JP4976688B2 - Joining method between heat spreader and metal plate - Google Patents
Joining method between heat spreader and metal plate Download PDFInfo
- Publication number
- JP4976688B2 JP4976688B2 JP2005361624A JP2005361624A JP4976688B2 JP 4976688 B2 JP4976688 B2 JP 4976688B2 JP 2005361624 A JP2005361624 A JP 2005361624A JP 2005361624 A JP2005361624 A JP 2005361624A JP 4976688 B2 JP4976688 B2 JP 4976688B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- heat spreader
- metal plate
- laser
- joining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 71
- 239000002184 metal Substances 0.000 title claims description 71
- 238000000034 method Methods 0.000 title claims description 47
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 128
- 239000010949 copper Substances 0.000 claims description 124
- 229910052802 copper Inorganic materials 0.000 claims description 124
- 239000004065 semiconductor Substances 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 40
- 229910052750 molybdenum Inorganic materials 0.000 claims description 27
- 239000011733 molybdenum Substances 0.000 claims description 27
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 26
- WUUZKBJEUBFVMV-UHFFFAOYSA-N copper molybdenum Chemical compound [Cu].[Mo] WUUZKBJEUBFVMV-UHFFFAOYSA-N 0.000 claims description 26
- 238000003466 welding Methods 0.000 claims description 15
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 claims description 9
- 238000002844 melting Methods 0.000 description 28
- 230000008018 melting Effects 0.000 description 28
- 229910000679 solder Inorganic materials 0.000 description 24
- 239000004020 conductor Substances 0.000 description 21
- 238000007747 plating Methods 0.000 description 19
- 229910052782 aluminium Inorganic materials 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 12
- 229910052721 tungsten Inorganic materials 0.000 description 12
- 239000010937 tungsten Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229910000881 Cu alloy Inorganic materials 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 239000004734 Polyphenylene sulfide Substances 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 229920001707 polybutylene terephthalate Polymers 0.000 description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- -1 polybutylene terephthalate Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002751 molybdenum Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L24/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/37001—Core members of the connector
- H01L2224/37099—Material
- H01L2224/371—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/37117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/37124—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/37001—Core members of the connector
- H01L2224/37099—Material
- H01L2224/371—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/37138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/37147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/3754—Coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/3754—Coating
- H01L2224/37599—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/4005—Shape
- H01L2224/4009—Loop shape
- H01L2224/40095—Kinked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/40221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/40225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48475—Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
- H01L2224/48476—Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
- H01L2224/48491—Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4911—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
- H01L2224/49111—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73219—Layer and TAB connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73221—Strap and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/842—Applying energy for connecting
- H01L2224/8421—Applying energy for connecting with energy being in the form of electromagnetic radiation
- H01L2224/84214—Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/848—Bonding techniques
- H01L2224/84801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01042—Molybdenum [Mo]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Laser Beam Processing (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
この発明は、放熱のために半導体チップ上に固着されるヒートスプレッダと外部導出導体である金属板を固着するときのヒートスプレッダと金属板との接合方法に関する。 The present invention relates to a method of joining a heat spreader and a metal plate when fixing a heat spreader fixed on a semiconductor chip for heat dissipation and a metal plate as an external lead-out conductor.
近年、電力変換装置の小型化・高密度化が進んできている。電力変換装置の小型化・高密度化にしては、パッケージ内部の配線,パッケージ構造,放熱方法などを改良する必要がある。特にパワーデバイスであるIGBT(Insulated Gate Bipolar Transistor)、FWD(Free Wheeling Diode)、パワーMOSFETおよびパワーバイポーラトランジスタ等の半導体チップでは、大電流化,小型化にともない、高電流密度で使用されることが多くなってきている。 In recent years, power converters have been reduced in size and density. In order to reduce the size and increase the density of the power converter, it is necessary to improve the wiring inside the package, the package structure, the heat dissipation method, and the like. In particular, semiconductor chips such as IGBTs (Insulated Gate Bipolar Transistors), FWDs (Free Wheeling Diodes), power MOSFETs, and power bipolar transistors, which are power devices, may be used at a high current density with an increase in current and size. It is getting more.
ここで問題となるのが高電流密度化にともなう発熱密度の増加である。例えば、従来では定格50Aで使用していた半導体チップに、半導体チップの高性能化にともなって定格以上の電流、例えば75Aの電流を流すという使われ方が多くなってきている。逆に同じ電流を流すのであれば、半導体チップの高性能化により、チップの面積を小さくすることができる。例えば10mm□の半導体チップを1枚のウェハから100個取り出すことができたとすると、半導体チップの高性能化に伴って、その面積を30%小さなもの(約8.4mm□)とすると、同じウェハから取り出すことのできる半導体チップ個数は約142個となり、1ウェハ当たりの半導体チップの取れ数が大きくなる。このように、より小さな半導体チップで、より多くの電流を流すことができれば、1ウェハ当たりの半導体チップの取れ数増加にともない、コスト低減につながる。 The problem here is an increase in heat generation density as the current density increases. For example, a semiconductor chip that has been used at a rating of 50A has been increasingly used to pass a current exceeding the rating, for example, a current of 75A, as the performance of the semiconductor chip increases. Conversely, if the same current is supplied, the area of the chip can be reduced by improving the performance of the semiconductor chip. For example, if 100 semiconductor chips of 10 mm □ can be taken out from a single wafer, the same wafer is assumed if the area is 30% smaller (about 8.4 mm □) as the performance of the semiconductor chip increases. The number of semiconductor chips that can be taken out from the wafer is about 142, and the number of semiconductor chips that can be taken per wafer is increased. In this way, if a larger amount of current can flow with a smaller semiconductor chip, the number of semiconductor chips per wafer increases, leading to cost reduction.
また、半導体チップの小型化は、これらの半導体チップを複数個組み合わせて構成される半導体パッケージのサイズを小さくできるメリットもある。これらのことから、同じ定格電流でも、より小さなチップが嗜好される傾向が強く、結果として高発熱密度化が進んできている現状がある。 Further, downsizing of a semiconductor chip has an advantage that the size of a semiconductor package configured by combining a plurality of these semiconductor chips can be reduced. For these reasons, even with the same rated current, there is a strong tendency to prefer smaller chips, and as a result, there is a current situation in which higher heat generation density is being advanced.
IGBTやFWD等のパワー半導体素子では、動作温度の上限を125℃としている場合が多い。しかしながらチップの小型化や高電流密度化に伴って発熱密度が増加し、従来のアルミワイヤによる配線ではチップ表面の温度上昇を抑えることが不可能となっている。
これは、アルミワイヤが例えば直径が300μmや400μmといった細線であり、チップで発生した熱を移動することが出来ないばかりか、アルミワイヤ自身がジュール発熱により発熱し、場合によっては溶断してしまう問題点がある。
In power semiconductor elements such as IGBT and FWD, the upper limit of the operating temperature is often set to 125 ° C. However, the heat generation density increases with the miniaturization and high current density of the chip, and it is impossible to suppress the temperature rise of the chip surface with the conventional wiring using the aluminum wire.
This is because the aluminum wire is a thin wire having a diameter of, for example, 300 μm or 400 μm, and not only the heat generated by the chip cannot be transferred, but also the aluminum wire itself generates heat due to Joule heat generation, and sometimes melts. There is a point.
片面冷却方式を取る半導体パッケージでは、半導体チップから発生した熱は半導体チップの下面からしか放熱が出来ない。半導体パッケージ内には、絶縁保護のためにシリコーン系の封止樹脂が充填されており、半導体チップの上面はこの封止樹脂で覆われている。シリコーン系封止樹脂の熱伝導率は0.1〜0.2W/mK程度であり、この構成では半導体チップ上面からの放熱は期待できない。 In a semiconductor package that employs a single-sided cooling system, heat generated from a semiconductor chip can be radiated only from the lower surface of the semiconductor chip. The semiconductor package is filled with a silicone-based sealing resin for insulation protection, and the upper surface of the semiconductor chip is covered with this sealing resin. The thermal conductivity of the silicone-based sealing resin is about 0.1 to 0.2 W / mK, and heat dissipation from the upper surface of the semiconductor chip cannot be expected with this configuration.
このような問題点に対し、半導体チップ上面から効率的に熱を逃がす方法として、図6 に示すように、半導体チップ、ここではIGBTチップ上面に金属製のヒートスプレッダを熱伝導性樹脂あるいははんだ材により接合し、最も高温となるチップ中央部の熱をチップ周辺に拡散して最高温度を下げる方法が考案されている(例えば、特許文献1参照)。 As a method for efficiently escaping heat from the upper surface of the semiconductor chip, a metal heat spreader is applied to the upper surface of the semiconductor chip, here the IGBT chip, by using a heat conductive resin or a solder material as shown in FIG. There has been devised a method for lowering the maximum temperature by bonding and diffusing the heat at the center of the chip, which is the highest temperature, to the periphery of the chip (for example, see Patent Document 1).
図7は、従来のIGBTモジュールの要部断面図である。セラミクス51の裏面に裏面銅箔52をを固着し、表面にエミッタ用導体パターン53とコレクタ用導体パターン54およびゲート用導体パターン55を固着した導電パターン月絶縁基板50と、このコレクタ用導体パターン54上にIGBTチップ56をはんだ60により固着し、このIGBTチップ56上面にヒートスプレッダ62をはんだ59により固着し、このヒートスプレッダ62とエミッタ用導体パターン53をアルミワイヤ63で接続し、IGBTチップ56上のゲートパッド58と、ゲート用導体パターン55の間をアルミワイヤ61で接続する。
FIG. 7 is a cross-sectional view of a main part of a conventional IGBT module. A conductive pattern
また、インバータ動作をさせるには、この他にダイオードが必要であるが、本特許での説明では簡略化のため省略してある。また、図7に示した構造のものは、PPS(ポリ・フェニレン・サルファイド)又はPBT(ポリ・ブチレン・テレフタレート)などの樹脂ケース内に収納され、さらにその中に素子保護としてシリコーン樹脂が充填される。 In addition, in order to perform the inverter operation, a diode is necessary in addition to this, but it is omitted in the description in this patent for the sake of simplicity. Further, the structure shown in FIG. 7 is housed in a resin case such as PPS (polyphenylene sulfide) or PBT (polybutylene terephthalate), and further filled with silicone resin as element protection. The
図8に別の従来のIGBTモジュールの要部断面図を示す。ヒートスプレッダ62上のアルミワイヤ61を、銅やアルミニウムなどの金属板64としたものである。アルミワイヤ61を金属板64とすることで、配線抵抗の低減,配線のジュール発熱の低減,半導体チップから発生した熱の移動が可能となる。
FIG. 8 shows a cross-sectional view of a main part of another conventional IGBT module. The
このヒートスプレッダ62と金属板64との接合方法として、導電性接着剤による接合、はんだ材による接合、超音波による直接接合などが考えられる。
As a method of joining the
また、特許文献2には、半導体チップ上にヒートスプレッダ(導電性の良い金属板)が超音波溶接で接合されていることが記されている。
また、特許文献3には、半導体素子に熱的に接続されたヒートスプレッダをレーザ溶接によりプリント配線基板に溶着させることやヒートスプレッダにNiめっきを施すことが記載されている。
また、特許文献4には、銅合金の放熱板をリードフレームにYAGレーザで溶接することが記載されている。
また、特許文献5には、銅線とタングステン製のプローブとを金属材料を介してレーザ溶接にて接合することが記載されている。
また、特許文献6には、銅またはアルミニウムからなる低融点材料と高融点材料からなる接合クラッド板、接合クラッド板をレーザ溶接すること、接合クラッド材の用途としてヒートスプレッダに多用されることが記載されている。
しかしながら、図8において、導電性接着剤では、はんだ接合や超音波接合に比べ電気抵抗が大きく、好ましくない。はんだ接合の場合、IGBTチップ56より発せられた熱がヒートスプレッダ62を介して伝導してくるため、はんだ接合が熱劣化し、接合信頼性の確保が難しくなる。また、超音波接合では、ヒートスプレッダ62上に銅板64を重ね、荷重と振動を加えるために、ヒートスプレッダ62とIGBTチップ56を接合しているはんだ59にクラックが生じる場合がある。
However, in FIG. 8, the conductive adhesive is not preferable because it has a larger electric resistance than solder bonding or ultrasonic bonding. In the case of solder bonding, the heat generated from the
これを解決するために、レーザ溶接を用いる方法があるのでそれを説明する。 In order to solve this, there is a method using laser welding, which will be described.
図9および図10は、銅のヒートスプレッダと銅板をレーザ溶接する様子を示す図である。これは図8のC部を示す。レーザ射出ユニット65からYAGレーザ(波長1064nm)を照射し、銅板64と銅のヒートスプレッダ62aを溶融し、銅板64と銅のヒートスプレッダ62aを固着する。
9 and 10 are views showing a state in which a copper heat spreader and a copper plate are laser-welded. This shows part C of FIG. The YAG laser (wavelength 1064 nm) is irradiated from the
YAGレーザを照射することにより、初めに銅板64表面から溶融が始まる。そして次第に溶融部67が深さ方向に進展していき、銅板64の下側に設置した銅のヒートスプレッダ62aに達することで銅板64と銅のヒートスプレッダ64界面が接合される。
By irradiating the YAG laser, melting starts from the surface of the
レーザパワー及びエネルギが低すぎた場合には、図9に示すように溶融部67が銅のヒートスプレッダ62aまで到達させることができず、接合が出来ない。また、レーザパワー及びエネルギが高すぎた場合には、図10に示すように銅板64と銅のヒートスプレッダ62aを貫通してしまい、接合が出来ない。
When the laser power and energy are too low, the melted
一方、半導体チップの熱膨張係数と銅などの高熱伝導材からなるヒートスプレッダの熱膨張係数との差異により、冷熱繰り返し環境において、はんだに繰り返し応力が働き、はんだ部にクラックが生じてしまう問題点がある。 On the other hand, due to the difference between the thermal expansion coefficient of the semiconductor chip and the thermal expansion coefficient of the heat spreader made of a high thermal conductivity material such as copper, there is a problem that a repeated stress acts on the solder and a crack occurs in the solder part in a cold and hot environment. is there.
図11にヒートスプレッダの接合構造における、冷熱繰り返し環境でのIGBTチップ及びヒートスプレッダの伸縮挙動を示す図であり、同図(a)は高温時の模式図、同図(b)は低温時の模式図である。同図(a)においては、IGBTチップ56に比べ銅のヒートスプレッダ62aの熱膨張係数の方が大きいため、銅のヒートスプレッダ62aにより左右に引っ張れる形となる。同図(b)においては、反対に銅のヒートスプレッダ62aにより中央に引っ張られる形となる。IGBTモジュールの信頼性試験においては、高温側は125℃、低温側は−40℃の温度条件にて、数百サイクルの繰り返し試験が実施されている。この繰り返し応力によりはんだ59が劣化し、最も応力が大きい箇所からクラックが生じてきてしまう。
FIG. 11 is a diagram showing the expansion and contraction behavior of the IGBT chip and the heat spreader in the heat-repeating environment in the heat spreader joining structure, where FIG. 11 (a) is a schematic diagram at high temperature, and FIG. 11 (b) is a schematic diagram at low temperature. It is. In FIG. 5A, the thermal expansion coefficient of the
具体的には、シリコンの熱膨張係数は約3×10−6/℃であり、銅の熱膨張係数は16.5×10−6/℃である。これらの熱膨張係数の違いにより、IGBTチップ56と銅のヒートスプレッダ62aとを固着するはんだ59にストレスが加わる。
Specifically, the thermal expansion coefficient of silicon is about 3 × 10 −6 / ° C., and the thermal expansion coefficient of copper is 16.5 × 10 −6 / ° C. Due to the difference in thermal expansion coefficient, stress is applied to the
このストレスで発生したクラックが進展した場合、IGBTチップ56からの電流経路が狭まり、配線抵抗増加,導通不良に発展するという不都合が生じる。
When the crack generated by this stress progresses, the current path from the
このようなことから、ヒートスプレッダ62の材質として、熱膨張係数がシリコンに近いモリブデン(熱膨張係数は5.1×10−6/℃)やタングステン(同4.5×10−6/℃)、あるいは銅−モリブデン焼結体(同7〜14×10−6/℃)や銅−タングステン焼結体(同6〜12×10−6/℃)などの低熱膨張係数の金属または焼結体を用いることにより、IGBTチップ56と銅のヒートスプレッダ62a間のはんだ56に加わる熱ストレスを低減することが可能となる。
Therefore, as a material of the
つぎに、ヒートスプレッダ62とIGBTチップ56との熱膨張係数の差を縮めるためにヒートスプレッダ材として銅−モリブデン焼結体を用いた場合について説明する。
Next, a case where a copper-molybdenum sintered body is used as the heat spreader material in order to reduce the difference in thermal expansion coefficient between the
図12および図13は、銅板と銅−モリブデン焼結体とをYAGレーザにて溶接した要部断面図である。銅板64の表面にレーザ射出ユニット65から照射されたYAGレーザ66のエネルギにより銅板64が溶融しはじめ、照射時間とともにその溶融部67が銅−モリブデン焼結体62bの表面に近づいていく。しかし、図12に示すように、この溶融部67は銅−モリブデン焼結体62bの表面で停止するか、多少入り込んだ状態としかならない。これは、銅と銅―モリブデン焼結体62bの融点に大きな差があるためである。すなわち、銅の融点は1083℃であるが、モリブデンの融点は2620℃であるため、溶融部67が銅−モリブデン焼結体62b表面に達したとしても、その温度がモリブデンの融点である2620℃になっていない場合には、銅板64と銅−モリブデン焼結体62bの界面で停止してしまう。または、銅−モリブデン焼結体62bの中の銅成分だけが溶融し、溶融部67が銅−モリブデン焼結体62bに少し入り込んだ状態にしかならない。
12 and 13 are cross-sectional views of a main part in which a copper plate and a copper-molybdenum sintered body are welded with a YAG laser. The
このような状態では、銅板64と銅−モリブデン焼結体62bとの所望の接合強度が得られない。そこで、レーザパワー及びエネルギを高くし、溶融部67を銅−モリブデン焼結体62b中に深く入り込ませようとした場合には、図13に示すように、溶融部67の一部がスパッタとして消失して消失部68が発生してしまう問題点がある。このような消失部68が発生した場合、接合強度の低下,電気・熱抵抗の増大が引き起こされ、使用できない。
In such a state, desired bonding strength between the
図14および図15に示すように、タングステン焼結体62cとした場合についても同様なことが起きる。すなわち、タングステンの融点は3410℃であるため、銅の融点1083℃に比べ差異がありすぎ、銅−モリブデン焼結体62bと銅板64との接合の場合よりも、接合が困難となる。
As shown in FIG. 14 and FIG. 15, the same thing occurs when the tungsten sintered
この発明の目的は、前記の課題を解決して、ヒートスプレッダと外部導出導体である金属板とをレーザ溶接することで、ヒートスプレッダ下のはんだにダメージを与えず、かつ、強固で高い信頼性を持った接合方法を提供するものである。 The object of the present invention is to solve the above-mentioned problems and laser-weld the heat spreader and a metal plate which is an external lead-out conductor so that the solder under the heat spreader is not damaged and has high strength and high reliability. A bonding method is provided.
前記の目的を達成するために、半導体チップ上に固着材を介して固着されたヒートスプレッダ上に重ねて金属板を接合するヒートスプレッダと金属板との接合方法において、前記ヒートスプレッダおよび前記金属板が銅で形成され、前記ヒートスプレッダの厚みが1.5mm以下で、前記金属板の厚みが0.5mm以下であり、前記金属板にYAGレーザを照射して前記ヒートスプレッダと前記金属板とを溶接し、レーザパワー密度が0.4MW/cm2を超え、1.5MW/cm2未満であり、レーザエネルギーが50Jを超え、150J未満である接合方法とする。 In order to achieve the above object, in a joining method of a heat spreader and a metal plate, wherein the heat spreader and the metal plate are made of copper, overlaid on a heat spreader fixed on a semiconductor chip via a fixing material, and joining the metal plate. A heat spreader having a thickness of 1.5 mm or less and a thickness of the metal plate of 0.5 mm or less; irradiating the metal plate with a YAG laser to weld the heat spreader and the metal plate; A bonding method in which the density is greater than 0.4 MW / cm 2 and less than 1.5 MW / cm 2 , and the laser energy is greater than 50 J and less than 150 J.
また、半導体チップ上に固着材を介して固着されたヒートスプレッダ上に重ねて金属板を接合するヒートスプレッダと金属板との接合方法において、前記ヒートスプレッダが銅と銅−モリブデン焼結体の積層体であるクラッド材もしくは銅と銅−タングステン焼結体の積層体であるクラッド材であり、前記金属板が銅で形成され、前記ヒートスプレッダの厚みが1.5mm以下で、前記金属板の厚みが0.5mm以下であり、前記金属板にYAGレーザを照射して該金属板と前記積層体であるクラッド材の銅とを溶接し、レーザパワー密度が0.4MW/cm 2 を超え、1.5MW/cm 2 未満であり、レーザエネルギーが50Jを超え、150J未満である接合方法とする。 Moreover, in the joining method of a heat spreader and a metal plate, which is superposed on a heat spreader fixed on a semiconductor chip via a fixing material, and joining the metal plate, the heat spreader is a laminate of copper and a copper-molybdenum sintered body. A clad material or a clad material that is a laminate of copper and a copper-tungsten sintered body, wherein the metal plate is made of copper, the thickness of the heat spreader is 1.5 mm or less, and the thickness of the metal plate is 0.5 mm. The metal plate is irradiated with a YAG laser to weld the metal plate and the copper clad material, and the laser power density exceeds 0.4 MW / cm 2 and 1.5 MW / cm The joining method is less than 2 and the laser energy is more than 50J and less than 150J .
また、半導体チップ上に固着材を介して固着されたヒートスプレッダ上に重ねて金属板を接合するヒートスプレッダと金属板との接合方法において、前記ヒートスプレッダが銅とモリブデンの積層体であるクラッド材もしくは銅とタングステンの積層体であるクラッド材を含み、前記金属板が銅で形成され、前記ヒートスプレッダの厚みが1.5mm以下で、前記金属板の厚みが0.5mm以下であり、前記金属板にYAGレーザを照射して該金属板と前記積層体であるクラッド材の銅とを溶接し、レーザパワー密度が0.4MW/cm 2 を超え、1.5MW/cm 2 未満であり、レーザエネルギーが50Jを超え、150J未満である接合方法とする。 Further, in a joining method of a heat spreader and a metal plate, which is superposed on a heat spreader fixed on a semiconductor chip via a fixing material, and joining the metal plate, the heat spreader is a clad material or copper which is a laminate of copper and molybdenum. A clad material that is a laminate of tungsten, the metal plate is formed of copper, the heat spreader has a thickness of 1.5 mm or less, the metal plate has a thickness of 0.5 mm or less, and the metal plate has a YAG laser the irradiated by welding the copper clad material which is the laminate with the metal plate, the laser power density exceeds 0.4 mW / cm 2, less than 1.5 MW / cm 2, the laser energy is a 50J It is set as the joining method which is more than 150J .
また、半導体チップ上に固着材を介して固着されたヒートスプレッダの上に重ねて金属板を接合するヒートスプレッダと金属板との接合方法において、前記ヒートスプレッダは、モリブデン,タングステン,銅−モリブデンの焼結体,銅−タングステンの焼結体のいずれかであり、該ヒートスプレッダの少なくとも前記金属板との接合面にNiめっき膜を形成し、前記金属板が銅であり、前記ヒートスプレッダの厚みが1.5mm以下で、前記金属板の厚みが0.5mm以下であり、前記ヒートスプレッダのNiめっき膜上に前記金属板を配置し、前記金属板にYAGレーザを照射して該金属板と前記ヒートスプレッダとを溶接し、レーザパワー密度が0.4MW/cm 2 を超え、1.5MW/cm 2 未満であり、レーザエネルギーが50Jを超え、150J未満である接合方法とする。 Moreover, in the joining method of a heat spreader and a metal plate which overlaps a heat spreader fixed on a semiconductor chip via a fixing material and joins the metal plate, the heat spreader is a sintered body of molybdenum, tungsten or copper-molybdenum. , A copper-tungsten sintered body, a Ni plating film is formed on at least a joint surface of the heat spreader with the metal plate, the metal plate is copper, and the thickness of the heat spreader is 1.5 mm or less. The thickness of the metal plate is 0.5 mm or less, the metal plate is disposed on the Ni plating film of the heat spreader, and the metal plate and the heat spreader are welded by irradiating the metal plate with a YAG laser. , the laser power density exceeds 0.4 mW / cm 2, less than 1.5 MW / cm 2, the laser energy is 50 , Greater and joining method is less than 150 J.
また、前記銅の表面にNiめっき膜が形成されているとよい。 Further, a Ni plating film may be formed on the copper surface.
また、前記金属板に、銅に替えてアルミニウムを用いるとよい。 Moreover, it is good to use aluminum instead of copper for the said metal plate.
本発明によれば、銅のヒートスプレッダと銅板との接合をレーザ溶接し、その溶接条件を所定の条件とすることで、超音波接合のように加圧,振動を加えることが無いために、ヒートスプレッダ下のはんだ及び半導体チップにダメージを与えることが無く、高い接合信頼性を確保できる。 According to the present invention, since the welding of the copper heat spreader and the copper plate is laser-welded and the welding condition is set to a predetermined condition, pressure and vibration are not applied unlike ultrasonic bonding. High bonding reliability can be ensured without damaging the underlying solder and semiconductor chip.
また、銅―モリブデン、銅―タングステンの積層体であるクラッド材をヒートスプレッダとして用い、銅板とヒートスプレッダの銅側とをレーザ溶接し、その溶接条件を所定の条件とすることで、超音波接合のように加圧,振動を加えることが無いために、ヒートスプレッダ下のはんだ及び半導体チップにダメージを与えることが無く、高い接合信頼性を確保できる。 Also, the clad material, which is a copper-molybdenum and copper-tungsten laminate, is used as a heat spreader, the copper plate and the copper side of the heat spreader are laser welded, and the welding conditions are set to predetermined conditions, so that ultrasonic bonding is performed. Since no pressure or vibration is applied to the solder, the solder and the semiconductor chip under the heat spreader are not damaged, and high bonding reliability can be ensured.
さらに、半導体チップと接合するヒートスプレッダは熱膨張係数が小さいモリブデンやタングステンのため、半導体チップが実動作状態においても、ヒートスプレッダと半導体チップを固着するはんだに加わる熱ストレスを小さくできて、クラックの発生を抑制できる。 Furthermore, the heat spreader that joins the semiconductor chip is molybdenum or tungsten with a low coefficient of thermal expansion, so even when the semiconductor chip is in actual operation, the thermal stress applied to the solder that fixes the heat spreader and the semiconductor chip can be reduced, and cracks can be generated. Can be suppressed.
図1は、この発明を適用した半導体装置の構成図であり、同図(a)は要部断面図、同図(b)は同図(a)のA部拡大図である。この図はIGBTモジュールの要部断面図である。 1A and 1B are configuration diagrams of a semiconductor device to which the present invention is applied. FIG. 1A is a cross-sectional view of an essential part, and FIG. 1B is an enlarged view of a portion A of FIG. This figure is a cross-sectional view of the main part of the IGBT module.
セラミクス11の裏面に裏面銅箔12を固着し、表面にエミッタ用導体パターン13とコレクタ用導体パターン14およびゲート用導体パターン15を固着した導電パターン月絶縁基板10と、このコレクタ用導体パターン14上にIGBTチップ6をはんだ16により固着し、このIGBTチップ6上面に銅のヒートスプレッダ1をはんだ7により固着し、この銅のヒートスプレッダ1と外部導出導体である銅板5を所定の条件(詳細は後述の図2の説明を参照のこと)のYAGレーザ19をレーザ射出ユニット18から照射して
溶融し溶融部20で固着する。IGBTチップ6上のゲートパッド9と、ゲート用導体パターン15の間をアルミワイヤ17で接続する。
A conductive pattern lunar insulating
また、インバータ動作をさせるには、この他にダイオードが必要であるが、本特許での説明では簡略化のため省略してある。また、図1に示した構造のものは、PPS(ポリ・フェニレン・サルファイド)又はPBT(ポリ・ブチレン・テレフタレート)などの樹脂ケース内に収納され、さらにその中に素子保護としてシリコーン樹脂が充填される。 In addition, in order to perform the inverter operation, a diode is necessary in addition to this, but it is omitted in the description in this patent for the sake of simplicity. The structure shown in FIG. 1 is housed in a resin case such as PPS (polyphenylene sulfide) or PBT (polybutylene terephthalate), and further filled with a silicone resin as element protection. The
図2は、この発明の第1実施例のヒートスプレッダと金属板との接合方法を示す工程図であり、同図(a)から同図(c)は工程順に示した要部工程断面図である。この図は図1(b)のB部である。 FIG. 2 is a process diagram showing a method of joining a heat spreader and a metal plate according to the first embodiment of the present invention, and FIG. 2 (a) to FIG. . This figure is a portion B of FIG.
銅のヒートスプレッダ1上に外部導出導体である銅板5を配置する(同図(a))。
つぎに、レーザ出射ユニット18の照準を溶融予定個所21に合わせる(同図(b))。
つぎに、レーザ出射ユニット18によりYAGレーザ19を照射し、銅板6と銅のヒートスプレッダ1を溶融して、溶融部20で固着する(同図(c))。
A
Next, the aim of the
Next, the
実験によると、銅板5の厚みが0.5mm,銅のヒートスプレッダ1の厚みが1.0mmの場合、ファイバコア径0.4mmでレーザパワー密度1.0MW/cm2,エネルギを100Jとした場合、レーザ接合ができる。また、レーザパワー密度を1.5MW/cm2kW,エネルギを100Jとした場合には、銅のヒートスプレッダ1の裏面まで溶融部20が貫通してしまい、その溶融した銅はスパッタとして消失してしまったため、接合が不可能であった。
According to the experiment, when the thickness of the
さらに、レーザパワー密度を0.4MW/cm2とした場合には、溶融部20は銅のヒートスプレッダ1の表面に到達できず、接合が不可能であった。そして、レーザパワー密度を1.0MW/cm2としてエネルギを50Jと低くした場合には、溶融部20の銅のヒートスプレッダ1側への溶け込みが浅く、所望の接合強度が得られなかった。また、レーザパワー密度を1.0MW/cm2としてエネルギを150Jと高くした場合には、溶融部20の銅のヒートスプレッダ1側への溶け込みが深く、所望の接合強度が得られなかった。
Furthermore, when the laser power density was set to 0.4 MW / cm 2 , the melted
そのため、銅板5の厚みが0.5mm以下、銅のヒートスプレッダ1の厚みが1.5mm以下で、レーザパワー密度を0.4Mw/cm2を超え、1.5MW/cm2未満とし、エネルギーを50Jを超え150J未満とする、適切なレーザパワーとエネルギを選定することで、所望の溶接状態を得ることができる。
Therefore, the thickness of the
上記接合例では、外部導出導体である金属板の材質として銅を用いた場合を述べたが、これを銅合金としても同様な結果が得られる。しかしながら、銅及び銅合金のYAGレーザ(波長1064nm)の吸収率は10%程度しかないため、出射したレーザの90%程度が無駄となってしまう。そこで図3に示すように銅板5(銅及び銅合金)の表面にYAGレーザの吸収率が高いNiめっき膜22を形成した。Niめっき22は少なくともレーザ光が直接照射される部分に形成されていればよいが、より簡便に金属板(銅板5)の全面をめっきしてもよい。NiにおけるYAGレーザの吸収率は約25%であり、銅及び銅合金のそれより2.5倍の吸収率がある。これにより、銅及び銅合金表面にNiめっき膜22を形成せずにYAGレーザを照射する場合よりも低いレーザパワー及びエネルギで所望の溶接状態を得ることが可能となる。
In the above-mentioned joining example, the case where copper is used as the material of the metal plate which is the external lead-out conductor has been described. However, since the absorption rate of copper and copper alloy YAG laser (wavelength 1064 nm) is only about 10%, about 90% of the emitted laser is wasted. Therefore, as shown in FIG. 3, a
また、超音波接合のように、加圧,振動を加えないために、ヒートスプレッダ1下のはんだ7及びIGBTチップ6にクラックを生じさせることがない。
Further, unlike ultrasonic bonding, no pressurization or vibration is applied, so that cracks are not generated in the
この場合のNiめっき膜22の形成は、少なくともレーザ照射面に形成してあれば目的を達成することができるため、必ずしも全面に形成しなくても良い。
The formation of the
しかし、銅のヒートスプレッダ1では、前記したように、温度サイクルやヒートサイクルなどの熱ストレスが印加されるとIGBTチップ6との接合部であるはんだ7にクラックが発生する。それを防止する方法をつぎの実施例で説明する。
However, in the copper heat spreader 1, as described above, when a thermal stress such as a temperature cycle or a heat cycle is applied, a crack is generated in the
図4は、この発明の第2実施例のヒートスプレッダと金属板との接合方法を示す工程図であり、同図(a)から同図(c)は工程順に示した要部工程断面図である。この図は銅2aと銅−モリブデン焼結体2bの積層体で形成したクラッド材のヒートスプレッダ2上の銅板5を固着した配線構造を示す。この積層体はクラッド材と呼ばれている。
FIG. 4 is a process diagram showing a method of joining a heat spreader and a metal plate according to a second embodiment of the present invention, and FIG. 4 (a) to FIG. . This figure shows a wiring structure in which a
銅2aと銅−モリブデン焼結体2bの積層体で形成したクラッド材のヒートスプレッダ2の銅2a側上に外部導出導体である銅板5を配置する(同図(a))。
つぎに、レーザ出射ユニット18の照準を溶融予定個所21に合わせる(同図(b))。
つぎに、レーザ出射ユニット18によりYAGレーザ19を照射し、銅板5とクラッド材のヒートスプレッダ2の銅2aを溶融して、溶融部20で固着する(同図(c))。
A
Next, the aim of the
Next, the
クラッド材のヒートスプレッダ2は、上側に銅2a、下側に銅−モリブデン焼結体2bが配置された構造である。尚、下側を銅−タングステン焼結体にしてもよい。
The
図4(c)に示したように、銅板5とクラッド材のヒートスプレッダ2においては、銅−モリブデン焼結体2bに達する深い溶融部20を得ることができるために、高い接合強度と電気・熱抵抗に優れた溶接構造が実現できる。このクラッド材のヒートスプレッダ2における銅板5と銅−モリブデン焼結体2b(又は銅−タングステン焼結体)の厚さの比率は、必要とする熱膨張係数と銅溶融部の深さにより適宜決めればよい。
As shown in FIG. 4 (c), in the
また、この場合も第1実施例と同様に銅板5の表面をNiめっき膜を形成してもよい。
Also in this case, a Ni plating film may be formed on the surface of the
図5は、この発明の第3実施例のヒートスプレッダと金属板との接合方法を示す工程図であり、同図(a)から同図(c)は工程順に示した要部工程断面図である。この図は銅3aとモリブデン3bを積層したクラッド材のヒートスプレッダ3上の配線構造を示す。この積層体はクラッド材と呼ばれているこのモリブデンをタングステンにしてもよい。
FIG. 5 is a process diagram showing a method of joining a heat spreader and a metal plate according to a third embodiment of the present invention, and FIG. 5 (a) to FIG. . This figure shows a wiring structure on a
銅3aとモリブデン3bの積層体で形成したクラッド材のヒートスプレッダ3の銅5上に外部導出導体である銅板5を配置する(同図(a))。
つぎに、レーザ出射ユニット18の照準を溶融予定個所21に合わせる(同図(b))。
つぎに、レーザ出射ユニット18によりYAGレーザ19を照射し、銅板3aとクラッド材のヒートスプレッダ3の銅3aを溶融し、溶融部20で固着する(同図(c))。
A
Next, the aim of the
Next, the
図5(c)はクラッド材の構成を上側に銅3a、下側にモリブデン3b(又はタングステン)とした場合であり、図4(c)で説明したことと同様な溶融部20を得ることができる。
FIG. 5 (c) shows a case where the clad material is composed of
図6は、この発明の第4実施例のヒートスプレッダと金属板との接合方法を示す工程図であり、同図(a)から同図(c)は工程順に示した要部工程断面図である。4はモリブデンのヒートスプレッダである。少なくとも、モリブデンのヒートスプレッダ4の銅板5との接合面にNiめっき膜22を形成しておく。
FIG. 6 is a process diagram showing a method of joining a heat spreader and a metal plate according to a fourth embodiment of the present invention, and FIGS. . 4 is a heat spreader of molybdenum. At least a
。まず、モリブデンのヒートスプレッダ4の上に外部導出導体である銅板5を配置する(同図(a))。
. First, a
つぎにレーザ出射ユニット18の照準を溶融予定箇所21に合わせる(同図(b))。
Next, the aim of the
つぎに、レーザ出射ユニット18によりYAGレーザ19を照射し、銅板5とヒートスプレッダ4の表面のNiめっき膜22とを溶融し、溶融部20で固着する(同図(c))。
Next, the
ヒートスプレッダ4をモリブデンで形成する場合、ヒートスプレッダの金属板(銅板5)との接合面側にNiめっき膜を設けるのは次の理由による。
When the
即ち、金属板(銅板)とモリブデンとは融点ならびにYAGレーザの吸収率が大きく異なる。まず、融点の高いモリブデンを溶融させうるパワーでYAGレーザを照射すると、YAGレーザの照射をうけた銅は融点を大きく上回り、沸点に達すると銅が消失してしまい十分な接合が得られない。また、モリブデンの方がレーザの吸収率が高いため、照射されたレーザがモリブデンに達すると一気にパワーを吸収してしまい、モリブデンを突き抜けてしまうことがある。したがって、銅とモリブデンをレーザ溶接することは困難であり、またレーザのパワーも銅を溶融させうる程度に設定せざるを得ない。 That is, the metal plate (copper plate) and molybdenum are greatly different in melting point and YAG laser absorption. First, when a YAG laser is irradiated with a power capable of melting molybdenum having a high melting point, the copper subjected to the YAG laser greatly exceeds the melting point, and when the boiling point is reached, the copper disappears and a sufficient bonding cannot be obtained. In addition, since molybdenum has a higher laser absorptivity, when the irradiated laser reaches molybdenum, the power is absorbed at a stretch and the molybdenum may be penetrated. Therefore, it is difficult to laser weld copper and molybdenum, and the laser power must be set to such an extent that copper can be melted.
Niはモリブデンほどレーザの吸収率が高くなく、また融点も高くないので、モリブデンの表面にNiめっき膜を設けておき、Niめっき膜に達するパワーでレーザを照射することにより、銅とNiが溶融して結合層を形成することができる。 Ni does not have a higher laser absorptivity and melting point than molybdenum, so a Ni plating film is provided on the surface of molybdenum, and the laser is irradiated with power that reaches the Ni plating film, so that copper and Ni melt. Thus, a bonding layer can be formed.
上記において、モリブデンのヒートスプレッダを例に説明したが、モリブデンをタングステン,銅−モリブデンの焼結体,銅−タングステンの焼結体のいずれかにしてもよく、Niめっき膜を設ける理由も同様である。 In the above, the heat spreader of molybdenum has been described as an example, but molybdenum may be any of tungsten, a copper-molybdenum sintered body, and a copper-tungsten sintered body, and the reason for providing the Ni plating film is also the same. .
また、図4〜図6においても、前記の図3で説明したように、銅板5の表面にNiめっき膜を形成すことにより、YAGレーザの吸収率を高めることが可能である。
4 to 6, as described in FIG. 3, it is possible to increase the absorption rate of the YAG laser by forming a Ni plating film on the surface of the
尚、前記第1実施例〜第4実施例で外部導出導体である金属板を銅板で説明したが、これをアルミニウム板に替えてもよい。そのときはレーザ溶接条件の最適化が必要となるが、アルミニウムはレーザの吸収率が銅に比べて高いためレーザ照射面にNiめっき膜を形成しなくてもよい。また、レーザはYAGレーザの場合について説明したが、半導体レーザであっても構わない。 In addition, although the metal plate which is an external lead-out conductor was demonstrated with the copper plate in the said 1st Example-4th Example, you may replace this with an aluminum plate. At that time, the laser welding conditions need to be optimized. However, since aluminum has a higher laser absorption rate than copper, it is not necessary to form a Ni plating film on the laser irradiation surface. Further, although the case where the laser is a YAG laser has been described, it may be a semiconductor laser.
1 銅のヒートスプレッダ
2 クラッド材のヒートスプレッダ
2a 銅
2b 銅−モリブデン焼結体
3 クラッド材のヒートスプレッダ/モリブデン
3a 銅
3b モリブデン
4 ヒートスプレッダ
5 銅板
6 IGBTチップ
7 はんだ
8 エミッタ電極
9 ゲートパッド
10 導電パターン付き絶縁基板
11 セラミクス
12 裏面銅箔
13 エミッタ用導体パターン
14 コレクタ用導体パターン
15 ゲート用導電パターン
16 はんだ
17 アルミワイヤ
18 レーザ出射ユニット
19 YAGレーザ
20 溶融部
21 溶融予定個所
22 Niめっき膜
DESCRIPTION OF SYMBOLS 1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005361624A JP4976688B2 (en) | 2005-12-15 | 2005-12-15 | Joining method between heat spreader and metal plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005361624A JP4976688B2 (en) | 2005-12-15 | 2005-12-15 | Joining method between heat spreader and metal plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007165690A JP2007165690A (en) | 2007-06-28 |
JP4976688B2 true JP4976688B2 (en) | 2012-07-18 |
Family
ID=38248230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005361624A Expired - Fee Related JP4976688B2 (en) | 2005-12-15 | 2005-12-15 | Joining method between heat spreader and metal plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4976688B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5239291B2 (en) * | 2007-10-24 | 2013-07-17 | 富士電機株式会社 | Semiconductor device and manufacturing method thereof |
WO2009081723A1 (en) * | 2007-12-20 | 2009-07-02 | Fuji Electric Device Technology Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP5124056B1 (en) | 2011-03-14 | 2013-01-23 | パナソニック株式会社 | Laser bonding parts |
WO2013021983A1 (en) * | 2011-08-10 | 2013-02-14 | 富士電機株式会社 | Semiconductor device and method for manufacturing same |
JP6475918B2 (en) | 2014-02-05 | 2019-02-27 | ローム株式会社 | Power module |
DE102016108656A1 (en) * | 2016-05-11 | 2017-11-16 | Danfoss Silicon Power Gmbh | Power electronic assembly with vibration-free contacting |
DE112018002384T5 (en) | 2017-05-10 | 2020-01-16 | Rohm Co., Ltd. | Power semiconductor device and manufacturing process for the same |
CN110476237B (en) * | 2017-10-19 | 2023-06-02 | 富士电机株式会社 | Semiconductor device and method for manufacturing semiconductor device |
WO2020071185A1 (en) * | 2018-10-02 | 2020-04-09 | ローム株式会社 | Semiconductor device and method for manufacturing semiconductor device |
JP7277030B2 (en) * | 2019-09-02 | 2023-05-18 | 株式会社ディスコ | Workpiece processing method |
JP2021146359A (en) * | 2020-03-18 | 2021-09-27 | 三菱マテリアル株式会社 | Joined body and method for manufacturing joined body |
TW202215664A (en) * | 2020-08-07 | 2022-04-16 | 日商Flosfia股份有限公司 | Semiconductor element and semiconductor device |
TW202211484A (en) * | 2020-08-07 | 2022-03-16 | 日商Flosfia股份有限公司 | Semiconductor element and semiconductor device |
DE102022206267A1 (en) | 2022-06-22 | 2023-12-28 | Robert Bosch Gesellschaft mit beschränkter Haftung | Contact system with a power semiconductor and a connecting element |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04230063A (en) * | 1990-12-27 | 1992-08-19 | Aichi Steel Works Ltd | Multilayer heat sink |
KR970005712B1 (en) * | 1994-01-11 | 1997-04-19 | 삼성전자 주식회사 | High heat sink package |
JP2000156439A (en) * | 1998-11-20 | 2000-06-06 | Mitsubishi Electric Corp | Power semiconductor module |
JP3238906B2 (en) * | 1999-03-19 | 2001-12-17 | 株式会社日立製作所 | Semiconductor device |
JP4160889B2 (en) * | 2003-09-30 | 2008-10-08 | 富士通株式会社 | Manufacturing method of semiconductor device |
-
2005
- 2005-12-15 JP JP2005361624A patent/JP4976688B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007165690A (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4976688B2 (en) | Joining method between heat spreader and metal plate | |
JP4645406B2 (en) | Semiconductor device | |
JP4775327B2 (en) | Manufacturing method of semiconductor device | |
JP4858238B2 (en) | Laser welding member and semiconductor device using the same | |
US20070262387A1 (en) | Power semiconductor module | |
JP5023604B2 (en) | Semiconductor device | |
JP5103863B2 (en) | Semiconductor device | |
JP2015119072A (en) | Laser welding method, laser welding jig, and semiconductor device | |
JP4764983B2 (en) | Manufacturing method of semiconductor device | |
JP2009105266A (en) | Method of manufacturing semiconductor apparatus | |
JPWO2017195625A1 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP4765853B2 (en) | Manufacturing method of semiconductor device | |
JP7319295B2 (en) | semiconductor equipment | |
JP6945418B2 (en) | Semiconductor devices and manufacturing methods for semiconductor devices | |
JP6877600B1 (en) | Semiconductor device | |
JP2009105267A (en) | Semiconductor apparatus, and method of manufacturing the same | |
JP2011134949A (en) | Semiconductor device | |
JP5899952B2 (en) | Semiconductor module | |
JP5119139B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP4096741B2 (en) | Semiconductor device | |
JP2019212808A (en) | Manufacturing method of semiconductor device | |
JP4586508B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2019133965A (en) | Semiconductor device and manufacturing method thereof | |
JP5840102B2 (en) | Power semiconductor device | |
JP2007305620A (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080204 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081015 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090212 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090219 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20091112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110315 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110405 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110705 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110712 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20110805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120413 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4976688 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |