing type is preferably a thermo-curing type because it cannot receive light if it is resin-molded.

モールド樹脂の素材は、電子部品の安定化のために絶縁シートと熱収縮率の近いものか同一のものが好ましい。モールド樹脂には、無機フィラーを充填したもの、フィラー材料の熱伝導化した放熱性を向上させたモールド樹脂を用いることが好ましい。 The material of the mold resin is preferably a material having a thermal contraction rate close to or the same as that of the insulating sheet in order to stabilize the electronic component. As the mold resin, it is preferable to use a mold resin filled with an inorganic filler or a mold resin with improved heat dissipation of the filler material.

本発明では、硬化層を粗化することによって、樹脂モールド後も剥離が発生せず、絶縁性の良好な電子部品を得ることができた。 In the present invention, by roughening the hardened layer, peeling did not occur even after resin molding, and an electronic component with good insulation could be obtained.

本発明に係る実施例を、比較例と対比して、詳細に説明する。 Examples according to the present invention will be described in detail in comparison with comparative examples.

本発明の実施例1に係る放熱基板は、金属板としての金属シート3、硬化層2と、接着層1の順で積層され、硬化層2がCステージ状で放熱性を有し、硬化層2の接着層側の表面が表面粗さ1.0μmとし、接着層1がBステージ状である放熱基板である。 The heat dissipation substrate according to Example 1 of the present invention is laminated in the order of a metal sheet 3 as a metal plate, a hardened layer 2, and an adhesive layer 1, and the hardened layer 2 has a C-stage shape and has heat dissipation properties. 2 is a heat dissipation substrate in which the surface on the adhesive layer side has a surface roughness of 1.0 μm, and the adhesive layer 1 has a B-stage shape.

<放熱基板の製造方法>
硬化層2は、ビスフェノールA型エポキシ樹脂(三井化学社製JER−828)対し、硬化剤としてフェノールノボラック(明和化成社製H−8)を加え、微粒子の酸化アルミニウム(住友化学社製AA05)と粗粒子の酸化アルミニウム(昭和電工社製AS50)を合わせて絶縁層中45体積%(球状粗粒子と球状微粒子は質量比が8:2)となるように配合した液を、厚さ0.5mmのタフピッチ銅上に、絶縁層の厚みが100μmに塗布した。そして、130℃で加熱硬化し、硬化率を90%にして硬化層2を作製した。
このとき、硬化率測定は、示差走査型熱量計を用い、発熱ピークから硬化率を計算した。
<Method for manufacturing heat dissipation substrate>
The hardened layer 2 is a bisphenol A type epoxy resin (JER-828 made by Mitsui Chemicals), phenol novolak (H-8 made by Meiwa Kasei Co., Ltd.) is added as a hardener, and fine particle aluminum oxide (AA05 made by Sumitomo Chemical) Coarse aluminum oxide (AS50 manufactured by Showa Denko Co., Ltd.) was combined to make a liquid that was 45% by volume in the insulating layer (spherical coarse particles and spherical fine particles had a mass ratio of 8: 2). On the tough pitch copper, the thickness of the insulating layer was applied to 100 μm. And it hardened at 130 degreeC, the hardened | cured layer 2 was produced for 90% of cure rate.
At this time, the curing rate was measured by using a differential scanning calorimeter and calculating the curing rate from the exothermic peak.

前記硬化層2に、アルカリ過マンガン酸塩水溶液をスプレーし、硬化層2の表面粗さを1.0μmに調整した。 The hardened layer 2 was sprayed with an alkaline permanganate aqueous solution to adjust the surface roughness of the hardened layer 2 to 1.0 μm.

前記硬化層2と同様に配合した液を、厚み100μmで塗布し、110℃で加熱硬化し、硬化率を65%に調整し、接着層3を得た。このときの硬化層2の硬化率は100%であった。 A liquid blended in the same manner as in the cured layer 2 was applied at a thickness of 100 μm, heated and cured at 110 ° C., the curing rate was adjusted to 65%, and the adhesive layer 3 was obtained. At this time, the curing rate of the cured layer 2 was 100%.

製造された放熱基板に対し、予め半導体チップを実装したリードフレームに加熱、接合した後、硬化させ、接合体にトランスファーモールド成型し、樹脂モールド成型した後、160℃で5時間追加硬化し、電子部品を得た。このときの接着層1の硬化率は100%であった。 The manufactured heat dissipation board is heated and bonded to a lead frame on which a semiconductor chip has been mounted in advance, and then cured, and transfer molded to a bonded body, resin molded, and then additionally cured at 160 ° C. for 5 hours. I got the parts. At this time, the curing rate of the adhesive layer 1 was 100%.

接着層1と硬化層2の密着性は、超音波探査装置(日立ファインテック社製FS300II)にて評価した。評価方法は、この装置での接着層1と硬化層2の間の密着性が悪い場合、すなわち剥離がある場合、観察画像が白くなるので、白い部分の有無で判断した。実施例1での剥離は観察されなかった。 The adhesion between the adhesive layer 1 and the hardened layer 2 was evaluated with an ultrasonic exploration apparatus (FS300II manufactured by Hitachi Finetech). In the evaluation method, when the adhesion between the adhesive layer 1 and the cured layer 2 in this apparatus is poor, that is, when there is peeling, the observation image becomes white. Peeling in Example 1 was not observed.

絶縁性の評価は、半導体チップと接合しているリードフレームとアルミニウムの耐電圧をJIS C 2110に規定された段階昇圧法で、前記電子部品を絶縁オイル中に入れ評価した。実施例1での耐電圧は、6.0kVと良好であった。 The insulation was evaluated by placing the electronic component in insulating oil by the step-up method defined in JIS C 2110, withstanding voltage of the lead frame and aluminum bonded to the semiconductor chip. The withstand voltage in Example 1 was as good as 6.0 kV.

(実施例2)
厚さ0.5mmのタフピッチ銅上に、硬化層2の厚みが100μmに塗布後、金属層1としての粗さ19μmの電解銅箔を貼り合わせ、加熱により硬化率を90%にし、前記電解銅箔を化学薬品によるエッチングし硬化層2に凹凸を作製した以外は、実施例1と同様のものである。
(Example 2)
After applying the thickness of the hardened layer 2 to 100 μm on a 0.5 mm thick tough pitch copper, an electroplated copper foil having a roughness of 19 μm as the metal layer 1 is bonded, and the hardening rate is set to 90% by heating. Example 1 is the same as Example 1 except that the foil is etched with a chemical to produce irregularities in the cured layer 2.

実施例2の電子部品でも剥離がなく、耐電圧5.5kVと良好な絶縁性を有していた。 The electronic component of Example 2 was not peeled off and had a good insulation property with a withstand voltage of 5.5 kV.

(比較例)
厚さ0.5mmのタフピッチ銅上に、硬化層2の厚みが100μmに塗布後、金属層1としての表面粗さ0.07μmのSUS製の鏡面板を貼り合わせ、加熱により硬化率を90%にした。前記鏡面板を化学薬品によるエッチングし、硬化層に凹凸を作製した以外は、実施例1と同様のものである。
(Comparative example)
On a tough pitch copper with a thickness of 0.5 mm, after the cured layer 2 is applied to a thickness of 100 μm, a SUS mirror plate with a surface roughness of 0.07 μm as the metal layer 1 is bonded, and the curing rate is 90% by heating. I made it. Example 1 is the same as Example 1 except that the mirror plate is etched with a chemical to produce irregularities on the cured layer.

比較例の電子部品では絶縁層間で剥離が観察され、耐電圧4.0kVであった。 In the electronic component of the comparative example, peeling was observed between the insulating layers, and the withstand voltage was 4.0 kV.

Claims (7)

金属板と、硬化層と、接着層との順で積層され、硬化層が示差走査型熱量計から計算した硬化率が90%以上のCステージ状で放熱性を有し、硬化層の接着層側の表面粗さが1.0μm以上19μm以下であり、接着層の示差走査型熱量計から計算した硬化率が10%以上75%以下のBステージ状である放熱基板。 A metal plate, a hardened layer, and an adhesive layer are laminated in this order, and the hardened layer has a C-stage shape with a cure rate calculated from a differential scanning calorimeter of 90% or more and has a heat dissipation property. A heat dissipation substrate having a B-stage shape having a surface roughness of 1.0 μm or more and 19 μm or less and a curing rate calculated from a differential scanning calorimeter of the adhesive layer of 10% or more and 75% or less . 硬化層及び接着層が、エポキシ樹脂、硬化剤及び無機フィラーからな請求項1記載の放熱基板。 Cured layer and the adhesive layer is an epoxy resin, the heat dissipation substrate according to claim 1, wherein ing a curing agent and an inorganic filler. 硬化層が、同一の素材で多層化されて形成された請求項1又は2記載の放熱基板。 The heat-radiating substrate according to claim 1, wherein the hardened layer is formed by multilayering with the same material. 硬化層及び接着層が熱硬化型である請求項1乃至3のいずれか一項記載の放熱基板。 The heat dissipation substrate according to any one of claims 1 to 3, wherein the cured layer and the adhesive layer are thermosetting. 無機フィラーが、酸化ケイ素、酸化アルミニウム、窒化アルミニウム、窒化硼素、窒化珪素の1種以上からなり、無機フィラーの充填率が45体積%以上85体積%以下である請求項1乃至4のいずれか1項に記載の放熱基板。 The inorganic filler is made of one or more of silicon oxide, aluminum oxide, aluminum nitride, boron nitride, and silicon nitride, and the filling rate of the inorganic filler is 45% by volume or more and 85% by volume or less. The heat dissipation board | substrate as described in a term. 請求項1乃至5のいずれか1項に記載の放熱基板と、放熱基板の絶縁層上に搭載されたリードフレーム有する電子部品。 An electronic component having a heat dissipation board according to any one of claims 1 to 5 and a lead frame mounted on an insulating layer of the heat dissipation board. 請求項6記載の電子部品と、リードフレームに電気的に接続された半導体素子と、電子部品と半導体素子の外周を封止した熱硬化性樹脂を有する電子部品。
An electronic component comprising: the electronic component according to claim 6; a semiconductor element electrically connected to the lead frame; and a thermosetting resin that seals an outer periphery of the electronic component and the semiconductor element.
JP2010263214A 2010-11-26 2010-11-26 Heat dissipation board and electronic components Active JP5749477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263214A JP5749477B2 (en) 2010-11-26 2010-11-26 Heat dissipation board and electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010263214A JP5749477B2 (en) 2010-11-26 2010-11-26 Heat dissipation board and electronic components

Publications (2)

Publication Number Publication Date
JP2012114314A JP2012114314A (en) 2012-06-14
JP5749477B2 true JP5749477B2 (en) 2015-07-15

Family

ID=46498187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263214A Active JP5749477B2 (en) 2010-11-26 2010-11-26 Heat dissipation board and electronic components

Country Status (1)

Country Link
JP (1) JP5749477B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090136A (en) * 2012-10-31 2014-05-15 Sanken Electric Co Ltd Semiconductor device and manufacturing method of the same
JP6051115B2 (en) * 2013-06-15 2016-12-27 京セラ株式会社 Heat dissipation member, electronic device, and image display device
KR101550406B1 (en) 2013-12-18 2015-09-08 한국생산기술연구원 Manufacturing Method of Thermal Adhesive
JP7381806B2 (en) * 2021-09-28 2023-11-16 デンカ株式会社 Laminated parts and methods for manufacturing the same, laminates and methods for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3581268B2 (en) * 1999-03-05 2004-10-27 株式会社東芝 Semiconductor device with heat sink and method of manufacturing the same
JP2002076204A (en) * 2000-09-04 2002-03-15 Nitto Shinko Kk Metal flat body with resin
JP3846699B2 (en) * 2001-10-10 2006-11-15 富士電機ホールディングス株式会社 Semiconductor power module and manufacturing method thereof
JP4999528B2 (en) * 2007-04-20 2012-08-15 ニチコン株式会社 Positive characteristic thermistor device and manufacturing method thereof
JP2008280436A (en) * 2007-05-10 2008-11-20 Denki Kagaku Kogyo Kk Adhesive sheet for fixation for use in electrical parts and method of fixing electrical parts

Also Published As

Publication number Publication date
JP2012114314A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
WO2011040415A1 (en) Multilayer resin sheet and method for producing same, method for producing multilayer resin sheet cured product, and highly thermally conductive resin sheet laminate and method for producing same
JP2008153430A (en) Heatsink substrate and heat conductive sheet, and power module using these
KR102524227B1 (en) Resin material, manufacturing method of resin material, and laminate
KR102476070B1 (en) Heat radiation sheet, manufacturing method of heat radiation sheet, and laminate
JP2009024126A (en) Polymer composition, thermally-conductive sheet, highly thermally-conductive adhesive sheet with metal foil, highly thermally-conductive adhesive sheet with metal plate, metal-based circuit board and power module
JP2008280436A (en) Adhesive sheet for fixation for use in electrical parts and method of fixing electrical parts
JP5870934B2 (en) Method for manufacturing metal-based circuit board
JP2012253167A (en) Thermally conductive insulation sheet, metal base substrate and circuit board
WO2010070890A1 (en) Prepreg, process for production thereof, and printed wiring board using same
JP5749477B2 (en) Heat dissipation board and electronic components
KR102524428B1 (en) Insulation Sheets and Laminates
JPWO2019112048A1 (en) Laminates and electronic devices
CN110546202A (en) Resin material, method for producing resin material, and laminate
JP2011100757A (en) Electronic component, and method of manufacturing the same
JP2008308576A (en) Process for producing thermally conductive resin sheet, thermally conductive resin sheet and power module using the same
KR20140081327A (en) Resin composition for dissipating heat, and radiating substrate manufactured using the same
JP2017022265A (en) Metal circuit board and method for manufacturing the same
JP5114111B2 (en) Resin composition, heat conductive sheet, high heat conductive adhesive sheet with metal foil, and high heat conductive adhesive sheet with metal plate
WO2017014237A1 (en) Substrate for power modules, circuit board for power modules, and power module
JP5821845B2 (en) Resin composition used for formation of resin layer constituting metal base substrate, metal base substrate, and method of manufacturing metal base substrate
JP2007214202A (en) Circuit board
JP2015026780A (en) Insulating heat dissipating substrate
JP5410320B2 (en) Electronic components
WO2022255450A1 (en) Resin sheet, laminate, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R151 Written notification of patent or utility model registration

Ref document number: 5749477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250