JP4998140B2 - Cutting tool runout control method - Google Patents

Cutting tool runout control method Download PDF

Info

Publication number
JP4998140B2
JP4998140B2 JP2007210561A JP2007210561A JP4998140B2 JP 4998140 B2 JP4998140 B2 JP 4998140B2 JP 2007210561 A JP2007210561 A JP 2007210561A JP 2007210561 A JP2007210561 A JP 2007210561A JP 4998140 B2 JP4998140 B2 JP 4998140B2
Authority
JP
Japan
Prior art keywords
tool
laser
spindle
laser irradiation
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007210561A
Other languages
Japanese (ja)
Other versions
JP2009039848A (en
Inventor
良雄 今井
拓馬 森下
靖 瀬古
平三郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007210561A priority Critical patent/JP4998140B2/en
Publication of JP2009039848A publication Critical patent/JP2009039848A/en
Application granted granted Critical
Publication of JP4998140B2 publication Critical patent/JP4998140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は超精密加工に使用されるエンドミル等の切削工具の振れを抑制する手法に関する。 The present invention relates to a technique for suppressing runout of a cutting tool such as an end mill used for ultraprecision machining.

近年、マシニングセンタ等の工作機械の加工精度は、運動精度、工具形状精度の向上、計測技術の発達により、格段に向上しているが、実際の加工では工具の振れをゼロにすることは困難である。このような切削工具の振れによって、早期摩耗や加工のばらつきが発生する。 In recent years, the machining accuracy of machine tools such as machining centers has improved dramatically due to improvements in motion accuracy, tool shape accuracy, and development of measurement technology, but in actual machining it is difficult to reduce tool runout to zero. is there. Such runout of the cutting tool causes premature wear and machining variations.

特許文献1には、切削工具の振れを検出する方法が開示されている。この方法は、工具刃先の位置を光ビームによって検出する手段を工作機械の内部に配置し、工具を回転させた時に最も高い切刃と最も低い切刃の位置のデータを演算して工具の振れを求めるものである。 Patent Document 1 discloses a method for detecting runout of a cutting tool. In this method, a means for detecting the position of the tool edge by means of a light beam is arranged inside the machine tool, and when the tool is rotated, the data of the position of the highest and lowest cutting edges is calculated to calculate the vibration of the tool. Is what you want.

しかしながら、この方法で工具の振れを検出しても、その振れをなくすには、工具の主軸に対する取り付け、取り外しを繰り返す必要があり、作業時間がかかる上に安定しておらず、しかも数μm程度の振れは残る。また、工具を取り付ける主軸のチャック(取り付け部)に、焼きばめチャックや油圧チャックといった高精度な特殊チャックを用いる方法があるが、この場合でも数μm程度の振れは残る。さらに、ネジを使用して工具を主軸中心に機械的に調整する機構もあるが、このような機構は大型になるため、大径の工具にしか対応できないばかりか、数μm程度の振れは解消できない。
特開平11−188577号公報
However, even if tool run-out is detected by this method, it is necessary to repeatedly attach and remove the tool to the spindle, which takes time and is not stable. The shake remains. In addition, there is a method of using a high-precision special chuck such as a shrink fit chuck or a hydraulic chuck as a chuck (attachment portion) of the spindle to which the tool is attached, but even in this case, a vibration of about several μm remains. In addition, there is a mechanism that uses a screw to mechanically adjust the tool around the spindle, but because this mechanism is large, it can only handle large-diameter tools, and it can eliminate runout of about a few μm. Can not.
Japanese Patent Application Laid-Open No. 11-188577

そこで、本発明の目的は、非接触でかつ高精度に振れを抑制できる切削工具の振れ抑制方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for suppressing runout of a cutting tool that can restrain runout with high accuracy in a non-contact manner.

上記目的を達成するため、本発明は、主軸に工具を取り付け、主軸を回転させて工具により被加工物に切削加工を行う工作機械において、上記工具のシャンク部又は上記工具と主軸とを連結する連結具に、レーザ照射による加熱及びその後の冷却により変態し、膨張又は収縮を生じる材料を使用し、上記工具を主軸に取り付けた状態で軸心に対する振れを検出し、上記振れに応じて、上記材料部にレーザを照射し、加熱及びその後の冷却により上記材料部を変態させ、膨張又は収縮を生じさせて振れを減少させることを特徴とする切削工具の振れ抑制方法を提供する。 In order to achieve the above object, the present invention connects a shank portion of the tool or the tool and the main shaft in a machine tool in which a tool is attached to the main shaft, the main shaft is rotated, and the workpiece is cut by the tool. Using a material that transforms by heating by laser irradiation and subsequent cooling to the coupler and causes expansion or contraction, and detects the deflection with respect to the shaft center in a state where the tool is attached to the main shaft. There is provided a method for suppressing runout of a cutting tool, wherein the material portion is irradiated with a laser, the material portion is transformed by heating and cooling thereafter, and expansion or contraction is caused to reduce runout.

本発明では、主軸に工具を取り付けた状態で、工具を回転させてその振れを検出する。振れには、その方向(位相)と量があるので、振れの方向と量とを公知の方法で検出する。振れの検出には、非接触型検出器を用いてもよいし、接触型検出器を用いてもよい。次に、主軸を停止させた状態で、レーザ照射による加熱及びその後の冷却により変態し、膨張又は収縮を生じる材料を使用した工具のシャンク部又は連結具にレーザを照射する。レーザを照射すると、工具のシャンク部又は連結具が局部的に加熱され、その後の冷却によって組織が変態し、膨張または収縮する。組織変態による膨張又は収縮により、残留応力が発生し、工具の振れが修正される。レーザは材料を局部的に高温かつ高速に加熱できるので、不必要に広い範囲を加熱せず、材料の強度低下を防止できるとともに、振れを微量ずつ調整できる。本発明では、レーザを照射する位置、範囲、強さ、時間などを調整することにより、0.1μm単位の振れ修正が可能となる。用途としては、超精密加工に使われるミリ又はサブミリ工具(エンドミル、砥石)の振れ修正などに使用できる。 In the present invention, in a state where the tool is attached to the spindle, the tool is rotated to detect the deflection. Since shake has its direction (phase) and amount, the direction and amount of shake are detected by a known method. For detection of shake, a non-contact detector or a contact detector may be used. Next, in a state where the main shaft is stopped, a laser is irradiated to a shank portion or a connecting tool of a tool using a material that is transformed by heating by laser irradiation and subsequent cooling to cause expansion or contraction. Upon irradiation with the laser, the shank or connector of the tool is heated locally, and subsequent cooling transforms the tissue and expands or contracts. Residual stress is generated due to expansion or contraction due to tissue transformation, and the deflection of the tool is corrected. Since the laser can heat the material locally at a high temperature and at a high speed, it does not unnecessarily heat a wide range, can prevent a decrease in the strength of the material, and can adjust the vibration little by little. In the present invention, it is possible to correct shake by 0.1 μm by adjusting the position, range, intensity, time, etc. of laser irradiation. As an application, it can be used to correct runout of a millimeter or submillimeter tool (end mill, grindstone) used for ultra-precision machining.

レーザの照射部位は工具のシャンク部でもよいし、工具と主軸とを連結する連結具でもよい。工具が超硬合金で形成されている場合には、組織変態させることができないので、連結具を変態可能な材料で形成すればよい。連結具は、例えば工具のシャンク部に焼きばめ等によって一体的に固定されたスリーブ等の部品を使用することができる。 The laser irradiation part may be a shank portion of the tool or a connecting tool for connecting the tool and the main shaft. When the tool is made of a cemented carbide, the structure cannot be transformed. Therefore, the connector may be made of a material that can be transformed. For the coupling tool, for example, a component such as a sleeve integrally fixed to the shank portion of the tool by shrink fitting or the like can be used.

好ましい実施形態として、レーザ照射によって変態する材料部を鋼材で形成し、レーザ照射によってオーステナイト組織になるように加熱し、急冷することによってマルテンサイト変態させるようにしてもよい。また、レーザ照射によってオーステナイト組織になるように加熱し、徐冷することによってパーライト変態させてもよい。前者の場合には、組織変態によって膨張するのに対し、後者の場合には組織変態によって収縮する。 As a preferred embodiment, the material portion that is transformed by laser irradiation may be formed of a steel material, heated to an austenite structure by laser irradiation, and rapidly martensitic transformed by quenching. Alternatively, the pearlite transformation may be performed by heating to an austenite structure by laser irradiation and slow cooling. In the former case, it expands due to tissue transformation, while in the latter case, it contracts due to tissue transformation.

以上のように、本発明によれば、工具を主軸に取り付けた状態でその振れを検出し、振れに応じてレーザを工具のシャンク部又は連結具に照射し、組織変態させることで部分的に膨張又は収縮させるようにしたので、従来では不可能であった数μm以下の微小な振れを解消ないし低減することができる。その結果、加工精度の向上、面粗さの低減、工具寿命の延長を実現することができる。 As described above, according to the present invention, the vibration is detected in a state where the tool is attached to the main shaft, and a laser is irradiated on the shank portion or the connecting tool of the tool according to the vibration to partially transform the structure. Since the expansion or contraction is performed, it is possible to eliminate or reduce a minute shake of several μm or less, which has been impossible in the past. As a result, it is possible to improve machining accuracy, reduce surface roughness, and extend the tool life.

以下に、本発明の好ましい実施の形態を、実施例に基づいて説明する。 Hereinafter, preferred embodiments of the present invention will be described based on examples.

図1は本発明方法を実施するためのエンドミル等の工作機械の一例を示す。工作機械には、X,Y,Z方向に移動可能な主軸ヘッド1が設けられ、このヘッド1に図示しないモータにより回転駆動される主軸2が設けられている。主軸2にはコレットホルダ3を介して切削工具4が取り付けられている。コレットホルダ3は公知のものであり、図2に示すように、ホルダシャンク3aの先端部に形成したテーパ穴3bに割りコレット3cを挿入し、締付け具3dをホルダシャンク3aの先端部に螺合させることにより、割りコレット3cを締め付ける構造となっている。 FIG. 1 shows an example of a machine tool such as an end mill for carrying out the method of the present invention. The machine tool is provided with a spindle head 1 that can move in the X, Y, and Z directions, and a spindle 2 that is rotationally driven by a motor (not shown). A cutting tool 4 is attached to the main shaft 2 via a collet holder 3. As shown in FIG. 2, the collet holder 3 is a known one. As shown in FIG. 2, the split collet 3c is inserted into the tapered hole 3b formed at the tip of the holder shank 3a, and the fastening tool 3d is screwed into the tip of the holder shank 3a. By doing so, the split collet 3c is tightened.

割りコレット3cの内部にはスリーブ5が挿入され、締付け具3dによって締付固定されている。スリーブ5は工具4のシャンク部4aに焼きばめ等によってガタツキなく固定されている。スリーブ5は、後述するようにレーザ照射による加熱及びその後の冷却により変態し、膨張又は収縮を生じる材料、例えばS45C、SUJ2などの鋼材が使用されている。 A sleeve 5 is inserted into the split collet 3c and is fastened and fixed by a fastening tool 3d. The sleeve 5 is fixed to the shank portion 4a of the tool 4 without backlash by shrink fitting or the like. As will be described later, the sleeve 5 is made of a material that transforms by heating by laser irradiation and then cooling, and causes expansion or contraction, for example, a steel material such as S45C or SUJ2.

工具4の直下方には、テーブル6上に固定された被加工物Wが配置されており、図1に示す待機位置から主軸2を降下させ、工具4を被加工物Wに接触させて所望の加工を行う。工具4の側方には振れ検出装置10が配置されており、工具4を主軸2に取り付けたままの状態で、工具4の振れを検出する。振れ検出装置10としては、例えば工具4のシャンク部4aにテコ式の電気マイクロメータを接触させ、主軸2を低速で回転させてマイクロメータ指示値の振幅を読み取る方式でもよいし、レーザ測定器を用いて工具4の刃先の振れを測定してもよい。後者の場合には、刃先の振れを高速回転中に測定できるので、より加工状態に近い状態で測定できる。図1にはレーザ測定器の例を示してある。振れ検出装置10の検出信号は制御装置11へ送られる。制御装置11は、振れ検出装置10の検出信号とヘッド1からの主軸2の回転位置信号とに基づいて、振れ量と振れ方向とを計算し、後述する照射装置20を制御する。 A workpiece W fixed on the table 6 is disposed directly below the tool 4. The spindle 2 is lowered from the standby position shown in FIG. 1, and the tool 4 is brought into contact with the workpiece W as desired. Process. A shake detection device 10 is disposed on the side of the tool 4 and detects the shake of the tool 4 while the tool 4 is still attached to the spindle 2. As the shake detection device 10, for example, a method in which a lever-type electric micrometer is brought into contact with the shank portion 4 a of the tool 4 and the main shaft 2 is rotated at a low speed to read the amplitude of the micrometer indicated value, or a laser measuring device is used. It may be used to measure the runout of the cutting edge of the tool 4. In the latter case, the runout of the cutting edge can be measured during high-speed rotation, so that it can be measured in a state closer to the machining state. FIG. 1 shows an example of a laser measuring device. The detection signal of the shake detection device 10 is sent to the control device 11. The control device 11 calculates a shake amount and a shake direction based on the detection signal of the shake detection device 10 and the rotational position signal of the main shaft 2 from the head 1 and controls the irradiation device 20 described later.

図3は、主軸2と工具4との間に振れaが存在する場合を示す。主軸2の回転中心をO1とし、工具4の中心をO2とすると、中心O1,O2間の距離が振れaである。主軸2を1回転させると、工具4はO1を中心として回転し、その最外周の軌跡Cは破線で示すような円を描く。工具4の直径をdとすると、円Cの外径はd+2aとなるので、円Cの外径から振れ量aを求めることができる。振れ量aと同時に、主軸2の回転位置を検出することにより、振れ方向(位相)も測定できる。図3の場合には、初期位置における振れ方向θ=0、つまり工具4の中心O2は主軸2の回転中心O1に対して直上方にある。 FIG. 3 shows a case where there is a runout a between the spindle 2 and the tool 4. When the rotation center of the main shaft 2 is O1, and the center of the tool 4 is O2, the distance between the centers O1 and O2 is a deflection a. When the spindle 2 is rotated once, the tool 4 rotates around O1, and the outermost locus C draws a circle as shown by a broken line. Assuming that the diameter of the tool 4 is d, the outer diameter of the circle C is d + 2a. Therefore, the deflection amount a can be obtained from the outer diameter of the circle C. By detecting the rotational position of the spindle 2 simultaneously with the shake amount a, the shake direction (phase) can also be measured. In the case of FIG. 3, the deflection direction θ = 0 at the initial position, that is, the center O2 of the tool 4 is directly above the rotation center O1 of the main shaft 2.

主軸2の側方には、スリーブ5に対してレーザビームを直交方向より照射し、局部的に加熱させる照射装置20が配置されている。上記のように振れ検出装置10により工具4の振れ量aと振れ方向とを検出した後、主軸2を停止させた状態で、スリーブ5の振れ方向側の側面にレーザビームを照射する。振れ量aに応じてレーザを当てる位置、範囲、強さ、時間を調整する。レーザは工具4のシャンク部4aに照射してもよいが、工具4が超硬合金で形成されている場合には変態させることができないので、上述のように変態可能な材料よりなるスリーブ5に照射するのがよい。 An irradiation device 20 that irradiates the sleeve 5 with a laser beam from an orthogonal direction and locally heats the sleeve 5 is disposed on the side of the main shaft 2. After detecting the deflection amount a and the deflection direction of the tool 4 by the deflection detection device 10 as described above, the side surface on the deflection direction side of the sleeve 5 is irradiated with a laser beam while the main shaft 2 is stopped. The position, range, intensity, and time for applying the laser are adjusted according to the shake amount a. The laser may irradiate the shank portion 4a of the tool 4, but if the tool 4 is made of cemented carbide, it cannot be transformed, so that the sleeve 5 made of a transformable material as described above is applied to the sleeve 5. It is better to irradiate.

鋼材よりなるスリーブ5の振れ方向側の側面にレーザを照射すると、スリーブ5は局部的に加熱されてオーステナイト域に達し、加熱直後に材料自身の熱拡散によって急激に自己冷却されるため、その局部はマルテンサイト変態による硬化を生じる。マルテンサイト変態するとき、組織が膨張するため、工具4の刃先4bはレーザ照射部とは逆側に変位し、振れが低減される。上記のようにスリーブ5は局部的にマルテンサイト変態するが、その機械的強度には殆ど変化がないので、切削加工する際に加工精度が低下したり摩耗が増加する懸念がない。 When the laser beam is irradiated on the side surface on the vibration direction side of the sleeve 5 made of steel, the sleeve 5 is locally heated to reach the austenite region, and immediately after heating, it is rapidly self-cooled by the thermal diffusion of the material itself. Causes hardening by martensitic transformation. When the martensitic transformation is performed, the structure expands, so that the cutting edge 4b of the tool 4 is displaced to the side opposite to the laser irradiation portion, and the vibration is reduced. As described above, the sleeve 5 locally undergoes martensite transformation, but since there is almost no change in its mechanical strength, there is no concern that the machining accuracy will be lowered or the wear will be increased during cutting.

本発明者らは、図4に示すような材料Mを用いて振れ修正実験を行った。その結果を図5に示す。ここで使用した材料Mは、直径6mm×長さ100mmの鋼材(SUJ2)よりなる丸棒であり、根元部を20mm固定した状態で取り付け、先端部から40mmの位置にYAGレーザを照射し、先端部での振れ量bを測定した。
レーザの照射条件は次の通りである。
レーザ出力:15W
照射直径:φ0.96mm,φ2.88mm
The present inventors conducted a shake correction experiment using a material M as shown in FIG. The result is shown in FIG. The material M used here is a round bar made of steel (SUJ2) having a diameter of 6 mm and a length of 100 mm, attached with the root portion fixed to 20 mm, irradiated with a YAG laser at a position 40 mm from the tip, The amount of deflection b in the part was measured.
The laser irradiation conditions are as follows.
Laser output: 15W
Irradiation diameter: φ0.96mm, φ2.88mm

図5に示すように、レーザ照射時間を3秒〜12秒に変化させたところ、照射サイズが0.96mmの場合には3μm〜6μmの範囲で振れ量を可変でき、照射サイズが2.88mmの場合には1μm〜7μmの範囲で振れ量を可変できた。この結果、レーザ照射時間により振れ量を任意に調整できることを確認できた。また、レーザ照射径よりもレーザ照射時間を増減させる方が振れ量が大きく変化することがわかった。上記のほか、照射位置やレーザ出力を調整することにより、振れ量を調整することもできる。 As shown in FIG. 5, when the laser irradiation time is changed from 3 seconds to 12 seconds, when the irradiation size is 0.96 mm, the shake amount can be varied in the range of 3 μm to 6 μm, and the irradiation size is 2.88 mm. In this case, the shake amount could be varied in the range of 1 μm to 7 μm. As a result, it was confirmed that the amount of deflection can be arbitrarily adjusted by the laser irradiation time. Further, it was found that the amount of shake greatly changes when the laser irradiation time is increased or decreased rather than the laser irradiation diameter. In addition to the above, the shake amount can be adjusted by adjusting the irradiation position and the laser output.

上記実施例では、レーザ照射によってオーステナイト組織になるように加熱した後、急冷することによってマルテンサイト変態させるようにしたが、レーザ照射によってオーステナイト組織になるように加熱した後、徐冷することによってパーライト変態させてもよい。この場合には、組織変態によって収縮するため、振れ方向側と逆側にレーザを照射すればよい。 In the above examples, the martensite transformation was performed by heating to an austenite structure by laser irradiation and then rapidly cooling, but the pearlite was gradually cooled by heating to an austenite structure by laser irradiation. It may be transformed. In this case, since the contraction is caused by the tissue transformation, the laser may be irradiated on the side opposite to the shake direction side.

上記実施例では、コレットホルダ3にスリーブ5を介して工具4を取り付けた例を示したが、コレットホルダ3に直接工具4を取り付けてもよい。この場合には、レーザを工具4のシャンク部4aに照射し、シャンク部4aの組織を変態させる必要がある。レーザの種類はYAGレーザに限らず、CO2 レーザなど他のレーザを使用することもできる。 In the above embodiment, an example in which the tool 4 is attached to the collet holder 3 via the sleeve 5 has been described. However, the tool 4 may be directly attached to the collet holder 3. In this case, it is necessary to irradiate the shank part 4a of the tool 4 with a laser to transform the structure of the shank part 4a. The type of laser is not limited to the YAG laser, and other lasers such as a CO 2 laser can also be used.

本発明方法を実施するための工作機械の一例の概略側面図である。It is a schematic side view of an example of the machine tool for implementing this invention method. 切削工具を保持するコレットホルダの一部断面側面図である。It is a partial cross section side view of the collet holder holding a cutting tool. 切削工具の振れを示す図である。It is a figure which shows run-out of a cutting tool. レーザ照射による振れ抑制方法を示す図である。It is a figure which shows the shake suppression method by laser irradiation. レーザ照射時間と振れ量との関係を示す図である。It is a figure which shows the relationship between laser irradiation time and a shake amount.

符号の説明Explanation of symbols

1 工作機械
2 主軸
3 コレットホルダ
4 切削工具
4a シャンク部
5 スリーブ
DESCRIPTION OF SYMBOLS 1 Machine tool 2 Spindle 3 Collet holder 4 Cutting tool 4a Shank part 5 Sleeve

Claims (3)

主軸に工具を取り付け、主軸を回転させて工具により被加工物に切削加工を行う工作機械において、
上記工具のシャンク部又は上記工具と主軸とを連結する連結具に、レーザ照射による加熱及びその後の冷却により変態し、膨張又は収縮を生じる材料を使用し、
上記工具を主軸に取り付けた状態で軸心に対する振れを検出し、
上記振れに応じて、上記材料部にレーザを照射し、加熱及びその後の冷却により上記材料部を変態させ、膨張又は収縮を生じさせて振れを減少させることを特徴とする切削工具の振れ抑制方法。
In a machine tool that attaches a tool to the spindle and rotates the spindle to cut the workpiece with the tool,
Use a material that transforms by heating by laser irradiation and subsequent cooling to cause expansion or contraction in the shank part of the tool or the connecting tool that connects the tool and the main shaft,
Detects runout with respect to the shaft center with the tool attached to the spindle.
According to the vibration, the material part is irradiated with a laser, the material part is transformed by heating and subsequent cooling, and the vibration is reduced by causing expansion or contraction to reduce the vibration. .
上記材料部は鋼材で形成され、上記レーザ照射によってオーステナイト組織になるように加熱し、急冷することによってマルテンサイト変態させることを特徴とする請求項1に記載の切削工具の振れ抑制方法。 2. The method for suppressing runout of a cutting tool according to claim 1, wherein the material part is formed of a steel material, and is heated so as to have an austenite structure by the laser irradiation and is rapidly cooled to cause martensitic transformation. 上記材料部は鋼材で形成され、上記レーザ照射によってオーステナイト組織になるように加熱し、徐冷することによってパーライト変態させることを特徴とする請求項1に記載の切削工具の振れ抑制方法。 2. The method for suppressing vibration of a cutting tool according to claim 1, wherein the material portion is formed of a steel material, and is heated to have an austenite structure by the laser irradiation and is gradually cooled to cause pearlite transformation.
JP2007210561A 2007-08-11 2007-08-11 Cutting tool runout control method Expired - Fee Related JP4998140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007210561A JP4998140B2 (en) 2007-08-11 2007-08-11 Cutting tool runout control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007210561A JP4998140B2 (en) 2007-08-11 2007-08-11 Cutting tool runout control method

Publications (2)

Publication Number Publication Date
JP2009039848A JP2009039848A (en) 2009-02-26
JP4998140B2 true JP4998140B2 (en) 2012-08-15

Family

ID=40441160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210561A Expired - Fee Related JP4998140B2 (en) 2007-08-11 2007-08-11 Cutting tool runout control method

Country Status (1)

Country Link
JP (1) JP4998140B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117772A (en) * 2013-04-25 2014-10-29 三菱综合材料株式会社 Laser processing method and laser processing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223121A (en) * 1987-03-13 1988-09-16 Mazda Motor Corp Production of product having step part
JP3915028B2 (en) * 1996-12-24 2007-05-16 兼房株式会社 Disk-shaped rotary tool
JP2003145378A (en) * 2001-11-15 2003-05-20 Alps Tool Co Ltd Tool holder and run-out correcting tool

Also Published As

Publication number Publication date
JP2009039848A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP6071641B2 (en) Processing device, processing method
JP5364856B1 (en) Processing device, processing method
JP5243083B2 (en) Friction welding method
Azarhoushang et al. Laser-assisted grinding of silicon nitride by picosecond laser
JP5916417B2 (en) Drilling machine
US20040074944A1 (en) Apparatus and method for frictional stirring weld
JP4286962B2 (en) Friction stir welding method
CN110625401B (en) Processing device and method under laser-induced material coupling reaction
JP4727634B2 (en) Processing method
CA2994764A1 (en) Device and method for homogeneously welding two-dimensionally bent structures by friction stir welding
JP6071640B2 (en) Processing device, processing method
JP2005507788A (en) Machine with temperature compensated work spindle
WO2008050551A1 (en) Lathe and method of machining by lathe
JP4998140B2 (en) Cutting tool runout control method
Mohammadi et al. Laser augmented diamond drilling: a new technique to drill hard and brittle materials
JP2009214217A (en) Grinding wheel distal end position correction method and device
JP2006329795A (en) Shape measuring device
Wang et al. Inert ambiance-assisted laser ablation of CVD diamond leads to enhanced surface quality and grindability
Leopardi et al. Analysis of laser assisted milling (LAM) of Inconel 718 with ceramic tools
WO2021049257A1 (en) Skiving device and skiving method
JP2007327105A (en) Laser beam heat-treatment method and apparatus therefor
JP4269230B2 (en) Axis alignment method for hybrid machining apparatus and hybrid machining apparatus
JP2021526087A (en) Machining tools inside the shaft and their methods
Sahu et al. Laser Assisted Micro Grinding of Titanium
KR102349328B1 (en) Laser assisted micro-machining system and method for micro-machining using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Ref document number: 4998140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees