JP3915028B2 - Disk-shaped rotary tool - Google Patents

Disk-shaped rotary tool Download PDF

Info

Publication number
JP3915028B2
JP3915028B2 JP35627996A JP35627996A JP3915028B2 JP 3915028 B2 JP3915028 B2 JP 3915028B2 JP 35627996 A JP35627996 A JP 35627996A JP 35627996 A JP35627996 A JP 35627996A JP 3915028 B2 JP3915028 B2 JP 3915028B2
Authority
JP
Japan
Prior art keywords
vibration
base metal
region
hammering
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35627996A
Other languages
Japanese (ja)
Other versions
JPH10180703A (en
Inventor
悟 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanefusa KK
Original Assignee
Kanefusa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanefusa KK filed Critical Kanefusa KK
Priority to JP35627996A priority Critical patent/JP3915028B2/en
Publication of JPH10180703A publication Critical patent/JPH10180703A/en
Application granted granted Critical
Publication of JP3915028B2 publication Critical patent/JP3915028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D63/00Dressing the tools of sawing machines or sawing devices for use in cutting any kind of material, e.g. in the manufacture of sawing tools
    • B23D63/18Straightening damaged saw blades; Reconditioning the side surface of saw blades, e.g. by grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/005Vibration-damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/02Circular saw blades
    • B23D61/025Details of saw blade body

Description

【0001】
【発明が属する技術分野】
本発明は丸鋸や切断砥石等のように厚みの薄い鋼板等からなる金属製台金の外周に切刃や砥粒を設けた円板状回転工具に関する。さらに詳しくは台金の円周方向の残留応力による緊張状態を変化させることで円板の厚み方向の振動即ち横振動を抑制した円板状回転工具に係るものである。
【0002】
【従来の技術】
厚みの薄い円板状回転工具は切削中に程度の差こそあれ横振動を生じることは広く知られている。切削中の切刃が被削材に食い込んだときに切刃を横方向に交互に振らせようとする励振周波数と台金の固相振動数とが一致するか近接していると、有害な横振動が生じる。その結果、切断面を悪化させ、工具寿命を低下させることとなる。
【0003】
従来、切削中の横振動を抑制するために、円板状回転工具の外周から半径方向に台金半径の5〜20%の長さの外周スリット(以下「スリット」)を数本形成していた。スリットのない円板状回転工具は前記したように励振周波数と台金の固有振動数とが一致するか近接した回転数で有害な横振動が生じる。台金には複数の固有振動数が飛び飛びに存在するが、実際、何れの回転数でも固有振動数の内の一つが呼応し横振動が生じる。ところが、スリットを形成することによりスリット本数に対応した特定の振動モードの横振動は励起されにくくなる。
【0004】
この理由は以下のようである。台金の振動モードは節円数と節直径数とで表されるが、この振動モードは節円数と節直径数とが同数でそれぞれ固有の振動数で振動する二つの定常振動(節の位置が台金上に固定されている振動)から構成される。円板はこの二つの定常振動の固有振動数がほとんど同じであるため、二つの定常振動が連成して進行波からなる連成振動を生じ、有害な横振動となる。
ところが、円板にスリットを形成すると、スリットの本数に対応した特定の振動モードの二つの定常振動の固有振動数の差が大きくなり、連成振動が生じにくくなる。このことは木材学会誌Vol.41,NO.8,722 −790 頁「丸のこ切削時の横振動に対するスリットの効果」に示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、円板状回転工具の台金の外周にスリットを形成すると、台金の横方向の剛性が低下するとともに、台金が座屈する回転数即ち臨界回転数も低下するという問題がある。
台金の剛性や臨界回転数の低下を抑制するために、ハンマリング、ヒートテンション、ショットビーニングといった腰入れ処理が行われてきた。腰入れ処理の目的は歯根近くの台金の外縁部に均一な引張残留応力を発生させようとするものであり、横振動の抑制には効果がなかった。よって切削中の有害な横振動を充分抑制するためには、スリットを長くする必要があった。スリット部付近の台金の横方向の剛性はスリットの長さとともに低下するので、横振動も大きくなりスリット部付近にある切刃によるツースマークが深くなったり、ひどい場合にはスリット部付近の台金が塑性変形したり割れたりする問題がある。
【0006】
本発明は従来の技術の有するこのような問題点に鑑みなされたもので、その目的とするところは台金の剛性や臨界回転数を低下させることなく、切削時の横振動を抑制できる円板状回転工具を提供しようするものである。
具体的には台金の円周方向にハンマリング等によりむらのある不均一な残留応力を発生させ、回転中の台金の横方向の剛性や臨界回転数を上昇させるための腰入れ処理を行うとともに、特定の振動モードの二つの定常振動の固有振動数の差を大きくすることで、そのモードの連成振動を抑制しようとするものである。
【0007】
【課題を解決するための手段】
本発明は上述の目的を達成するために、円板状回転工具の台金を回転軸を中心として扇形に2乃至22領域の偶数領域に区分けし、隣合う領域で異なる大きさの残留応力を発生させ、該残留応力の極大値を示す領域と極小値を示す領域とが周方向に交互に配置されることにより台金の横振動を抑制するものである。
【0008】
残留応力を発生させる手段が台金の一部を伸ばす加工であるものとする。
残留応力を発生させる手段が台金の一部を縮める加工であるものとする。
残留応力を発生させる手段が台金の一部を伸ばす加工と縮める加工とを組合せたものである
このような加工を施すことにより台金の横方向の剛性や臨界回転数を低下させることなく特定の振動モードの二つの定常振動の固有振動数の差を大きくすることができ、台金の横振動を効果的に抑制することができた。
【0009】
【発明の実施の形態】
円板状回転工具の台金の横振動モードは、同心円上の節円の数(節円数m)と中心に対し等角度間隔の節直径の数(節直径数n)で表される。
本実施例では節円数m=0のときの横振動を抑制することについて説明する。
【0010】
台金の振動モードの一例を図1に示す。実線及び破線の直径線は節直径で、この場合、m=0,n=2であり、同じ節円数で同じ節直径数の定常振動は二つある。図の実線で示した定常振動aと破線で示した定常振動bである。定常振動bは定常振動aの全ての節に腹が位置する。定常振動aと定常振動bの固有振動がほぼ同じであると、切削中にこの二つの定常振動が連成して台金の回転方向に進行する前進波又は台金の回転とは逆方向に進行する後進波が形成される。
【0011】
これら前進波又は後進波の周波数と切刃が被削材に食い込むときの励振周波数が一致するか接近していると、前進波又は後進波の周波数で振幅が非常に大きくなり有害な横振動が発生する。
また回転工具の回転数を増やしていくと、後進波は後方への伝播速度と回転工具の周速とが一致する回転数のときに、空間に固定した位置からの観察に対して振動波形を固定したように伝播が停止した状態となる。
この時の回転数が臨界回転数であり、横方向の力に対して台金が容易に変形し切削中であれば座屈を生じることとなる。
【0012】
本実施例でのハンマリングは打撃面が楕円形の同じ大きさの2個のハンマを台金の上,下面に楕円の長軸を同じ向きに対向して配置する。これらのハンマを油圧プレスにより75kNの荷重で台金に押し付け、ハンマリングを行った。ハンマリングは台金を伸ばす加工である。ショットビーニングも同じ種類の加工である。なおハンマリングの位置は各実施例において示す。
【0013】
本発明の丸鋸静止時の固有振動数を測定する装置を図2aにもとづき説明する。
機台に軸受により回転可能に軸承した回転軸1の一端はプーリ及びベルトを介してインバータで回転数の制御できるモータ2に連結されており、他端は実験用丸鋸Sが2枚のフランジ3を介在してナットで締着されている。
【0014】
静止した丸鋸Sに横振動を励起する電磁マグネット5は、台金の外縁近くに配置され、関数発生器6から出力される正弦波電圧を増幅器7を介して電磁マグネット5に負荷し加振する。
また電磁マグネット5による加振位置と同じ側で円周方向に180°回転した方向に渦電流型非接触変位センサ(小野測器製)8が設置されている。このセンサ8の出力は増幅器9を介してFFTアナライザ(小野測器製)11で周波数分析することにより固有振動数を求めた。周波数分析の結果はプロッタ12に記録される。
【0015】
さらに回転軸1と同軸上丸鋸の反対側に中心を有するギヤモータ13の出力軸にアームを取り付け半径方向の任意位置に固定可能な変位センサ14(小野測器製)を設ける。そして変位センサ14をギヤモータ13で台金の円周方向360 °回転させ、出力を増幅器16を介してペンレコーダ17に台金の振幅の実効値を記録した。このようにして半径方向及び円周方向に沿った横振動の振幅分布を測定し、励起した定常振動モードの形状を求めた。
【0016】
実施例その1
〔供試 丸鋸の処理条件〕
NO.1(NH−NS):ハンマリング及びスリットなし
NO.2(SH−NS):半径75mmおよび102mmの同心円周上で16領域に等区分した放射線との交点において均等に標準的なハンマリングを施す。
NO.3(4H−NS):図4に示すよに台金の中周域を中心角η=45°の扇形の8領域に等区分し一つおきの4領域にハンマリングを行い中周域の円周方向に圧縮応力(負の応力)を残留させる。S1はハンマリング領域を示し、領域内を全て均等にハンマリングすることを意味するものでなく、その領域内に残留応力の極値ができればよい。S2はハンマリングなしの領域を示す。
【0017】
NO.4(5H−NS)中心角η=36°の扇形の10領域に等区分し一つおきの5領域にハンマリング、他はNO.3と同じ。
NO.5(8H−HS):中心角η=22.5°の扇形の16領域に等区分し一つおきの8領域にハンマリング、他はNO.3と同じ。
NO.6(NH−4S):NO.1の丸鋸の外周に4本のスリットを切ったもの、スリットは幅1mmで歯底からの長さ20mm(以下同じ)。
NO.7(SH−4S):NO.2の丸鋸の外周に4本のスリットを切ったもの。
【0018】
NO.8(4H−4Sn):NO.3の丸鋸のハンマンリグしていない領域の中央外周に4本のスリットを切ったもの(図5参照)。
NO.9(4H−4Sh):NO.3の丸鋸のハンマリングした領域の中央の外周に4本のスリットを切ったもの。
NO.10(NH−5S):NO.1の丸鋸の外周に5本のスリットを切ったもの。
NO.11(5H−5Sn):NO.4の丸鋸のハンマリングしてない領域の中央外周に5本のスリットを切ったもの。
【0019】
〔供試丸鋸の仕様〕
外径305mm,台金の厚さ2.2mm,歯厚3.2mm,歯数40で、超硬質チップはすくい角20°,先端逃げ角15°,側面逃げ角3°,側面向心角1°である。木材切削時に横振動が励起されやすいように横すくい角5°,先端傾き角10°の交互歯とした。台金は合金工具鋼(SKS51)製で、熱処理によりHRC43の硬度にした。
【0020】
(被削材):スプルース気乾材(比重0.4,含水率9%)挽き高さ45mm,長さ1.2m
(送材速度):12m/min
(切削時の鋸歯先端の木材下面からの突き出し量):2mm
(主軸回転数):N=2000〜5000r.p.m.
(切削方向):上向き切削
なお切削時における丸鋸,被削材及びセンサの位置関係は図3に示す。
【0021】
〔操作〕
(図2b,図2c参照)予めインパクト加振によって求めておいた台金固有振動数の前後の周波数範囲で加振周波数を低周波数側から高周波数側にスイープさせ、センサ8の前に移動させた電磁マグネット5により加振したときの台金の振動変位を電磁マグネット5に対向させたセンサ8で検出し、その実効値をペンレコーダ17により記録した。加振周波数と台金の固有振動数が一致した共振状態における変位が実効値で1μm−rms(root mean square)程度になるように電磁マグネットの電圧を初期調整した。加振周波数のスイープ速度は、10Hz/120sである。ハンマリングした領域の右側の境界で加振した場合を加振位置ψ=0°(領域の境目)とした。電磁マグネットとセンサ位置を固定して台金を反時計方向にそれぞれ角度Δψ=11.25°ずつ回転させたψの各位置で台金半周にわたって以上の測定を行った。
また全ての実験用の丸鋸の台金について、加振周波数をゆっくりスイープさせ、同じ節直径数のモードに対する二つの定常固有振動数を正確に求めた。
【0022】
〔試験結果〕
(臨界回転数)
丸鋸の静止時および回転中の固有振動数を測定し、節円数m=0で節直径数n=2〜5の各モードについて空間内のある固定点からみた後進波周波数が0になる臨界回転数を求めた結果を表1に示す。表中の標記(m,n)は対象としている振動が節円数m,節直径数nの振動モードであることを示す。
【0023】
【表1】

Figure 0003915028
【0024】
スリットがなくハンマリングを施してない丸鋸NH−NSが標準ハンマリングを施すことによって最低臨界回転数(各振動モードに対して測定された臨界回転数のうちの最低のもの)が約8%上昇し、領域ハンマリングを施した丸鋸(4H−NS,5H−NS,8H−NS)では7〜10%上昇した。しかし、台金の外周にスリットを切ることによって、4本スリットの丸鋸NH−4Sでは約5%、5本スリットの丸鋸NH−5Sでは約7%の最低臨界回転数の低下が認められた。また、SH−NS,4H−NSに4本のスリットを、または5H−NSに5本のスリットを切ると6〜8%の最低臨界回転数の低下が認められた。
【0025】
(定常振動の固有振動数の差『定常振動の固有振動数の分離現象』)
節直径数n=4に対する測定結果の図6はハンマリングもスリットもない静止丸鋸NH−NSの場合で、台金加振位置に関係なく、励起した振動の周波数はほとんど同じで、振幅の実効値には1個のピークしか現れていない。標準的な均一ハンマリングを施した丸鋸SH−NSの場合も同様の傾向であった。
【0026】
また図7は、8領域(η=22.5°)に領域ハンマリングした丸鋸8H−NSの場合で、加振位置によって定常振動の二つのモードが励起する場合(例えばψ=0,22.5,45,67.5°…)と、高周波数側(例えばψ=11.25 ,46.25 ,101.25°…)または低周波数側(例えばψ=33.75 ,78.75 ,123.75°…)のどちらか一つの定常振動のモードしか励起しない場合がある。これらの二つの定常振動の振動モードの固有振動数には顕著な差が認められる。ハンマリングしていない領域の中央を加振すると高周波数側のみの定常振動の振動モードが励起し、この振動モードの腹の位置はハンマリングしていない領域の中心線に一致した。またハンマリングした領域の中央部を加振すると低周波数側の定常振動の振動モードのみが励起した。このときの節の位置は、ハンマリングしてない領域の中心線に一致した。
【0027】
低いほうの定常振動の固有振動数をfn1 、高いほうの定常振動の固有振動数をfn2 、それらの差をΔfn=fn2 −fn1 とする。Δfn/fn1 として節直径数n=2〜6に対する固有振動数差の特性を無次元表示したものを表2に示す。
【0028】
【表2】
Figure 0003915028
【0029】
4領域に領域ハンマリングを施した丸のこ4H−NSではn=2,4,6のモードで二つの定常振動の固有振動数の差が大きくなった。
同様に、8領域に部分ハンマリングを施した丸のこ8H−NSではn=4のモードで、また、5領域に部分ハンマリングを施した丸のこ5H−NSではn=5のモードで差が大きくなった。すなわち、領域ハンマリングを施した領域数をHとすると、Hが偶数の場合、n=j×H/2(j=1,2,3,…)のモードは二つに分離する。同様にHが奇数の場合、n=j×H(j=1,2,3,…)のモードは二つに分離するものと考えられる。固有振動数の高いほうの定常振動の振動モードはハンマリングしていない全ての領域の中央に腹の位置が、また、固有振動数の低いほうの定常振動の振動モードではハンマリングしていない全ての領域の中央に節の位置がくる。
【0030】
外周に4本のスリットを入れることによって、n=2,4,6のモードで二つの定常振動の固有振動数の差が大きくなった。また、5本のスリットを入れることによって、n=5のモードで二つの定常振動の固有振動数の差が大きくなった。すなわち、スリット本数をSとすると、Sが偶数の場合、n=k×S/2(k=1,2,3,…)のモードは二つに分離する。同様にSが奇数の場合、n=k×S(k=1,2,3,…)のモードは二つに分離する。固有振動数の高いほうの定常振動の振動モードは全てのスリット位置に腹の位置が、また、固有振動数の低いほうの定常振動の振動モードでは全てのスリット位置に節の位置がくる。
【0031】
さらに、領域ハンマリングの施されている丸のこ4H−NS,5H−NSにおいて、領域ハンマリングを施していない領域の中央に外周スリットを入れた丸のこの4H−4Snまたは5H−5Snでは、n=4またはn=5のモードの二つの定常振動の固有振動数の差が丸のこ4H−NS,NH−4Sまたは5H−NS,NH−5Sより大きくなった。
【0032】
〔定常振動の固有振動数の差と横振動の振幅の二乗平均値の関係〕
同じ節円数で同じ節直径数でも定常振動aとbとがあり、丸鋸切削時におけるこのモードの横振動の振幅の二乗平均値は定常振動のそれぞれ(aとb)二乗平均値の平均になる。即ち次のような数式となる。
【数1】
Figure 0003915028
【0033】
そこで切削時の丸鋸の横振動のレベルを台金の平均振動エネルギーに関係がある振幅の二乗平均値で評価した。
NH−NSと4H−NSの丸鋸において発生した横振動の振幅の二乗平均値を各節直径数ごとに、即ち各振動モードごとに示す図8,図9において、各図中の△,○,□印は節直径数n=3,4,5に対応する。これらの図において、n=3のモードでは、NH−NSと4H−NSの結果の間に明確な差は認められない。等角度間隔の4領域にハンマリングを施した4H−NSでは、n=4のモードの振動に対する振幅の二乗平均値が、NH−NSの場合より極めて小さくなっている。
【0034】
このように横振動の振幅の二乗平均値を比較することにより、ハンマリングの振動抑制効果を明瞭に示すことができた。そこで、n=4およびn=5のモードについて、C=0.5(但し歯の並びが交互歯とすると歯が材料に当たる時の台金を左右に振ろうとする周波数は2歯で1周期であり、C=0.5となした)の励起周波数〔C×歯数×回転数/60;回転数(rpm)〕で発生した台金の横振動の振幅の二乗平均値を台金の厚さの二乗h2 により無次元化したときの最大値および平均値と無次元化した固有振動数の差Δfn/fn1 との関係を図10および図11に示した。
【0035】
なおn=4のモードではC=0.5の励起周波数による共振点および共振点から2500rpmだけ高い回転数までの範囲を、またn=5のモードでは1500rpmだけ高い回転数までの範囲を考察の対象とした。図にみられるように最大値,平均値の場合とも両者の間の関係は、両対数グラフ上で極めてよい直線関係にあり、同じ節直径数nの二つの定常振動の振動モード間の固有振動数の差が大きな丸鋸ほど切削時の横振動の発生に対する抑制効果が優れていることがわかる。
【0036】
そこで上記をまとめると従来型の鋸(SH−4S)は4スリット設けることで、節直径数n=2,4,6のモードの振動に対して定常振動の固有振動数の差が大きい。
本発明の鋸(4H−NS)は節直径数n=2,4,6のモードの振動に対して定常振動の固有振動数の差が大きい。
本発明の鋸(5H−NS)は節直径数n=5のモードの振動に対して定常振動の固有振動数の差が大きい。
本発明の鋸(8H−NS)は節直径数n=4のモードの振動に対して定常振動の固有振動数の差が大きい。
即ち、このモードでの横振動抑制効果を持つことを示している。
また、実際に挽き高さ45mm,長さ1.2mのスプルース気乾材(比重0.4,含水率9%)の切削を行った結果においても、横振動が抑制されていることが確認された。
【0037】
よって本発明では臨界回転数を低下させることなく、横振動を抑制することができる。台金剛性の低下や臨界回転数の低下が用途上問題なければ、本発明の鋸にスリットを形成することで、さらに横振動抑制に効果がある。スリットの位置は残留応力の極小値のある領域に設けるのが効果的で、極小値のある領域であればスリットは外周域または内周域のいずれに設けても良い。このスリットに樹脂等を充填しても良い。ハンマリングの個所により各節直径数に対する定常振動の固有振動数の差が変化するので、切削条件により適正な領域区分数やハンマリング条件を選定すればよい。
【0038】
標準的なハンマリングで外周に円周方向の均一な引張応力を発生させるのではなく、重要なことは円板状回転工具の中心が歯底までの半径方向35〜100%の範囲の周方向に応力のむらを発生させておくことである。また試料NO.1のNH−NSにおける台金の振幅の実効値の最大値と節直径数nとの関係を示すのが図12である。n=2の振動を抑制したいときは4倍の8区分して一つおきの領域にハンマリングを行うことよって最も効果がある。同様にn=5の振動を抑制したいときは2倍の10区分で一つおきの5領域にハンマリングを行うことによって抑制できる。n=2と5の振動を抑制したいときは内周と外周のどちらかを8区分,10区分して同様のハンマリングを行うことにより効果が出る。
【0039】
なお、切刃部分の振幅はセンサ14の位置の振幅の約2倍となるので、図12において一般に切断面の粗さが0.05mm−rms以下であれば、サンディングを軽く行えば仕上がる程度で、0.01mm−rms以下であればそのままの面でも実用上利用できる。
【0040】
節直径数は、切削振動ではn=0は発生せず、n≧12のモードは振動が発生しても振幅は極めて小さい。よって、n=1〜11の振動を抑制すれば横振動抑制効果は充分得られる。特にn=1〜5の振動を抑制することが好ましい。
円板の振動モードでは、二つの内一方の定常振動の節直径は残留応力の極小値のある領域を横切る位置に形成される。これを定常振動aとすると、定常振動aの各節直径の間に定常振動bの節直径を形成する。
円板状回転工具の台金を回転軸を中心として扇形に24以上の領域に区分けし、残留応力の極大値を示す領域と極小値を示す領域とを周方向に交互に配置しようとした場合、一つ一つの領域が狭くなり明瞭に極値を形成することが困難となる。例えば24の領域に区分けし、領域の一つおきにハンマリングを行った場合、全体として均一な残留応力を発生させたようになり、横振動抑制効果は充分に現れない。
【0041】
従って、目的とするn=1〜11の、特にn=1〜5の振動を抑制するには、周方向に2〜22の領域に区分け或いは2〜10の領域に区分けして、残留応力の極大値を示す領域と極小値を示す領域とを周方向に交互に配置した方が横振動抑制に効果的である。
ハンマリングではその位置に圧縮応力が発生するが、所定領域に圧縮応力を発生させるのに代わり、引張応力を発生させて応力分布にむらを作り極大値を形成しても良い。この場合の例として、ヒートテンション,レーザ加熱処理等で台金の一部を収縮させる処理を所定の領域に行う方法があげられる。
【0042】
なおヒートテンションとは、米国において1985年に発行された資料名Sawing Technol Key Improved Profits の第75〜82頁、標題Understanding saw tensioning 著者名SCHAJER GS(Weyerhaeuser Co,Washington) において説明されており、従来から知られている酸素アセチレン焔による加熱或いは誘電加熱により永久ひずみが生じない範囲で30℃〜80℃に低温加熱する方法である。
【0043】
またレーザ加熱処理とは、米国において1993年に発行された資料名Proceeding of SawTech 93 San Francisco,California,October 14-16,1993の第231〜244頁、表題Laser Beam Levelling of Circular Saw Blades 、著者名TONSHOFF H K等において説明されており、CO2 レーザビームによる加熱処理が部分的に残留応力を生じるのに良い方法である。
ヒートテンション,レーザ加熱処理は台金材料と加熱温度の関係で引張応力が発生しない場合があるので加熱温度は実験により求めておく必要がある。
また、円周方向に交互に現れる極大値同士、極小値同士の残留応力値は必ずしも同じである必要はない。
【0044】
実施例その2
台金の扇形を8等区分し、一つおきの領域のほぼ全域にハンマリングした図4に替えた図13において、残留応力の極大値が現れるハンマリング領域S3と極小値が現れる打撃圧力の強いまたは打数の多いハンマリング領域S4とを形成したものである。この場合も区分は必ずしも等分でなくてもよい。
このように残留応力の極大値,極小値を交互に発生させた場合も実施例その1と同等の効果を確認できた。
【0045】
実施例その3
台金の扇形を10等区分し圧縮応力と引張応力を交互に発生させた場合を図14に示した。
圧縮残留応力が発生するハンマリング領域S5と引張残留応力が発生するヒートテンション領域S6とを交互に形成したもので、ハンマリング領域S5に極小値がヒートテンション領域S6に極大値が現れる。
歯根近くの外縁部にはそれぞれ逆の応力が発生するが総合的には残留引張応力が勝る。本図では区分数が2×5でH=5である。したがってn=5のモードの振動が大きく抑制できる。しかしながらHが奇数であるのでn=10,15,20…の横振動も抑制できる。
【0046】
実施例その4
扇形の領域に加えて半径方向同心円的な領域を形成した図15において、外側円周全周S7に一様に強いハンマリングを施して歯根近くの外縁部に均一な引張残留応力を発生させる。中間部に扇形領域を一つおきの領域S8に弱いハンマリングを施し、その中間の扇形領域の半径方向中間部S9に実施例その3に似たヒートテンション処理を施して、全体に引張と圧縮の残留応力を加える。
外周部の引張応力によって、外周部の圧縮応力による臨界回転数の低下が防止される。本図では区分数は2×4でH=4であるのでn=2のモードの振動が大きく抑制される。しかしながらHが偶数であるので、n=4,6,8,10,12…の横振動も抑制できる。即ち回転数の変更に伴って発生する色々の周波数に対応できる。
【0047】
実施例その5
不等分とした扇形8等区分領域の一つおきの領域にハンマリングを施し、その外周のハンマリングを施していない領域にヒートテンションを施した図16において、中間部のハンマリング領域S10に圧縮残留応力によって外周部に引張残留応力を発生させる。さらに外周ヒートテンション領域S11に引張残留応力を発生させたものである。残留応力の大きさを変えれば極小値と極大値が交互に発生する。また中間部のハンマリング領域の外周部にヒートテンションを行えば明らかな極小値と極大値が交互に発生する。本図では区分数が2×4でH=4であるのでn=2のモードの振動が大きく抑制できる。しかしながら区分が不等分であるため、他の全てのモードの横振動の抑制にも効果がある。
【0048】
実施例その6
中間部と外周部とで扇形の区分数を変えた場合を示した図17において、中間部は区分数2×4,外周部は2×3である。中間部の8等区分の一つおきにハンマリング領域S12とヒートテンション領域S13,外周部6等区分の一つおきにヒートテンション領域S14を形成した。
このように中間と外周の分割数を変えることによって外周部に発生した残留応力の大きさの変化を円周方向にみたときの極大値と極小値のサイクル数を変えることができ、図では外周部3サイクル,内周部では4サイクルとなり内周部と外周部の別々の効果が同様に得られる。
【0049】
【発明の効果】
本発明は上述のようであるので以下の効果を奏する。
丸鋸台金の臨界回転数を下げることなく前進波,後進波の横振動を抑制できる。すなわち分離した定常振動の二つのモードの固有振動数の差を大きくすることができ、差が大きいほどこのモードの連成振動の発生を抑制できるもので、切削時に励起される横振動をより効果的に抑制できる残留応力は圧縮,引張の一方又は双方を組み合わせて発生させることによって顕著な効果をうることができる。丸鋸台金の横方向の剛性の低下,臨界回転数の低下が容認される場合は上記処理に加えスリットを形成することで横振動抑制に一層の効果がある。
【図面の簡単な説明】
【図1】連成振動の基となる二つの定常振動の節直径の位置関係を示す図である。
【図2】固有振動数を測定する装置の概略を示す図である。
【図3】切削時における丸鋸,被削材,センサの位置関係を示す図である。
【図4】台金の扇形8等区分の一つおきの領域にハンマリングした図である。
【図5】図4の台金のハンマリングしてない領域中央外周にスリットを切った図である。
【図6】ハンマリング及びスリットなしのNH−NSのn=4モードの台金外周の等角度位置における周波数レスポンスを示す図である。
【図7】8領域にハンマリングした8H−NSのn=4モードの台金外周の等角度位置における周波数レスポンスを示す図である。
【図8】NH−NSの台金の横振動の二乗平均値と回転数の関係を示す図である。
【図9】4H−NSの台金の横振動の二乗平均値と回転数の関係を示す図である。
【図10】n=4のモードについて横振動の振幅の二乗平均値を台金の厚さの二乗により無次元化したときの最大値および平均値と無次元化した固有振動数の差との関係を示す図である。
【図11】n=5モードについて横振動の振幅の二乗平均値を台金の厚さの二乗により無次元化したときの最大値および平均値と無次元化した固有振動数の差との関係を示す図である。
【図12】台金の振幅の実効値の最大値と節直径数nとの関係を示す図である。
【図13】台金を扇形8等区分の一つおきの領域に極大値と極小値が現れるハンマリングをした図である。
【図14】台金を扇形10等区分の一つおきに圧縮圧力の発生するハンマリング領域と引張応力を発生するヒートテンション領域とを形成した図である。
【図15】外周一様に強いハンマリング領域,中間部に一つおきに弱いハンマリング領域とヒートテンション領域を形成した図である。
【図16】8等区分の一つおきにハンマリング、そのハンマリングのない外周にヒートテンション領域を形成した図である。
【図17】中間部を8等区分の一つおきにハンマリング領域とヒートテンション領域を形成し、外周部の6等区分の一つおきにヒートテンション領域を形成した図である。
【符号の説明】
S1,S4,S10,S12 ハンマリング領域
S2 ハンマリングしない領域
S3,S11,S13,S14 ヒートテンション領域[0001]
[Technical field to which the invention belongs]
The present invention relates to a disk-shaped rotary tool in which cutting edges and abrasive grains are provided on the outer periphery of a metal base made of a thin steel plate or the like such as a circular saw or a cutting grindstone. More specifically, the present invention relates to a disk-shaped rotary tool that suppresses vibration in the thickness direction of the disk, that is, lateral vibration by changing the tension state due to the residual stress in the circumferential direction of the base metal.
[0002]
[Prior art]
It is well known that a thin disk-shaped rotary tool causes lateral vibration to some extent during cutting. It is detrimental if the excitation frequency at which the cutting edge that is being cut bites into the work material and the solid frequency of the base metal match or are close to each other in the lateral direction. Lateral vibration occurs. As a result, the cut surface is deteriorated and the tool life is reduced.
[0003]
Conventionally, in order to suppress lateral vibration during cutting, several peripheral slits (hereinafter referred to as “slits”) having a length of 5 to 20% of the base metal radius are formed in the radial direction from the outer periphery of the disk-shaped rotary tool. It was. As described above, a disk-shaped rotary tool without a slit causes harmful lateral vibration at the rotational frequency where the excitation frequency matches the natural frequency of the base metal or close to the natural frequency. Although a plurality of natural frequencies are present in the base metal, one of the natural frequencies in response to any rotational frequency actually causes lateral vibration. However, the formation of slits makes it difficult to excite lateral vibration in a specific vibration mode corresponding to the number of slits.
[0004]
The reason for this is as follows. The vibration mode of the base metal is expressed by the number of nodal circles and the number of nodal diameters. In this vibration mode, the number of nodal circles and the number of nodal diameters are the same, and two steady vibrations (nodal vibrations) are generated. Vibration) whose position is fixed on the base metal. Since the disk has almost the same natural frequency of the two stationary vibrations, the two stationary vibrations are coupled to produce a coupled vibration composed of traveling waves, resulting in harmful lateral vibration.
However, when slits are formed in the disc, the difference between the natural frequencies of the two stationary vibrations in a specific vibration mode corresponding to the number of slits increases, and coupled vibrations are less likely to occur. This means that the Journal of the Wood Society Vol. 41, NO. 8, pp. 722-790, “Effect of slits on transverse vibration during circular saw cutting”.
[0005]
[Problems to be solved by the invention]
However, when slits are formed on the outer periphery of the base metal of the disk-shaped rotary tool, there is a problem that the lateral rigidity of the base metal is lowered and the rotational speed at which the base metal buckles, that is, the critical rotational speed is also reduced.
In order to suppress a decrease in the rigidity and critical rotation speed of the base metal, a waisting process such as hammering, heat tension, and shot beaning has been performed. The purpose of the waist insertion treatment was to generate uniform tensile residual stress at the outer edge of the base metal near the tooth root, and it was not effective in suppressing lateral vibration. Therefore, in order to sufficiently suppress harmful lateral vibration during cutting, it is necessary to lengthen the slit. Since the lateral rigidity of the metal near the slit decreases with the length of the slit, the lateral vibration also increases and the tooth mark by the cutting blade near the slit becomes deeper. However, there is a problem of plastic deformation and cracking.
[0006]
The present invention has been made in view of such problems of the prior art, and its object is a disk capable of suppressing lateral vibration during cutting without reducing the rigidity and critical rotational speed of the base metal. It is intended to provide a rotating tool.
Specifically, a waisting process is performed to increase the lateral rigidity and critical rotational speed of the rotating base metal by generating uneven and uneven residual stress by hammering etc. in the circumferential direction of the base metal. In addition to increasing the difference between the natural frequencies of the two stationary vibrations of a specific vibration mode, the coupled vibration of that mode is to be suppressed.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention divides the base metal of the disk-like rotary tool into an even number of 2 to 22 areas in a fan shape around the rotation axis, and different residual stresses in adjacent areas. This is generated, and the region showing the maximum value of the residual stress and the region showing the minimum value are alternately arranged in the circumferential direction, thereby suppressing the lateral vibration of the base metal.
[0008]
It is assumed that the means for generating the residual stress is a process of extending a part of the base metal.
It is assumed that the means for generating the residual stress is a process of shrinking a part of the base metal.
The means for generating residual stress is a combination of processing to stretch part of the base metal and processing to shrink it.
By performing such processing, the difference between the natural frequencies of the two stationary vibrations in a specific vibration mode can be increased without lowering the lateral rigidity and critical rotational speed of the base metal. Vibration could be effectively suppressed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The transverse vibration mode of the base of the disk-shaped rotary tool is expressed by the number of nodal circles on the concentric circle (nodal circle number m) and the number of nodal diameters at equal angular intervals (nodal diameter number n) with respect to the center.
In this embodiment, suppression of lateral vibration when the number of node circles m = 0 will be described.
[0010]
An example of the vibration mode of the base metal is shown in FIG. The solid and broken diameter lines are nodal diameters. In this case, m = 0 and n = 2, and there are two steady vibrations with the same number of nodal circles and the same number of nodal diameters. A steady vibration a indicated by a solid line and a steady vibration b indicated by a broken line. The steady vibration b has antinodes at all nodes of the steady vibration a. When the natural vibrations of the stationary vibration a and the stationary vibration b are substantially the same, the two stationary vibrations are coupled during cutting and proceed in the direction of rotation of the base metal or in the direction opposite to the rotation of the base metal. A traveling backward wave is formed.
[0011]
If the frequency of the forward wave or the backward wave and the excitation frequency when the cutting blade bites into the work material are the same or close to each other, the amplitude becomes very large at the frequency of the forward wave or the backward wave, and harmful lateral vibration is generated. appear.
As the rotational speed of the rotary tool is increased, the backward wave has a vibration waveform for observation from a fixed position in space when the backward propagation speed and the peripheral speed of the rotary tool match. Propagation stops as if fixed.
The rotational speed at this time is the critical rotational speed, and the base metal is easily deformed with respect to the lateral force, and buckling occurs during cutting.
[0012]
In the hammering in this embodiment, two hammers having the same striking surface having an elliptical shape are arranged on the top and bottom surfaces of the base metal so that the major axes of the ellipses face each other in the same direction. These hammers were pressed against the base metal with a load of 75 kN by a hydraulic press to perform hammering. Hammering is a process that extends the base metal. Shot beaning is the same type of processing. The position of hammering is shown in each example.
[0013]
An apparatus for measuring the natural frequency when the circular saw of the present invention is stationary will be described with reference to FIG.
One end of a rotary shaft 1 rotatably supported by a bearing on a machine base is connected to a motor 2 whose rotational speed can be controlled by an inverter via a pulley and a belt, and the other end is provided with a test circular saw S with two flanges. 3 and is fastened with a nut.
[0014]
The electromagnetic magnet 5 that excites lateral vibration in the stationary circular saw S is arranged near the outer edge of the base metal, and the sine wave voltage output from the function generator 6 is loaded on the electromagnetic magnet 5 via the amplifier 7 and excited. To do.
Further, an eddy current type non-contact displacement sensor (manufactured by Ono Sokki Co., Ltd.) 8 is installed in the direction rotated by 180 ° in the circumferential direction on the same side as the excitation position by the electromagnetic magnet 5. The output of the sensor 8 was subjected to frequency analysis with an FFT analyzer (manufactured by Ono Sokki) 11 through an amplifier 9 to obtain the natural frequency. The result of the frequency analysis is recorded on the plotter 12.
[0015]
Further, a displacement sensor 14 (manufactured by Ono Sokki Co., Ltd.) is provided that can attach an arm to the output shaft of the gear motor 13 having the center on the opposite side of the rotary shaft 1 and the coaxial upper circular saw and can be fixed at an arbitrary position in the radial direction. The displacement sensor 14 was rotated 360 ° in the circumferential direction of the base metal by the gear motor 13, and the effective value of the amplitude of the base metal was recorded on the pen recorder 17 via the amplifier 16. In this way, the amplitude distribution of the transverse vibration along the radial direction and the circumferential direction was measured, and the shape of the excited steady vibration mode was obtained.
[0016]
Example 1
[Test circular saw saw processing conditions]
NO. 1 (NH-NS): No hammering and slitting
NO. 2 (SH-NS): Standard hammering is applied evenly at the intersections with radiation equally divided into 16 regions on concentric circles with a radius of 75 mm and 102 mm.
NO. 3 (4H-NS): As shown in FIG. 4, the middle area of the base metal is equally divided into eight fan-shaped areas with a central angle η = 45 °, and hammering is performed on every other four areas. Compressive stress (negative stress) remains in the circumferential direction. S1 indicates a hammering region, which does not mean that the entire region is hammered evenly, and it is sufficient that an extreme value of residual stress is formed in the region. S2 indicates a region without hammering.
[0017]
NO. 4 (5H-NS) The central angle η = 36 ° is divided into 10 sectors and hammered into every other 5 regions. Same as 3.
NO. 5 (8H-HS): Equally divided into 16 fan-shaped regions with a central angle η = 22.5 °, hammering into every other 8 regions, and the other is NO. Same as 3.
NO. 6 (NH-4S): NO. 1 slit saw with 4 slits cut out, 1mm wide and 20mm long from the root (the same shall apply hereinafter).
NO. 7 (SH-4S): NO. 4 slits on the outer circumference of the circular saw.
[0018]
NO. 8 (4H-4Sn): NO. 3 circular saws with 4 slits cut at the center outer periphery of the non-Hanman rig (see FIG. 5).
NO. 9 (4H-4Sh): NO. 3 slit saws with 4 slits on the outer circumference in the center of the hammered area.
NO. 10 (NH-5S): NO. 1 slit saw with 5 slits.
NO. 11 (5H-5Sn): NO. 4 circular saws with 5 slits cut in the center circumference of the non-hammered area.
[0019]
[Specifications of the test circular saw]
With an outer diameter of 305 mm, a base metal thickness of 2.2 mm, a tooth thickness of 3.2 mm, and a number of teeth of 40, the super hard tip has a rake angle of 20 °, a tip relief angle of 15 °, a side relief angle of 3 °, and a side face angle of 1 °. °. Alternate teeth with a side rake angle of 5 ° and a tip inclination angle of 10 ° were used to facilitate excitation of lateral vibration during wood cutting. The base metal is made of alloy tool steel (SKS51), and has a hardness of HRC43 by heat treatment.
[0020]
(Work material): Spruce air-drying material (specific gravity 0.4, water content 9%) grinding height 45mm, length 1.2m
(Feeding speed): 12 m / min
(Projection amount of the saw blade tip from the bottom of the wood during cutting): 2 mm
(Spindle speed): N = 2000 to 5000 r. p. m.
(Cutting direction): Upward cutting
The positional relationship among the circular saw, work material and sensor during cutting is shown in FIG.
[0021]
〔operation〕
(See FIGS. 2b and 2c) The excitation frequency is swept from the low frequency side to the high frequency side in the frequency range before and after the natural frequency of the base metal previously obtained by impact excitation, and moved in front of the sensor 8. The vibration displacement of the base metal when it was vibrated by the electromagnetic magnet 5 was detected by the sensor 8 opposed to the electromagnetic magnet 5, and the effective value was recorded by the pen recorder 17. The voltage of the electromagnetic magnet was initially adjusted so that the displacement in the resonance state where the excitation frequency and the natural frequency of the base metal coincided with each other was an effective value of about 1 μm-rms (root mean square). The sweep speed of the excitation frequency is 10 Hz / 120 s. A case where vibration was applied at the right boundary of the hammered region was defined as an excitation position ψ = 0 ° (region boundary). The above measurements were performed over a half circumference of the base metal at each position of ψ where the position of the electromagnetic magnet and the sensor was fixed and the base metal was rotated counterclockwise by an angle Δψ = 11.25 °.
In addition, for all the circular saw bases used for experiments, the excitation frequency was swept slowly and the two steady natural frequencies for the mode with the same nodal diameter were obtained accurately.
[0022]
〔Test results〕
(Critical speed)
The natural frequency of the circular saw at rest and during rotation is measured, and the backward wave frequency when viewed from a certain fixed point in the space is 0 for each mode of the number of node circles m = 0 and the number of node diameters n = 2-5. Table 1 shows the results of the critical rotational speed. The notation (m, n) in the table indicates that the target vibration is a vibration mode having a node circle number m and a node diameter number n.
[0023]
[Table 1]
Figure 0003915028
[0024]
When the circular saw NH-NS without slits and hammering is subjected to standard hammering, the minimum critical rotational speed (the lowest critical rotational speed measured for each vibration mode) is about 8%. In the circular saw with the region hammering (4H-NS, 5H-NS, 8H-NS), it increased by 7 to 10%. However, by cutting the slit on the outer periphery of the base metal, a decrease in the minimum critical rotational speed of about 5% is observed for the 4-slit circular saw NH-4S and about 7% for the 5-slit circular saw NH-5S. It was. Further, when 4 slits were cut in SH-NS and 4H-NS, or 5 slits were cut in 5H-NS, a decrease in the minimum critical rotational speed of 6 to 8% was observed.
[0025]
(Difference in natural frequency of stationary vibration “separation phenomenon of natural frequency of stationary vibration”)
FIG. 6 shows the measurement results for the number of node diameters n = 4 in the case of a stationary circular saw NH-NS with no hammering and no slits. The frequency of the excited vibration is almost the same regardless of the base vibration position, and the amplitude Only one peak appears in the effective value. The same tendency was observed in the case of the circular saw SH-NS subjected to standard uniform hammering.
[0026]
FIG. 7 shows a case where the circular saw 8H-NS is region-hammered in 8 regions (η = 22.5 °), and two modes of steady vibration are excited by the excitation position (for example, ψ = 0, 22.5, 45). , 67.5 ° ...) and only one stationary vibration mode on the high frequency side (eg ψ = 11.25, 46.25, 101.25 ° ...) or low frequency side (eg ψ = 33.75, 78.75, 123.75 ° ...) There is a case. There is a marked difference in the natural frequency of the vibration modes of these two stationary vibrations. When the center of the non-hammered region was vibrated, the vibration mode of steady vibration only on the high frequency side was excited, and the position of the antinode of this vibration mode coincided with the center line of the non-hammered region. Moreover, when the central part of the hammered region was vibrated, only the vibration mode of steady vibration on the low frequency side was excited. The node position at this time coincided with the center line of the non-hammered area.
[0027]
Let fn be the natural frequency of the lower stationary vibration 1 , And let fn be the natural frequency of the higher stationary vibration 2 And the difference between them is Δfn = fn 2 -Fn 1 And Δfn / fn 1 Table 2 shows the characteristics of the natural frequency difference with respect to the node diameter number n = 2 to 6 in a dimensionless manner.
[0028]
[Table 2]
Figure 0003915028
[0029]
In the circular saw 4H-NS in which the region hammering is applied to the four regions, the difference between the natural frequencies of the two stationary vibrations is large in the modes of n = 2, 4, and 6.
Similarly, in the circular saw 8H-NS with partial hammering in 8 regions, the mode is n = 4, and in the circular saw 5H-NS in which partial hammering is applied in 5 regions, the mode is n = 5. The difference has grown. That is, assuming that the number of regions subjected to region hammering is H, when H is an even number, the mode of n = j × H / 2 (j = 1, 2, 3,...) Is separated into two. Similarly, when H is an odd number, the mode of n = j × H (j = 1, 2, 3,...) Is considered to be separated into two. The vibration mode of the steady vibration with the higher natural frequency is located in the center of all areas not hammered, and the vibration mode of the stationary vibration with the lower natural frequency is not hammered. The node position is at the center of the area.
[0030]
By making four slits on the outer periphery, the difference between the natural frequencies of the two stationary vibrations in the n = 2, 4, 6 mode was increased. Also, by inserting five slits, the difference between the natural frequencies of the two stationary vibrations in the n = 5 mode was increased. That is, when the number of slits is S, the mode of n = k × S / 2 (k = 1, 2, 3,...) Is separated into two when S is an even number. Similarly, when S is an odd number, the mode of n = k × S (k = 1, 2, 3,...) Is separated into two. The vibration mode of the steady vibration having the higher natural frequency has the antinode positions at all slit positions, and the vibration mode of the stationary vibration having the lower natural frequency has the positions of the nodes at all slit positions.
[0031]
Furthermore, in the circular saws 4H-NS and 5H-NS that have been subjected to the region hammering, in the round 4H-4Sn or 5H-5Sn in which the outer peripheral slit is inserted in the center of the region that has not been subjected to the region hammering, The difference between the natural frequencies of the two stationary vibrations in the mode of n = 4 or n = 5 is larger than that of the circular saw 4H-NS, NH-4S or 5H-NS, NH-5S.
[0032]
[Relationship between natural frequency difference of stationary vibration and root mean square value of transverse vibration amplitude]
There are steady vibrations a and b with the same number of node circles and the same number of node diameters, and the mean square value of the amplitude of transverse vibration in this mode at the time of circular saw cutting is the average of the mean square value of each of the steady vibrations (a and b). become. That is, the following formula is obtained.
[Expression 1]
Figure 0003915028
[0033]
Therefore, the horizontal vibration level of the circular saw during cutting was evaluated by the mean square value of the amplitude related to the average vibration energy of the base metal.
In FIG. 8 and FIG. 9 showing the mean square value of the amplitude of transverse vibration generated in the NH-NS and 4H-NS circular saws for each nodal diameter number, that is, for each vibration mode, Δ, ○ in each figure , □ marks correspond to the number of nodal diameters n = 3,4,5. In these figures, in n = 3 mode, there is no clear difference between the NH-NS and 4H-NS results. In 4H-NS in which hammering is applied to four regions at equiangular intervals, the mean square value of the amplitude for vibration of the mode of n = 4 is extremely smaller than in the case of NH-NS.
[0034]
Thus, by comparing the mean square value of the amplitude of the transverse vibration, it was possible to clearly show the vibration suppressing effect of hammering. Therefore, for the modes of n = 4 and n = 5, C = 0.5 (however, if the teeth are arranged alternately, the frequency at which the base metal is swung to the left and right when the teeth hit the material is two cycles in one cycle. The square mean value of the amplitude of the transverse vibration of the base metal generated at the excitation frequency [C × the number of teeth × the number of rotations / 60; the number of rotations (rpm)] of C = 0.5 is obtained. Squared h 2 The difference Δfn / fn between the maximum value and the average value when made dimensionless by the above and the natural frequency made dimensionless 1 FIG. 10 and FIG.
[0035]
In the n = 4 mode, the resonance point by the excitation frequency of C = 0.5 and the range from the resonance point to a rotational speed higher by 2500 rpm, and in the n = 5 mode, the range up to a rotational speed higher by 1500 rpm are considered. Targeted. As shown in the figure, the relationship between both the maximum value and the average value is a very good linear relationship on the logarithmic graph, and the natural vibration between the vibration modes of two stationary vibrations having the same node diameter number n. It can be seen that a circular saw having a larger number difference is more effective in suppressing the occurrence of lateral vibration during cutting.
[0036]
In summary, the conventional saw (SH-4S) is provided with four slits, so that the difference in natural frequency of the steady vibration is large with respect to the vibration of the mode with the node diameter number n = 2, 4, and 6.
The saw (4H-NS) of the present invention has a large difference in natural frequency of stationary vibrations with respect to vibrations of modes with a node diameter number n = 2, 4, 6 and 6.
The saw (5H-NS) of the present invention has a large difference in natural frequency of stationary vibration with respect to vibration of a mode having a node diameter number n = 5.
The saw (8H-NS) of the present invention has a large difference in natural frequency of steady vibration with respect to vibration of a mode having a node diameter number n = 4.
That is, it shows that it has a lateral vibration suppressing effect in this mode.
In addition, it was confirmed that lateral vibration was suppressed even in the result of cutting of spruce air-drying material (specific gravity 0.4, moisture content 9%) having a grinding height of 45 mm and a length of 1.2 m. It was.
[0037]
Therefore, in the present invention, lateral vibration can be suppressed without lowering the critical rotational speed. If there is no problem in terms of the rigidity of the base metal and the critical rotation speed, forming a slit in the saw of the present invention can further suppress lateral vibration. It is effective to provide the slit in a region where the residual stress has a minimum value. If the region has a minimum value, the slit may be provided in either the outer peripheral region or the inner peripheral region. This slit may be filled with resin or the like. Since the difference in natural frequency of stationary vibration with respect to the number of nodal diameters varies depending on the location of hammering, an appropriate number of region sections and hammering conditions may be selected depending on cutting conditions.
[0038]
Rather than generating a uniform circumferential tensile stress on the outer circumference with standard hammering, the important thing is that the center of the disk-shaped rotary tool is in the radial direction in the range of 35-100% in the radial direction to the root It is to generate unevenness of stress. Sample NO. FIG. 12 shows the relationship between the maximum value of the effective value of the base metal amplitude and the number of nodal diameters n in one NH-NS. When it is desired to suppress the vibration of n = 2, it is most effective to perform hammering in every other region by dividing into 8 times 4 times. Similarly, when it is desired to suppress the vibration of n = 5, it can be suppressed by performing hammering on every other 5 regions in 10 divisions twice. When it is desired to suppress the vibration of n = 2 and 5, an effect is obtained by performing the same hammering by dividing the inner circumference and the outer circumference into 8 sections and 10 sections.
[0039]
Since the amplitude of the cutting edge portion is approximately twice the amplitude of the position of the sensor 14, generally in FIG. 12, if the roughness of the cut surface is 0.05 mm-rms or less, the sanding is finished by lightly sanding. If it is 0.01 mm-rms or less, it can be used practically as it is.
[0040]
As for the number of node diameters, n = 0 does not occur in the cutting vibration, and in the mode of n ≧ 12, the amplitude is extremely small even if vibration occurs. Therefore, if the vibration of n = 1 to 11 is suppressed, the transverse vibration suppressing effect can be sufficiently obtained. In particular, it is preferable to suppress vibration of n = 1-5.
In the vibration mode of the disc, the nodal diameter of one of the two steady vibrations is formed at a position across a region having a minimum value of residual stress. If this is a steady vibration a, the node diameter of the steady vibration b is formed between the node diameters of the steady vibration a.
When the base metal of the disk-shaped rotary tool is divided into 24 or more areas in the shape of a fan centering on the rotation axis, and the area showing the maximum value of residual stress and the area showing the minimum value are alternately arranged in the circumferential direction Each area becomes narrow and it becomes difficult to form extreme values clearly. For example, when the area is divided into 24 areas and hammering is performed every other area, uniform residual stress is generated as a whole, and the lateral vibration suppressing effect does not sufficiently appear.
[0041]
Therefore, in order to suppress the target vibration of n = 1 to 11, particularly n = 1 to 5, the residual stress is divided into 2 to 22 regions or 2 to 10 regions in the circumferential direction. It is more effective to suppress lateral vibration if the region showing the maximum value and the region showing the minimum value are alternately arranged in the circumferential direction.
In hammering, a compressive stress is generated at that position, but instead of generating a compressive stress in a predetermined region, a tensile stress may be generated to create unevenness in the stress distribution to form a maximum value. As an example of this case, there is a method of performing a process for contracting a part of the base metal by a heat tension, a laser heating process or the like on a predetermined region.
[0042]
Note that heat tension is described in pages 75 to 82 of the title of Sawing Technol Key Improved Profits published in the United States in 1985, entitled “Understanding saw tensioning” by author SCHAJER GS (Weyerhaeuser Co, Washington). This is a method of heating at a low temperature of 30 ° C. to 80 ° C. within a range in which permanent strain does not occur due to heating by known oxygen acetylene soot or dielectric heating.
[0043]
Laser heat treatment refers to pages 231 to 244 of the title of Proceeding of SawTech 93 San Francisco, California, October 14-16, 1993 published in the United States, title Laser Beam Leveling of Circular Saw Blades, author name As described in TONSHOFF HK, etc., the heat treatment with a CO2 laser beam is a good method for producing partial residual stress.
In heat tension and laser heat treatment, tensile stress may not occur due to the relationship between the base metal material and the heating temperature, so the heating temperature needs to be determined by experiment.
Further, the residual stress values of the local maximum values and the local minimum values that appear alternately in the circumferential direction are not necessarily the same.
[0044]
Example 2
In FIG. 13 in which the sector of the base metal is divided into 8 parts and hammered over almost the entire other region, the hammering region S3 where the maximum value of the residual stress appears and the impact pressure where the minimum value appears are shown in FIG. A hammering region S4 that is strong or has a large number of strikes is formed. Also in this case, the division is not necessarily divided equally.
Thus, when the maximum value and the minimum value of the residual stress were alternately generated, the same effect as in Example 1 could be confirmed.
[0045]
Example 3
FIG. 14 shows a case where the sector of the base metal is divided into 10 equal parts and compressive stress and tensile stress are generated alternately.
A hammering region S5 where compressive residual stress is generated and a heat tension region S6 where tensile residual stress is generated are alternately formed, and a minimum value appears in the hammering region S5 and a maximum value appears in the heat tension region S6.
In the outer edge near the root, opposite stresses are generated, but overall, the residual tensile stress is superior. In this figure, the number of sections is 2 × 5 and H = 5. Therefore, vibration in the mode of n = 5 can be greatly suppressed. However, since H is an odd number, the lateral vibration of n = 10, 15, 20,.
[0046]
Example 4
In FIG. 15 in which a radial concentric region is formed in addition to the fan-shaped region, uniform strong hammering is applied to the entire outer circumference S7 to generate a uniform tensile residual stress at the outer edge near the tooth root. Apply a weak hammering to every other region S8 in the middle part, and apply a heat tension treatment similar to Example 3 to the radial middle part S9 in the middle sector region, so that the whole area is tensioned and compressed Apply residual stress.
A decrease in the critical rotational speed due to the compressive stress at the outer peripheral portion is prevented by the tensile stress at the outer peripheral portion. In this figure, since the number of sections is 2 × 4 and H = 4, vibration in the mode of n = 2 is greatly suppressed. However, since H is an even number, the lateral vibration of n = 4, 6, 8, 10, 12,. In other words, it is possible to cope with various frequencies that are generated as the rotational speed is changed.
[0047]
Example 5
In FIG. 16, in which every other region of the unequal sector-shaped 8-eight divided region is hammered and the outer periphery of the region is not subjected to the hammering, in the hammering region S10 in the middle part. A tensile residual stress is generated in the outer peripheral portion by the compressive residual stress. Further, a tensile residual stress is generated in the outer peripheral heat tension region S11. If the magnitude of the residual stress is changed, a minimum value and a maximum value are generated alternately. In addition, when a heat tension is applied to the outer peripheral portion of the intermediate hammering region, an apparent minimum value and a maximum value are alternately generated. In this figure, since the number of sections is 2 × 4 and H = 4, vibration in the mode of n = 2 can be greatly suppressed. However, since the division is unequal, it is effective in suppressing lateral vibration in all other modes.
[0048]
Example 6
In FIG. 17 showing the case where the number of sectoral sections is changed between the intermediate part and the outer peripheral part, the intermediate part has 2 × 4 divisions and the outer peripheral part has 2 × 3. A hammering region S12 and a heat tension region S13 are formed every other eight equal sections in the middle portion, and a heat tension region S14 is formed every other outer section 6 and the like sections.
By changing the number of divisions between the middle and outer circumferences in this way, the number of cycles between the maximum value and the minimum value when the change in the residual stress generated in the outer circumference is viewed in the circumferential direction can be changed. 3 cycles for the part and 4 cycles for the inner peripheral part, the separate effects of the inner peripheral part and the outer peripheral part are obtained similarly.
[0049]
【The invention's effect】
Since the present invention is as described above, the following effects can be obtained.
The lateral vibration of forward and backward waves can be suppressed without lowering the critical rotational speed of the circular saw base metal. In other words, the difference in natural frequency between the two modes of separated steady vibration can be increased, and the larger the difference, the more the generation of coupled vibrations in this mode can be suppressed. Residual stress that can be suppressed in an effective manner can have a remarkable effect by generating one or both of compression and tension. If a reduction in the lateral rigidity of the circular saw base metal and a reduction in the critical rotational speed are acceptable, the formation of a slit in addition to the above treatment can further suppress the lateral vibration.
[Brief description of the drawings]
FIG. 1 is a diagram showing the positional relationship between the nodal diameters of two stationary vibrations that are the basis of a coupled vibration.
FIG. 2 is a diagram showing an outline of an apparatus for measuring a natural frequency.
FIG. 3 is a diagram showing a positional relationship among a circular saw, a work material, and a sensor during cutting.
FIG. 4 is a diagram showing hammering in every other region of a sectoral sector of the base metal.
FIG. 5 is a view in which a slit is cut in the outer periphery of the center of the non-hammered region of the base metal in FIG. 4;
FIG. 6 is a diagram showing frequency responses at equiangular positions on the outer periphery of a base metal in an n = 4 mode of NH-NS without hammering and slitting.
FIG. 7 is a diagram showing frequency responses at equiangular positions on the outer periphery of a base metal in an 8H-NS n = 4 mode hammered into 8 regions.
FIG. 8 is a diagram showing the relationship between the mean square value of the lateral vibration of the NH-NS base metal and the rotational speed.
FIG. 9 is a diagram showing the relationship between the mean square value of the transverse vibration of the 4H-NS base metal and the number of rotations.
FIG. 10 shows the difference between the maximum value and the average value when the mean square value of the transverse vibration amplitude is made dimensionless by the square of the thickness of the base metal and the difference between the dimensionless natural frequency and the mode of n = 4. It is a figure which shows a relationship.
FIG. 11 shows the relationship between the maximum value and the average value when the mean square value of the transverse vibration amplitude is made dimensionless by the square of the thickness of the base metal and the difference between the dimensionless natural frequency and the n = 5 mode. FIG.
FIG. 12 is a diagram showing the relationship between the maximum effective value of the amplitude of the base metal and the number of node diameters n.
FIG. 13 is a diagram in which the base metal is hammered so that a maximum value and a minimum value appear in every other region of the sector-like 8 divisions.
FIG. 14 is a diagram in which a base metal is formed with a hammering region in which a compression pressure is generated and a heat tension region in which a tensile stress is generated in every other sector of the sector shape.
FIG. 15 is a diagram in which a hammering region having a uniformly strong outer periphery and weak hammering regions and heat tension regions are formed in every other middle portion.
FIG. 16 is a diagram in which a heat tension region is formed on the outer periphery without hammering every other 8 equal sections.
FIG. 17 is a diagram in which a hammering region and a heat tension region are formed every other 8 equal sections in the intermediate portion, and a heat tension region is formed every other 6 equal sections in the outer peripheral portion.
[Explanation of symbols]
S1, S4, S10, S12 Hammering area
S2 Area without hammering
S3, S11, S13, S14 Heat tension area

Claims (4)

円板状回転工具の台金を回転軸を中心として扇形に2乃至22領域の偶数領域に区分けし、隣合う領域で異なる大きさの残留応力を発生させ、該残留応力の極大値を示す領域と極小値を示す領域とが周方向に交互に配置されることにより切削時の台金の横振動を抑制することを特徴とする円板状回転工具。An area in which the base of the disk-shaped rotary tool is divided into an even number of 2 to 22 areas in a sector shape around the rotation axis, and residual stresses of different magnitudes are generated in adjacent areas and the maximum value of the residual stress is shown. And a region showing a minimum value are alternately arranged in the circumferential direction to suppress the lateral vibration of the base metal during cutting. 残留応力を発生させる手段が台金の一部を伸ばす加工である請求項1に記載の円板状回転工具。The disk-shaped rotary tool according to claim 1, wherein the means for generating the residual stress is a process of extending a part of the base metal. 残留応力を発生させる手段が台金の一部を縮める加工である請求項1に記載の円板状回転工具。The disk-shaped rotary tool according to claim 1, wherein the means for generating the residual stress is a process of shrinking a part of the base metal. 残留応力を発生させる手段が台金の一部を伸ばす加工と縮める加工とを組合せたものである請求項1に記載の円板状回転工具。The disk-shaped rotary tool according to claim 1, wherein the means for generating the residual stress is a combination of a process of extending a part of the base metal and a process of contracting.
JP35627996A 1996-12-24 1996-12-24 Disk-shaped rotary tool Expired - Fee Related JP3915028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35627996A JP3915028B2 (en) 1996-12-24 1996-12-24 Disk-shaped rotary tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35627996A JP3915028B2 (en) 1996-12-24 1996-12-24 Disk-shaped rotary tool

Publications (2)

Publication Number Publication Date
JPH10180703A JPH10180703A (en) 1998-07-07
JP3915028B2 true JP3915028B2 (en) 2007-05-16

Family

ID=18448236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35627996A Expired - Fee Related JP3915028B2 (en) 1996-12-24 1996-12-24 Disk-shaped rotary tool

Country Status (1)

Country Link
JP (1) JP3915028B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218434B2 (en) * 1999-02-19 2001-10-15 兼房株式会社 Circular saw
JP4597332B2 (en) * 2000-08-18 2010-12-15 兼房株式会社 Circular saw
WO2005108032A1 (en) * 2004-05-12 2005-11-17 Mcgill Iniversity Method and mechanism for increasing critical speed in rotating disks and reducing kerf at high speeds in saw blades
JP2007111803A (en) * 2005-10-19 2007-05-10 Disco Abrasive Syst Ltd Ultrasonic vibration cutting device
JP4998140B2 (en) * 2007-08-11 2012-08-15 株式会社村田製作所 Cutting tool runout control method
US10914656B2 (en) * 2018-04-02 2021-02-09 Aktiebolaget Skf Condition monitoring

Also Published As

Publication number Publication date
JPH10180703A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
US6277017B1 (en) Diamond tip disk saw
US5038653A (en) Circular saw blade
JP3915028B2 (en) Disk-shaped rotary tool
Komaraiah et al. Investigation of surface roughness and accuracy in ultrasonic machining
EP3057738B1 (en) Airfoil machine components polishing method
KR20140075774A (en) Rotary cutting tool
BRPI0910574B1 (en) ULTRASOUND GRENING PROCESS
JP7247363B2 (en) Balancing method for rotating body and turbocharger
JPH08326502A (en) Part for gas turbine engine
JP2627095B2 (en) Rotating substrate for saw blade and saw blade
JP4259635B2 (en) How to balance rotating anode for X-ray tube
US4979417A (en) Rotating saw blade having improved critical vibrational speed
JP2006167724A (en) Machining method and structure using ultrasonic peening apparatus
Merhar et al. Dynamic behaviour analysis of a commercial roll-tensioned circular sawblade
KR102326325B1 (en) Friction saw for cutting high maganese steel
JPH0628841B2 (en) Plate-shaped rotating body with damping function
INAZAKI et al. Surface waves generated on the grinding wheel
RU2375693C1 (en) Method for single abrasive grain performance rating
Venkatesh et al. Power spectra of roughness caused by grinding of metals
Kaliszer et al. Generation of surface topography on a ground surface
Wang et al. Noise and vibration of diamond sawblade for concrete dry cutting
Forman et al. Vibration characteristics of crystal slicing ID saw blades
JPS58211845A (en) Ceramic rotary element with balance correcting lugs
Kirbach et al. An experimental study on the lateral natural frequency of bandsaw blades
Gotou et al. Monitoring of wear of abrasive grains

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees