JP2003040621A - Visible light respondable titanium oxide and its producing method - Google Patents

Visible light respondable titanium oxide and its producing method

Info

Publication number
JP2003040621A
JP2003040621A JP2002150150A JP2002150150A JP2003040621A JP 2003040621 A JP2003040621 A JP 2003040621A JP 2002150150 A JP2002150150 A JP 2002150150A JP 2002150150 A JP2002150150 A JP 2002150150A JP 2003040621 A JP2003040621 A JP 2003040621A
Authority
JP
Japan
Prior art keywords
titanium oxide
visible light
tio
light responsive
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002150150A
Other languages
Japanese (ja)
Other versions
JP4150213B2 (en
Inventor
Hirohiko Murakami
村上  裕彦
Chizuru Koakutsu
千鶴 小圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002150150A priority Critical patent/JP4150213B2/en
Publication of JP2003040621A publication Critical patent/JP2003040621A/en
Application granted granted Critical
Publication of JP4150213B2 publication Critical patent/JP4150213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a visible light respondable titanium oxide chemically stable and not easily returnable to conventional TiO2 in the atmosphere, and its producing method by a lamp heat treating method able to treat a large area. SOLUTION: The visible light respondable titanium oxide has a formula of TiO2-x Ny (0<x<1, 0<y<1) and can absorb light of which the wave length is 200-1100 nm. It is produced by the lamp heat treating of TiO2 using an infrared lamp and the like at 300 deg.C or more in a pure NH3 gas or a mixed gas containing NH3 and by sequential nitration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、可視光応答型酸化
チタン及びその作製方法に関する。特に、本発明は、太
陽光の大部分(約50〜60%)を占める可視光を吸収
し、光触媒能を発揮することが可能である可視光応答型
TiO2−x(0<x<1、0<y<1)及びその
作製方法に関する。
TECHNICAL FIELD The present invention relates to a visible light responsive titanium oxide and a method for producing the same. In particular, the present invention absorbs visible light that occupies most of the sunlight (about 50 to 60%), and is capable of exerting a photocatalytic activity, and visible light responsive TiO 2-x N y (0 <x <1, 0 <y <1) and a manufacturing method thereof.

【0002】[0002]

【従来の技術】酸化チタンは、光を照射することによっ
て光化学反応を起こし、抗菌・防汚・脱臭などの作用を
示す光触媒である。光触媒とは、価電子帯から伝導帯に
励起された電子が大気中の酸素を還元することで活性酸
素種であるスーパーオキサイドアニオンラジカル(・O
)を作り、価電子帯では正孔が大気中の水蒸気を酸
化することで活性酸素種であるヒドロキシルラジカル
(・OH)を作り、これらの活性酸素種が有機物を酸化
して分解する作用を有するものをいう。酸化チタンは、
安価であり非常に安全性の高い物質として知られてお
り、これらの活性酸素種を作るという性質を利用した製
品化が進んでいる。例えば、抗菌を目的としたタイル、
包丁、まな板への利用、脱臭を目的とした空気清浄機、
エアコンへの利用などが挙げられる。
2. Description of the Related Art Titanium oxide is a photocatalyst that exhibits a photochemical reaction when irradiated with light and exhibits antibacterial, antifouling and deodorizing effects. A photocatalyst is a superoxide anion radical (.O) that is an active oxygen species when electrons excited in the conduction band from the valence band reduce oxygen in the atmosphere.
2 -) make, create hydroxyl radicals in the valence band which is active oxygen species by holes oxidize water vapor in the atmosphere (· OH), acting decompose these active oxygen species to oxidize organic matter Is said to have. Titanium oxide is
It is known as an inexpensive and highly safe substance, and commercialization utilizing the property of producing these active oxygen species is progressing. For example, tiles for antibacterial purposes,
Kitchen knives, cutting boards, air purifiers for deodorization,
It can be used for air conditioners.

【0003】酸化チタンが上記のような光触媒能を発揮
するには、価電子帯の電子が伝導帯に励起されるだけの
エネルギーが外部から与えられる必要がある。酸化チタ
ンの場合、価電子帯と伝導帯のエネルギー差は約3.2
eVである。この値に相当するエネルギーが与えられる
ことで電子が励起される。このエネルギーは光の波長で
いうと380nmに相当する。380nmは紫外光領域
の光であるから、酸化チタンは紫外光領域よりも短波長
にシフトする光を吸収することで光触媒能を発揮できる
ということになる。ただし、紫外光は全太陽光の約5%
しか含まれておらず、十分に利用できていないというの
が現状である。このような理由から、太陽光の大部分を
占める可視光領域の光を利用できるような酸化チタンの
開発が望まれており、活発に研究がなされている。この
ような酸化チタン作製方法として、例えば、イオン注入
法やプラズマ処理法などが挙げられる。
In order for titanium oxide to exhibit the above-mentioned photocatalytic ability, it is necessary to externally provide enough energy to excite electrons in the valence band into the conduction band. In the case of titanium oxide, the energy difference between the valence band and the conduction band is about 3.2.
eV. Electrons are excited by giving energy corresponding to this value. This energy corresponds to 380 nm in terms of light wavelength. Since 380 nm is light in the ultraviolet light region, it means that titanium oxide can exert its photocatalytic activity by absorbing light that shifts to a shorter wavelength than the ultraviolet light region. However, ultraviolet light is about 5% of total sunlight.
However, the current situation is that it is not fully utilized. For these reasons, the development of titanium oxide that can utilize the light in the visible light region, which occupies most of the sunlight, is desired, and research is actively conducted. Examples of such a method for producing titanium oxide include an ion implantation method and a plasma treatment method.

【0004】イオン注入法は、TiOにクロムイオン
やバナジウムイオンを打ち込む方法である。TiO
伝導帯の準位はTiの3d軌道電子によって形成されて
いるが、上記のクロムイオンやバナジウムイオンを打ち
込むことで価電子帯と伝導帯との間に不純物準位を作
り、伝導帯の下端準位を下げることでエネルギーバンド
ギャップを狭める方法である。プラズマ処理法は、水素
ガスを高温でプラズマ状態にし、TiO中の酸素を還
元させて酸素欠損型酸化チタンを作製する方法である。
The ion implantation method is a method of implanting chromium ions or vanadium ions into TiO 2 . The conduction band level of TiO 2 is formed by 3d orbital electrons of Ti, but by implanting the above-mentioned chromium ions and vanadium ions, an impurity level is created between the valence band and the conduction band, and the conduction band This is a method of narrowing the energy band gap by lowering the lower end level of. The plasma treatment method is a method in which hydrogen gas is brought into a plasma state at high temperature and oxygen in TiO 2 is reduced to produce oxygen-deficient titanium oxide.

【0005】上記の他に、エネルギーバンドギャップを
狭める手段として、NHガス雰囲気下における雰囲気
炉による加熱処理によってTiO2−xを作製する
方法がある。これは、酸素の2p軌道電子によって形成
される価電子帯に窒素の2p軌道電子を混成させること
で価電子帯の準位を上げてエネルギーバンドギャップを
狭める方法である。この方法は、TiOの価電子帯の
準位が水の酸化準位よりも深くシフトしているために、
エネルギーバンドギャップを狭める方法としては適して
いる。
In addition to the above, as a means for narrowing the energy band gap, there is a method of producing TiO 2-x N y by heat treatment in an atmosphere furnace under an NH 3 gas atmosphere. This is a method of increasing the level of the valence band and narrowing the energy band gap by mixing the 2p orbital electron of nitrogen with the valence band of nitrogen formed by the 2p orbital electron of oxygen. In this method, since the level of the valence band of TiO 2 is deeper than the oxidation level of water,
It is suitable as a method for narrowing the energy band gap.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術のイオン
注入法では、1.5μmol/gのイオン量を注入した
としても、十分に吸収波長端が広がらないだけでなく、
一度に大面積の処理は困難である。ところで、TiO
の励起された電子が大気中の酸素を還元するには、伝導
帯の準位が酸素の還元準位よりも正側にシフトしている
必要があり、価電子帯の正孔が大気中の水蒸気を酸化す
るには価電子帯の準位が水の酸化準位よりも負側にシフ
トしていなければならない。酸化チタンの価電子帯の準
位は、水の酸化準位よりも負側に深くシフトしている
が、伝導帯の準位は酸素の還元準位よりもわずかに正側
にシフトしているだけである。このため、上記イオン注
入法のような伝導帯の下端準位を下げてエネルギーバン
ドギャップを狭めるという方法は、酸素の還元準位より
も負側にシフトすると光触媒能が発揮できなくなり、し
かも、伝導帯の準位と酸素の還元準位が非常に隣接して
いることからも問題がある。
In the above-described conventional ion implantation method, even if the ion amount of 1.5 μmol / g is implanted, not only the absorption wavelength edge does not spread sufficiently, but
It is difficult to process a large area at a time. By the way, TiO 2
In order for the excited electrons of to reduce oxygen in the atmosphere, the level of the conduction band must be shifted to the positive side of the reduction level of oxygen, and the holes of the valence band must be in the atmosphere. To oxidize water vapor, the valence band level must be shifted to the negative side of the water oxidation level. The valence band level of titanium oxide is deeply shifted to the negative side of the oxidation level of water, but the conduction band level is slightly shifted to the positive side of the reduction level of oxygen. Only. Therefore, in the method of lowering the lower end level of the conduction band to narrow the energy band gap like the above-mentioned ion implantation method, the photocatalytic ability cannot be exerted if it is shifted to the negative side of the reduction level of oxygen, and There is also a problem because the band level and the oxygen reduction level are very close to each other.

【0007】上記従来技術のプラズマ処理法も大面積の
処理法としては、実用化に向いていない。また、プラズ
マ処理法によって得られる酸素欠損型酸化チタンは化学
的に不安定な構造であり、大気中で容易にTiOに戻
るという問題点も挙げられる。また、雰囲気炉による加
熱方法は、窒化反応には適していない。以下にその理由
を述べる。窒化のメカニズムとしては、まず、NH
スが熱分解を起こして窒素ラジカルと水素ラジカルに分
解し、次いで、水素ラジカルは、TiOの酸素と結合
してTiOを還元し、そして酸素欠損となったTiO
に窒素ラジカルが結合して、TiO2−xとなる
という過程を経る。このような雰囲気炉による加熱方式
では、ガス自身の温度が上昇するために、試験体表面だ
けではなく、雰囲気炉内全体でNHガスの熱分解が起
こる。上記の窒素ラジカル、水素ラジカルは寿命が短い
ためにすぐにラジカル同士が結合して窒素分子、水素分
子になる。このため、試験体表面での窒化が起こり難く
なる。
The above-mentioned conventional plasma processing method is not suitable for practical use as a large-area processing method. Further, the oxygen-deficient titanium oxide obtained by the plasma treatment method has a chemically unstable structure, and there is a problem that it easily returns to TiO 2 in the atmosphere. Further, the heating method using the atmospheric furnace is not suitable for the nitriding reaction. The reason will be described below. The mechanism of nitride, firstly, NH 3 gas is thermally decomposed decomposed into nitrogen radicals and hydrogen radicals, then hydrogen radicals, by reducing TiO 2 in combination with a TiO 2 oxygen, and the oxygen deficiency Became TiO
A nitrogen radical is bonded to 2 to form TiO 2−x N y . In such a heating method using an atmospheric furnace, the temperature of the gas itself rises, so that the NH 3 gas is thermally decomposed not only on the surface of the test sample but in the entire atmospheric furnace. Since the above-mentioned nitrogen radicals and hydrogen radicals have a short life, radicals are immediately bound to each other to become nitrogen molecules and hydrogen molecules. Therefore, nitriding on the surface of the test body does not easily occur.

【0008】本発明の課題は、化学的にも安定であり、
大気中においても容易にTiOに戻ることのない可視
光応答型酸化チタン、及び大面積の処理が可能なランプ
加熱処理法による可視光応答型酸化チタンの作製方法を
提供することにある。
The object of the present invention is to be chemically stable,
It is an object of the present invention to provide a visible light responsive titanium oxide that does not easily return to TiO 2 even in the atmosphere, and a method for producing a visible light responsive titanium oxide by a lamp heating treatment method capable of treating a large area.

【0009】[0009]

【課題を解決するための手段】本発明者らは、TiO
をNHガス雰囲気中でランプ加熱方式で加熱して窒化
し、TiO2−xを作製することにより、上記課題
を解決することに成功し、本発明を完成するに至った。
本発明の可視光応答型酸化チタンは、式:TiO2−x
(0<x<1、0<y<1)を有するものであり、
200nm〜1100nmの波長の光を吸収することが
できる。
The present inventors have found that TiO 2
Was heated by a lamp heating method in an NH 3 gas atmosphere and nitrided to produce TiO 2−x N y , and the above problems were successfully solved, and the present invention was completed.
The visible light responsive titanium oxide of the present invention has the formula: TiO 2-x.
N y (0 <x <1, 0 <y <1),
It can absorb light with a wavelength of 200 nm to 1100 nm.

【0010】本発明の可視光応答型酸化チタンの作製方
法は、TiOを窒素含有ガス雰囲気中でランプ加熱方
式により加熱して、TiOを窒化し、式:TiO
2−x (0<x<1、0<y<1)を有する可視光
応答型酸化チタンを得ることからなる。本発明では、加
熱方式として、ランプ加熱処理による方式が適してい
る。従来の雰囲気炉による処理法では、上記したよう
に、雰囲気ガス自身の温度が上昇するために、雰囲気全
体でNHガスの熱分解が起こり、試験体表面での窒化
が起こり難くなり、十分に窒化をすることは不可能であ
る。これに対し、本発明のランプ加熱方式では、雰囲気
ガスは温まらず、温度が上昇している試験体表面だけで
NHガスの熱分解が起きて上記のような窒化反応が効
率よく起きる。本発明で使用する窒素含有ガスとして
は、純NHガス又はNH含有混合ガスを用いること
が好ましい。
Method for producing visible light responsive titanium oxide of the present invention
Method is TiOTwoHow to heat a lamp in a nitrogen-containing gas atmosphere
Heated by the formula, TiOTwoNitrides, formula: TiO
2-xN yVisible light having (0 <x <1, 0 <y <1)
Obtaining responsive titanium oxide. In the present invention,
As a heat method, a method using lamp heat treatment is suitable.
It In the conventional atmosphere furnace treatment method, as described above
In addition, because the temperature of the atmosphere gas itself rises,
NH in the bodyThreeGas thermal decomposition occurs and nitriding on the surface of the specimen
Is less likely to occur and it is impossible to fully nitrid
It On the other hand, in the lamp heating system of the present invention, the atmosphere
The gas does not heat up, only on the surface of the specimen where the temperature is rising
NHThreeThe thermal decomposition of the gas occurs and the above nitriding reaction is effective.
It happens often. As a nitrogen-containing gas used in the present invention
Is pure NHThreeGas or NHThreeUsing a mixed gas containing
Is preferred.

【0011】上記ランプ加熱方式としては、赤外線ラン
プ加熱方式が好ましい。加熱温度は、一般に300℃以
上、好ましくは400以上である。処理温度が300℃
未満であると、得られた酸化チタンは、紫外光領域の波
長の光は吸収できるが、可視光領域の波長の光を吸収し
難いため、可視光の照射では機能しないという問題があ
る。特に、600℃以上で加熱処理して得たTiO
2−xの場合、その可視光領域の光吸収率は、従来
のTiOの場合と比較すると大幅に増大する。加熱温
度の上限は、製品化する際の被処理基板等の耐熱性に依
存して適宜選択することができる。なお、加熱温度が8
00℃を超えても、酸化チタンの窒化は可能である。
As the lamp heating method, an infrared lamp heating method is preferable. The heating temperature is generally 300 ° C. or higher, preferably 400 or higher. Processing temperature is 300 ℃
When the amount is less than the above, the obtained titanium oxide can absorb light having a wavelength in the ultraviolet light region, but has difficulty in absorbing light having a wavelength in the visible light region, and thus has a problem that it does not function by irradiation with visible light. Particularly, TiO obtained by heat treatment at 600 ° C. or higher
For 2-x N y, the light absorption rate of the visible light region is greatly increased when compared to the conventional TiO 2. The upper limit of the heating temperature can be appropriately selected depending on the heat resistance of the substrate to be processed when the product is manufactured. The heating temperature is 8
Even if the temperature exceeds 00 ° C, nitriding of titanium oxide is possible.

【0012】本発明の可視光応答型酸化チタンは、20
0nm〜1100nmの波長の光を吸収するものであ
る。加熱処理するTiOの形状については、特に制限
はない。また、本発明の可視光応答型TiO2−x
は、例えば、太陽電池のエネルギー効率を向上すること
ができる半導体材料にも適しており、さらに、このTi
2−xは可視光領域において励起して触媒作用を
示す。
The visible light responsive titanium oxide of the present invention comprises 20
It absorbs light having a wavelength of 0 nm to 1100 nm. There is no particular limitation on the shape of TiO 2 to be heat-treated. In addition, the visible light responsive TiO 2-x N y of the present invention.
Is also suitable, for example, as a semiconductor material that can improve the energy efficiency of solar cells.
O 2-x N y is excited in the visible light region and exhibits a catalytic action.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)2cm角の石英ガラス上にスパッタ法でT
iOを成膜(膜厚:600nm)し、得られた薄膜
を、ランプ加熱方式の電気炉中でNHガス雰囲気にお
いて加熱処理した。この時の加熱処理は、500℃、6
00℃、650℃、700℃、800℃のそれぞれの条
件で行った。加熱時間はいずれの温度条件の場合にも1
時間とした。それぞれの加熱処理において得られた薄膜
中の窒素含有量を燃焼法にて測定したところ、得られた
各窒化TiOの組成はTiO2−x(0<x<
1、0<y<1)であることがわかった。
Embodiments of the present invention will be described below with reference to the drawings. (Example 1) T was formed on a 2 cm square quartz glass by a sputtering method.
An iO 2 film was formed (film thickness: 600 nm), and the obtained thin film was heat-treated in an NH 3 gas atmosphere in an electric furnace of a lamp heating system. The heat treatment at this time is 500 ° C., 6
It carried out on each condition of 00 degreeC, 650 degreeC, 700 degreeC, and 800 degreeC. The heating time is 1 for all temperature conditions.
It was time. When the nitrogen content in the thin film obtained in each heat treatment was measured by the combustion method, the composition of each obtained TiO 2 nitride TiO 2−x N y (0 <x <
It was found that 1,0 <y <1).

【0014】NHガス雰囲気中における加熱処理後、
作製されたTiO2−x薄膜について、蛍光分光光
度計によって吸収波長の評価を行った。500℃で加熱
処理した薄膜は、200nm〜390nmの波長の光を
吸収することができ、600℃で加熱処理した薄膜は、
200nm〜420nmの波長の光を吸収することがで
き、また、650℃、700℃、800℃で加熱処理し
た薄膜は、200〜1100nmの波長の光を吸収する
ことができた。また、TiO2−x薄膜は、加熱処
理前には白色であったが、500℃処理では薄黄色、6
00℃処理では黄色、650℃、700℃、800℃処
理では黒色に変化した。この色変化からも、加熱処理し
たものは、無処理の場合と比べて、吸収される光の波長
域が広がることがわかる。
After the heat treatment in the NH 3 gas atmosphere,
The absorption wavelength of the produced TiO 2-x N y thin film was evaluated by a fluorescence spectrophotometer. The thin film heat-treated at 500 ° C. can absorb light having a wavelength of 200 nm to 390 nm, and the thin film heat-treated at 600 ° C.
The light having a wavelength of 200 nm to 420 nm was able to be absorbed, and the thin film heat-treated at 650 ° C., 700 ° C. and 800 ° C. was able to absorb the light having a wavelength of 200 to 1100 nm. Further, the TiO 2 -x N y thin film was white before the heat treatment, but light yellow and 6 after the treatment at 500 ° C.
The color changed to yellow when treated with 00 ° C, and changed to black when treated with 650 ° C, 700 ° C, and 800 ° C. From this color change, it can be seen that the heat-treated product has a wider wavelength range of absorbed light than the untreated product.

【0015】(実施例2)実施例1で作製した600℃
で加熱処理した薄膜、700℃で加熱処理した薄膜、無
処理のTiO薄膜の各表面にオレイン酸を塗り、それ
ぞれ、100Wのシリカ電球で10時間照射して、経過
時間に対するオレイ酸の減少量を測定した。得られた結
果について、経過時間に対するオレイン酸量の変化量
(重量%)をプロットし、図1に示す。10時間ランプ
照射を行った後、600℃で加熱処理した薄膜では約3
5重量%のオレイン酸が減少し(図1中の線(b))、7
00℃で加熱処理した薄膜では約55重量%のオレイン
酸が減少していたが(図1中の線(a))、無処理のTi
薄膜ではオレイン酸量の減少は見られなかった(図
1中の線(c))。
Example 2 600 ° C. prepared in Example 1
Of oleic acid was applied to each surface of the thin film heat-treated at 70 ° C., the thin film heat-treated at 700 ° C., and the untreated TiO 2 thin film, and each was irradiated with a 100 W silica light bulb for 10 hours, and the decrease amount of oleic acid with respect to the elapsed time. Was measured. With respect to the obtained results, the change amount (% by weight) of the amount of oleic acid with respect to the elapsed time is plotted and shown in FIG. Approximately 3 for thin films that were heat treated at 600 ° C after 10 hours of lamp irradiation.
5% by weight of oleic acid decreased (line (b) in FIG. 1), 7
About 55% by weight of oleic acid was reduced in the thin film heat-treated at 00 ° C. (line (a) in FIG. 1).
No decrease in the amount of oleic acid was observed in the O 2 thin film (line (c) in FIG. 1).

【0016】(実施例3)市販のTiOコーティング
液(テイカ(株)製)を2cm角石英ガラス上にスピンコ
ート法で塗布し、これをランプ加熱方式の電気炉中でN
ガス雰囲気において500℃、600℃、800℃
で1時間加熱処理した。得られた各薄膜(膜厚:500
nm)について、実施例1と同様に吸収波長の評価を行
った。無処理のTiO薄膜は200〜400nmの波
長の光を吸収し(図2)、500℃で加熱処理した薄膜
は200〜520nmの波長の光を吸収し(図3)、6
00℃で加熱処理した薄膜は200〜675nmの波長
の光を吸収し(図4)、800℃で加熱処理した薄膜は
200〜1100nmの波長の光を吸収した(図5)。
また、800℃で加熱処理した薄膜中の窒素含有量を燃
焼法により測定したところ、酸素と窒素の重量比が約
3:1であった。この結果から、TiO1.5 0.5
の化学式を持つ窒化TiOを作製することができた。
Example 3 Commercially available TiOTwocoating
Spin the liquid (Taika Co., Ltd.) onto 2 cm square quartz glass.
Applied in a lamp heating type electric furnace.
HThree500 ℃, 600 ℃, 800 ℃ in gas atmosphere
And heat treated for 1 hour. Each thin film obtained (film thickness: 500
nm), the absorption wavelength is evaluated in the same manner as in Example 1.
It was. Untreated TiOTwoThe thin film has a wave of 200 to 400 nm
Thin film that absorbs long light (Fig. 2) and is heat treated at 500 ℃
Absorbs light having a wavelength of 200 to 520 nm (Fig. 3), and 6
The thin film heat-treated at 00 ° C has a wavelength of 200 to 675 nm.
The thin film that absorbs the light of (Fig. 4) and is heat treated at 800 ° C
It absorbed light with a wavelength of 200 to 1100 nm (FIG. 5).
In addition, the nitrogen content in the thin film heat-treated at 800 ° C was burned.
When measured by the baking method, the weight ratio of oxygen and nitrogen is about
It was 3: 1. From this result, TiO1.5N 0.5
TiO with the chemical formulaTwoCould be made.

【0017】(実施例4)チタン基板にTiOをEB
蒸着法で成膜して、NHガス雰囲気下、ランプ加熱方
式の電気炉中で加熱処理した。この時の加熱処理条件
は、400℃15分であった。作製したTiO2−x
及び無処理のTiOのエネルギーバンドギャップを
測定した。測定方法は、硫酸ナトリウム電解液中に二酸
化チタンを浸し、対極に白金を使用して行った。酸化チ
タンにキセノンランプを照射して、波長を変化させてい
き、その際の電流値を測定することでエネルギーバンド
ギャップの測定を行った。得られた結果を図6及び7に
示す。無処理のTiOは、エネルギーバンドギャップ
が2.97eV(図6)であったが、窒化処理を行った
ものは2.67eV(図7)であり、エネルギーバンド
ギャップが狭まっているという結果を得ることができ
た。
Example 4 EB was added with TiO 2 on a titanium substrate.
A film was formed by a vapor deposition method and heat-treated in an electric furnace of a lamp heating system under an NH 3 gas atmosphere. The heat treatment condition at this time was 400 ° C. for 15 minutes. Produced TiO 2-x N
The energy band gaps of y and untreated TiO 2 were measured. The measurement method was performed by immersing titanium dioxide in a sodium sulfate electrolyte and using platinum as the counter electrode. The energy band gap was measured by irradiating the titanium oxide with a xenon lamp to change the wavelength and measuring the current value at that time. The obtained results are shown in FIGS. The untreated TiO 2 had an energy bandgap of 2.97 eV (FIG. 6), but the one subjected to the nitriding treatment had a energy bandgap of 2.67 eV (FIG. 7). I was able to get it.

【0018】(実施例5)2cm角の石英ガラス上にス
パッタ法でTiOを成膜(膜厚:600nm)し、得
られた薄膜を、ランプ加熱方式の電気炉中でNHガス
雰囲気中において加熱処理した。処理条件は、600℃
15分間であった。また、比較実験として、ランプ加熱
方式の変わりに、上記の試験体をNHガス雰囲気中に
おいて雰囲気炉で加熱処理を行った。処理条件は、60
0℃、15分間であった。これらの薄膜の光触媒能は、
メチレンブルーの分解による脱色の程度に基づいて評価
した。
(Example 5) TiO 2 was formed into a film (film thickness: 600 nm) on a 2 cm square quartz glass by a sputtering method, and the obtained thin film was placed in an electric furnace of a lamp heating system in an NH 3 gas atmosphere. Was heat treated in. Processing condition is 600 ℃
It was 15 minutes. In addition, as a comparative experiment, the above-mentioned test body was heat-treated in an atmosphere furnace in an NH 3 gas atmosphere instead of the lamp heating system. The processing condition is 60
It was 0 ° C. for 15 minutes. The photocatalytic ability of these thin films is
The evaluation was based on the degree of decolorization due to the decomposition of methylene blue.

【0019】この評価方法は、TiO2−x試験体
及び無処理のTiO試験体の表面にメチレンブルーを
化学吸着させ、これに1000ルクスの蛍光灯を照射し
て光触媒能を活性化させることにより行うものである。
メチレンブルー分解の有無を評価する原理は次の通りで
ある。試験体に赤外線を照射し、反射光の強度を電圧値
でモニターする。メチレンブルーの分解が進むと、反射
光の強度が大きくなるので、これを分解率として換算
し、光触媒性能を評価する。図8に得られた分解率の経
時的変化を示す。図8から明らかなように、ランプ加熱
で窒化処理を行ったTiOは、約30分間で分解が完
了したが、雰囲気炉加熱で窒化処理を行ったTiO
び無処理TiOは、初期値と数値が変わらず分解が起
きていないという結果が得られた。
In this evaluation method, methylene blue is chemically adsorbed on the surface of the TiO 2 -x N y test body and the untreated TiO 2 test body, and the photocatalytic activity is activated by irradiating this with a fluorescent lamp of 1000 lux. This is done by doing things.
The principle of evaluating the presence or absence of methylene blue decomposition is as follows. Irradiate the test body with infrared rays and monitor the intensity of the reflected light with a voltage value. Since the intensity of reflected light increases as the decomposition of methylene blue progresses, this is converted as a decomposition rate and the photocatalytic performance is evaluated. FIG. 8 shows the time-dependent change in the decomposition rate obtained. As is clear from FIG. 8, decomposition of TiO 2 subjected to nitriding treatment by lamp heating was completed in about 30 minutes, but TiO 2 subjected to nitriding treatment in atmospheric furnace heating and untreated TiO 2 had initial values. The numerical value did not change and the result that the decomposition did not occur was obtained.

【0020】[0020]

【発明の効果】本発明によれば、ランプ加熱方式を用い
ることにより、化学的に安定で、紫外光領域をも含む2
00〜1100nmの波長の光を吸収することができる
可視光応答型酸化チタンTiO2−xを、大面積の
処理により作製し、提供することができる。また、作製
したTiO2−xは、可視光照射下でも十分な光触
媒能を発揮することができる。この可視光応答型酸化チ
タンは、大気中においても容易にTiOに戻ることが
ない。
According to the present invention, by using the lamp heating system, it is chemically stable and includes an ultraviolet light region.
Visible light responsive titanium oxide TiO 2-x N y capable of absorbing light having a wavelength of 00 to 1100 nm can be produced and provided by a large area treatment. Further, the produced TiO 2-x N y can exhibit a sufficient photocatalytic activity even under irradiation with visible light. This visible light responsive titanium oxide does not easily return to TiO 2 even in the atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で作製した600℃及び700℃加
熱処理薄膜、並びに無処理TiO薄膜の表面のオレイ
ン酸の、経過時間に対する重量変化(重量%)をプロッ
トしたグラフ。
FIG. 1 is a graph in which the weight change (wt%) of oleic acid on the surface of a 600 ° C. and 700 ° C. heat-treated thin film and an untreated TiO 2 thin film prepared in Example 1 is plotted against elapsed time.

【図2】 実施例3で記述した無処理TiO薄膜の、
分光光度計による吸収波長の測定結果を示すグラフ。
FIG. 2 of the untreated TiO 2 thin film described in Example 3,
The graph which shows the measurement result of the absorption wavelength by a spectrophotometer.

【図3】 実施例3で作製した500℃加熱処理薄膜
の、分光光度計による吸収波長の測定結果を示すグラ
フ。
FIG. 3 is a graph showing the results of measurement of absorption wavelength of a 500 ° C. heat-treated thin film prepared in Example 3 by a spectrophotometer.

【図4】 実施例3で作製した600℃加熱処理薄膜
の、分光光度計による吸収波長の測定結果を示すグラ
フ。
FIG. 4 is a graph showing the measurement results of the absorption wavelength of a 600 ° C. heat-treated thin film manufactured in Example 3 by a spectrophotometer.

【図5】 実施例3で作製した800℃加熱処理薄膜
の、分光光度計による吸収波長の測定結果を示すグラ
フ。
FIG. 5 is a graph showing the measurement results of absorption wavelength of the 800 ° C. heat-treated thin film prepared in Example 3 by a spectrophotometer.

【図6】 実施例4で記述した無処理TiOのエネル
ギーバンドギャップの測定結果を示すグラフ。
FIG. 6 is a graph showing the measurement result of the energy band gap of untreated TiO 2 described in Example 4.

【図7】 実施例4で作製した400℃加熱処理TiO
のエネルギーバンドギヤツプの測定結果を示すグラ
フ。
FIG. 7: 400 ° C. heat-treated TiO produced in Example 4
The graph which shows the measurement result of the energy band gear 2 of FIG.

【図8】 実施例5で作製した、無処理TiO、ラン
プ加熱処理TiO、雰囲気炉処理TiOのメチレン
ブルー分解の測定結果を示すグラフ。
FIG. 8 is a graph showing the measurement results of methylene blue decomposition of untreated TiO 2 , lamp heat treated TiO 2 , and atmosphere furnace treated TiO 2 produced in Example 5.

フロントページの続き Fターム(参考) 4G047 CA01 CB04 CC03 CD02 4G069 AA03 AA08 BA48A BB01C BB20A BB20B BC50A BC50B BD01C BD02A BD02B BD06A BD06B BD06C DA06 EA08 FA01 FA03 FB02 FB24 FB29 FB80 FC02 FC07 FC08 Continued front page    F-term (reference) 4G047 CA01 CB04 CC03 CD02                 4G069 AA03 AA08 BA48A BB01C                       BB20A BB20B BC50A BC50B                       BD01C BD02A BD02B BD06A                       BD06B BD06C DA06 EA08                       FA01 FA03 FB02 FB24 FB29                       FB80 FC02 FC07 FC08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 式:TiO2−x(0<x<1、0
<y<1)を有することを特徴とする可視光応答型酸化
チタン。
1. A formula: TiO 2−x N y (0 <x <1,0
Visible light responsive titanium oxide having <y <1).
【請求項2】 前記可視光応答型酸化チタンは、200
nm〜1100nmの波長の光を吸収するものである請
求項1記載の可視光応答型酸化チタン。
2. The visible light responsive titanium oxide is 200
The visible light responsive titanium oxide according to claim 1, which absorbs light having a wavelength of 1 nm to 1100 nm.
【請求項3】 TiOを窒素含有ガス雰囲気中でラン
プ加熱方式により加熱して、TiOを窒化し、式:T
iO2−x(0<x<1、0<y<1)を有する可
視光応答型酸化チタンを得ることを特徴とする可視光応
答型酸化チタンの作製方法。
3. TiO 2 is heated by a lamp heating method in a nitrogen-containing gas atmosphere to nitride TiO 2 , and the formula: T
iO 2-x N y a method for manufacturing a visible light responsive type titanium oxide, wherein the obtaining a visible light responsive type titanium oxide having a (0 <x <1,0 <y <1).
【請求項4】 前記窒素含有ガスは、純NHガス又は
NH含有混合ガスである請求項3記載の可視光応答型
酸化チタンの作製方法。
4. The method for producing a visible light responsive titanium oxide according to claim 3 , wherein the nitrogen-containing gas is a pure NH 3 gas or an NH 3 -containing mixed gas.
【請求項5】 前記ランプ加熱方式は、赤外線ランプ加
熱方式であることを特徴とする請求項3又は4記載の可
視光応答型酸化チタンの作製方法。
5. The method for producing visible light responsive titanium oxide according to claim 3, wherein the lamp heating method is an infrared lamp heating method.
【請求項6】 前記加熱温度は300℃以上であること
を特徴とする請求項3〜5のいずれかに記載の可視光応
答型酸化チタンの作製方法。
6. The method for producing visible light responsive titanium oxide according to claim 3, wherein the heating temperature is 300 ° C. or higher.
【請求項7】 前記可視光応答型酸化チタンは、200
nm〜1100nmの波長の光を吸収するものである請
求項3〜6のいずれかに記載の可視光応答型酸化チタン
の作製方法。
7. The visible light responsive titanium oxide is 200
The method for producing a visible light responsive titanium oxide according to any one of claims 3 to 6, which absorbs light having a wavelength of nm to 1100 nm.
JP2002150150A 2001-05-24 2002-05-24 Manufacturing method of visible light responsive titanium oxide Expired - Lifetime JP4150213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150150A JP4150213B2 (en) 2001-05-24 2002-05-24 Manufacturing method of visible light responsive titanium oxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001155506 2001-05-24
JP2001-155506 2001-05-24
JP2002150150A JP4150213B2 (en) 2001-05-24 2002-05-24 Manufacturing method of visible light responsive titanium oxide

Publications (2)

Publication Number Publication Date
JP2003040621A true JP2003040621A (en) 2003-02-13
JP4150213B2 JP4150213B2 (en) 2008-09-17

Family

ID=26615638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150150A Expired - Lifetime JP4150213B2 (en) 2001-05-24 2002-05-24 Manufacturing method of visible light responsive titanium oxide

Country Status (1)

Country Link
JP (1) JP4150213B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063912A (en) * 2001-08-22 2003-03-05 Ulvac Japan Ltd Antibacterial and antifouling material and manufacturing method for conductive and visible light sensitive titanium oxide
JP2005064493A (en) * 2003-07-31 2005-03-10 Kyocera Corp Photoelectric converter and photovoltaic device using the same
CN1304114C (en) * 2004-02-06 2007-03-14 华东理工大学 Method for preparing nanometer TiO(2-x)N(x) photocatalyst and fluidized bed reactor
JP2010017691A (en) * 2008-07-14 2010-01-28 Shinetsu Quartz Prod Co Ltd Visible light responsive type fibrous photocatalyst and method of manufacturing the same, and apparatus for purification
JP2010022963A (en) * 2008-07-22 2010-02-04 Shinetsu Quartz Prod Co Ltd Fibrous photocatalyst article, its manufacturing method, and cleaning apparatus
JP2012196677A (en) * 2012-07-24 2012-10-18 Shinetsu Quartz Prod Co Ltd Method for manufacturing fibrous photocatalytic body
JP2013121592A (en) * 2013-01-28 2013-06-20 Shinetsu Quartz Prod Co Ltd Manufacturing method of visible light response type fibrous photocatalyst body
JP2020013944A (en) * 2018-07-20 2020-01-23 スタンレー電気株式会社 Light-emitting device
KR102074136B1 (en) * 2018-09-28 2020-02-06 한국세라믹기술원 Functional titanium oxide nanoparticle customized by skin color and capable of preventing whitening and manufacturing method of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063912A (en) * 2001-08-22 2003-03-05 Ulvac Japan Ltd Antibacterial and antifouling material and manufacturing method for conductive and visible light sensitive titanium oxide
JP2005064493A (en) * 2003-07-31 2005-03-10 Kyocera Corp Photoelectric converter and photovoltaic device using the same
CN1304114C (en) * 2004-02-06 2007-03-14 华东理工大学 Method for preparing nanometer TiO(2-x)N(x) photocatalyst and fluidized bed reactor
JP2010017691A (en) * 2008-07-14 2010-01-28 Shinetsu Quartz Prod Co Ltd Visible light responsive type fibrous photocatalyst and method of manufacturing the same, and apparatus for purification
JP2010022963A (en) * 2008-07-22 2010-02-04 Shinetsu Quartz Prod Co Ltd Fibrous photocatalyst article, its manufacturing method, and cleaning apparatus
JP2012196677A (en) * 2012-07-24 2012-10-18 Shinetsu Quartz Prod Co Ltd Method for manufacturing fibrous photocatalytic body
JP2013121592A (en) * 2013-01-28 2013-06-20 Shinetsu Quartz Prod Co Ltd Manufacturing method of visible light response type fibrous photocatalyst body
JP2020013944A (en) * 2018-07-20 2020-01-23 スタンレー電気株式会社 Light-emitting device
JP7161330B2 (en) 2018-07-20 2022-10-26 スタンレー電気株式会社 light emitting device
KR102074136B1 (en) * 2018-09-28 2020-02-06 한국세라믹기술원 Functional titanium oxide nanoparticle customized by skin color and capable of preventing whitening and manufacturing method of the same

Also Published As

Publication number Publication date
JP4150213B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US6306343B1 (en) Photocatalyst having visible light activity and uses thereof
Asahi et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects
JP3887499B2 (en) Method for forming photocatalyst
Habibi et al. Photocatalytic degradation of an azo dye X6G in water: a comparative study using nanostructured indium tin oxide and titanium oxide thin films
WO2011049085A1 (en) Photocatalyst containing carbon nitride, method for producing same, and air purification method using the photocatalyst
JP3252136B2 (en) Visible light type photocatalyst and method for producing the same
JP4135921B2 (en) Titanium dioxide fine particles and method for producing the same
JP2007528454A (en) Large surface area ceramic coated fiber
JP4150213B2 (en) Manufacturing method of visible light responsive titanium oxide
KR20170002285A (en) - Method for Improving Solar Energy Conversion Efficiency Using Metal Oxide Photocatalysts having Energy Band of Core-Shell for infrared ray Visible Light Absorption and Photocatalysts Thereof
Serpone et al. Second generation visible-light-active photocatalysts: preparation, optical properties, and consequences of dopants on the band gap energy of TiO2
Cheng et al. Enhanced visible light photocatalytic activity of mesoporous anatase TiO2 codoped with nitrogen and chlorine
JP2005047786A (en) Titanium dioxide microparticle, method for producing the same, and method for producing visible-ray-activatable photocatalyst
KR101407444B1 (en) Decomposition/elimination method using a photocatalytic material
Nakajima et al. Preparation and photocatalytic activity of [PWxMo12− xO40] 3−/TiO2 hybrid film composites
JP2007054705A (en) Manufacturing method of visible light response type photocatalyst
Zheng et al. Photocatalytic activity study of TiO2 thin films with and without Fe ion implantation
JP4135907B2 (en) Visible light active photocatalyst particles
JP2005206412A (en) Titanium dioxide particulate and titanium dioxide porous material
CN111450817A (en) Titanium-doped tin oxide photocatalyst and preparation method thereof
JP4063577B2 (en) Method for producing composite material having photocatalytic coating
JP2006095520A (en) Manufacturing method of heteroatom introduction-type titanium oxide photocatalyst
WO2009107681A1 (en) Method for producing impurity-doped metal oxide by using microwave
JP2005254154A (en) Visible light-responsive complex oxide type photocatalyst and toxic compound decomposing and removing method using the same
KR100780275B1 (en) Titanium Dioxide Photo-Catalyst and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4150213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term