JP4997421B2 - Method for producing visible light responsive photocatalyst - Google Patents

Method for producing visible light responsive photocatalyst Download PDF

Info

Publication number
JP4997421B2
JP4997421B2 JP2006118581A JP2006118581A JP4997421B2 JP 4997421 B2 JP4997421 B2 JP 4997421B2 JP 2006118581 A JP2006118581 A JP 2006118581A JP 2006118581 A JP2006118581 A JP 2006118581A JP 4997421 B2 JP4997421 B2 JP 4997421B2
Authority
JP
Japan
Prior art keywords
visible light
temperature
gas
responsive photocatalyst
plasma nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006118581A
Other languages
Japanese (ja)
Other versions
JP2007289821A (en
Inventor
智章 生田
耕平 小田
薫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2006118581A priority Critical patent/JP4997421B2/en
Publication of JP2007289821A publication Critical patent/JP2007289821A/en
Application granted granted Critical
Publication of JP4997421B2 publication Critical patent/JP4997421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、可視光応答型光触媒の製造方法に関する。   The present invention relates to a method for producing a visible light responsive photocatalyst.

従来から、環境浄化の観点から光触媒が注目されている。光触媒とは、光が当たるとその表面に強力な酸化力が生じて、接触する有機化合物や細菌等の有害物質を分解するものである。このような光触媒のうち、触媒機能が優れている物質として酸化チタンを挙げることができる。   Conventionally, a photocatalyst has attracted attention from the viewpoint of environmental purification. A photocatalyst is one that decomposes harmful substances such as organic compounds and bacteria that come into contact with light by generating strong oxidizing power on its surface. Among such photocatalysts, titanium oxide can be cited as a substance having an excellent catalytic function.

純粋な酸化チタンは、紫外光の照射によってのみ光触媒として機能し、紫外光域以外の可視光の照射には応答せず触媒機能を発揮することができない。このため、純粋な酸化チタンは室内や車内等の蛍光灯の光には応答せず、浄化を行うことができない。   Pure titanium oxide functions as a photocatalyst only by irradiation with ultraviolet light, does not respond to irradiation with visible light other than the ultraviolet light region, and cannot exert a catalytic function. For this reason, pure titanium oxide does not respond to the light of a fluorescent lamp indoors or in a vehicle and cannot be purified.

このような不都合を解消するために、近年では、可視光応答型光触媒の研究が広く行われている(たとえば、特許文献1〜特許文献3参照)。   In order to eliminate such inconveniences, in recent years, research on visible light responsive photocatalysts has been widely performed (for example, see Patent Documents 1 to 3).

特開2001−205103号公報JP 2001-205103 A 特開2004−49969号公報JP 2004-49969 A 特許第3498739号公報Japanese Patent No. 3498739

上記特許文献1には、酸化チタンであるTiO薄膜を窒素ガスおよび不活性ガスが導入された真空チャンバにおいて処理することで、TiO薄膜結晶中の酸素の一部を窒素で置換してTi−O−N構造を形成する方法が記載されている。このようにTiOの構造の一部を窒素で置換すると、可視光応答型光触媒となり室内等においても利用することができるようになる。 In Patent Document 1, a TiO 2 thin film that is titanium oxide is processed in a vacuum chamber into which nitrogen gas and an inert gas are introduced, so that a part of oxygen in the TiO 2 thin film crystal is replaced with nitrogen, and Ti A method of forming an —O—N structure is described. When a part of the structure of TiO 2 is substituted with nitrogen in this manner, it becomes a visible light responsive photocatalyst and can be used indoors.

また、上記特許文献2には、四塩化チタンを原料としてTi−O−N構造を形成する方法が記載されており、詳しくは、四塩化チタンおよび酸素の混合ガスを気相において燃焼させることにより四塩化チタンを加水分解し、Ti−O−N構造を有する酸化チタンを製造する方法が記載されている。   Patent Document 2 describes a method of forming a Ti—O—N structure using titanium tetrachloride as a raw material, and more specifically, by burning a mixed gas of titanium tetrachloride and oxygen in the gas phase. A method for producing titanium oxide having a Ti—O—N structure by hydrolyzing titanium tetrachloride is described.

また、上記特許文献3には、酸化チタンをアンモニアガスを含む雰囲気中で熱処理することで、Ti−O−N構造を有する酸化チタンを製造する方法が記載されている。   Patent Document 3 describes a method of manufacturing titanium oxide having a Ti—O—N structure by heat-treating titanium oxide in an atmosphere containing ammonia gas.

このように、酸化チタンを、Ti−O−N構造を有する構成とすることで可視光応答型光触媒とすることができる。しかしながら、上述した従来の可視光応答型光触媒の製造方法では、以下の問題点があった。   Thus, a visible light responsive photocatalyst can be obtained by using titanium oxide having a structure having a Ti—O—N structure. However, the conventional visible light responsive photocatalyst manufacturing method described above has the following problems.

すなわち、上記特許文献1に記載の方法では、TiOの表面にTi−O−N膜を形成した後に550℃の高温で熱処理を行う必要がある。また、上記特許文献2に記載の方法では、製造された塩化チタンには、少量の塩化物が付着している場合があり、この付着塩化物を除去するためには、300℃〜500℃の温度で熱処理を施す必要がある。また、上記特許文献3に記載の方法では、酸化チタンを400℃〜700℃の温度で熱処理を行う必要がある。 That is, in the method described in Patent Document 1, it is necessary to perform heat treatment at a high temperature of 550 ° C. after forming a Ti—O—N film on the surface of TiO 2 . In addition, in the method described in Patent Document 2, a small amount of chloride may be attached to the manufactured titanium chloride, and in order to remove the attached chloride, the temperature is from 300 ° C to 500 ° C. It is necessary to perform heat treatment at temperature. In the method described in Patent Document 3, it is necessary to heat-treat titanium oxide at a temperature of 400 ° C. to 700 ° C.

このように、従来の技術によれば、酸化チタンを高温にさらすこととなる。そして、酸化チタンを冷却した後に、この酸化チタンを加工等して製品に取り付けることで最終的に製品が出来上がる。ここで、一般的に製造過程は効率的な作業であることが好ましく、この場合であれば、処理前の酸化チタンを製品に取り付けた後に、製品ごと酸化チタンを処理し、その後、製品ごと冷却するのが効率的な作業である。しかしながら、製品にプラスチック等の低融点物質を用いる場合には、プラスチック等が融解してしまうため、上述したような一連の作業を行うことができず、作業性が悪くなってしまうといった問題がある。また、酸化チタンを高温にさらすため、処理する際に必要なエネルギーが大きくなり、エネルギー効率が悪いといった問題もある。   Thus, according to the conventional technique, the titanium oxide is exposed to a high temperature. And after cooling titanium oxide, a product is finally produced by processing this titanium oxide and attaching it to the product. Here, it is generally preferable that the manufacturing process is an efficient operation. In this case, after attaching the titanium oxide before the treatment to the product, the titanium oxide is treated for each product, and then the product is cooled. It is an efficient work to do. However, when a low-melting-point material such as plastic is used for the product, since the plastic or the like melts, there is a problem that a series of operations as described above cannot be performed and workability is deteriorated. . In addition, since the titanium oxide is exposed to a high temperature, there is a problem that energy required for the treatment is increased and energy efficiency is poor.

また、酸素および窒素以外のガスを用いるため、純度の高いTi−O−Nの組成を得られない可能性もある。これらの問題点は、製品の実用化において大きな弊害となってしまう。   In addition, since a gas other than oxygen and nitrogen is used, there is a possibility that a highly pure Ti—O—N composition cannot be obtained. These problems will be a serious adverse effect in the practical application of products.

本発明は上記に鑑みてなされたものであって、低温度領域で可視光応答型光触媒を製造することができ、かつ、質の高い光触媒を得ることができる可視光応答型光触媒の製造方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a method for producing a visible light responsive photocatalyst capable of producing a visible light responsive photocatalyst in a low temperature region and capable of obtaining a high quality photocatalyst. The purpose is to provide.

上記の目的を達成するために、請求項1に記載の可視光応答型光触媒の製造方法は、可視光の照射に応答して光触媒反応を起こす可視光応答型光触媒の製造方法であって、窒素ガスと窒素酸化物雰囲気中においてチタン材に対してプラズマ窒化処理を施し、当該プラズマ窒化処理中はチタン材の温度を100℃〜300℃に保つようにすることを特徴とする。
To achieve the above object, a manufacturing method of a visible light-responsive photocatalyst according to claim 1 is a method for producing a visible light responsive photocatalyst in response to irradiation with visible light causing photocatalytic reaction, nitrogen A plasma nitriding process is performed on the titanium material in an atmosphere of gas and nitrogen oxide, and the temperature of the titanium material is maintained at 100 ° C. to 300 ° C. during the plasma nitriding process.

すなわち、請求項1にかかる発明は、チタン材を窒素酸化物雰囲気中においてプラズマ窒化処理するので、純度の高いTi−O−Nの組成を得ることができ、よって、質の高い光触媒を製造することができる。   That is, in the invention according to claim 1, since the titanium material is plasma-nitrided in a nitrogen oxide atmosphere, a high-purity Ti—O—N composition can be obtained, and thus a high-quality photocatalyst is manufactured. be able to.

また、プラズマ窒化処理中はチタン材の温度を100℃〜300℃に保つので、チタン材を用いて製品を製造する場合であっても一連の作業を行うことができる。たとえば、製品にプラスチック等の低融点物質を用いていても、チタン材を製品に取り付けた後に製品ごと処理することができるので効率の良い作業を行うことができる。また、チタン材の温度を低く保つので使用するエネルギーを少なくすることができる。従来の可視光応答型光触媒の製造方法は、被処理物の温度が300℃以上の高温度領域となるものであり低温度領域にするという観点が無かったため、上述した利点を得ることができなかった。そこで、チタン材の温度を低温に保つことによりこのような点を改善しつつ、質の高い光触媒を製造することができる。
なお、プラズマ窒化処理では、チタンの温度を150℃〜250℃に保つのが好ましく、さらには、チタンの温度を200℃付近に保つことがより好ましい。
Further, since the temperature of the titanium material is maintained at 100 ° C. to 300 ° C. during the plasma nitriding treatment, a series of operations can be performed even when a product is manufactured using the titanium material. For example, even if a low-melting-point material such as plastic is used for the product, since the entire product can be processed after the titanium material is attached to the product, an efficient operation can be performed. Further, since the temperature of the titanium material is kept low, the energy used can be reduced. The conventional method for producing a visible light responsive photocatalyst cannot obtain the above-described advantages because the temperature of the object to be processed is in a high temperature region of 300 ° C. or higher and there is no viewpoint of making it a low temperature region. It was. Therefore, it is possible to produce a high-quality photocatalyst while improving such a point by keeping the temperature of the titanium material at a low temperature.
In the plasma nitriding treatment, the temperature of titanium is preferably maintained at 150 ° C. to 250 ° C., and more preferably, the temperature of titanium is maintained at around 200 ° C.

また、請求項2に記載の可視光応答型光触媒の製造方法は、請求項1に記載の可視光応答型光触媒の製造方法において、前記窒素酸化物が、二酸化窒素、一酸化窒素または亜酸化窒素のいずれかであることを特徴とする。
The method for producing a visible light responsive photocatalyst according to claim 2 is the method for producing a visible light responsive photocatalyst according to claim 1, wherein the nitrogen oxide is nitrogen dioxide, nitric oxide or nitrous oxide. It is either of these .

すなわち、請求項2にかかる発明は、効率的な条件のもとでチタン材に対してプラズマ窒化処理を行うことができる。
なお、窒素酸化物雰囲気は、二酸化窒素であることがより好ましい。
That is, the invention according to claim 2 can perform the plasma nitriding treatment on the titanium material under efficient conditions.
The nitrogen oxide atmosphere is more preferably nitrogen dioxide.

また、請求項3に記載の可視光応答型光触媒の製造方法は、請求項1または2に記載の可視光応答型光触媒の製造方法において、前記プラズマ窒化処理が、圧力150Pa〜250Paの真空炉内にチタン材を保持し、チタン材と真空炉との間に550V〜650Vの電圧を印加し、電源の入/切を繰り返すことによりチタン材の温度を100℃〜300℃に保つものであることを特徴とする。   Further, the method for producing a visible light responsive photocatalyst according to claim 3 is the method for producing a visible light responsive photocatalyst according to claim 1 or 2, wherein the plasma nitriding treatment is performed in a vacuum furnace having a pressure of 150 Pa to 250 Pa. The titanium material is held on the surface, the voltage of 550 V to 650 V is applied between the titanium material and the vacuum furnace, and the temperature of the titanium material is maintained at 100 ° C. to 300 ° C. by repeatedly turning on / off the power source. It is characterized by.

すなわち、請求項3にかかる発明は、より効率的な条件のもとでチタン材に対してプラズマ窒化処理を行うことができる。
なお、プラズマ窒化処理では、圧力200Paの真空炉内にチタン材を保持し、チタン材と真空炉との間に590Vの電圧を印加し、電源の入/切を繰り返すことによりチタン材の温度を200℃に保つのがより好ましい。
That is, the invention according to claim 3 can perform the plasma nitriding process on the titanium material under more efficient conditions.
In the plasma nitriding treatment, the titanium material is held in a vacuum furnace at a pressure of 200 Pa, a voltage of 590 V is applied between the titanium material and the vacuum furnace, and the temperature of the titanium material is changed by repeatedly turning on / off the power. More preferably, it is kept at 200 ° C.

以上のように、本発明(請求項1)によれば、低温度領域で可視光応答型光触媒を製造しつつ、質の高い光触媒を製造することができる。また、本発明(請求項2)によれば、効率的な条件のもとでチタン材に対してプラズマ窒化処理を行うことができる。また、本発明(請求項3)によれば、より効率的な条件のもとでチタン材に対してプラズマ窒化処理を行うことができる。   As described above, according to the present invention (claim 1), a high-quality photocatalyst can be produced while producing a visible light responsive photocatalyst in a low temperature region. According to the present invention (claim 2), the plasma nitriding treatment can be performed on the titanium material under efficient conditions. Further, according to the present invention (claim 3), the plasma nitriding treatment can be performed on the titanium material under more efficient conditions.

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
図1は、本発明の一実施形態にかかる可視光応答型光触媒の製造方法を実施するための製造装置の構成を模式的に示した図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram schematically showing a configuration of a production apparatus for carrying out a method for producing a visible light responsive photocatalyst according to an embodiment of the present invention.

製造装置1は、被処理物をプラズマ窒化処理するための装置であって、真空チャンバ2と、ガス供給部3と、プラズマ電源4と、排気パイプ5とを備えている。
真空チャンバ2は、内部を所定の圧力に保つための真空管21と、真空管21内に設けられた基台22と、真空チャンバ2内の圧力を調整する圧力調整部23と、真空チャンバ2内の被処理物の温度を調整する温度調整部24とを備えている。
The manufacturing apparatus 1 is an apparatus for performing a plasma nitriding process on an object to be processed, and includes a vacuum chamber 2, a gas supply unit 3, a plasma power source 4, and an exhaust pipe 5.
The vacuum chamber 2 includes a vacuum tube 21 for keeping the inside at a predetermined pressure, a base 22 provided in the vacuum tube 21, a pressure adjusting unit 23 for adjusting the pressure in the vacuum chamber 2, And a temperature adjusting unit 24 for adjusting the temperature of the object to be processed.

真空管21は、陽極側の電極として機能するものである。
基台22は、陰極側の電極として機能するものであり、かつ、上面に被処理物を載置しておくためのものである。
圧力調整部23は、ガス供給部3の動作を制御して真空管21内を所定の圧力に保つものである。
温度調整部24は、基台22に載置された被処理物の温度を随時検知して後述のプラズマ電源4の動作を制御している。
The vacuum tube 21 functions as an anode side electrode.
The base 22 functions as an electrode on the cathode side, and is used for placing an object to be processed on the upper surface.
The pressure adjusting unit 23 controls the operation of the gas supply unit 3 to keep the inside of the vacuum tube 21 at a predetermined pressure.
The temperature adjustment unit 24 detects the temperature of the object to be processed placed on the base 22 as needed, and controls the operation of the plasma power source 4 described later.

ガス供給部3は、圧力調整部23の制御に応じて真空チャンバ2内に所定のガスを供給しつつ、真空チャンバ2内のガス濃度を所定の濃度に保ち、併せて真空チャンバ2内を所定の圧力に保つものである。
プラズマ電源4は、真空管21と基台22との間に所定の電圧を印加して真空チャンバ2内でグロー放電を発生させるものである。
排気パイプ5は、真空チャンバ2内のガスを排気して真空にするためのものであり、図示しないコックにより開閉可能となっている。通常は、排気パイプ5のコックは閉められていて、真空チャンバ2は密閉された状態となっている。
The gas supply unit 3 keeps the gas concentration in the vacuum chamber 2 at a predetermined concentration while supplying a predetermined gas into the vacuum chamber 2 in accordance with the control of the pressure adjusting unit 23, and at the same time, keeps the inside of the vacuum chamber 2 at a predetermined level. Is to keep the pressure of
The plasma power supply 4 generates a glow discharge in the vacuum chamber 2 by applying a predetermined voltage between the vacuum tube 21 and the base 22.
The exhaust pipe 5 is for exhausting the gas in the vacuum chamber 2 to make a vacuum, and can be opened and closed by a cock (not shown). Usually, the cock of the exhaust pipe 5 is closed, and the vacuum chamber 2 is sealed.

そして、製造装置1を使用する際には、まず、基台22上に被処理物を載置し、排気パイプ5により真空チャンバ2内を真空に保つ。そして、ガス供給部3から真空チャンバ2内に所定のガスを供給する。このとき、圧力調整部23がガス供給部3の動作を制御して真空チャンバ2内の圧力を一定に保つ。   Then, when using the manufacturing apparatus 1, first, an object to be processed is placed on the base 22, and the vacuum chamber 2 is kept in vacuum by the exhaust pipe 5. Then, a predetermined gas is supplied from the gas supply unit 3 into the vacuum chamber 2. At this time, the pressure adjusting unit 23 controls the operation of the gas supply unit 3 to keep the pressure in the vacuum chamber 2 constant.

次いで、プラズマ電源4により真空管21および基台22に所定の電圧を加え、真空管21内でグロー放電を発生させる。このとき、基台22上の被処理物の温度を温度調整部24が検知し、被処理物の温度が一定となるようにプラズマ電源4の入/切を繰り返す。グロー放電が所定時間行われた後、再度排気パイプ5により真空チャンバ2内を真空に保し、被処理物を冷却する。このようにして、被処理物にプラズマ窒化処理が行われる。   Next, a predetermined voltage is applied to the vacuum tube 21 and the base 22 by the plasma power source 4 to generate glow discharge in the vacuum tube 21. At this time, the temperature adjusting unit 24 detects the temperature of the object to be processed on the base 22 and repeats turning on / off of the plasma power source 4 so that the temperature of the object to be processed becomes constant. After glow discharge is performed for a predetermined time, the inside of the vacuum chamber 2 is again kept in vacuum by the exhaust pipe 5 to cool the object to be processed. In this way, the plasma nitriding process is performed on the object to be processed.

以下の実施例では、真空チャンバ2内に窒素酸化物雰囲気を供給し、被処理物としてチタン基板(Ti基板)を用いた。また、プラズマ窒化処理は、真空チャンバ2内に供給するガスの種類、ガスの濃度、被処理物の温度を種々に変更して行った。また、製造装置1として産業用金属表面処理装置(山陰酸素工業株式会社製)を用いてTi基板をプラズマ窒化処理し、処理後のTi基板の光触媒の性能を調べた。   In the following examples, a nitrogen oxide atmosphere was supplied into the vacuum chamber 2 and a titanium substrate (Ti substrate) was used as an object to be processed. Further, the plasma nitriding treatment was performed by variously changing the type of gas supplied into the vacuum chamber 2, the concentration of the gas, and the temperature of the object to be processed. Moreover, the Ti substrate was plasma-nitrided using the industrial metal surface treatment apparatus (manufactured by San-in Oxygen Co., Ltd.) as the production apparatus 1, and the performance of the photocatalyst of the treated Ti substrate was examined.

(実施例1)
基台22にTi基板(20×20mm)を載置し、真空チャンバ2内に二酸化窒素(NO)を供給し、希釈ガスとして窒素ガス(N)を用いてその濃度を33%に保った。また、真空チャンバ2内の圧力は、200Paとした。そして、Ti基板の温度を100℃としてプラズマ窒化処理を行ったもの、150℃としてプラズマ窒化処理を行ったもの、200℃としてプラズマ窒化処理を行ったもの、250℃としてプラズマ窒化処理を行ったもの、300℃としてプラズマ窒化処理を行ったものおよび550℃としてプラズマ窒化処理を行ったものの6種類を作成した。また、各プラズマ窒化処理はそれぞれ3時間行った。
Example 1
A Ti substrate (20 × 20 mm) is placed on the base 22, nitrogen dioxide (NO 2 ) is supplied into the vacuum chamber 2, and its concentration is kept at 33% using nitrogen gas (N 2 ) as a dilution gas. It was. The pressure in the vacuum chamber 2 was 200 Pa. And what performed plasma nitriding treatment with the temperature of the Ti substrate being 100 ° C., what was plasma nitriding treatment at 150 ° C., what was plasma nitriding treatment at 200 ° C., and what was plasma nitriding treatment at 250 ° C. Six types were prepared: those subjected to plasma nitriding treatment at 300 ° C. and those subjected to plasma nitriding treatment at 550 ° C. Each plasma nitriding treatment was performed for 3 hours.

そして、処理後のTi基板(以下、サンプルという)の吸収波長領域を調べるために、紫外可視分光光度計(日本分光 V−550型)を用いて光吸収を調べた。測定条件は、バンド幅(UV)0.1nm、測定波長200nm〜800nm、データ間隔0.5nm、走査速度20nm/minとした。この結果をグラフにしたものを図2に示した。
このグラフから、各サンプルは、作成温度が上昇するのに伴い、スペクトルの吸収端が長波長側にシフトしているのが確認できる。また、可視光領域であるλ>380nmの波長の光を吸収していることも確認でき、Ti−O−N構成を有していることも確認できる。
And in order to investigate the absorption wavelength range of the Ti substrate after a process (henceforth a sample), the light absorption was investigated using the ultraviolet visible spectrophotometer (JASCO V-550 type). The measurement conditions were a bandwidth (UV) of 0.1 nm, a measurement wavelength of 200 nm to 800 nm, a data interval of 0.5 nm, and a scanning speed of 20 nm / min. A graph of the results is shown in FIG.
From this graph, it can be confirmed that the absorption edge of the spectrum is shifted to the long wavelength side as the production temperature rises for each sample. In addition, it can be confirmed that light having a wavelength of λ> 380 nm which is a visible light region is absorbed, and it can be confirmed that the structure has a Ti—O—N structure.

また、各サンプルの光触媒性能を調べるためにアセトアルデヒド分解能測定を行った。具体的には、各サンプルをそれぞれ反応層(250×400×300mm)の中に設置し、さらに、液体アセトアルデヒド1.4ulをシリンジに入れて揮発させて各反応層の中に注入して充満させた。そして、各サンプルに対して光源(12V,100W)からの距離を50mmとして可視光を150分間照射した。除去できたアセトアルデヒドの量を除去率とし、その結果を図3に示した。これより、温度を200℃に保ったサンプルの除去率が最も高くなったことが確認できた。よって、Ti基板をプラズマ窒化処理する際には、Ti基板の温度を150℃〜250℃とすることが好ましく、さらには200℃に保つことがより好ましいと考えられる。   Moreover, in order to investigate the photocatalytic performance of each sample, acetaldehyde resolution measurement was performed. Specifically, each sample is placed in a reaction layer (250 × 400 × 300 mm), and 1.4 ul of liquid acetaldehyde is volatilized in a syringe and injected into each reaction layer to be filled. It was. Each sample was irradiated with visible light for 150 minutes at a distance of 50 mm from the light source (12 V, 100 W). The amount of acetaldehyde that could be removed was defined as the removal rate, and the results are shown in FIG. From this, it was confirmed that the removal rate of the sample whose temperature was maintained at 200 ° C. was the highest. Therefore, when the Ti substrate is plasma-nitrided, the temperature of the Ti substrate is preferably 150 ° C. to 250 ° C., and more preferably 200 ° C.

(実施例2)
真空チャンバ2内に二酸化窒素(NO)を供給し、その濃度を、10%、20%および50%の3種類として、実験例1と同様の方法でサンプルを作成した。なお、各サンプルの温度は、常時200℃に保った。そして、実験例1と同様に、各サンプルについて光吸収を調べ、さらに、アセトアルデヒド分解能測定を行った。図4には、光吸収の結果を、図5には、アセトアルデヒド分解能測定の結果を示した。
(Example 2)
Nitrogen dioxide (NO 2 ) was supplied into the vacuum chamber 2 and the concentrations thereof were set to three types of 10%, 20% and 50%, and samples were prepared in the same manner as in Experimental Example 1. The temperature of each sample was always kept at 200 ° C. In the same manner as in Experimental Example 1, the light absorption of each sample was examined, and further, acetaldehyde resolution measurement was performed. FIG. 4 shows the result of light absorption, and FIG. 5 shows the result of acetaldehyde resolution measurement.

図4より、二酸化窒素の濃度を変化させてもスペクトルの吸収端に大きな変化は見られないことが確認できる。また、図5より、二酸化窒素の濃度を変化させてもアセトアルデヒドの除去率に大きな変化は見られないことが確認できる。よって、Ti基板をプラズマ窒化処理する際の窒素酸化物雰囲気の濃度の違いは、製造する光触媒の質にそれほど影響を及ぼすものではないと考えられる。   From FIG. 4, it can be confirmed that even if the concentration of nitrogen dioxide is changed, no significant change is observed in the absorption edge of the spectrum. Further, it can be confirmed from FIG. 5 that even if the concentration of nitrogen dioxide is changed, no significant change is observed in the acetaldehyde removal rate. Therefore, it is considered that the difference in the concentration of the nitrogen oxide atmosphere when plasma nitriding the Ti substrate does not significantly affect the quality of the photocatalyst to be produced.

(実験例3)
真空チャンバ2内に供給するガスの種類を二酸化窒素(NO)、一酸化窒素(NO)および亜酸化窒素(NO)の3種類としてそれぞれにおいてサンプルを作成した。さらに、各ガスを用いた場合において、サンプルの温度を200℃に保ったもの、300℃に保ったものおよび500℃に保ったものの3種類を作成した。また、各ガスの濃度は33%に保った。そして、実験例1と同様に、各サンプルについて光吸収を調べ、さらに、アセトアルデヒド分解能測定を行った。なお、実験例3では、光を全く照射しない暗条件下と可視光領域の光を照射した明条件下とに切替えて実験を行った。
(Experimental example 3)
Samples were prepared for each of three types of gases supplied into the vacuum chamber 2: nitrogen dioxide (NO 2 ), nitrogen monoxide (NO), and nitrous oxide (N 2 O). Further, in the case of using each gas, three types were prepared: one in which the temperature of the sample was kept at 200 ° C., one kept at 300 ° C., and one kept at 500 ° C. The concentration of each gas was kept at 33%. In the same manner as in Experimental Example 1, the light absorption of each sample was examined, and further, acetaldehyde resolution measurement was performed. In Experimental Example 3, the experiment was performed by switching between a dark condition in which no light was irradiated and a bright condition in which light in the visible light region was irradiated.

図6(a)は、ガスの種類が二酸化窒素(NO)の場合の光吸収の結果を示したグラフであり、図6(b)は、ガスの種類が二酸化窒素(NO)の場合のアセトアルデヒド分解能測定の結果を示した表である。また、図7(a)は、ガスの種類が一酸化窒素(NO)の場合の光吸収の結果を示したグラフであり、図7(b)は、ガスの種類が一酸化窒素(NO)の場合のアセトアルデヒド分解能測定の結果を示した表である。また、図8(a)は、ガスの種類が亜酸化窒素(N0)の場合の光吸収の結果を示したグラフであり、図8(b)は、ガスの種類が亜酸化窒素(N0)の場合のアセトアルデヒド分解能測定の結果を示した表である。 FIG. 6A is a graph showing the result of light absorption when the type of gas is nitrogen dioxide (NO 2 ), and FIG. 6B is the case where the type of gas is nitrogen dioxide (NO 2 ). It is the table | surface which showed the result of acetaldehyde resolution | decomposability measurement of. FIG. 7A is a graph showing the result of light absorption when the type of gas is nitric oxide (NO), and FIG. 7B is the graph showing the type of gas being nitrogen monoxide (NO). It is the table | surface which showed the result of the acetaldehyde resolution measurement in the case of. FIG. 8A is a graph showing the result of light absorption when the gas type is nitrous oxide (N 2 0). FIG. 8B is a graph showing the gas type being nitrous oxide (N 2 O). N 2 0) is a table showing the results of acetaldehyde resolution measurement case.

図6〜図8から、ガスの種類が二酸化窒素(NO)の場合に最もアセトアルデヒドを除去できていることが確認できる。また、サンプルの温度が上昇するのに伴い、スペクトルの吸収端が長波長側にシフトしているのが確認できる。また、温度を200℃に保ったサンプルの除去率が最も高くなったことが確認できる。また、暗条件下ではアセトアルデヒドの除去が少なく、明条件下において顕著にアセトアルデヒドが除去できていることが確認できる。よって、Ti基板をプラズマ窒化処理すると処理後のTi基板は可視光に応答して活性すると考えられる。また、Ti基板をプラズマ窒化処理する際には雰囲気が二酸化窒素(NO)であることが好ましいと考えられる。 From FIG. 6 to FIG. 8, it can be confirmed that acetaldehyde is most removed when the type of gas is nitrogen dioxide (NO 2 ). Further, it can be confirmed that the absorption edge of the spectrum is shifted to the long wavelength side as the temperature of the sample rises. Moreover, it can be confirmed that the removal rate of the sample whose temperature is kept at 200 ° C. is the highest. Further, it can be confirmed that acetaldehyde is little removed under dark conditions, and acetaldehyde can be remarkably removed under bright conditions. Therefore, it is considered that when the Ti substrate is subjected to plasma nitriding, the treated Ti substrate is activated in response to visible light. Further, it is considered that the atmosphere is preferably nitrogen dioxide (NO 2 ) when plasma nitriding the Ti substrate.

この発明は、以上説明した実施形態に限定されるものではなく、請求項に記載の範囲内において種々の変更が可能である。   The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims.

本発明の一実施形態にかかる可視光応答型光触媒の製造方法を実施するための製造装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the manufacturing apparatus for enforcing the manufacturing method of the visible light response type photocatalyst concerning one Embodiment of this invention. 実施例1の結果を示したグラフである。2 is a graph showing the results of Example 1. 実施例1の結果を示した表である。2 is a table showing the results of Example 1. 実施例2の結果を示したグラフである。6 is a graph showing the results of Example 2. 実施例2の結果を示した表である。6 is a table showing the results of Example 2. 実施例3においてガスの種類を二酸化窒素とした場合の結果を示した図である。In Example 3, it is the figure which showed the result at the time of setting the kind of gas to nitrogen dioxide. 実施例3においてガスの種類を一酸化窒素とした場合の結果を示した図である。It is the figure which showed the result at the time of setting the kind of gas to nitric oxide in Example 3. 実施例3においてガスの種類を亜酸化窒素とした場合の結果を示した図である。It is the figure which showed the result at the time of setting the kind of gas to nitrous oxide in Example 3. FIG.

符号の説明Explanation of symbols

1 製造装置
2 真空チャンバ
3 ガス供給部
4 プラズマ電源
23 圧力調整部
24 温度調整部

DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Vacuum chamber 3 Gas supply part 4 Plasma power supply 23 Pressure adjustment part 24 Temperature adjustment part

Claims (3)

可視光の照射に応答して光触媒反応を起こす可視光応答型光触媒の製造方法であって、
窒素ガスと窒素酸化物雰囲気中においてチタン材に対してプラズマ窒化処理を施し、当該プラズマ窒化処理中はチタン材の温度を100℃〜300℃に保つようにすることを特徴とする可視光応答型光触媒の製造方法。
A method for producing a visible light responsive photocatalyst that causes a photocatalytic reaction in response to irradiation with visible light,
Visible light response characterized in that plasma nitriding is performed on a titanium material in an atmosphere of nitrogen gas and nitrogen oxide, and the temperature of the titanium material is maintained at 100 ° C. to 300 ° C. during the plasma nitriding treatment. Type photocatalyst production method.
前記窒素酸化物は、二酸化窒素、一酸化窒素または亜酸化窒素のいずれかであることを特徴とする請求項1に記載の可視光応答型光触媒の製造方法。
The method for producing a visible light responsive photocatalyst according to claim 1, wherein the nitrogen oxide is any one of nitrogen dioxide, nitric oxide, and nitrous oxide.
前記プラズマ窒化処理は、圧力150Pa〜250Paの真空炉内にチタン材を保持し、チタン材と真空炉との間に550V〜650Vの電圧を印加し、電源の入/切を繰り返すことによりチタン材の温度を100℃〜300℃に保つものであることを特徴とする請求項1または2に記載の可視光応答型光触媒の製造方法。


The plasma nitriding treatment is performed by holding a titanium material in a vacuum furnace at a pressure of 150 Pa to 250 Pa, applying a voltage of 550 V to 650 V between the titanium material and the vacuum furnace, and repeatedly turning on / off the power source. The method for producing a visible light responsive photocatalyst according to claim 1 or 2, wherein the temperature is maintained at 100 to 300 ° C.


JP2006118581A 2006-04-21 2006-04-21 Method for producing visible light responsive photocatalyst Expired - Fee Related JP4997421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118581A JP4997421B2 (en) 2006-04-21 2006-04-21 Method for producing visible light responsive photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006118581A JP4997421B2 (en) 2006-04-21 2006-04-21 Method for producing visible light responsive photocatalyst

Publications (2)

Publication Number Publication Date
JP2007289821A JP2007289821A (en) 2007-11-08
JP4997421B2 true JP4997421B2 (en) 2012-08-08

Family

ID=38760962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118581A Expired - Fee Related JP4997421B2 (en) 2006-04-21 2006-04-21 Method for producing visible light responsive photocatalyst

Country Status (1)

Country Link
JP (1) JP4997421B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216543A (en) * 1994-01-26 1995-08-15 Asahi Glass Co Ltd Forming method of thin film
JP2000203885A (en) * 1999-01-11 2000-07-25 Ulvac Japan Ltd Functional thin film, functional substrate and production of titanium oxide thin film
JP3829183B2 (en) * 2002-03-18 2006-10-04 独立行政法人産業技術総合研究所 Photocatalyst and method for producing the same
JP4063577B2 (en) * 2002-04-26 2008-03-19 株式会社アルバック Method for producing composite material having photocatalytic coating
JP2005076105A (en) * 2003-09-02 2005-03-24 Bridgestone Corp Method for forming titanium oxynitride film
JP2005177548A (en) * 2003-12-16 2005-07-07 Toyota Motor Corp Production method for visible light response type photocatalyst body
JP4587831B2 (en) * 2005-02-10 2010-11-24 住友精化株式会社 Nitrogen-doped titanium oxide having photocatalytic action and method for producing the same

Also Published As

Publication number Publication date
JP2007289821A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5024048B2 (en) Wet etching method and wet etching apparatus
Tavares et al. Reactive sputtering deposition of photocatalytic TiO2 thin films on glass substrates
JP4914438B2 (en) Material cleaning by treatment with hydrogen-based plasma
US6793980B2 (en) Method of forming photo-catalytic film made of titanium oxide on base material and laminated material thereof
JP2004167370A (en) Highly active photocatalyst carbon-doped titanium dioxide and its manufacturing method
JP4997421B2 (en) Method for producing visible light responsive photocatalyst
EP1380675B1 (en) Method for reducing oxygen component and carbon component in fluoride
TW201503237A (en) Method for increasing uniformity of polysilicon layer
WO2008091053A1 (en) Method of preparation for titania photo-catalyst by oxygen plasma and rapid thermal annealing
JP2005272189A (en) Method for producing oxide semiconductor thin film by irradiation with ultraviolet radiation
JP4621848B2 (en) Method for making oxide thin film
JP5072288B2 (en) Method for forming gate insulating film, semiconductor device manufacturing apparatus
WO2011118700A1 (en) Process for production of optical vanadium dioxide thin film
JP2587860B2 (en) Ozone generation method
JP2007136394A (en) Manufacturing method of sulfur-doped titanium oxide
JP2003040621A (en) Visible light respondable titanium oxide and its producing method
JP2002370027A (en) Columnar titanium oxide crystal photocatalyst material and applied article thereof
CN107961806B (en) Perovskite type strontium niobium nitrogen oxide semiconductor photocatalyst activation method
JP2006095520A (en) Manufacturing method of heteroatom introduction-type titanium oxide photocatalyst
JP2009066497A (en) Photocatalyst thin film of titanium oxide and its production method
JP2005177548A (en) Production method for visible light response type photocatalyst body
JPH11130434A (en) Titanium dioxide film, photocatalyst film and its production
JPS6012128A (en) Photochemical surface treating apparatus
JPS61190943A (en) Cleaning of interior of reaction-treatment device, purification of gas-phase substance for treatment and reaction-treatment device
JP2011029148A (en) Post-treatment method and deposition/post-treatment device for conductive metal oxide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees