JP2017034042A - Wafer support device - Google Patents

Wafer support device Download PDF

Info

Publication number
JP2017034042A
JP2017034042A JP2015151344A JP2015151344A JP2017034042A JP 2017034042 A JP2017034042 A JP 2017034042A JP 2015151344 A JP2015151344 A JP 2015151344A JP 2015151344 A JP2015151344 A JP 2015151344A JP 2017034042 A JP2017034042 A JP 2017034042A
Authority
JP
Japan
Prior art keywords
pbn
wafer
electrostatic chuck
coating layer
insulating coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015151344A
Other languages
Japanese (ja)
Other versions
JP6510356B2 (en
Inventor
裕次 森川
Yuji Morikawa
裕次 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Inc
Original Assignee
Momentive Performance Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Materials Inc filed Critical Momentive Performance Materials Inc
Priority to JP2015151344A priority Critical patent/JP6510356B2/en
Publication of JP2017034042A publication Critical patent/JP2017034042A/en
Application granted granted Critical
Publication of JP6510356B2 publication Critical patent/JP6510356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress generation of particles, in a wafer support device such as an electrostatic chuck.SOLUTION: In a wafer support device where protrusions 8 are partially formed of PG (pyrolytic graphite) on the surface of the body, at least the surface of which is composed of PBN (thermal decomposition boron nitride) or C-PBN (thermal decomposition boron nitride containing trace amount of carbon), the top surfaces of the PG protrusions are formed in flush thus giving a placing surface 9 of a wafer 7. Since the wafer is not contact with the crystalline PBN, but is placed on the placing surface composed of harder PG, generation of particles can be suppressed. Preferably, protrusions of the same heights are scattered on the body surface, with an interval therebetween.SELECTED DRAWING: Figure 1

Description

本発明は、半導体や液晶の製造プロセスに用いられるウエハ支持装置に関する。 The present invention relates to a wafer support apparatus used in a semiconductor or liquid crystal manufacturing process.

半導体や液晶の製造プロセスにおいて、ドライエッチングやPVD(物理的気相蒸着法)などを行う際にウエハを固定するための装置として静電チャックが広く用いられている。 An electrostatic chuck is widely used as an apparatus for fixing a wafer when performing dry etching, PVD (physical vapor deposition) or the like in a semiconductor or liquid crystal manufacturing process.

静電チャックは、たとえば図2に示すように、グラファイト板1の周囲をPBN(熱分解窒化ホウ素)などの絶縁層2で被覆してなる絶縁基材の表面に静電チャック用の導体電極3が所定パターンに配置されると共に、裏面にはヒータ用の導体電極4が所定パターンに配置され、これら電極3,4を絶縁被膜層5で被覆した構成を有する。図示しないが、電極3,4の両端は端子を通じて電源に接続されている。 For example, as shown in FIG. 2, the electrostatic chuck has a conductive electrode 3 for electrostatic chuck on the surface of an insulating base material formed by coating the periphery of a graphite plate 1 with an insulating layer 2 such as PBN (pyrolytic boron nitride). Are arranged in a predetermined pattern, and the conductor electrode 4 for the heater is arranged in a predetermined pattern on the back surface, and these electrodes 3 and 4 are covered with an insulating coating layer 5. Although not shown, both ends of the electrodes 3 and 4 are connected to a power source through terminals.

このような構成の静電チャックにおいて、絶縁被膜層5の表面6にウエハ7を載置し、電極3の端子間に電圧を印加すると、クーロン力が発生し、ウエハ7を静電的にチャックする。図2の構成ではヒータ電極4が設けられているので、適正なチャック吸引力が発揮される最適温度に被吸着物6を均一に加熱しながらウエハ7をチャックすることができる。 In the electrostatic chuck having such a configuration, when a wafer 7 is placed on the surface 6 of the insulating coating layer 5 and a voltage is applied between the terminals of the electrode 3, a Coulomb force is generated and the wafer 7 is electrostatically chucked. To do. Since the heater electrode 4 is provided in the configuration of FIG. 2, the wafer 7 can be chucked while uniformly heating the object 6 to the optimum temperature at which an appropriate chuck suction force is exhibited.

なお、図2は双極型静電チャックの構成例を示すものである。単極型静電チャックの場合は、絶縁基材上に単一の導体電極を配置したものを絶縁被膜層5で被覆した構成を有し、チャック電極3と、絶縁被覆膜5の表面6に載置した7との間に電圧印加することによってウエハ7をチャックする。 FIG. 2 shows a configuration example of a bipolar electrostatic chuck. The monopolar electrostatic chuck has a configuration in which a single conductor electrode is disposed on an insulating base material and is covered with an insulating coating layer 5. The chuck electrode 3 and the surface 6 of the insulating coating film 5 are provided. The wafer 7 is chucked by applying a voltage between the substrate 7 and the substrate 7.

静電チャックにおける絶縁被膜層4は、10〜1013Ω・cmの範囲の電気抵抗率を有することが好ましい。絶縁被膜層5の電気抵抗率がこの範囲にあると、電極とウエハとの間に極微弱電流が流れることを許容し、ジョンソンラーベック効果によりチャック吸引力が大幅に増大する。 The insulating coating layer 4 in the electrostatic chuck preferably has an electrical resistivity in the range of 10 8 to 10 13 Ω · cm. When the electrical resistivity of the insulating coating layer 5 is within this range, a very weak current is allowed to flow between the electrode and the wafer, and the chuck suction force is greatly increased by the Johnson Rabeck effect.

この観点から、本出願人は、CVD(化学的気相蒸着法)を用いてPBNに微量のカーボンを含有させたC−PBNで絶縁被膜層4とすることにより上記範囲の電気抵抗率を与える手法を発案した(特許文献1)。具体的には、PBN成形のための反応ガス(たとえば三塩化ホウ素+アンモニア)にカーボン添加のために必要なガス(たとえばメタン)を加えて減圧高温CVD炉内に導入することにより、微量カーボンを含有するPBN成形体からなる絶縁被膜層5を形成することができる。 From this point of view, the present applicant gives an electric resistivity in the above range by using the CVD (chemical vapor deposition) method to form the insulating coating layer 4 with C-PBN in which a small amount of carbon is contained in PBN. A method was invented (Patent Document 1). Specifically, by adding a gas (for example, methane) necessary for carbon addition to a reaction gas (for example, boron trichloride + ammonia) for PBN molding and introducing it into a low pressure high temperature CVD furnace, a small amount of carbon is produced. The insulating coating layer 5 made of the contained PBN molded body can be formed.

特許第2756944号Japanese Patent No. 2756944

しかしながら、PBN(微量カーボンを含有するC−PBNを含む。以下同じ。)による絶縁被膜層5を形成した静電チャックは概ね満足すべき性能を発揮し得るものであるが、PBNは結晶質であるため、高温での使用条件において、PBN絶縁被膜層5からPBNの結晶が脱離してパーティクルを発生させ、これがウエハの裏面に付着して製品価値を著しく低下させるという問題があった。 However, the electrostatic chuck formed with the insulating coating layer 5 by PBN (including C-PBN containing a trace amount of carbon; the same applies hereinafter) can exhibit generally satisfactory performance, but PBN is crystalline. For this reason, there is a problem that, under high temperature use conditions, PBN crystals are detached from the PBN insulating coating layer 5 to generate particles, which adhere to the back surface of the wafer and significantly reduce the product value.

この点について発明者が実験を行ったところ、静電チャックのチャック電極パターン上に多数のパーティクルが発生することを確認した。このことから、絶縁被膜層5の表面6に直接載置されたウエハ7がチャック電極3に吸着されたときに、柔らかいPBNの表面6を引っ掻いてパーティクルを発生させているものと推測された。 When the inventor conducted an experiment on this point, it was confirmed that a large number of particles were generated on the chuck electrode pattern of the electrostatic chuck. From this, it was estimated that when the wafer 7 placed directly on the surface 6 of the insulating coating layer 5 was adsorbed to the chuck electrode 3, the surface 6 of the soft PBN was scratched to generate particles.

本発明は、上述した従来技術の不利欠点を解消し、パーティクルの発生を抑制できるウエハ支持装置を提供することを課題とする。なお、パーティクルの発生は、特に高温でのチャッキング時に顕著に見られるが、常温でのチャッキング時や単にウエハをPBN表面に接触させただけでも微量のパーティクルが発生することがあるので、静電チャックに限らず、ウエハ支持装置全般に共通する課題として認識することができる。 It is an object of the present invention to provide a wafer support apparatus that can eliminate the disadvantages of the above-described prior art and suppress the generation of particles. The generation of particles is particularly noticeable when chucking at high temperatures, but a small amount of particles may be generated even when chucking at room temperature or simply bringing the wafer into contact with the PBN surface. Not only the electric chuck but also a problem common to all wafer support devices can be recognized.

上記課題を解決するため、本発明者は、PBN絶縁被膜層の表面に、PBNより硬い熱分解黒鉛(PG)を部分的にコーティングすることによりパーティクルの発生を抑制できるのではないかとの考えに基いて実験と研究を重ねた結果、本発明を創案した。 In order to solve the above problems, the present inventor considered that the generation of particles could be suppressed by partially coating the surface of the PBN insulating coating layer with pyrolytic graphite (PG) harder than PBN. As a result of repeated experiments and research based on this, the present invention was created.

すなわち、本願の請求項1に係る発明は、少なくとも表面がPBNまたはC−PBNからなる本体と、この本体表面に部分的に形成されるPG(熱分解黒鉛)による凸部とを有し、該PG凸部の上面をウエハ載置面とすることを特徴とするウエハ支持装置である。 That is, the invention according to claim 1 of the present application has a main body having at least a surface made of PBN or C-PBN, and a convex portion made of PG (pyrolytic graphite) partially formed on the surface of the main body, The wafer support apparatus is characterized in that the upper surface of the PG convex portion is a wafer mounting surface.

本願の請求項2に係る発明は、請求項1記載のウエハ支持装置において、複数のPG凸部が同一の高さに形成されて一つのウエハ載置面を与えることを特徴とする。 The invention according to claim 2 of the present application is characterized in that, in the wafer support apparatus according to claim 1, the plurality of PG convex portions are formed at the same height to provide one wafer mounting surface.

本願の請求項3に係る発明は、請求項2記載のウエハ支持装置において、複数のPG凸部が互いの間に間隔を置いて点在していることを特徴とする。 The invention according to claim 3 of the present application is characterized in that, in the wafer support apparatus according to claim 2, a plurality of PG convex portions are scattered at intervals.

本願の請求項4に係る発明は、請求項1ないし3のいずれか記載のウエハ支持装置において、本体が、絶縁基材上に導体電極が配置され、導体電極の表面をPBNまたはC−PBNからなる絶縁被膜層が形成されてなり、静電チャックとして使用されることを特徴とする。 The invention according to claim 4 of the present application is the wafer support device according to any one of claims 1 to 3, wherein the main body has a conductor electrode disposed on an insulating base, and the surface of the conductor electrode is made of PBN or C-PBN. An insulating coating layer is formed and used as an electrostatic chuck.

本発明によれば、ウエハは、PBN(またはC−PBN)の表面に接触することなく、PBNより硬いPGからなる凸部の表面に載置されるので、パーティクルの発生を大幅に低減させることができ、パーティクルがウエハの裏面に付着して製品価値を低下させることを効果的に防止する。 According to the present invention, since the wafer is placed on the surface of the convex portion made of PG harder than PBN without contacting the surface of PBN (or C-PBN), the generation of particles is greatly reduced. It is possible to effectively prevent particles from adhering to the back surface of the wafer and reducing the product value.

また、PBN表面にPGを全面コーティングするのではなく、PBN表面を部分的に覆う凸部としてPGを点状、線状、帯状、格子状などに形成することにより、ウエハの裏面がPG凸部表面(ウエハ載置面)に接触する面積が小さくなるので、この点からもパーティクルの発生を防止ないし抑制すると共に、PBNとPGの熱膨張率差による応力を分断・開放することでPGの剥離を防止することができる。 Also, instead of coating the entire surface of the PBN with PG, the back surface of the wafer is formed into a PG convex portion by forming the PG in a dot shape, a linear shape, a strip shape, a lattice shape, etc. as a convex portion that partially covers the PBN surface. Since the area in contact with the surface (wafer mounting surface) is reduced, the generation of particles is prevented or suppressed from this point as well, and the PG is peeled off by separating and releasing the stress due to the difference in thermal expansion coefficient between PBN and PG. Can be prevented.

本発明の一実施形態による静電チャックの断面図である。It is sectional drawing of the electrostatic chuck by one Embodiment of this invention. 従来技術による静電チャックの断面図である。It is sectional drawing of the electrostatic chuck by a prior art.

図1に本発明の一実施形態による静電チャックの一例を断面図で示す。この静電チャックは、グラファイト板1の周囲をPBN(熱分解窒化ホウ素)などの絶縁層2で被覆してなる絶縁基材の表面に静電チャック用の導体電極3が所定パターンに配置されると共に、裏面にはヒータ用の導体電極4が所定パターンに配置され、これら電極3,4を絶縁被膜層5で被覆した構成を有する。図示しないが、電極3,4の両端は端子を通じて電源に接続されている。この静電チャックの構成および作用は、既述した従来技術による静電チャック(図2)と基本的に同様である。 FIG. 1 is a sectional view showing an example of an electrostatic chuck according to an embodiment of the present invention. In this electrostatic chuck, conductor electrodes 3 for electrostatic chuck are arranged in a predetermined pattern on the surface of an insulating base material formed by covering the periphery of a graphite plate 1 with an insulating layer 2 such as PBN (pyrolytic boron nitride). At the same time, the conductor electrode 4 for the heater is arranged in a predetermined pattern on the back surface, and the electrodes 3 and 4 are covered with the insulating coating layer 5. Although not shown, both ends of the electrodes 3 and 4 are connected to a power source through terminals. The configuration and operation of this electrostatic chuck are basically the same as those of the electrostatic chuck according to the prior art described above (FIG. 2).

しかしながら、既述した従来技術による静電チャックはPBN絶縁被膜層5の表面6にウエハ7を直接載置して使用されるのに対し、この静電チャックにおいては、絶縁被膜層5の表面を部分的に覆うようにPG(熱分解黒鉛)による凸部8が複数形成されており、これら凸部8の上面は実質的に面一に形成されてウエハ7に対する載置面9を与えている点で大きく相違している。この構成により、ウエハ7はPBN絶縁被膜層5の表面6には接することなく、PBNより硬いPGからなる凸部8の上面によるチャック面9上に載置されることになるので、高温での使用条件においても、パーティクルの発生を防止または大幅に低減することができる。 However, the electrostatic chuck according to the prior art described above is used by placing the wafer 7 directly on the surface 6 of the PBN insulating coating layer 5, whereas in this electrostatic chuck, the surface of the insulating coating layer 5 is applied. A plurality of convex portions 8 made of PG (pyrolytic graphite) are formed so as to partially cover, and the upper surfaces of these convex portions 8 are formed substantially flush with each other to provide a mounting surface 9 for the wafer 7. It is greatly different in point. With this configuration, the wafer 7 is placed on the chuck surface 9 by the upper surface of the convex portion 8 made of PG harder than PBN without contacting the surface 6 of the PBN insulating coating layer 5. Even under use conditions, the generation of particles can be prevented or greatly reduced.

以下に試験例と共に本発明の実施例を挙げてさらに本発明について説明する。 Hereinafter, the present invention will be further described with reference to test examples and examples of the present invention.

厚さ10mmの円盤状グラファイト板1の表面に熱CVD法により300μm厚のPBN絶縁層2を形成し、さらに、同じく熱CVD法により50μm厚のPG層を表裏両面に形成した後、その表面側を部分的に除去して所定パターンのチャック電極3を形成すると共に、裏面側についても部分的に除去して所定パターンのヒータ電極4を形成した。次いで、同じく熱CVD法により、電極3,4を有するPBN絶縁層2の全面を被覆するように厚さ100μm厚のカーボン添加PBN(C−PBN)絶縁被膜層5を形成して、試験例1の静電チャックを製造した。この静電チャックは、既述した従来技術による静電チャック(図2)において、絶縁被膜層5をC−PBNで形成したものである。 A 300 μm-thick PBN insulating layer 2 is formed on the surface of a disk-like graphite plate 1 having a thickness of 10 mm by thermal CVD, and a 50 μm-thick PG layer is formed on both the front and back surfaces by thermal CVD. Was partially removed to form a chuck electrode 3 having a predetermined pattern, and the back surface side was also partially removed to form a heater electrode 4 having a predetermined pattern. Next, a carbon-added PBN (C-PBN) insulating coating layer 5 having a thickness of 100 μm is formed so as to cover the entire surface of the PBN insulating layer 2 having the electrodes 3 and 4 by the same thermal CVD method. An electrostatic chuck was manufactured. This electrostatic chuck is obtained by forming the insulating coating layer 5 of C-PBN in the above-described conventional electrostatic chuck (FIG. 2).

絶縁被膜層5を形成する際にメタンガスを用いなかったこと以外は試験例1と同様にして、試験例2の静電チャックを製造した。この静電チャックは、既述した従来技術による静電チャック(図2)において、絶縁被膜層5をカーボン不添加のPBNで形成したものである。 An electrostatic chuck of Test Example 2 was manufactured in the same manner as Test Example 1 except that methane gas was not used when forming the insulating coating layer 5. This electrostatic chuck is obtained by forming the insulating coating layer 5 from PBN not added with carbon in the above-described electrostatic chuck (FIG. 2) according to the prior art.

試験例1の静電チャックを得た後、さらに、C−PBN絶縁被膜層5の表面に、熱CVD法により5μm厚のPG層を形成した後、PGによる円柱状(直径1mm)の凸部8が中心間距離3mmで多数点在するように部分的に切除して、図1に示す構成の静電チャック(本発明実施例)を製造した。 After obtaining the electrostatic chuck of Test Example 1, a PG layer having a thickness of 5 μm was formed on the surface of the C-PBN insulating coating layer 5 by a thermal CVD method, and then a cylindrical convex portion (diameter 1 mm) by PG. An electrostatic chuck (Example of the present invention) having the configuration shown in FIG.

これらの静電チャックについて、±0.25kV、±0.30kVおよび±0.50kVのDC電圧を印加したときのシリコンウエハ7に対するチャック力を測定したところ、表1に示す結果を得た。 With respect to these electrostatic chucks, the chucking force against the silicon wafer 7 when DC voltages of ± 0.25 kV, ± 0.30 kV and ± 0.50 kV were applied was measured, and the results shown in Table 1 were obtained.

特許文献1においても実証されているように、PBN絶縁被膜層5を有する試験例2の静電チャックに比べて、絶縁被膜層5をC-PBNとした試験例1の静電チャックはチャック力が大幅に増大している。C−PBN絶縁被膜層5上にPG凸部8を多数点在させた本発明実施例による静電チャックは、ウエハ載置面9がPG凸部8の上面によって与えられることになるので、PG凸部8を有しない試験例2の静電チャックと比べると、PG凸部8の高さ(本例では5μm)だけチャック電極3から離れており、これによってチャック力が低下しているが、その低下はわずかであり、実用上十分なチャック力を発揮し得るものであることを確認した。 As proved in Patent Document 1, the electrostatic chuck of Test Example 1 in which the insulating coating layer 5 is C-PBN is compared with the electrostatic chuck of Test Example 2 having the PBN insulating coating layer 5. Has increased significantly. In the electrostatic chuck according to the embodiment of the present invention in which a large number of PG convex portions 8 are scattered on the C-PBN insulating coating layer 5, the wafer mounting surface 9 is provided by the upper surface of the PG convex portion 8. Compared with the electrostatic chuck of Test Example 2 that does not have the convex portion 8, it is separated from the chuck electrode 3 by the height of the PG convex portion 8 (5 μm in this example), and this reduces the chucking force. The decrease was slight, and it was confirmed that the chucking force sufficient for practical use could be exhibited.

本発明実施例の静電チャックにおいて、絶縁被膜層5の表面6に形成したPG凸部8は、その後も剥離することがなかった。PG凸部8は、絶縁被膜層表面6のPBNに非接触にウエハ7を支持するために、絶縁被膜層表面6を部分的に覆うものとして点状、線状、帯状、格子状などに形成することができるが、上記実施例のように、多数のPG凸部8が各々独立した状態で点在するように形成することが、ウエハ裏面の接触面積を極小化してよりパーティクル発生抑制効果を高める上で好ましい。 In the electrostatic chuck of the embodiment of the present invention, the PG protrusions 8 formed on the surface 6 of the insulating coating layer 5 were not peeled off thereafter. In order to support the wafer 7 in a non-contact manner with the PBN of the insulating coating layer surface 6, the PG convex portion 8 is formed in a dot shape, a linear shape, a strip shape, a lattice shape, or the like as partially covering the insulating coating layer surface 6. However, as in the above-described embodiment, forming the PG protrusions 8 so as to be scattered in an independent state minimizes the contact area on the back surface of the wafer, thereby further suppressing the generation of particles. It is preferable in terms of enhancement.

次に、試験例1の静電チャックと本発明実施例の静電チャックについて、室温で静電チャックの電極3,4に電圧を印加せずに単にウエハを載置した場合(室温:wo/ESC)、500℃で静電チャックの電極3,4に電圧を印加せずに単にウエハを載置した場合(500℃:wo/ESC)、および、500℃で静電チャックの電極3,4に電圧を印加してウエハ7をチャッキングした場合(500℃:w/ESC)の3通りの条件において、発生したパーティクル数をサイズごとに計測したところ、表2に示す結果を得た。すなわち、C−PBN絶縁被膜層5上にPG凸部8を多数点在させた本発明実施例による静電チャックを用いると、C−PBN絶縁被膜層5の表面に直接ウエハを載置する試験例1の静電チャックに比べて、いずれの場合においてもパーティクル発生数が大幅に減少した。本発明実施例による静電チャックをウエハ支持装置として使用すると、いずれの場合も20μmを超える大きさのパーティクル発生量がゼロになり、パーティクル発生抑制効果が顕著に向上することを確認した。 Next, with respect to the electrostatic chuck of Test Example 1 and the electrostatic chuck of the embodiment of the present invention, when a wafer was simply placed at room temperature without applying a voltage to the electrodes 3 and 4 (room temperature: wo / ESC), when a wafer is simply placed at 500 ° C. without applying voltage to the electrodes 3 and 4 of the electrostatic chuck (500 ° C .: wo / ESC), and at 500 ° C., the electrodes 3 and 4 of the electrostatic chuck When the number of generated particles was measured for each size under the three conditions (500 ° C .: w / ESC) when a voltage was applied to the wafer 7 and chucked, the results shown in Table 2 were obtained. That is, when the electrostatic chuck according to the embodiment of the present invention in which a number of PG convex portions 8 are scattered on the C-PBN insulating coating layer 5 is used, the wafer is directly placed on the surface of the C-PBN insulating coating layer 5. Compared with the electrostatic chuck of Example 1, in all cases, the number of particles generated was greatly reduced. It was confirmed that when the electrostatic chuck according to the embodiment of the present invention was used as a wafer support device, the generation amount of particles having a size exceeding 20 μm was zero in all cases, and the particle generation suppression effect was remarkably improved.

上記実施例では、中心間距離3mmで直径1mm、高さ5μmのPG凸部8を点在させたが、C−PBN絶縁被膜層5の全表面積に対するPG凸部8の合計表面積の割合(PG凸部8の径や中心間距離によって増減する)やPG凸部8の高さが小さくなりすぎると、PG凸部8の上面9にウエハ7を載置したときに、ウエハ7の撓みによってウエハ裏面がC−PBN絶縁被膜層5の表面に接触して、パーティクル発生量を増大させてしまう。また、反対に、PG凸部合計表面積/絶縁被膜層全表面積の割合やPG凸部8の高さが大きくなりすぎると、実用上十分なチャック力を与えることができなくなる。 In the above embodiment, the PG convex portions 8 having a center distance of 3 mm, a diameter of 1 mm, and a height of 5 μm are scattered, but the ratio of the total surface area of the PG convex portions 8 to the total surface area of the C-PBN insulating coating layer 5 (PG If the height of the PG convex portion 8 is too small, the wafer 7 is deflected when the wafer 7 is placed on the upper surface 9 of the PG convex portion 8. The back surface comes into contact with the surface of the C-PBN insulating coating layer 5 and increases the amount of particles generated. On the other hand, if the ratio of the total surface area of the PG protrusions / the total surface area of the insulating coating layer and the height of the PG protrusions 8 are too large, a practically sufficient chucking force cannot be applied.

これらを考慮しつつ、PG凸部8の中心間距離および高さ、ならびにPG凸部合計表面積/絶縁被膜層全表面積の割合を様々に変えて実験を行ったところ、PG凸部8の高さについては、中心間距離10mmで直径1mmとした場合、高さが1μmのときは、ウエハ7が撓んでウエハ裏面がC−PBN絶縁被膜層5に接触したが、高さを2μmとしたときは接触しなかった。また、PG凸部8の高さを20μmとすると、チャック力が大幅に低下して実用に値しなくなることが分かった。 While taking these into consideration, when the experiment was carried out by changing the distance between the center and the height of the PG protrusions 8 and the ratio of the total surface area of the PG protrusions / the total surface area of the insulating coating layer, the height of the PG protrusions 8 was When the center distance is 10 mm and the diameter is 1 mm, when the height is 1 μm, the wafer 7 is bent and the back surface of the wafer comes into contact with the C-PBN insulating coating layer 5, but when the height is 2 μm. There was no contact. Further, it was found that when the height of the PG convex portion 8 is set to 20 μm, the chucking force is greatly reduced and is not practical.

また、PG凸部合計表面積/絶縁被膜層全表面積の割合を変えてチャック力を測定したところ、この表面積割合が64%のときは、実用に値するチャック力を確保することができなかったが、この表面積割合を減少させていくにつれてチャック力が増加して、42%のときに4.0g/cm(印加電圧±0.5kV)のチャック力が得られた。この値は、8インチのウエハ7を吸着する直径190mmの静電チャック面積(ボルト穴やパターン間などチャック力を発揮することができない部分を除く有効面積:約198/cm)に換算すると約792gのチャック力に相当するから、8インチシリコンウエハの重量(約50g)に対して約16倍の安全率でチャッキングできていることを意味しており、実用上十分なチャック力である。 Further, when the chucking force was measured by changing the ratio of the total surface area of the PG protrusions / the total surface area of the insulating coating layer, when this surface area ratio was 64%, the practically sufficient chucking force could not be secured, As the surface area ratio was decreased, the chucking force increased, and a chucking force of 4.0 g / cm 2 (applied voltage ± 0.5 kV) was obtained at 42%. When this value is converted into an electrostatic chuck area of 190 mm in diameter that attracts the 8-inch wafer 7 (effective area excluding a portion where the chucking force cannot be exerted such as a bolt hole or a pattern: about 198 / cm 2 ), Since this corresponds to a chucking force of 792 g, this means that chucking can be performed at a safety factor of about 16 times the weight of an 8-inch silicon wafer (about 50 g), which is a practically sufficient chucking force.

これらの結果から、ウエハ7の撓みによるウエハ裏面のC−PBN絶縁被膜層5表面への接触を防止してパーティクル発生抑制効果を顕著に発揮させ、しかも実用上十分なチャック力を確保するためには、(1)PG凸部8の高さは、2μm以上で20μm以下であることが好ましく、(2)PG凸部合計表面積/絶縁被膜層全表面積の割合は、42%以下であることが好ましいことを確認した。また、PBNとPGの熱膨張率差による応力を分断・開放してPGの剥離を防止するために、PG凸部8の大きさ(直径)は5mm以下、特に3mm以下とすることが好ましいことも確認した。 From these results, in order to prevent the contact of the back surface of the wafer with the C-PBN insulating coating layer 5 surface due to the bending of the wafer 7 and to exert a particle generation suppressing effect remarkably, and to secure a practically sufficient chucking force. (1) The height of the PG protrusion 8 is preferably 2 μm or more and 20 μm or less, and (2) the ratio of the total surface area of the PG protrusions / the total surface area of the insulating coating layer is 42% or less. It was confirmed that it was preferable. Moreover, in order to divide and release the stress due to the difference in thermal expansion coefficient between PBN and PG to prevent PG peeling, the size (diameter) of the PG convex portion 8 is preferably 5 mm or less, particularly 3 mm or less. Also confirmed.

上記において実施例を中心として本発明を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に規定された発明の範囲内において広く変形ないし変更して実施可能である。たとえば、PG凸部8の上にTaC,SiC,NbCなどの炭化金属を成膜させることも、本発明の範囲内である。この場合は、PG凸部8上の該炭化金属膜の表面が互いに面一になってウエハ載置面9を与えることになる。また、PBNまたはC−PBNからなる絶縁被膜層5の膜厚は50〜300μmであることが好ましく、カーボン添加量は0〜10%であることが好ましい。 Although the present invention has been described above centering on the embodiments, the present invention is not limited to this, and can be widely modified or changed within the scope of the invention defined in the claims. For example, it is within the scope of the present invention to deposit a metal carbide such as TaC, SiC, NbC on the PG convex portion 8. In this case, the surfaces of the metal carbide film on the PG convex portion 8 are flush with each other to provide the wafer mounting surface 9. The thickness of the insulating coating layer 5 made of PBN or C-PBN is preferably 50 to 300 μm, and the amount of carbon added is preferably 0 to 10%.

1 グラファイト板
2 絶縁層
3 チャック電極
4 ヒータ電極
5 絶縁被膜層(PBNまたはC−PBN)
6 絶縁被膜層の表面
7 ウエハ
8 PG凸部
9 ウエハ載置面
1 Graphite plate 2 Insulating layer 3 Chuck electrode 4 Heater electrode 5 Insulating coating layer (PBN or C-PBN)
6 Surface of insulating coating layer 7 Wafer 8 PG protrusion 9 Wafer mounting surface

Claims (4)

少なくとも表面がPBN(熱分解窒化ホウ素)またはC−PBN(微量カーボンを含有する熱分解窒化ホウ素)からなる本体と、この本体表面に部分的に形成されるPG(熱分解黒鉛)による凸部とを有し、該PG凸部の上面をウエハ載置面とすることを特徴とするウエハ支持装置。 A main body having at least a surface made of PBN (pyrolytic boron nitride) or C-PBN (pyrolytic boron nitride containing a trace amount of carbon), and a convex portion made of PG (pyrolytic graphite) partially formed on the surface of the main body; And a wafer support surface, wherein the upper surface of the PG convex portion is a wafer mounting surface. 複数のPG凸部が同一の高さに形成されて一つのウエハ載置面を与えることを特徴とする、請求項1記載のウエハ支持装置。 2. The wafer support apparatus according to claim 1, wherein the plurality of PG protrusions are formed at the same height to provide one wafer mounting surface. 複数のPG凸部が互いの間に間隔を置いて点在していることを特徴とする、請求項2記載のウエハ支持装置。 The wafer support apparatus according to claim 2, wherein the plurality of PG convex portions are interspersed at intervals. 本体が、絶縁基材上に導体電極が配置され、導体電極の表面をPBNまたはC−PBNからなる絶縁被膜層が形成されてなり、静電チャックとして使用されることを特徴とする、請求項1ないし3のいずれか記載のウエハ支持装置。 The main body has a conductor electrode disposed on an insulating base material, and an insulating coating layer made of PBN or C-PBN is formed on the surface of the conductor electrode, and is used as an electrostatic chuck. 4. The wafer support apparatus according to any one of 1 to 3.
JP2015151344A 2015-07-30 2015-07-30 Wafer support device Active JP6510356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015151344A JP6510356B2 (en) 2015-07-30 2015-07-30 Wafer support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015151344A JP6510356B2 (en) 2015-07-30 2015-07-30 Wafer support device

Publications (2)

Publication Number Publication Date
JP2017034042A true JP2017034042A (en) 2017-02-09
JP6510356B2 JP6510356B2 (en) 2019-05-08

Family

ID=57988822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015151344A Active JP6510356B2 (en) 2015-07-30 2015-07-30 Wafer support device

Country Status (1)

Country Link
JP (1) JP6510356B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863443A (en) * 2018-07-10 2018-11-23 山东国晶新材料有限公司 A kind of preparation method of Planar Compound heater
WO2019058918A1 (en) 2017-09-19 2019-03-28 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Wafer supporting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251101B2 (en) 2018-10-31 2023-04-04 日本精工株式会社 Linear guide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249544A (en) * 2002-02-26 2003-09-05 Ge Speciality Materials Japan Kk Electrostatic chuck and method of manufacturing the same
JP2004014603A (en) * 2002-06-04 2004-01-15 Ngk Spark Plug Co Ltd Suction chuck
JP2004022888A (en) * 2002-06-18 2004-01-22 Anelva Corp Electrostatic chuck
US20060008676A1 (en) * 2004-07-07 2006-01-12 General Electric Company Protective coating on a substrate and method of making thereof
JP2011100844A (en) * 2009-11-05 2011-05-19 Shin-Etsu Chemical Co Ltd Device having electrostatic chucking function and method of manufacturing the same
JP2015123409A (en) * 2013-12-26 2015-07-06 株式会社日本セラテック Cleaning method of substrate holding member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249544A (en) * 2002-02-26 2003-09-05 Ge Speciality Materials Japan Kk Electrostatic chuck and method of manufacturing the same
JP2004014603A (en) * 2002-06-04 2004-01-15 Ngk Spark Plug Co Ltd Suction chuck
JP2004022888A (en) * 2002-06-18 2004-01-22 Anelva Corp Electrostatic chuck
US20060008676A1 (en) * 2004-07-07 2006-01-12 General Electric Company Protective coating on a substrate and method of making thereof
JP2011100844A (en) * 2009-11-05 2011-05-19 Shin-Etsu Chemical Co Ltd Device having electrostatic chucking function and method of manufacturing the same
JP2015123409A (en) * 2013-12-26 2015-07-06 株式会社日本セラテック Cleaning method of substrate holding member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058918A1 (en) 2017-09-19 2019-03-28 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Wafer supporting device
KR20200062196A (en) 2017-09-19 2020-06-03 모멘티브 쿼츠 재팬 고도가이샤 Wafer support device
CN108863443A (en) * 2018-07-10 2018-11-23 山东国晶新材料有限公司 A kind of preparation method of Planar Compound heater
CN108863443B (en) * 2018-07-10 2021-05-14 山东国晶新材料有限公司 Preparation method of planar composite heater

Also Published As

Publication number Publication date
JP6510356B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
US9984912B2 (en) Locally heated multi-zone substrate support
TWI540672B (en) Electrostatic chuck device
TWI545683B (en) High surface resistivity electrostatic chuck and method of manufacturing the same
CN102282645B (en) Conductive seal ring electrostatic chuck
TW571382B (en) Electrostatic chuck and substrate processing apparatus
JP6319023B2 (en) Electrostatic chuck device
US20100287768A1 (en) Mehtod of manufacturing electrostatic chuck mechanism
US6917021B2 (en) Heating apparatus with electrostatic attraction function
JP6510356B2 (en) Wafer support device
US20190035668A1 (en) Electrostatic chuck device
JP4458995B2 (en) Wafer support member
JP2007201068A (en) Electrostatic chuck
JP5685408B2 (en) Thin film formation method, etching method
JP2008159900A (en) Ceramic heater with electrostatic chuck
KR20200062196A (en) Wafer support device
JP4879771B2 (en) Electrostatic chuck
JP3602067B2 (en) Electrostatic chuck
JP3623938B2 (en) Manufacturing method of electrostatic chuck
JP4302428B2 (en) Wafer heating device having electrostatic adsorption function
JP2010177698A (en) Method for manufacturing electrostatic chuck
JP2004023022A (en) Heating system having electrostatic attracting function and its manufacturing method
JP2010166086A (en) Semiconductor manufacturing apparatus using electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190404

R150 Certificate of patent or registration of utility model

Ref document number: 6510356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250