JP4976237B2 - 樹脂粒子および樹脂粒子の製造方法 - Google Patents

樹脂粒子および樹脂粒子の製造方法 Download PDF

Info

Publication number
JP4976237B2
JP4976237B2 JP2007226840A JP2007226840A JP4976237B2 JP 4976237 B2 JP4976237 B2 JP 4976237B2 JP 2007226840 A JP2007226840 A JP 2007226840A JP 2007226840 A JP2007226840 A JP 2007226840A JP 4976237 B2 JP4976237 B2 JP 4976237B2
Authority
JP
Japan
Prior art keywords
resin
resin particles
parts
acid
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007226840A
Other languages
English (en)
Other versions
JP2009057487A (ja
Inventor
剛志 泉
孝夫 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2007226840A priority Critical patent/JP4976237B2/ja
Publication of JP2009057487A publication Critical patent/JP2009057487A/ja
Application granted granted Critical
Publication of JP4976237B2 publication Critical patent/JP4976237B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は樹脂粒子およびその製造方法に関する。さらに詳しくは、粉体塗料、電子写真トナー、静電記録トナー等の各種用途に有用な、樹脂粒子およびその製造方法に関する。
粒径が均一で、かつ、電気的特性、熱的特性、化学的安定性等に優れた樹脂粒子として、ポリマー微粒子を分散安定剤として得られた樹脂粒子が知られている(特許文献1参照)。
特開2002−284881号公報
しかしながら、このポリマー微粒子を用いる方法では、それが残存して樹脂表面上に付着して、定着、帯電の阻害物質となることがあった。そのため、粉体塗料や電子写真、静電記録、静電印刷などに用いられるトナーとしては、十分に主樹脂の性能(帯電特性、耐熱保存安定性、低温定着性等)を発揮できているとは必ずしも言えなかった。
本発明は従来技術における上記の事情に鑑みてなされたものである。すなわち、帯電特性、耐熱保存安定性、および熱特性に優れた粒径が均一である樹脂粒子を提供することを目的とする。
本発明者らは、上記の問題点を解決するべく鋭意検討した結果、本発明に到達した。
すなわち本発明は、第1の樹脂(a)からなる樹脂粒子(A)と無機酸のアルカリ金属塩、アルカリ土類金属塩およびアルミニウム塩から選ばれる1種以上の塩である凝集剤(E)を含有する水性分散液(W)と、第2の樹脂(b)もしくはその有機溶剤溶液、または、樹脂(b)の前駆体(b0)もしくはその有機溶剤溶液(O)とを混合し、(W)中に(O)を分散させ、(b0)もしくはその有機溶剤溶液を用いる場合には、さらに(b0)を反応させて、(W)中で(b)からなる樹脂粒子(B)を形成させることにより得られる、樹脂粒子(B)の表面に樹脂粒子(A)もしくは樹脂(a)からなる被膜(P)が付着した樹脂粒子(C)の水性分散体(X1)において、アルカリまたはその水溶液を加えて(C)の表面の(A)もしくは(P)の少なくとも一部を溶解除去して、(B)からなる、または(B)の表面の一部が(A)もしくは(P)で被覆された樹脂粒子(D)の水性分散体(X2)を得て、さらに(X2)から水性媒体を除去する樹脂粒子(D)の製造方法;ならびに上記の方法により得られ、BET値比表面積が0.5〜5.0m2/gである樹脂粒子;である。
本発明の樹脂粒子の製造方法およびそれから得られる樹脂粒子は以下の効果を有する。
1.熱特性、帯電特性に優れ、粒径が均一である。
2.耐熱保存安定性、粉体流動性に優れる。
3.界面活性剤を使用しなくても容易に製造でき、樹脂粒子の洗浄が容易であるため、排水が少なく低コストで製造できる。
4.粒子表面の平滑性に優れる。
本発明において用いる第1の樹脂(a)は、水性分散液(W)を形成しうる樹脂を選択すればよく、そのような樹脂であればいかなる樹脂であっても使用でき、熱可塑性であっても熱硬化性樹脂であってもよい。
樹脂(a)としては、例えば、ビニル樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ケイ素系樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート樹脂等が挙げられる。樹脂(a)としては、上記樹脂の2種以上を併用しても差し支えない。このうち好ましいのは、微細球状樹脂粒子の水性分散体が得られやすいという観点から、ビニル系樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂およびそれらの併用であり、さらに好ましくはビニル樹脂である。
微細な球状樹脂粒子(A)の水性分散液(W)を得るために、樹脂(a)は、カルボキシル基を含有することが好ましい。カルボキシル基はその少なくとも一部が塩基で中和されていてもよい。カルボキシル基の塩基中和率は、20〜100当量%が好ましく、40〜100当量%がさらに好ましい。
カルボキシル基の含有量〔塩基で中和されている場合は、カルボキシル基(−COOH基)に換算した含有量〕は、(a)の重量に基づいて0.1〜30%が好ましい。下限は、さらに好ましくは0.5%、とくに好ましくは1%、最も好ましくは3%であり、上限は、さらに好ましくは25%、とくに好ましくは22%、最も好ましくは20%である。
塩基中和率や、カルボキシル基含有量が上記範囲の下限以上であると、樹脂(a)が水系媒体中に分散しやすく、微細な球状の樹脂粒子(A)の水性分散液(W)を容易に得ることができる。また、得られる樹脂粒子(D)の帯電特性が向上する。
なお、上記および以下において%は、とくに断りのない限り重量%を意味する。
上記の中和塩を形成する塩基としては、アンモニア、炭素数1〜30のモノアミン、後述のポリアミン(16)、4級アンモニウム、アルカリ金属(ナトリウム、カリウム等)、およびアルカリ土類金属(カルシウム塩、マグネシウム塩等)などが挙げられる。
上記炭素数1〜30のモノアミンとしては、炭素数1〜30の1級および/または2級アミン(エチルアミン、n−ブチルアミン、イソブチルアミン等)、炭素数3〜30の3級アミン(トリメチルアミン、トリエチルアミン、ラウリルジメチルアミン等)が挙げられる。4級アンモニウムとしては炭素数4〜30のトリアルキルアンモニウム(ラウリルトリメチルアンモニウム等)などが挙げられる。
これらの中で、好ましくは、アルカリ金属、4級アンモニウム、モノアミン、およびポリアミンであり、さらに好ましくは、ナトリウム、および炭素数1〜20のモノアミンであり、とくに好ましくは、炭素数3〜20の3級モノアミンである。
また、ビニル樹脂、およびポリエステル樹脂の場合、それらを形成するカルボキシル基またはその塩を含有するモノマーの好ましい炭素数は3〜30であり、さらに好ましくは3〜15、とくに好ましくは3〜8である。
微細な球状樹脂粒子(A)の水性分散液(W)を得るため、かつ耐熱保存安定性、帯電特性に優れ、粒径が均一な樹脂粒子(C)の水性分散体(X1)を得るために、樹脂(a)は、スルホン酸アニオン基(−SO3 -)を含有することが好ましい。スルホン酸アニオン基(−SO3 -)の合計含有量は(a)の重量に基づいて0.001〜10%が好ましい。下限は、さらに好ましくは0.002%であり、上限は、さらに好ましくは5%、とくに好ましくは2%、最も好ましくは1%である。また、樹脂を形成するスルホン酸アニオン基(−SO3 -)を含有するモノマーの好ましい炭素数は3〜50、更に好ましくは3〜30、特に好ましくは4〜15である。
スルホン酸アニオン基(−SO3 -)基含有量が上記範囲の下限以上や樹脂を形成するスルホン酸アニオン基(−SO3 -)を含有するモノマーの炭素数が上記範囲の上限以下であると、樹脂(a)が水系媒体中に分散しやすく、微細な球状の樹脂粒子(A)の水性分散液(W)を容易に得ることができる。また、得られる樹脂粒子(D)の耐ブロッキング性、及び帯電特性が向上する。
以下、(a)として好ましい樹脂であるビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂、およびエポキシ樹脂につき、詳細に説明する。
ビニル樹脂は、ビニルモノマーを単独重合または共重合したポリマーである。ビニルモノマーとしては、下記(1)〜(10)が挙げられる。
(1)ビニル炭化水素:
(1−1)脂肪族ビニル炭化水素:アルケン類、例えばエチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセン、前記以外のα−オレフィン等;アルカジエン類、例えばブタジエン、イソプレン、1,4−ペンタジエン、1,6−ヘキサジエン、1,7−オクタジエン。
(1−2)脂環式ビニル炭化水素:モノ−もしくはジ−シクロアルケンおよびアルカジエン類、例えばシクロヘキセン、(ジ)シクロペンタジエン、ビニルシクロヘキセン、エチリデンビシクロヘプテン等;テルペン類、例えばピネン、リモネン、インデン等。
(1−3)芳香族ビニル炭化水素:スチレンおよびそのハイドロカルビル(アルキル、シクロアルキル、アラルキルおよび/またはアルケニル)置換体、例えばα−メチルスチレン、ビニルトルエン、2,4−ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン、クロチルベンゼン、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、トリビニルベンゼン等;およびビニルナフタレン。
(2)カルボキシル基含有ビニルモノマーおよびその金属塩:
炭素数3〜30の不飽和モノカルボン酸、不飽和ジカルボン酸ならびにその無水物およびそのモノアルキル(炭素数1〜24)エステル、例えば(メタ)アクリル酸、(無水)マレイン酸、マレイン酸モノアルキルエステル、フマル酸、フマル酸モノアルキルエステル、クロトン酸、イタコン酸、イタコン酸モノアルキルエステル、イタコン酸グリコールモノエーテル、シトラコン酸、シトラコン酸モノアルキルエステル、桂皮酸等のカルボキシル基含有ビニルモノマー。
なお、上記(メタ)アクリル酸とは、アクリル酸および/またはメタアクリル酸を意味し、以下同様の記載法を用いる。
(3)スルホン基含有ビニルモノマー、ビニル硫酸モノエステル化物およびこれらの塩:炭素数2〜14のアルケンスルホン酸、例えばビニルスルホン酸、(メタ)アリルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸;およびその炭素数2〜24のアルキル誘導体、例えばα−メチルスチレンスルホン酸等;スルホ(ヒドロキシ)アルキル−(メタ)アクリレートもしくは(メタ)アクリルアミド、例えば、スルホプロピル(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロキシプロピルスルホン酸、2−(メタ)アクリロイルアミノ−2,2−ジメチルエタンスルホン酸、2−(メタ)アクリロイルオキシエタンスルホン酸、3−(メタ)アクリロイルオキシ−2−ヒドロキシプロパンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、3−(メタ)アクリルアミド−2−ヒドロキシプロパンスルホン酸、アルキル(炭素数3〜18)アリルスルホコハク酸、ポリ(n=2〜30)オキシアルキレン(エチレン、プロピレン、ブチレン:単独、ランダム、ブロックでもよい)モノ(メタ)アクリレートの硫酸エステル[ポリ(n=5〜15)オキシプロピレンモノメタクリレート硫酸エステル等]、ポリオキシエチレン多環フェニルエーテル硫酸エステル、および下記一般式(1−1)〜(1−3)で示される硫酸エステルもしくはスルホン酸基含有モノマー;ならびそれらの塩等。


O−(AO)nSO3

CH2=CHCH2−OCH2CHCH2O−Ar−R (1−1)

CH=CH−CH3

R−Ar−O−(AO)nSO3H (1−2)

CH2COOR’

HO3SCHCOOCH2CH(OH)CH2OCH2CH=CH2 (1−3)

(式中、Rは炭素数1〜15のアルキル基、Aは炭素数2〜4のアルキレン基を示し、nが複数の場合同一でも異なっていてもよく、異なる場合はランダムでもブロックでもよい。Arはベンゼン環を示し、nは1〜50の整数を示し、R’はフッ素原子で置換されていてもよい炭素数1〜15のアルキル基を示す。)
(4)燐酸基含有ビニルモノマーおよびその塩:
(メタ)アクリロイルオキシアルキル(C1〜C24)燐酸モノエステル、例えば、2−ヒドロキシエチル(メタ)アクリロイルホスフェート、フェニル−2−アクリロイロキシエチルホスフェート、(メタ)アクリロイルオキシアルキル(炭素数1〜24)ホスホン酸類、例えば2−アクリロイルオキシエチルホスホン酸。
なお、上記(2)〜(4)の塩としては、金属塩、アンモニウム塩、およびアミン塩(4級アンモニウム塩を含む)が挙げられる。金属塩を形成する金属としては、Al、Ti、Cr、Mn、Fe、Zn、Ba、Zr、Ca、Mg、Na、およびK等が挙げられる。
好ましくはアルカリ金属塩、およびアミン塩であり、さらに好ましくは、ナトリウム塩および炭素数3〜20の3級モノアミンの塩である。
(5)ヒドロキシル基含有ビニルモノマー:
ヒドロキシスチレン、N−メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、(メタ)アリルアルコール、クロチルアルコール、イソクロチルアルコール、1−ブテン−3−オール、2−ブテン−1−オール、2−ブテン−1,4−ジオール、プロパルギルアルコール、2−ヒドロキシエチルプロペニルエーテル、庶糖アリルエーテル等
(6)含窒素ビニルモノマー:
(6−1)アミノ基含有ビニルモノマー:アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、t−ブチルアミノエチルメタクリレート、N−アミノエチル(メタ)アクリルアミド、(メタ)アリルアミン、モルホリノエチル(メタ)アクリレート、4ービニルピリジン、2ービニルピリジン、クロチルアミン、N,N−ジメチルアミノスチレン、メチルα−アセトアミノアクリレート、ビニルイミダゾール、N−ビニルピロール、N−ビニルチオピロリドン、N−アリールフェニレンジアミン、アミノカルバゾール、アミノチアゾール、アミノインドール、アミノピロール、アミノイミダゾール、アミノメルカプトチアゾール、これらの塩等
(6−2)アミド基含有ビニルモノマー:(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−ブチルアクリルアミド、ジアセトンアクリルアミド、N−メチロール(メタ)アクリルアミド、N,N’−メチレン−ビス(メタ)アクリルアミド、桂皮酸アミド、N,N−ジメチルアクリルアミド、N,N−ジベンジルアクリルアミド、メタクリルホルムアミド、N−メチルN−ビニルアセトアミド、N−ビニルピロリドン等
(6−3)ニトリル基含有ビニルモノマー:(メタ)アクリロニトリル、シアノスチレン、シアノアクリレート等
(6−4)4級アンモニウムカチオン基含有ビニルモノマー:ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリルアミド、ジアリルアミン等の3級アミン基含有ビニルモノマーの4級化物(メチルクロライド、ジメチル硫酸、ベンジルクロライド、ジメチルカーボネート等の4級化剤を用いて4級化したもの)
(6−5)ニトロ基含有ビニルモノマー:ニトロスチレン等
(7)エポキシ基含有ビニルモノマー:
グルシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、p−ビニルフェニルフェニルオキサイド等
(8)ハロゲン元素含有ビニルモノマー:
塩化ビニル、臭化ビニル、塩化ビニリデン、アリルクロライド、クロルスチレン、ブロムスチレン、ジクロルスチレン、クロロメチルスチレン、テトラフルオロスチレン、クロロプレン等
(9)ビニルエステル、ビニル(チオ)エーテル、ビニルケトン、ビニルスルホン類:
(9−1)ビニルエステル、例えばビニルブチレート、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ジアリルフタレート、ジアリルアジペート、イソプロペニルアセテート、ビニルメタクリレート、メチル4−ビニルベンゾエート、シクロヘキシルメタクリレート、ベンジルメタクリレート、フェニル(メタ)アクリレート、ビニルメトキシアセテート、ビニルベンゾエート、エチルα−エトキシアクリレート、炭素数1〜50のアルキル基(直鎖もしくは分岐)を有するアルキル(メタ)アクリレート(好ましくは炭素数5〜30)[メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート、2−デシルテトラデシル(メタ)アクリレート等]、ジアルキルフマレート(フマル酸ジアルキルエステル)(2個のアルキル基は、炭素数2〜8の、直鎖、分枝鎖もしくは脂環式の基である)、ジアルキルマレエート(マレイン酸ジアルキルエステル)(2個のアルキル基は、炭素数2〜8の、直鎖、分枝鎖もしくは脂環式の基である)、ポリ(メタ)アリロキシアルカン類[ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシエタン、テトラアリロキシプロパン、テトラアリロキシブタン、テトラメタアリロキシエタン等]等、ポリアルキレングリコール鎖を有するビニルモノマー[ポリエチレングリコール(分子量300)モノ(メタ)アクリレート、ポリプロピレングリコール(分子量500)モノアクリレート、メチルアルコールエチレンオキサイド(エチレンオキサイドを以下EOと略記する)10モル付加物(メタ)アクリレート、ラウリルアルコールEO30モル付加物(メタ)アクリレート等]、ポリ(メタ)アクリレート類[多価アルコール類のポリ(メタ)アクリレート:エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等]等
(9−2)ビニル(チオ)エーテル、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテル、ビニルブチルエーテル、ビニル2−エチルヘキシルエーテル、ビニルフェニルエーテル、ビニル2−メトキシエチルエーテル、メトキシブタジエン、ビニル2−ブトキシエチルエーテル、3,4−ジヒドロ1,2−ピラン、2−ブトキシ−2’−ビニロキシジエチルエーテル、ビニル2−エチルメルカプトエチルエーテル、アセトキシスチレン、フェノキシスチレン等
(9−3)ビニルケトン、例えばビニルメチルケトン、ビニルエチルケトン、ビニルフェニルケトン;
ビニルスルホン、例えばジビニルサルファイド、p−ビニルジフェニルサルファイド、ビニルエチルサルファイド、ビニルエチルスルフォン、ジビニルスルフォン、ジビニルスルフォキサイド等
(10)その他のビニルモノマー:
イソシアナトエチル(メタ)アクリレート、m−イソプロペニル−α,α−ジメチルベンジルイソシアネート等
ビニル樹脂としては、上記(1)〜(10)の任意のモノマー同士を、2元またはそれ以上の個数で、好ましくは樹脂粒子(A)中のカルボキシル基の含量が1〜50%になるように、任意の割合で共重合したポリマーが挙げられるが、共重合させるモノマーとしては、酢酸ビニル、(メタ)アクリル酸、(無水)マレイン酸、マレイン酸モノアルキルエステル、マレイン酸ジアルキルエステル、フマル酸、フマル酸モノアルキルエステル、フマル酸ジアルキルエステル、炭素数5〜27のアルキル(メタ)アクリレート、および炭素数2〜4の脂肪族ビニル炭化水素から選ばれる1種以上が好ましい。さらに好ましくは、(メタ)アクリル酸、酢酸ビニル、分岐構造を持つ炭素数5〜27のアルキル(メタ)アクリレート、および炭素数2〜4の脂肪族ビニル炭化水素から選ばれる少なくとも1種のモノマーである。
共重合したポリマーの具体例としては、スチレン−(メタ)アクリル酸エステル−(メタ)アクリル酸共重合体、スチレン−ブタジエン−(メタ)アクリル酸共重合体、(メタ)アクリル酸−アクリル酸エステル共重合体、スチレン−アクリロニトリル−(メタ)アクリル酸−ジビニルベンゼン共重合体、スチレン−スチレンスルホン酸−(メタ)アクリル酸エステル共重合体、スチレン−(メタ)アクリル酸アルキルエステル−(メタ)アクリル酸−アルキルアリルスルホコハク酸塩共重合体、酢酸ビニル−クロトン酸共重合体、酢酸ビニル−クロトン酸−(メタ)アクリル酸エステル共重合体、酢酸ビニル−(メタ)アクリル酸共重合体、酢酸ビニル−(メタ)アクリル酸エステル共重合体、酢酸ビニル−(メタ)アクリル酸−(メタ)アクリル酸エステル共重合体、酢酸ビニル−無水マレイン酸共重合体、酢酸ビニル−無水マレイン酸−(メタ)アクリル酸アルキルエステル共重合体、酢酸ビニル−(メタ)アクリル酸−アルキル(メタ)アクリレート−パーフルオロアルキル(アルキル)(メタ)アクリレート共重合体、酢酸ビニル−無水マレイン酸−(メタ)アクリル酸共重合体、酢酸ビニル−エチレン共重合体、酢酸ビニル−エチレン−(メタ)アクリル酸共重合体、酢酸ビニル−エチレン−(メタ)アクリル酸アルキルエステル共重合体、酢酸ビニル−無水マレイン酸−(メタ)アクリル酸アルキルエステル−(メタ)アクリロイロキシポリオキシアルキレン硫酸エステル塩共重合体、酢酸ビニル−(メタ)アクリル酸−アルキル(メタ)アクリレート−パーフルオロアルキル(アルキル)(メタ)アクリレート−アルキルアリルスルホコハク酸塩共重合体、およびこれらの共重合体の塩などが挙げられる。
なお、樹脂(a)が、水性分散体(X1)中で樹脂粒子(A)を形成する場合、少なくとも(X1)を形成する条件下で水に完全に溶解していないことが必要である。そのため、ビニル樹脂を構成する疎水性モノマーと親水性モノマーの比率は、選ばれるモノマーの種類によるが、一般に疎水性モノマーが20%以上であることが好ましく、30%以上であることがより好ましい。疎水性モノマーの比率が、10%未満になるとビニル樹脂が水溶性になり、樹脂粒子(C)および(D)の粒径均一性が損なわれる場合がある。ここで、親水性モノマーとは水に任意の割合で溶解するモノマーをいい、疎水性モノマーとは、それ以外のモノマー(基本的に水に混和しないモノマー)をいう。
ポリエステル樹脂としては、ポリオールと、ポリカルボン酸またはその酸無水物またはその低級アルキルエステルとの重縮合物、およびこれらの重縮合物の金属塩などが挙げられる。ポリオールとしてはジオール(11)および3〜8価またはそれ以上のポリオール(12)が、ポリカルボン酸またはその酸無水物またはその低級アルキルエステルとしては、ジカルボン酸(13)および3〜6価またはそれ以上のポリカルボン酸(14)およびこれらの酸無水物または低級アルキルエステルが挙げられる。
ポリオールとポリカルボン酸の反応比率は、水酸基[OH]とカルボキシル基[COOH]の当量比[OH]/[COOH]として、好ましくは2/1〜1/5、さらに好ましくは1.5/1〜1/4、とくに好ましくは1/1.3〜1/3である。
カルボキシル基の含有量を前記の好ましい範囲内とするために、水酸基が過剰なポリエステルをポリカルボン酸で処理してもよい。
ジオール(11)としては、炭素数2〜36のアルキレングリコール(エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、テトラデカンジオール、ネオペンチルグリコール、2,2−ジエチル−1,3−プロパンジオールなど);炭素数4〜36のアルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなど);炭素数4〜36の脂環式ジオール(1,4−シクロヘキサンジメタノール、水素添加ビスフェノールAなど);上記アルキレングリコールまたは脂環式ジオールのアルキレンオキサイド(以下AOと略記する)〔EO、プロピレンオキサイド(以下POと略記する)、ブチレンオキサイド(以下BOと略記する)など〕付加物(付加モル数1〜120);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールSなど)のAO(EO、PO、BOなど)付加物(付加モル数2〜30);ポリラクトンジオール(ポリε−カプロラクトンジオールなど);およびポリブタジエンジオールなどが挙げられる。
ジオールとしては、上記のヒドロキシル基以外の官能基を有しないジオール以外に、他の官能基を有するジオール(11a)を用いてもよい。(11a)としては、カルボキシル基を有するジオール、スルホン酸基もしくはスルファミン酸基を有するジオール、およびこれらの塩等が挙げられる。
カルボキシル基を有するジオールとしては、ジアルキロールアルカン酸[C6〜24のもの、例えば2,2−ジメチロールプロピオン酸(DMPA)、2,2−ジメチロールブタン酸、2 ,2−ジメチロールヘプタン酸、2,2−ジメチロールオクタン酸など]が挙げられる。
スルホン酸基もしくはスルファミン酸基を有するジオールとしては、3−(2,3−ジヒドロキシプロポキシ)−1−プロパンスルホン酸、スルホイソフタル酸ジ(エチレングリコール)エステル、スルファミン酸ジオール[N,N−ビス(2−ヒドロキシアルキル)スルファミン酸(アルキル基のC1〜6)またはそのAO付加物(AOとしてはEOまたはPOなど、AOの付加モル数1〜6):例えばN,N−ビス(2−ヒドロキシエチル)スルファミン酸およびN,N−ビス(2−ヒドロキシエチル)スルファミン酸PO2モル付加物など];ビス(2−ヒドロキシエチル)ホスフェートなどが挙げられる。
これらの中和塩基を有するジオールの中和塩基としては、例えば前記炭素数3〜30の3級アミン(トリエチルアミンなど)および/またはアルカリ金属(ナトリウム塩など)が挙げられる。
これらのうち好ましいものは、炭素数2〜12のアルキレングリコール、カルボキシル基を有するジオール、ビスフェノール類のAO付加物、およびこれらの併用である。
3〜8価またはそれ以上のポリオール(12)としては、炭素数3〜36の3〜8価またはそれ以上の多価脂肪族アルコール(アルカンポリオールおよびその分子内もしくは分子間脱水物、例えばグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ソルビタン、およびポリグリセリン;糖類およびその誘導体、例えばショ糖、およびメチルグルコシド);多価脂肪族アルコールのAO付加物(付加モル数2〜120);トリスフェノール類(トリスフェノールPAなど)のAO付加物(付加モル数2〜30);ノボラック樹脂(フェノールノボラック、クレゾールノボラックなど)のAO付加物(付加モル数2〜30);アクリルポリオール[ヒドロキシエチル(メタ)アクリレートと他のビニルモノマーの共重合物など];などが挙げられる。
これらのうち好ましいものは、3〜8価またはそれ以上の多価脂肪族アルコールおよびノボラック樹脂のAO付加物であり、さらに好ましいものはノボラック樹脂のAO付加物である。
ジカルボン酸(13)としては、炭素数4〜36のアルカンジカルボン酸(コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸、デシルコハク酸など)およびアルケニルコハク酸(ドデセニルコハク酸、ペンタデセニルコハク酸、オクタデセニルコハク酸など);炭素数6〜40の脂環式ジカルボン酸〔ダイマー酸(2量化リノール酸)など〕、炭素数4〜36のアルケンジカルボン酸(マレイン酸、フマール酸、シトラコン酸など);炭素数8〜36の芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸など)などが挙げられる。これらのうち好ましいものは、炭素数4〜20のアルケンジカルボン酸、および炭素数8〜20の芳香族ジカルボン酸である。
3〜6価またはそれ以上のポリカルボン酸(14)としては、炭素数9〜20の芳香族ポリカルボン酸(トリメリット酸、ピロメリット酸など)などが挙げられる。
なお、ジカルボン酸(13)または3〜6価またはそれ以上のポリカルボン酸(14)としては、上述のものの酸無水物または炭素数1〜4の低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステルなど)を用いてもよい。
本発明に用いるポリエステル樹脂は、通常のポリエステル製造法と同様にして製造されたものでよい。例えば、不活性ガス(窒素ガス等)雰囲気中で、反応温度が好ましくは150〜280℃、反応時間が好ましくは30分以上で反応させて得られたものである。
このとき必要に応じてエステル化触媒を使用することができる。エステル化触媒の例には、スズ含有触媒(例えばジブチルスズオキシド)、三酸化アンチモン、チタン含有触媒〔例えばチタンアルコキシド、シュウ酸チタン酸カリウム、テレフタル酸チタン、特開2006−243715号公報に記載の触媒(チタニウムジヒドロキシビス(トリエタノールアミネート)、チタニウムモノヒドロキシトリス(トリエタノールアミネート)、およびそれらの分子内重縮合物等)、および特開2007−11307号公報に記載の触媒(チタントリブトキシテレフタレート、チタントリイソプロポキシテレフタレート、およびチタンジイソプロポキシジテレフタレート等)〕、ジルコニウム含有触媒(例えば酢酸ジルコニル)、および酢酸亜鉛等が挙げられる。これらの中で好ましくは、樹脂粒子(D)の帯電特性の観点から、チタン含有触媒であり、さらに好ましくは、特開2006−243715号公報に記載の触媒、および特開2007−11307号公報に記載の触媒である。
ポリウレタン樹脂としては、ポリイソシアネート(15)と活性水素含有化合物{水、ポリオール[ジオール(11)〔ヒドロキシル基以外の官能基を有するジオール(11a)を含む〕、および3〜8価またはそれ以上のポリオール(12)]、ポリカルボン酸[ジカルボン酸(13)、および3〜6価またはそれ以上のポリカルボン酸(14)]、ポリオールとポリカルボン酸の重縮合により得られるポリエステルポリオール、炭素数6〜12のラクトンの開環重合体、ポリアミン(16)、ポリチオール(17)、およびこれらの併用等}の重付加物、並びに(15)と活性水素含有化合物を反応させてなる末端イソシアネート基プレポリマーと、該プレポリマーのイソシアネート基に対して等量の1級および/または2級モノアミン(18)とを反応させて得られる、アミノ基含有ポリウレタン樹脂が挙げられる。ポリウレタン樹脂中のカルボキシル基の含有量は、0.1〜10%が好ましい。
ジオール(11)、3〜8価またはそれ以上のポリオール(12)、ジカルボン酸(13)、および3〜6価またはそれ以上のポリカルボン酸(14)としては、前記のものが挙げられ、好ましいものも同様である。
ポリイソシアネート(15)としては、炭素数(NCO基中の炭素を除く、以下同様)6〜20の芳香族ポリイソシアネート、炭素数2〜18の脂肪族ポリイソシアネート、炭素数4〜15の脂環式ポリイソシアネート、炭素数8〜15の芳香脂肪族ポリイソシアネートおよびこれらのポリイソシアネートの変性物(ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物など)およびこれらの2種以上の混合物が挙げられる。
上記芳香族ポリイソシアネートの具体例としては、1,3−および/または1,4−フェニレンジイソシアネート、2,4−および/または2,6−トリレンジイソシアネート(TDI)、粗製TDI、2,4’−および/または4,4’−ジフェニルメタンジイソシアネート(MDI)、粗製MDI[粗製ジアミノフェニルメタン〔ホルムアルデヒドと芳香族アミン(アニリン)またはその混合物との縮合生成物;ジアミノジフェニルメタンと少量(たとえば5〜20%)の3官能以上のポリアミンとの混合物〕のホスゲン化物:ポリアリルポリイソシアネート(PAPI)]、1,5−ナフチレンジイソシアネート、4,4’,4”−トリフェニルメタントリイソシアネート、m−およびp−イソシアナトフェニルスルホニルイソシアネートなどが挙げられる。
上記脂肪族ポリイソシアネートの具体例としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,6,11−ウンデカントリイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6−ジイソシアナトメチルカプロエート、ビス(2−イソシアナトエチル)フマレート、ビス(2−イソシアナトエチル)カーボネート、2−イソシアナトエチル−2,6−ジイソシアナトヘキサノエートなどの脂肪族ポリイソシアネートなどが挙げられる。
上記脂環式ポリイソシアネートの具体例としては、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン−4,4’−ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水添TDI)、ビス(2−イソシアナトエチル)−4−シクロヘキセン−1,2−ジカルボキシレート、2,5−および/または2,6−ノルボルナンジイソシアネートなどが挙げられる。
上記芳香脂肪族ポリイソシアネートの具体例としては、m−および/またはp−キシリレンジイソシアネート(XDI)、α,α,α’,α’−テトラメチルキシリレンジイソシアネート(TMXDI)などが挙げられる。
また、上記ポリイソシアネートの変性物には、ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物などが挙げられる。
具体的には、変性MDI(ウレタン変性MDI、カルボジイミド変性MDI、トリヒドロカルビルホスフェート変性MDIなど)、ウレタン変性TDIなどのポリイソシアネートの変性物およびこれらの2種以上の混合物[たとえば変性MDIとウレタン変性TDI(イソシアネート含有プレポリマー)との併用]が含まれる。
これらのうちで好ましいものは6〜15の芳香族ポリイソシアネート、炭素数4〜12の脂肪族ポリイソシアネート、および炭素数4〜15の脂環式ポリイソシアネートであり、とくに好ましいものはTDI、MDI、HDI、水添MDI、およびIPDIである。
ポリアミン(16)の例としては、脂肪族ポリアミン類(C2〜C18):〔1〕脂肪族ポリアミン{C2〜C6 アルキレンジアミン(エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなど)、ポリアルキレン(C2〜C6)ポリアミン〔ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン,トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなど〕};〔2〕これらのアルキル(C1〜C4)またはヒドロキシアルキル(C2〜C4)置換体〔ジアルキル(C1〜C3)アミノプロピルアミン、トリメチルヘキサメチレンジアミン、アミノエチルエタノールアミン、2,5−ジメチル−2,5−ヘキサメチレンジアミン、メチルイミノビスプロピルアミンなど〕;〔3〕脂環または複素環含有脂肪族ポリアミン〔3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンなど〕;〔4〕芳香環含有脂肪族アミン類(C8〜C15)(キシリレンジアミン、テトラクロル−p−キシリレンジアミンなど)、脂環式ポリアミン(C4〜C15):1,3−ジアミノシクロヘキサン、イソホロンジアミン、メンセンジアミン、4,4´−メチレンジシクロヘキサンジアミン(水添メチレンジアニリン)など、複素環式ポリアミン(C4〜C15):ピペラジン、N−アミノエチルピペラジン、1,4−ジアミノエチルピペラジン、1,4ビス(2−アミノ−2−メチルプロピル)ピペラジンなど、芳香族ポリアミン類(C6〜C20):〔1〕非置換芳香族ポリアミン〔1,2−、1,3−および1,4−フェニレンジアミン、2,4´−および4,4´−ジフェニルメタンジアミン、クルードジフェニルメタンジアミン(ポリフェニルポリメチレンポリアミン)、ジアミノジフェニルスルホン、ベンジジン、チオジアニリン、ビス(3,4−ジアミノフェニル)スルホン、2,6−ジアミノピリジン、m−アミノベンジルアミン、トリフェニルメタン−4,4´,4”−トリアミン、ナフチレンジアミンなど;〔2〕核置換アルキル基〔メチル,エチル,n−およびi−プロピル、ブチルなどのC1〜C4アルキル基)を有する芳香族ポリアミン、たとえば2,4−および2,6−トリレンジアミン、クルードトリレンジアミン、ジエチルトリレンジアミン、4,4´−ジアミノ−3,3´−ジメチルジフェニルメタン、4,4´−ビス(o−トルイジン)、ジアニシジン、ジアミノジトリルスルホン、1,3−ジメチル−2,4−ジアミノベンゼン、1,3−ジメチル−2,6−ジアミノベンゼン、1,4−ジイソプロピル−2,5−ジアミノベンゼン、2,4−ジアミノメシチレン、1−メチル−3,5−ジエチル−2,4−ジアミノベンゼン、2,3−ジメチル−1,4−ジアミノナフタレン、2,6−ジメチル−1,5−ジアミノナフタレン、3,3´,5,5´−テトラメチルベンジジン、3,3´,5,5´−テトラメチル−4,4´−ジアミノジフェニルメタン、3,5−ジエチル−3´−メチル−2´,4−ジアミノジフェニルメタン、3,3´−ジエチル−2,2´−ジアミノジフェニルメタン、4,4´−ジアミノ−3,3´−ジメチルジフェニルメタン、3,3´,5,5´−テトラエチル−4,4´−ジアミノベンゾフェノン、3,3´,5,5´−テトラエチル−4,4´−ジアミノジフェニルエーテル、3,3´,5,5´−テトライソプロピル−4,4´−ジアミノジフェニルスルホンなど〕、およびこれらの異性体の種々の割合の混合物;〔3〕核置換電子吸引基(Cl,Br,I,Fなどのハロゲン;メトキシ、エトキシなどのアルコキシ基;ニトロ基など)を有する芳香族ポリアミン〔メチレンビス−o−クロロアニリン、4−クロロ−o−フェニレンジアミン、2−クロル−1,4−フェニレンジアミン、3−アミノ−4−クロロアニリン、4−ブロモ−1,3−フェニレンジアミン、2,5−ジクロル−1,4−フェニレンジアミン、5−ニトロ−1,3−フェニレンジアミン、3−ジメトキシ−4−アミノアニリン;4,4´−ジアミノ−3,3´−ジメチル−5,5´−ジブロモ−ジフェニルメタン、3,3´−ジクロロベンジジン、3,3´−ジメトキシベンジジン、ビス(4−アミノ−3−クロロフェニル)オキシド、ビス(4−アミノ−2−クロロフェニル)プロパン、ビス(4−アミノ−2−クロロフェニル)スルホン、ビス(4−アミノ−3−メトキシフェニル)デカン、ビス(4−アミノフェニル)スルフイド、ビス(4−アミノフェニル)テルリド、ビス(4−アミノフェニル)セレニド、ビス(4−アミノ−3−メトキシフェニル)ジスルフイド、4,4´−メチレンビス(2−ヨードアニリン)、4,4´−メチレンビス(2−ブロモアニリン)、4,4´−メチレンビス(2−フルオロアニリン)、4−アミノフェニル−2−クロロアニリンなど〕;〔4〕2級アミノ基を有する芳香族ポリアミン〔上記〔1〕〜〔3〕の芳香族ポリアミンの−NH2の一部または全部が−NH−R´(R´はアルキル基たとえばメチル,エチルなどの低級アルキル基)で置き換ったもの〕〔4,4´−ジ(メチルアミノ)ジフェニルメタン、1−メチル−2−メチルアミノ−4−アミノベンゼンなど〕、ポリアミドポリアミン:ジカルボン酸(ダイマー酸など)と過剰の(酸1モル当り2モル以上の)ポリアミン類(上記アルキレンジアミン,ポリアルキレンポリアミンなど)との縮合により得られる低分子量ポリアミドポリアミンなど、ポリエーテルポリアミン:ポリエーテルポリオール(ポリアルキレングリコールなど)のシアノエチル化物の水素化物などが挙げられる。
ポリチオール(17)としては、炭素数2〜36のアルカンジチオール(エチレンジチオール、1,4−ブタンジチオール、1,6−ヘキサンジチオールなど)等が挙げられる。
1級および/または2級モノアミン(18)としては、炭素数2〜24のアルキルアミン(エチルアミン、n−ブチルアミン、イソブチルアミンなど)等が挙げられる。
エポキシ樹脂としては、ポリエポキシド(19)の開環重合物、ポリエポキシド(19)と活性水素基含有化合物(T){水、ポリオール[前記ジオール(11)および3〜8価またはそれ以上のポリオール(12)]、前記ジカルボン酸(13)、前記3〜6価またはそれ以上のポリカルボン酸(14)、前記ポリアミン(16)、前記ポリチオール(17)等}との重付加物、またはポリエポキシド(19)とジカルボン酸(13)または3〜6価またはそれ以上のポリカルボン酸(14)の酸無水物との硬化物などが挙げられる。
本発明に用いるポリエポキシド(19)は、分子中に2個以上のエポキシ基を有していれば、特に限定されない。ポリエポキシド(19)として好ましいものは、硬化物の機械的性質の観点から分子中にエポキシ基を2〜6個有するものである。ポリエポキシド(19)のエポキシ当量(エポキシ基1個当たりの分子量)は、好ましくは65〜1000であり、さらに好ましくは90〜500である。エポキシ当量が1000以下であると、架橋構造が強固になり硬化物の耐水性、耐薬品性、機械的強度等の物性が向上する。一方、エポキシ当量が65未満のものを合成するのは困難である。
ポリエポキシド(19)の例としては、芳香族系ポリエポキシ化合物、複素環系ポリエポキシ化合物、脂環族系ポリエポキシ化合物あるいは脂肪族系ポリエポキシ化合物が挙げられる。芳香族系ポリエポキシ化合物としては、多価フェノール類のグリシジルエーテル体およびグリシジルエステル体、グリシジル芳香族ポリアミン、並びに、アミノフェノールのグリシジル化物等が挙げられる。多価フェノールのグリシジルエーテル体としては、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールBジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ハロゲン化ビスフェノールAジグリシジル、テトラクロロビスフェノールAジグリシジルエーテル、カテキンジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ハイドロキノンジグリシジルエーテル、ピロガロールトリグリシジルエーテル、1,5−ジヒドロキシナフタリンジグリシジルエーテル、ジヒドロキシビフェニルジグリシジルエーテル、オクタクロロ−4,4’−ジヒドロキシビフェニルジグリシジルエーテル、テトラメチルビフェニルジグリシジルエーテル、ジヒドロキシナフチルクレゾールトリグリシジルエーテル、トリス(ヒドロキシフェニル)メタントリグリシジルエーテル、ジナフチルトリオールトリグリシジルエーテル、テトラキス(4−ヒドロキシフェニル)エタンテトラグリシジルエーテル、p−グリシジルフェニルジメチルトリールビスフェノールAグリシジルエーテル、トリスメチル−tret−ブチル−ブチルヒドロキシメタントリグリシジルエーテル、9,9’−ビス(4−ヒドキシフェニル)フロオレンジグリシジルエーテル、4,4’−オキシビス(1,4−フェニルエチル)テトラクレゾールグリシジルエーテル、4,4’−オキシビス(1,4−フェニルエチル)フェニルグリシジルエーテル、ビス(ジヒドロキシナフタレン)テトラグリシジルエーテル、フェノールまたはクレゾールノボラック樹脂のグリシジルエーテル体、リモネンフェノールノボラック樹脂のグリシジルエーテル体、ビスフェノールA2モルとエピクロロヒドリン3モルの反応から得られるジグリシジルエーテル体、フェノールとグリオキザール、グルタールアルデヒド、またはホルムアルデヒドの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体、およびレゾルシンとアセトンの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体等が挙げられる。多価フェノールのグリシジルエステル体としては、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル等が挙げられる。グリシジル芳香族ポリアミンとしては、N,N−ジグリシジルアニリン、N,N,N’,N’−テトラグリシジルキシリレンジアミン、N,N,N’,N’−テトラグリシジルジフェニルメタンジアミン等が挙げられる。さらに、本発明において前記芳香族系として、P−アミノフェノールのトリグリシジルエーテル、トリレンジイソシアネートまたはジフェニルメタンジイソシアネートとグリシドールの付加反応によって得られるジグリシジルウレタン化合物、前記2反応物にポリオールも反応させて得られるグリシジル基含有ポリウレタン(プレ)ポリマーおよびビスフェノールAのアルキレンオキシド(エチレンオキシドまたはプロピレンオキシド)付加物のジグリシジルエーテル体も含む。複素環系ポリエポキシ化合物としては、トリスグリシジルメラミンが挙げられる;脂環族系ポリエポキシ化合物としては、ビニルシクロヘキセンジオキシド、リモネンジオキシド、ジシクロペンタジエンジオキシド、ビス(2,3−エポキシシクロペンチル)エーテル、エチレングリコールビスエポキシジシクロペンチルエール、3,4−エポキシ−6−メチルシクロヘキシルメチル−3’,4’−エポキシ−6’−メチルシクロヘキサンカルボキシレート、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)アジペート、およびビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)ブチルアミン、ダイマー酸ジグリシジルエステル等が挙げられる。また、脂環族系としては、前記芳香族系ポリエポキシド化合物の核水添化物も含む;脂肪族系ポリエポキシ化合物としては、多価脂肪族アルコールのポリグリシジルエーテル体、多価脂肪酸のポリグリシジルエステル体、およびグリシジル脂肪族アミンが挙げられる。多価脂肪族アルコールのポリグリシジルエーテル体としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ソルビトールポリグリシジルエーテルおよびポリグリセロールポリグリシジルエーテル等が挙げられる。多価脂肪酸のポリグリシジルエステル体としては、ジグリシジルオキサレート、ジグリシジルマレート、ジグリシジルスクシネート、ジグリシジルグルタレート、ジグリシジルアジペート、ジグリシジルピメレート等が挙げられる。グリシジル脂肪族アミンとしては、N,N,N’,N’−テトラグリシジルヘキサメチレンジアミンが挙げられる。また、本発明において脂肪族系としては、ジグリシジルエーテル、グリシジル(メタ)アクリレートの(共)重合体も含む。これらのうち、好ましいのは、脂肪族系ポリエポキシ化合物および芳香族系ポリエポキシ化合物である。ポリエポキシドは、2種以上併用しても差し支えない。
本発明の製造方法においては、第1の樹脂(a)からなる樹脂粒子(A)と凝集剤(E)を含有する水性分散液(W)と、樹脂(b)もしくはその有機溶剤溶液、または樹脂(b)の前駆体(b0)もしくはその有機溶剤溶液(O)とを混合し、(W)中に(O)を分散させて、(b)からなる樹脂粒子(B)が形成される際に、樹脂粒子(B)の表面に樹脂粒子(A)を吸着させることで樹脂粒子(C)同士が合一するのを防ぎ、また、高剪断条件下で(C)が分裂され難くなる。これにより、(C)の粒径を一定の値に収斂させ、粒径の均一性を高める効果を発揮する。そのため、樹脂粒子(A)は、分散する際の温度において、剪断により破壊されない程度の強度を有すること、水に溶解したり、膨潤したりしにくいこと、(b)もしくはその有機溶剤溶液、または(b0)もしくはその有機溶剤溶液(O)に溶解しにくいことが好ましい特性としてあげられる。
(b)および(b0)の中では、生産性の点から、(b)またはその有機溶剤溶液を用いる方法が好ましい。
上記製造方法においては、水性分散体(X1)中に、凝集剤(E)を含有させることにより、(C)の粒径をより一定の値に収斂させ、粒径の均一性を高める効果を発揮する。このときの凝集剤(E)の含有量が0.001%以上であると凝集効果が発現され粒径の均一性を高めることができ、20%以下であると樹脂粒子(C)同士が合一しにくくなる。(X1)中の凝集剤(E)の含有量が0.1〜15%であると粒子の均一性をより高めることができ、さらに好ましい。
また、凝集剤(E)を含有させることにより、(C)の形状を制御することができる。凝集剤(E)の含有量が多いと形状はよりいびつにすることができ、凝集剤(E)の含有量が少ないと形状はより球形となる。
ここで用いられる凝集剤(E)としては、無機酸の金属塩(アルカリ金属塩、アルカリ土類金属塩、およびアルミニウム塩が好ましい)が挙げられ、2種以上を併用してもよい。
塩を構成するアルカリ金属としては、リチウム、カリウム、ナトリウム等が、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられ、更にこれら以外の金属として、3価以上のアルミニウム等の金属も用いることができる。好ましくは、カリウム、ナトリウム、マグネシウム、カルシウム、バリウム、およびアルミニウムである。塩を構成する無機酸としては、塩酸、臭化水素酸、沃化水素酸、炭酸、硫酸等が挙げられ、好ましくは塩酸、および硫酸である。具体例としては、塩化ナトリウム、塩化カリウム、塩化カルシウム、硫酸マグネシウム、塩化アルミニウム等が挙げられる。
樹脂粒子(A)が水や分散時に用いる有機溶剤に対して、溶解したり、膨潤したりするのを低減する観点から、樹脂(a)の分子量、sp値(sp値の計算方法はPolymer Engineering and Science,Feburuary,1974,Vol.14,No.2 P.147〜154に記載された方法によって計算される)、融点等を適宜調整するのが好ましい。
樹脂(a)の数平均分子量(ゲルパーミエーションクロマトグラフィーにて測定、以下Mnと略記)は、好ましくは100〜500万、さらに好ましくは200〜500万、とくに好ましくは500〜500,000であり、sp値は、好ましくは7〜18、さらに好ましくは8〜14である。樹脂(a)の融点(DSCにて測定)は、好ましくは50℃以上、さらに好ましくは80〜200℃である。
本発明においてポリウレタン以外の樹脂(ポリエステル樹脂等)のMn、および重量平均分子量(以下Mwと略記)は、テトラヒドロフラン(THF)可溶分について、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定される。
装置(一例) : 東ソー製 HLC−8120
カラム(一例): TSKgelGMHXL(2本)
TSKgelMultiporeHXL−M(1本)
試料溶液 : 0.25%のTHF溶液
溶液注入量 : 100μl
流量 : 1ml/分
測定温度 : 40℃
検出装置 : 屈折率検出器
基準物質 : 東ソー製 標準ポリスチレン(TSKstandard POLYSTYRENE)12点 (分子量 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000 4480000)
また、ポリウレタン樹脂のMnおよびMwは、GPCを用いて以下の条件で測定される。
装置(一例) : 東ソー製 HLC−8220GPC
カラム(一例): Guardcolumn α
TSKgel α−M
試料溶液 : 0.125%のジメチルホルムアミド溶液
溶液注入量 : 100μl
流量 : 1ml/分
温度 : 40℃
検出装置 : 屈折率検出器
基準物質 : 東ソー製 標準ポリスチレン(TSKstandard POLYSTYRENE)12点(分子量 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000)
樹脂(a)のガラス転移温度(Tg)は、樹脂粒子(D)の粒径均一性、粉体流動性、保存時の耐熱性、耐ストレス性の観点から、好ましくは20℃〜250℃、さらに好ましくは30℃〜230℃、より好ましくは40℃〜200℃、とくに好ましくは50℃〜120℃ある。水性分散体(X1)を作成する温度よりTgが高いと、合一を防止したり、分裂を防止したりする効果が大きくなり、粒径の均一性を高める効果が大きくなる。
また、(a)からなる樹脂粒子(A)もしくは樹脂(a)の被膜(P)のTgは、同様の理由で、好ましくは20〜200℃、さらに好ましくは30〜100℃、とくに好ましくは40〜85℃である。
なお、本発明におけるTgは、DSC測定またはフローテスター測定(DSCで測定できない場合)から求められる値である。
DSCで測定の場合は、セイコー電子工業(株)製DSC20、SSC/580を用いて、ASTM D3418−82に規定の方法(DSC法)で測定される。
フローテスター測定には、島津製作所製の高架式フローテスターCFT500型を用いる。フローテスター測定の条件は下記のとおりであり、以下測定は全てこの条件で行われる。
(フローテスター測定条件)
荷重:30kg/cm2、昇温速度:3.0℃/min、
ダイ口径:0.50mm、ダイ長さ:10.0mm
また図2に示すフローチャートにあるA点(試料が圧縮荷重を受け変形し始める温度)をガラス転移温度(Tg)とし、B点(内部空隙が消失し不均一な応力の分布を持ったまま外観均一な1個の透明体あるいは相になる点)の温度を軟化開始温度(Ts)、C点(試料の熱膨張によるピストンのわずかな上昇が行われた後、再びピストンが明らかに下降し始める点)の温度を流出開始温度(Tfb)、そしてD点(図において流出終了点Smaxと最低値Sminの差の1/2(X)を求め、XとSminを加えた点)の温度を流出温度(T1/2)とする。
樹脂(a)の軟化開始温度(Ts)は、保存時の耐熱性、耐ストレス性、紙面などへの定着特性の観点から、好ましくは40℃〜270℃、さらに好ましくは50℃〜250℃、とくに好ましくは60℃〜220℃、最も好ましくは70℃〜160℃あり、また流出温度(T1/2)は、好ましくは60℃〜300℃、さらに好ましくは65℃〜280℃、とくに好ましくは70℃〜250℃、最も好ましくは80℃〜180℃ある。トナーなどとして用いる場合、軟化開始温度(Ts)、流出温度(T1/2)が低温であるほど低温定着性や高光沢性などを阻害しにくい。なお、本発明における軟化開始温度、流出温度は、上記フローテスター測定から求められる値である。
樹脂(a)のガラス転移温度(Tg)と流出温度(T1/2)との温度差は、好ましくは0℃〜130℃、さらに好ましくは0℃〜120℃、とくに好ましくは0℃〜100℃、最も好ましくは0℃〜80℃である。このガラス転移温度と軟化開始温度の温度差が上記範囲内であると、樹脂粒子をトナーとして用いる場合、樹脂粒子の耐熱保存と高光沢の両立が容易である。
また、樹脂(a)のガラス転移温度(Tg)と軟化開始温度(Ts)との好ましい温度差は、0℃〜100℃、より好ましくは0℃〜70℃、さらに好ましくは0℃〜50℃、とくに好ましくは0℃〜35℃である。このガラス転移温度と軟化開始温度の温度差が上記範囲内であると、樹脂粒子をトナーとして用いる場合、樹脂粒子の耐熱保存と高光沢の両立が容易である。
樹脂(a)は、前述のように公知の樹脂から選択されるが、樹脂(a)のガラス転移温度(Tg)、軟化開始温度(Ts)、および流出温度(T1/2)を調整する場合、(a)の分子量および/または(a)を構成する単量体組成を変更することで容易に調整できる。(a)の分子量(分子量が大きくなるほど、これらの温度は高くなる。)を調整する方法としては、公知の方法でよく、例えば、ポリウレタン樹脂やポリエステル樹脂のような逐次反応で重合する場合には、単量体の仕込み比の調整が挙げられ、ビニル樹脂のような連鎖反応で重合する場合には、重合開始剤量および連鎖移動剤量の調整、反応温度、反応濃度の調整が挙げられる。ガラス転移温度(Tg)と流出温度(T1/2)との温度差を調整するには、(a)の分子量と(a)を構成する単量体組成との組み合わせを適切に選択すればよい。
本発明の製造方法において、樹脂粒子(D)は、表面に付着した樹脂(a)からなる樹脂粒子(A)もしくは樹脂(a)の被膜(P)の少なくとも一部を分離除去および/または溶解除去して得られるが、完全に除去できずに表面に残留した樹脂(a)の軟化開始温度(Ts)、流出温度(T1/2)およびガラス転移温度(Tg)が上記の範囲内であれば、トナーなどに用いる場合、低温定着性や高光沢性などが向上することがある。
本発明に用いる樹脂(a)は、40〜270℃の軟化開始温度、20〜250℃のガラス転移温度、60〜300℃の流出温度、および0〜130℃のガラス転移温度と流出温度の差をすべて有する樹脂であることが好ましい。
樹脂粒子(A)の水性分散液(W)中に、水以外に後述の有機溶剤(u)のうち水と混和性の溶剤(アセトン、メタノール、メチルエチルケトン等)が含有されていてもよい。この際、含有される有機溶剤は、樹脂粒子(A)の凝集を引き起こさないもの、樹脂粒子(A)を溶解しないもの、および樹脂粒子(C)の造粒を妨げることがないものであればどの種であっても、またどの程度の含有量であってもかまわないが、水との合計量の40%以下用いて、乾燥後の樹脂粒子(D)中に残らないものが好ましい。
樹脂(a)を樹脂粒子(A)の水性分散液(W)にする方法は、とくに限定されないが、以下の〔1〕〜〔8〕が挙げられる。
〔1〕ビニル樹脂の場合において、モノマーを出発原料として、懸濁重合法、乳化重合法、シード重合法または分散重合法等の重合反応により、直接、樹脂粒子(A)の水性分散液を製造する方法
〔2〕ポリエステル樹脂等の重付加あるいは縮合系樹脂の場合において、前駆体(モノマー、オリゴマー等)またはその有機溶剤溶液を必要であれば適当な分散剤存在下で水性媒体中に分散させ、その後に加熱したり、硬化剤を加えたりして前躯体を硬化させて樹脂粒子(A)の水性分散体を製造する方法
〔3〕ポリエステル樹脂等の重付加あるいは縮合系樹脂の場合において、前駆体(モノマー、オリゴマー等)またはその有機溶剤溶液(液体であることが好ましい。加熱により液状化してもよい)中に必要により適当な乳化剤を溶解させた後、水を加えて転相乳化し、硬化剤を加えたりして前駆体を硬化させて樹脂粒子(A)の水性分散体を製造する方法
〔4〕あらかじめ重合反応(付加重合、開環重合、重付加、付加縮合、縮合重合等いずれの重合反応様式であってもよい。以下同様。)により作成した樹脂を機械回転式またはジェット式等の微粉砕機を用いて粉砕し、次いで、分級することによって樹脂粒子を得た後、必要により適当な分散剤存在下で水中に分散させる方法
〔5〕あらかじめ重合反応により作成した樹脂を有機溶剤に溶解した樹脂溶液を霧状に噴霧することにより樹脂粒子を得た後、該樹脂粒子を必用により適当な分散剤存在下で水中に分散させる方法
〔6〕あらかじめ重合反応により作成した樹脂を有機溶剤に溶解した樹脂溶液に貧溶剤を添加するか、またはあらかじめ有機溶剤に加熱溶解した樹脂溶液を冷却することにより樹脂粒子を析出させ、次いで、有機溶剤を除去して樹脂粒子を得た後、該樹脂粒子を必用により適当な分散剤存在下で水中に分散させる方法
〔7〕あらかじめ重合反応により作成した樹脂を有機溶剤に溶解した樹脂溶液を、必用により適当な分散剤存在下で水性媒体中に分散させ、これを加熱または減圧等によって有機溶剤を除去する方法
〔8〕あらかじめ重合反応により作成した樹脂を有機溶剤に溶解した樹脂溶液中に必用により適当な乳化剤を溶解させた後、水を加えて転相乳化する方法
これらの方法の中で好ましいのは、〔1〕、〔7〕、および〔8〕の方法である。
上記〔1〕〜〔8〕の方法において、併用する乳化剤または分散剤としては、公知の界面活性剤(s)、水溶性ポリマー(t)等を用いることができる。また、乳化または分散の助剤として有機溶剤(u)、可塑剤(v)等を併用することができる。ただし樹脂粒子(C)の水性分散体(X1)中に含有させる界面活性剤(s)を1000ppm以下とすることが好ましく、さらに好ましくは100ppm以下、とくに好ましくは40ppm以下である。使用する界面活性剤(s)が上記範囲であると、樹脂粒子(D)からの(s)の洗浄が容易あるいは不要であり、さらに得られる(D)の帯電特性が向上することから好ましい。ちなみに(s)の含有量(%)は、(X1)の製造に用いる原料仕込み量から算出される量(%)である。
本発明の製造方法においては、凝集剤(E)を用いることにより、界面活性剤(s)を用いなくても、水性分散液(W)および水性分散体(X1)を容易に製造できる。
界面活性剤(s)としては、特に限定されず、アニオン界面活性剤(s−1)、カチオン界面活性剤(s−2)、両性界面活性剤(s−3)、非イオン界面活性剤(s−4)などが挙げられる。界面活性剤(s)は2種以上の界面活性剤を併用したものであってもよい。(s)の具体例としては、以下に述べるものの他、特開2002−284881号公報に記載のものが挙げられる。
アニオン界面活性剤(s−1)としては、カルボン酸またはその塩、硫酸エステル塩、カルボキシメチル化物の塩、スルホン酸塩およびリン酸エステル塩等が用いられる。
カチオン界面活性剤(s−2)としては、第4級アンモニウム塩型界面活性剤およびアミン塩型界面活性剤等が使用できる。
両性界面活性剤(s−3)としては、カルボン酸塩型両性界面活性剤、硫酸エステル塩型両性界面活性剤、スルホン酸塩型両性界面活性剤およびリン酸エステル塩型両性界面活性剤などが使用できる。
非イオン界面活性剤(s−4)としては、アルキレンオキサイド付加型非イオン界面活性剤および多価アルコ−ル型非イオン界面活性剤などが使用できる。
水溶性ポリマー(t)としては、セルロース系化合物(例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロースおよびそれらのケン化物など)、ゼラチン、デンプン、デキストリン、アラビアゴム、キチン、キトサン、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリルアミド、アクリル酸(塩)含有ポリマー(ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリアクリル酸の水酸化ナトリウム部分中和物、アクリル酸ナトリウム−アクリル酸エステル共重合体)、スチレン−無水マレイン酸共重合体の水酸化ナトリウム(部分)中和物、水溶性ポリウレタン(ポリエチレングリコール、ポリカプロラクトンジオール等とポリイソシアネートの反応生成物等)などが挙げられる。
本発明に用いる有機溶剤(u)は、乳化分散の際に必要に応じて水性媒体中に加えても、被乳化分散体中[樹脂(b)または(b0)を含む油相(O)中]に加えてもよい。
有機溶剤(u)の具体例としては、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素系溶剤;n−ヘキサン、n−ヘプタン、ミネラルスピリット、シクロヘキサン等の脂肪族または脂環式炭化水素系溶剤;塩化メチル、臭化メチル、ヨウ化メチル、メチレンジクロライド、四塩化炭素、トリクロロエチレン、パークロロエチレンなどのハロゲン系溶剤;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテートなどのエステル系またはエステルエーテル系溶剤;ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテルなどのエーテル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ−n−ブチルケトン、シクロヘキサノンなどのケトン系溶剤;メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、2−エチルヘキシルアルコール、ベンジルアルコールなどのアルコール系溶剤;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶剤;ジメチルスルホキシドなどのスルホキシド系溶剤、N−メチルピロリドンなどの複素環式化合物系溶剤、ならびにこれらの2種以上の混合溶剤が挙げられる。
可塑剤(v)は、乳化分散の際に必要に応じて水性媒体中に加えても、被乳化分散体中[樹脂(b)または(b0)を含む油相(O)中]に加えてもよい。
可塑剤(v)としては、何ら限定されず、以下のものが例示される。
(v1)フタル酸エステル[フタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル、フタル酸ジイソデシル等];
(v2)脂肪族2塩基酸エステル[アジピン酸ジ−2−エチルヘキシル、セバシン酸−2−エチルヘキシル等];
(v3)トリメリット酸エステル[トリメリット酸トリ−2−エチルヘキシル、トリメリット酸トリオクチル等];
(v4)燐酸エステル[リン酸トリエチル、リン酸トリ−2−エチルヘキシル、リン酸トリクレジール等];
(v5)脂肪酸エステル[オレイン酸ブチル等];
(v6)およびこれらの2種以上の混合物が挙げられる。
本発明において用いる樹脂粒子(A)の粒径は、通常、形成される樹脂粒子(B)の粒径よりも小さく、粒径均一性の観点から、粒径比[樹脂粒子(A)の体積平均粒径]/[樹脂粒子(B)の体積平均粒径]の値が0.001〜0.3の範囲であるのが好ましい。粒径比の下限は、さらに好ましくは0.003であり、上限は、さらに好ましくは0.25である。粒径比が、0.3より小さいと(A)が(B)の表面に効率よく吸着し、得られる樹脂粒子(C)および(D)の粒子の均一性が高くなる傾向がある。
樹脂粒子(A)の体積平均粒径は、所望の粒径の樹脂粒子(D)を得るのに適した粒径になるように、上記粒径比の範囲で適宜調整することができる。
(A)の体積平均粒径は、一般的には、0.0005〜30μmが好ましい。上限は、さらに好ましくは20μm、とくに好ましくは10μmであり、下限は、さらに好ましくは0.01μm、とくに好ましくは0.02μm、最も好ましくは0.04μmである。ただし、例えば、体積平均粒径1μmの樹脂粒子(D)を得たい場合には、好ましくは0.0005〜0.3μm、とくに好ましくは0.001〜0.2μmの範囲、10μmの樹脂粒子(D)を得た場合には、好ましくは0.005〜3μm、とくに好ましくは0.05〜2μm、100μmの粒子(D)を得たい場合には、好ましくは0.05〜30μm、とくに好ましくは0.1〜20μmである。
なお、体積平均粒径は、レーザー式粒度分布測定装置LA−920(堀場製作所製)やマルチサイザーIII(コールター社製)、光学系としてレーザードップラー法を用いるELS−800(大塚電子社製)などで測定できる。もし、各測定装置間で粒径の測定値に差を生じた場合は、ELS−800での測定値を採用する。
なお、上記粒径比が得やすいことから、後述する樹脂粒子(B)の体積平均粒径は、0.1〜300μmが好ましい。さらに好ましくは0.5〜250μm、特に好ましくは1〜200μmである。
本発明の第2の樹脂(b)としては、公知の樹脂であればいかなる樹脂であっても使用でき、その具体例については、樹脂(a)と同様のものが使用できる。(b)は、用途・目的に応じて適宜好ましいものを選択することができる。
一般に、樹脂(b)として好ましいものは、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、およびそれらの併用であり、さらに好ましいのは、ポリウレタン樹脂、およびポリエステル樹脂である。
樹脂(b)のMn、融点、Tg、sp値は、用途によって好ましい範囲に適宜調整すればよい。
樹脂(b)のsp値は、好ましくは7〜18、さらに好ましくは8〜14、とくに好ましくは9〜14である。
例えば、樹脂粒子(D)をスラッシュ成形用樹脂、粉体塗料として用いる場合、(b)のMnは、好ましくは2,000〜50万、さらに好ましくは4,000〜20万である。(b)の融点(DSCにて測定、以下融点はDSCでの測定値)は、好ましくは0℃〜200℃、さらに好ましくは35℃〜150℃である。(b)のTgは、好ましくは−60℃〜100℃、さらに好ましくは−30℃〜60℃である。
液晶ディスプレイ等の電子部品製造用スペーサー、電子測定機の標準粒子として用いる場合、(b)のMnは、好ましくは2万〜1,000万、さらに好ましくは4万〜200万である。(b)の融点は、好ましくは40℃〜300℃、さらに好ましくは70℃〜250℃である。(b)のTgは、好ましくは−0℃〜250℃、さらに好ましくは50℃〜200℃である。
電子写真、静電記録、静電印刷などに使用されるトナーとして用いる場合、(b)のMnは、好ましくは1,000〜500万、さらに好ましくは2,000〜50万である。(b)の融点は、好ましくは20℃〜300℃、さらに好ましくは80℃〜250℃である。(b)のTgは、好ましくは20℃〜200℃、さらに好ましくは40℃〜150℃である。(b)のsp値は、好ましくは8〜16、さらに好ましくは9〜14である。
本発明の製造方法においては、第1の樹脂(a)からなる樹脂粒子(A)と凝集剤(E)を含有する水性分散液(W)と、第2の樹脂(b)またはその有機溶剤溶液とを混合し、(W)中に(b)またはその有機溶剤溶液を分散させて、(W)中で(b)からなる樹脂粒子(B)を形成させることにより、樹脂粒子(B)の表面に樹脂粒子(A)もしくは樹脂(a)の被膜(P)が付着された構造の樹脂粒子(C)の水性分散体(X1)を得た後、樹脂粒子(C)の表面の樹脂粒子(A)もしくは被膜(P)の少なくとも一部を分離除去および/または溶解除去して、(B)からなる、または(B)の表面の一部が(A)もしくは(P)で被覆された樹脂粒子(D)の水性分散体(X2)を得る。
あるいは、第1の樹脂(a)からなる樹脂粒子(A)と凝集剤(E)を含有する水性分散液(W)と、第2の樹脂(b)の前駆体(b0)またはその有機溶剤溶液とを混合し、(W)中に(b0)またはその有機溶剤溶液を分散させて、さらに(b0)を反応させて、(W)中で(b)からなる樹脂粒子(B)を形成させることにより、樹脂粒子(B)の表面に樹脂粒子(A)もしくは樹脂(a)の被膜(P)が付着された構造の樹脂粒子(C)の水性分散体(X1)を得た後、樹脂粒子(C)の表面の樹脂粒子(A)もしくは被膜(P)の少なくとも一部を分離除去および/または溶解除去して、(B)からなる、または(B)の表面の一部が(A)もしくは(P)で被覆された樹脂粒子(D)の水性分散体(X2)を得る。
なお、(b)と(b0)は併用してもよい。
樹脂(b)もしくはその有機溶剤溶液、または、樹脂(b)の前駆体(b0)もしくはその有機溶剤溶液を水性分散液(W)に分散させる場合には、分散装置を用いることができる。
本発明で使用する分散装置は、一般に乳化機、分散機として市販されているものであればとくに限定されず、例えば、ホモジナイザー(IKA社製)、ポリトロン(キネマティカ社製)、TKオートホモミキサー(特殊機化工業社製)等のバッチ式乳化機、エバラマイルダー(荏原製作所社製)、TKフィルミックス、TKパイプラインホモミキサー(特殊機化工業社製)、コロイドミル(神鋼パンテック社製)、スラッシャー、トリゴナル湿式微粉砕機(三井三池化工機社製)、キャピトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)等の連続式乳化機、マイクロフルイダイザー(みずほ工業社製)、ナノマイザー(ナノマイザー社製)、APVガウリン(ガウリン社製)等の高圧乳化機、膜乳化機(冷化工業社製)等の膜乳化機、バイブロミキサー(冷化工業社製)等の振動式乳化機、超音波ホモジナイザー(ブランソン社製)等の超音波乳化機等が挙げられる。このうち粒径の均一化の観点で好ましいものは、APVガウリン、ホモジナイザー、TKオートホモミキサー、エバラマイルダー、TKフィルミックス、TKパイプラインホモミキサーが挙げられる。
樹脂(b)を樹脂粒子(A)の水性分散液(W)に分散させる際、樹脂(b)は液体であることが好ましい。樹脂(b)が常温で固体である場合には、融点以上の高温下で液体の状態で分散させたり、(b)の有機溶剤溶液を用いてもよい。
樹脂(b)もしくはその有機溶剤溶液、または、前駆体(b0)もしくはその有機溶剤溶液の粘度は、粒径均一性の観点から、好ましくは10〜5万mPa・s(B型粘度計で測定)、さらに好ましくは100〜1万mPa・sである。
分散時の温度としては、好ましくは0〜150℃(加圧下)、さらに好ましくは5〜98℃である。分散体の粘度が高い場合は、温度を上げて粘度を上記好ましい範囲まで低下させて、乳化分散を行うのが好ましい。
樹脂(b)もしくは前駆体(b0)の有機溶剤溶液に用いる有機溶剤は、樹脂(b)を常温もしくは加熱下で溶解しうる溶剤であればとくに限定されず、具体的には、有機溶剤(u)と同様のものが例示される。好ましいものは樹脂(b)の種類によって異なるが、(b)とのsp値差が3以下であるのが好適である。また、樹脂粒子(C)の粒径均一性の観点からは、樹脂(b)を溶解させるが、樹脂(a)からなる樹脂粒子(A)を溶解・膨潤させにくい有機溶剤が好ましい。
樹脂(b)の前駆体(b0)としては、化学反応により樹脂(b)になりうるものであれば特に限定されず、例えば、樹脂(b)が縮合系樹脂(例えば、ポリウレタン樹脂、エポキシ樹脂、ポリエステル樹脂)である場合は、(b0)は、反応性基を有するプレポリマー(α)と硬化剤(β)の組み合わせが、樹脂(b)がビニル樹脂である場合は、(b0)は、先述のビニルモノマー(単独で用いても、混合して用いてもよい)およびそれらの有機溶剤溶液が挙げられる。
ビニルモノマーを前駆体(b0)として用いた場合、前駆体(b0)を反応させて樹脂(b)にする方法としては、例えば、油溶性開始剤、モノマー類および必要により有機溶剤(u)からなる油相を水溶性ポリマー(t)存在下、樹脂粒子(A)の水性分散液(W)中に分散懸濁させ、加熱によりラジカル重合反応を行わせる方法(いわゆる懸濁重合法)、モノマー類および必要により有機溶剤(u)からなる油相を乳化剤(界面活性剤(s)と同様のものが例示される)、水溶性開始剤を含む樹脂粒子(A)の水性分散液(W)中に乳化させ、加熱によりラジカル重合反応を行わせる方法(いわゆる乳化重合法)等が挙げられる。
上記油溶性または水溶性開始剤としては、パーオキサイド系重合開始剤(I)、アゾ系重合開始剤(II)等が挙げられる。また、パーオキサイド系重合開始剤(I)と還元剤とを併用してレドックス系重合開始剤(III)を形成してもよい。更には、(I)〜(III)のうちから2種以上を併用してもよい。
(I)パーオキサイド系重合開始剤としては、(I−1)油溶性パーオキサイド系重合開始剤:アセチルシクロヘキシルスルホニルパーオキサイド、イソブチリルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、2,4−ジクロロベンゾイルパーオキサイド、t−ブチルパーオキシビバレート、オクタノイルパーオキサイド、ラウロイルパーオキサイド、プロピオニトリルパーオキサイド、サクシニックアシッドパーオキサイド、アセチルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ベンゾイルパーオキサイド、パラクロロベンゾイルパーオキサイド、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシマレイックアシッド、t−ブチルパーオキシラウレート、シクロヘキサノンパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジイソブチルジパーオキシフタレート、メチルエチルケトンパーオキサイド、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、t−ブチルヒドロパーオキサイド、ジt−ブチルパーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、パラメンタンヒドロパーオキサイド、2,5−ジメチルヘキサン−2,5−ジヒドロパーオキサイド、クメンパーオキサイド等
(I−2)水溶性パーオキサイド系重合開始剤:過酸化水素、過酢酸、過硫酸アンモニウム、過硫酸ナトリウム等
(II)アゾ系重合開始剤:
(II−1)油溶性アゾ系重合開始剤:2,2’−アゾビスイソブチロニトリル、1,1’−アゾビスシクロヘキサン1−カーボニトリル、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、2,2’−アゾビス−2,4−ジメチルバレロニトリル、ジメチル−2,2’−アゾビス(2−メチルプロピオネート)、1,1’−アゾビス(1−アセトキシ−1−フェニルエタン)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等
(II−2)水溶性アゾ系重合開始剤:アゾビスアミジノプロパン塩、アゾビスシアノバレリックアシッド(塩)、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]等
(III)レドックス系重合開始剤
(III−1)非水系レドックス系重合開始剤:ヒドロペルオキシド、過酸化ジアルキル、過酸化ジアシル等の油溶性過酸化物と、第三アミン、ナフテン酸塩、メルカプタン類、有機金属化合物(トリエチルアルミニウム、トリエチルホウ素、ジエチル亜鉛等)等の油溶性還元剤とを併用
(III−2)水系レドックス系重合開始剤:過硫酸塩、過酸化水素、ヒドロペルオキシド等の水溶性過酸化物と、水溶性の無機もしくは有機還元剤(2価鉄塩、亜硫酸水素ナトリウム、アルコール、ポリアミン等)とを併用等が挙げられる。
前駆体(b0)としては、反応性基を有するプレポリマー(α)と硬化剤(β)の組み合わせを用いることもできる。ここで「反応性基」とは硬化剤(β)と反応可能な基のことをいう。この場合、前駆体(b0)を反応させて樹脂(b)を形成する方法としては、反応性基含有プレポリマー(α)および硬化剤(β)および必要により有機溶剤(u)を含む油相を、樹脂粒子(A)の水性分散液(W)中に分散させ、加熱により反応性基含有プレポリマー(α)と硬化剤(β)を反応させた樹脂(b)からなる樹脂粒子(B)を形成させる方法;反応性基含有プレポリマー(α)またはその有機溶剤溶液を樹脂粒子(A)の水性分散液(W)中に分散させ、ここに水溶性の硬化剤(β)を加え反応させて、樹脂(b)からなる樹脂粒子(B)を形成させる方法;反応性基含有プレポリマー(α)が水と反応して硬化するものである場合は、反応性基含有プレポリマー(α)またはその有機溶剤溶液を樹脂粒子(A)の水性分散液(W)に分散させることで水と反応させて、(b)からなる樹脂粒子(B)を形成させる方法等が例示できる。
反応性基含有プレポリマー(α)が有する反応性基と、硬化剤(β)の組み合わせとしては、下記〔1〕、〔2〕などが挙げられる。
〔1〕:反応性基含有プレポリマー(α)が有する反応性基が、活性水素化合物と反応可能な官能基(α1)であり、硬化剤(β)が活性水素基含有化合物(β1)であるという組み合わせ。
〔2〕:反応性基含有プレポリマー(α)が有する反応性基が活性水素含有基(α2)であり、硬化剤(β)が活性水素含有基と反応可能な化合物(β2)であるという組み合わせ。
これらのうち、水中での反応率の観点から、〔1〕がより好ましい。
上記組合せ〔1〕において、活性水素化合物と反応可能な官能基(α1)としては、イソシアネート基(α1a)、ブロック化イソシアネート基(α1b)、エポキシ基(α1c)、酸無水物基(α1d)および酸ハライド基(α1e)などが挙げられる。これらのうち好ましいものは、(α1a)、(α1b)および(α1c)であり、特に好ましいものは、(α1a)および(α1b)である。
ブロック化イソシアネート基(α1b)は、ブロック化剤によりブロックされたイソシアネート基のことをいう。
上記ブロック化剤としては、オキシム類[アセトオキシム、メチルイソブチルケトオキシム、ジエチルケトオキシム、シクロペンタノンオキシム、シクロヘキサノンオキシム、メチルエチルケトオキシム等];ラクタム類[γ−ブチロラクタム、ε−カプロラクタム、γ−バレロラクタム等];炭素数1〜20の脂肪族アルコール類[エタノール、メタノール、オクタノール等];フェノール類[フェノール、m−クレゾール、キシレノール、ノニルフェノール等];活性メチレン化合物[アセチルアセトン、マロン酸エチル、アセト酢酸エチル等];塩基性窒素含有化合物[N,N−ジエチルヒドロキシルアミン、2−ヒドロキシピリジン、ピリジンN−オキサイド、2−メルカプトピリジン等];およびこれらの2種以上の混合物が挙げられる。
これらのうち好ましいのはオキシム類であり、特に好ましいものはメチルエチルケトオキシムである。
反応性基含有プレポリマー(α)の骨格としては、ポリエーテル(αw)、ポリエステル(αx)、エポキシ樹脂(αy)およびポリウレタン(αz)などが挙げられる。これらのうち好ましいものは、(αx)、(αy)および(αz)であり、特に好ましいものは(αx)および(αz)である。
ポリエーテル(αw)としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブチレンオキサイド、ポリテトラメチレンオキサイドなどが挙げられる。
ポリエステル(αx)としては、ジオール(11)とジカルボン酸(13)の重縮合物、ポリラクトン(ε−カプロラクトンの開環重合物)などが挙げられる。
エポキシ樹脂(αy)としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールSなど)とエピクロルヒドリンとの付加縮合物などが挙げられる。
ポリウレタン(αz)としては、ジオール(11)とポリイソシアネート(15)の重付加物、ポリエステル(αx)とポリイソシアネート(15)の重付加物などが挙げられる。
ポリエステル(αx)、エポキシ樹脂(αy)、ポリウレタン(αz)などに反応性基を含有させる方法としては、
〔1〕:二以上の構成成分のうちの一つを過剰に用いることで構成成分の官能基を末端に残存させる方法、
〔2〕:二以上の構成成分のうちの一つを過剰に用いることで構成成分の官能基を末端に残存させ、さらに残存した該官能基と反応可能な官能基および反応性基を含有する化合物を反応させる方法などが挙げられる。
上記方法〔1〕では、水酸基含有ポリエステルプレポリマー、カルボキシル基含有ポリエステルプレポリマー、酸ハライド基含有ポリエステルプレポリマー、水酸基含有エポキシ樹脂プレポリマー、エポキシ基含有エポキシ樹脂プレポリマー、水酸基含有ポリウレタンプレポリマー、イソシアネート基含有ポリウレタンプレポリマーなどが得られる。
構成成分の比率は、例えば、水酸基含有ポリエステルプレポリマーの場合、ポリオール〔ジオール(11)等〕とポリカルボン酸〔ジカルボン酸(13)等〕の比率が、水酸基[OH]とカルボキシル基[COOH]の当量比[OH]/[COOH]として、好ましくは2/1〜1.01/1、さらに好ましくは1.5/1〜1.01/1、とくに好ましくは1.3/1〜1.02/1である。他の骨格、末端基のプレポリマーの場合も、構成成分が変わるだけで比率は同様である。
上記方法〔2〕では、上記方法〔1〕で得られたプレプリマーに、ポリイソシアネートを反応させることでイソシアネート基含有プレポリマーが得られ、ブロック化ポリイソシアネートを反応させることでブロック化イソシアネート基含有プレポリマーが得られ、ポリエポキサイドを反応させることでエポキシ基含有プレポリマーが得られ、ポリ酸無水物を反応させることで酸無水物基含有プレポリマーが得られる。
官能基および反応性基を含有する化合物の使用量は、例えば、水酸基含有ポリエステルにポリイソシアネートを反応させてイソシアネート基含有ポリエステルプレポリマーを得る場合、ポリイソシアネートの比率が、イソシアネート基[NCO]と、水酸基含有ポリエステルの水酸基[OH]の当量比[NCO]/[OH]として、好ましくは5/1〜1.01/1、さらに好ましくは4/1〜1.2/1、とくに好ましくは2.5/1〜1.5/1である。他の骨格、末端基を有するプレポリマーの場合も、構成成分が変わるだけで比率は同様である。
反応性基含有プレポリマー(α)中の1分子当たりに含有する反応性基は、通常1個以上、好ましくは、平均1.5〜3個、さらに好ましくは、平均1.8〜2.5個である。上記範囲にすることで、硬化剤(β)と反応させて得られる硬化物の分子量が高くなる。
反応性基含有プレポリマー(α)のMnは、好ましくは500〜30,000、さらに好ましくは1,000〜20,000、よくに好ましくは2,000〜10,000である。
反応性基含有プレポリマー(α)のMwは、好ましくは1,000〜50,000、さらに好ましくは2,000〜40,000、とくに好ましくは4,000〜20,000である。
反応性基含有プレポリマー(α)の粘度は、100℃において、好ましくは2,000ポイズ以下、さらに好ましくは1,000ポイズ以下である。2,000ポイズ以下にすることで、粒度分布のシャープな樹脂粒子(C)および(D)が得られる点で好ましい。
活性水素基含有化合物(β1)としては、脱離可能な化合物でブロック化されていてもよいポリアミン(β1a)、ポリオール(β1b)、ポリメルカプタン(β1c)および水(β1d)などが挙げられる。これらのうち好ましいものは、(β1a)、(β1b)および(β1d)であり、さらに好ましいもは、(β1a)および(β1d)であり、特に好ましいもは、ブロック化されたポリアミン類および(β1d)である。
(β1a)としては、ポリアミン(16)と同様のものが例示される。(β1a)として好ましいものは、4,4’−ジアミノジフェニルメタン、キシリレンジアミン、イソホロンジアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミンおよびそれらの混合物である。
(β1a)が脱離可能な化合物でブロック化されたポリアミンである場合の例としては、前記ポリアミン類と炭素数3〜8のケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)から得られるケチミン化合物、炭素数2〜8のアルデヒド化合物(ホルムアルデヒド、アセトアルデヒド)から得られるアルジミン化合物、エナミン化合物、およびオキサゾリジン化合物などが挙げられる。
ポリオール(β1b)としては、前記のジオール(11)および3〜8価またはそれ以上のポリオール(12)と同様のものが例示される。ジオール(11)単独、またはジオール(11)と少量のポリオール(12)の混合物が好ましい。
ポリメルカプタン(β1c)としては、エチレンジチオール、1,4−ブタンジチオール、1,6−ヘキサンジチオールなどが挙げられる。
必要により活性水素基含有化合物(β1)と共に反応停止剤(βs)を用いることができる。反応停止剤を(β1)と一定の比率で併用することにより、(b)を所定の分子量に調整することが可能である。
反応停止剤(βs)としては、モノアミン(ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミン、モノエタノールアミン、ジエタノールアミンなど);
モノアミンをブロックしたもの(ケチミン化合物など);
モノオール(メタノール、エタノール、イソプロパノール、ブタノール、フェノールなど);
モノメルカプタン(ブチルメルカプタン、ラウリルメルカプタンなど);
モノイソシアネート(ラウリルイソシアネート、フェニルイソシアネートなど);
モノエポキサイド(ブチルグリシジルエーテルなど)などが挙げられる。
上記組合せ〔2〕における反応性基含有プレポリマー(α)が有する活性水素含有基(α2)としては、アミノ基(α2a)、水酸基(アルコール性水酸基およびフェノール性水酸基)(α2b)、メルカプト基(α2c)、カルボキシル基(α2d)およびそれらが脱離可能な化合物でブロック化された有機基(α2e)などが挙げられる。これらのうち好ましいものは、(α2a)、(α2b)およびアミノ基が脱離可能な化合物でブロック化された有機基(α2e)であり、特に好ましいものは、(α2b)である。
アミノ基が脱離可能な化合物でブロック化された有機基としては、前記(β1a)の場合と同様のものが例示できる。
活性水素含有基と反応可能な化合物(β2)としては、ポリイソシアネート(β2a)、ポリエポキシド(β2b)、ポリカルボン酸(β2c)、ポリ酸無水物(β2d)およびポリ酸ハライド(β2e)などが挙げられる。これらのうち好ましいものは、(β2a)および(β2b)であり、さらに好ましいものは、(β2a)である。
ポリイソシアネート(β2a)としては、ポリイソシアネート(15)と同様のものが例示され、好ましいものも同様である。
ポリエポキシド(β2b)としては、ポリエポキシド(19)と同様のものが例示され、好ましいものも同様である。
ポリカルボン酸(β2c)としては、ジカルボン酸(β2c−1)および3価以上のポリカルボン酸(β2c−2)が挙げられ、(β2c−1)単独、および(β2c−1)と少量の(β2c−2)の混合物が好ましい。
ジカルボン酸(β2c−1)としては、前記ジカルボン酸(13)と、ポリカルボン酸(β2c−2)としては、前記3〜6価またはそれ以上のポリカルボン酸(14)と同様のものが例示され、好ましいものも同様である。
ポリカルボン酸無水物(β2d)としては、ピロメリット酸無水物などが挙げられる。
ポリ酸ハライド類(β2e)としては、前記(β2c)の酸ハライド(酸クロライド、酸ブロマイド、酸アイオダイド)などが挙げられる。
さらに、必要により(β2)と共に反応停止剤(βs)を用いることができる。
硬化剤(β)の比率は、反応性基含有プレポリマー(α)中の反応性基の当量[α]と、硬化剤(β)中の活性水素含有基[β]の当量の比[α]/[β]として、好ましくは1/2〜2/1、さらに好ましくは1.5/1〜1/1.5、とくに好ましくは1.2/1〜1/1.2である。なお、硬化剤(β)が水(β1d)である場合は水は2価の活性水素化合物として取り扱う。
反応性基含有プレポリマー(α)と硬化剤(β)からなる前駆体(b0)を水系媒体中で反応させた樹脂(b)が樹脂粒子(B)および樹脂粒子(C)の構成成分となる。反応性基含有プレポリマー(α)と硬化剤(β)を反応させた樹脂(b)のMwは、好ましくは3,000以上、さらに好ましくは3,000〜1000万、とくに好ましくは5000〜100万である。
また、水性分散液(W)中において、反応性基含有プレポリマー(α)と硬化剤(β)の反応時に、反応性基含有プレポリマー(α)および硬化剤(β)と反応しないポリマー[いわゆるデッドポリマー]を系内に含有させることもできる。この場合(b)は、反応性基含有プレポリマー(α)と硬化剤(β)を水系媒体中で反応させて得られた樹脂と、反応させていない樹脂(デッドポリマー)の混合物となる。
樹脂(b)もしくは前駆体(b0)100重量部に対する水性分散液(W)の使用量は、好ましくは50〜2,000重量部、さらに好ましくは100〜1,000重量部である。50重量部以上では(b)の分散状態が良好であり、2,000重量部以下であると経済的である。
本発明において、樹脂粒子(C)を得るための樹脂粒子(A)の樹脂粒子(B)に対する吸着力は、以下のような方法で制御することができる。
〔1〕:水性分散体(X1)を製造する際に、樹脂(a)と樹脂(b)が正負逆の電荷を持つようにすると吸着力が発生し、この場合、樹脂(a)、樹脂(b)各々の電荷を大きくするほど、吸着力が強くなり、樹脂(a)の樹脂(b)に対する被覆率が大きくなる。
〔2〕:水性分散体(X1)を製造する際に、樹脂(a)と樹脂(b)が同極性(どちらも正、またはどちらも負)の電荷を持つようにすると、被覆率は下がる傾向にある。この場合、一般に界面活性剤(s)および/または水溶性ポリマー(t)[とくに樹脂粒子(A)および樹脂粒子(B)と逆電荷を有するもの]を使用すると吸着力が強くなり、被覆率が上がる。
〔3〕:水性分散体(X1)を製造する際に、樹脂(a)がカルボキシル基、リン酸基、スルホン酸基等の酸性官能基を有する樹脂(一般に酸性官能基1個当たりの分子量が1,000以下であるのが好ましい)である場合に、水性媒体のpHが低いほど、吸着力が強くなる。逆に、pHを高くするほど、吸着力が弱くなる。
〔4〕:水性分散体(X1)を製造する際に、樹脂(a)が1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム塩基等の塩基性官能基を有する樹脂(一般に塩基性官能基1個当たりの分子量が1,000以下であるのが好ましい)である場合に、水性媒体のpHが高いほど吸着力が強くなる。逆に、pHを低くするほど吸着力が弱くなる。
〔5〕:樹脂(a)と樹脂(b)のsp値の差(Δsp値)を小さくすると吸着力が強くなる。
本発明において、樹脂粒子(D)の形状の制御は、以下の方法で行うことができる。
樹脂(a)と樹脂(b)のsp値差、また樹脂(a)の分子量、さらに凝集剤(E)の添加量で粒子形状や粒子表面性を制御することができる。sp値差が小さいといびつな形で表面平滑な粒子が得られやすく、また、sp値差が大きいと球形で表面はザラつきのある粒子が得られやすい。また、(A)の分子量が大きいと表面はザラつきのある粒子が得られやすく、分子量が小さいと表面平滑な粒子が得られやすい。さらに、凝集剤(E)の添加量が多いと形状はよりいびつになり、凝集剤(E)の含有量が少ないと形状はより球形となる。ただし、(a)と(b)のsp値差は小さすぎても大きすぎても造粒困難になる。また樹脂(a)の分子量も小さすぎると造粒困難になる。このことから、好ましい(a)と(b)のsp値差は0.01〜5.0で、より好ましくは0.1〜3.0、さらに好ましくは0.2〜2.0である。また、樹脂(a)のMwは、好ましくは100〜100万で、より好ましくは1000〜50万、さらに好ましくは2000〜20万、特に好ましくは3000〜10万である。
樹脂粒子(C)は、実質的に、相対的に小さい樹脂粒子(A)と相対的に大きい樹脂粒子(B)から構成され、(A)が(B)の表面に付着された形で存在する、あるいは、(A)が(B)に付着後、溶解および/または溶融され、(B)の表面に(A)からの被膜(P)が形成されて得られたものである。
本発明の製造方法において、水性分散体(X1)中の樹脂粒子(C)は、樹脂粒子(A)と樹脂粒子(B)から構成され、(A)が(B)の表面に付着された形で存在する場合もあるが、前記の好ましい範囲の(Ts)、(Tg)、(T1/2)等の物性を有する樹脂(a)を用いることにより、例えば、とくに(b)もしくは(b0)の有機溶剤溶液(とくに下記の好ましい有機溶剤)を用いる場合、有機溶剤を水性分散体(X1)中に好ましくは10〜50%(とくに20〜40%)用い、40℃以下で好ましくは1%以下(とくに0.5%以下)となるまで脱溶剤することで、樹脂粒子(A)が有機溶剤に溶解されて膜状化し、(B)の表面に樹脂(a)からなる被膜(P)が形成された樹脂粒子(C)の水性分散体(X1)が得られる場合が多い。
上記有機溶剤としては、(b)との親和性が高いものが好ましく、具体例としては、前記の有機溶剤(u)と同様のものが挙げられる。(u)の中で好ましいものは、被膜化の点から、テトラヒドロフラン、トルエン、アセトン、メチルエチルケトン、および酢酸エチルであり、さらに好ましくは酢酸エチルである。
本発明において、樹脂粒子(C)および(D)の粒径均一性、樹脂粒子(D)の保存安定性等の観点から、中間体である樹脂粒子(C)は、0.01〜60%の樹脂粒子(A)もしくは樹脂(a)の被膜(P)と40〜99.99%の(B)からなるのが好ましく、さらに好ましくは0.1〜50%の(A)もしくは(P)と50〜99.9%の(B)、とくに好ましくは1〜45%の(A)もしくは(P)と55〜99%の(B)からなる。
また、樹脂粒子(C)および(D)の粒径均一性、樹脂粒子(D)の粉体流動性、保存安定性等の観点からは、樹脂粒子(C)において、樹脂粒子(B)の表面の5%以上、好ましくは30%以上、さらに好ましくは50%以上、とくに好ましくは80%以上が樹脂粒子(A)もしくは樹脂(a)からなる被膜(P)で覆われているのがよい。(C)の表面被覆率は、後述する(D)の水性分散体から水性媒体を除去する方法と同様の方法で水性媒体を除去して得られる樹脂粒子の、走査電子顕微鏡(SEM)で得られる像の画像解析から下式に基づいて求めることができる。
表面被覆率(%)=[樹脂粒子(A)もしくは被膜(P)に覆われている部分の面積/樹脂粒子(A)もしくは被膜(P)に覆われている部分の面積+樹脂粒子(B)が露出している部分の面積]×100
樹脂粒子(D)の粒径均一性、粉体流動性等の観点から、樹脂粒子(A)もしくは樹脂(a)の被膜(P)の量は、(D)の重量に対して、好ましくは5%以下、さらに好ましくは4%以下、特に好ましくは3%以下、もっとも好ましくは0.1〜1%である。(A)もしくは(P)の量はDSCで測定された溶融熱量から下式に基づいて求めることができる。
樹脂粒子(A)もしくは被膜(P)の量(%)=[(A)もしくは(P)の溶融熱量/(A)もしくは(P)の溶融熱量+樹脂粒子(B)の溶融熱量]×100
また、樹脂粒子(D)の粒径均一性、粉体流動性等の観点から、樹脂粒子(D)において、樹脂粒子(A)もしくは樹脂(a)の被膜(P)による樹脂粒子(B)の表面の被覆率は、好ましくは4.9%以下、さらに好ましくは4%以下、とくに好ましくは3%以下、最も好ましくは0.1〜1%である。なお、表面被覆率は、走査電子顕微鏡(SEM)で得られる像の画像解析から前記の式に基づいて求めることができる。
(A)もしくは(P)の表面被覆率を上記範囲内に調整する方法としては、もし所望の被覆率より高い樹脂粒子が得られた場合は、後述する樹脂粒子(A)もしくは樹脂(a)の被膜(P)の分離除去および/または溶解除去の操作を繰り返せばよい。
なお、樹脂粒子(D)において、第2の樹脂(b)からなる樹脂粒子(B)の表面を被覆するのは、第1の樹脂(a)からなる樹脂粒子(A)でも樹脂(a)の被膜(P)でもよく、樹脂粒子(A)の一部が被膜化され、(A)と(P)が並存するものであってもよい。(B)の表面を被覆するのが被膜(P)であることが、樹脂粒子表面の平滑性の点から好ましい
粒径均一性の観点から、樹脂粒子(C)および樹脂粒子(D)の体積分布の変動係数は、30%以下であるのが好ましく、0.1〜15%であるのがさらに好ましい。
また、粒径均一性から、樹脂粒子(C)および(D)の[体積平均粒径/個数平均粒径]の値は、1.0〜1.4であるのが好ましく、1.0〜1.2であるのがさらに好ましい。
樹脂粒子(C)および(D)の体積平均粒径は、用途により異なるが、一般的には0.1〜300μmが好ましい。上限は、さらに好ましくは250μm、特に好ましくは200μmであり、下限は、さらに好ましくは0.5μm、特に好ましくは1μmである。
なお、体積平均粒径および個数平均粒径は、マルチサイザーIII(コールター社製)で同時に測定することができる。
樹脂粒子(D)は、樹脂粒子(A)と樹脂粒子(B)の粒径、および、樹脂粒子(A)もしくは樹脂(a)からなる被膜(P)による樹脂粒子(B)表面の被覆率を変えることで粒子表面に所望の凹凸を付与することができる。粉体流動性を向上させたい場合には、(D)のBET値比表面積が0.5〜5.0m2/gであるのが好ましい。より好ましくは0.5〜4.5m2/gであり、さらに好ましくは0.5〜4.0m2/gである。本発明のBET比表面積は、比表面積計、例えばQUANTASORB(ユアサアイオニクス製)を用いて測定(測定ガス:He/Kr=99.9/0.1vol%、検量ガス:窒素)したものである。
同様に粉体流動性の観点から、(D)の表面平均中心線粗さRaが0.01〜1.0μmであるのが好ましい。より好ましくは0.01〜0.9μmであり、さらに好ましくは0.02〜0.8μmである。Raは、粗さ曲線とその中心線との偏差の絶対値を算術平均した値のことであり、例えば、走査型プローブ顕微鏡システム(東陽テクニカ製)で測定することができる。
樹脂粒子(D)の形状は、粉体流動性、溶融レベリング性等の観点から球状であるのが好ましい。その場合、樹脂粒子(D)が樹脂粒子(B)のみである、または樹脂粒子(B)に付着しているのが樹脂(a)からなる被膜(P)であり、且つ(B)が球状であるか、(B)に付着しているのが樹脂粒子(A)の場合は、(A)および(B)も球状であるのが好ましい。(D)は平均円形度が0.95〜1.00であるのが好ましい。平均円形度は、さらに好ましくは0.96〜1.0、とくに好ましくは0.97〜1.0である。なお、平均円形度は、光学的に粒子を検知して、投影面積の等しい相当円の周囲長で除した値である。具体的には、フロー式粒子像分析装置(FPIA−2000;シスメックス社製)を用いて測定する。所定の容器に、予め不純固形物を除去した水100〜150mlを入れ、分散剤として界面活性剤(ドライウエル;富士写真フィルム社製)0.1〜0.5mlを加え、さらに測定資料0.1〜9.5g程度を加える。試料を分散した懸濁液を超音波分散器(ウルトラソニッククリーナ モデル VS−150;ウエルボクリア社製)で約1〜3分間分散処理を行ない、分散濃度を3,000〜10,000個/μLにして、樹脂粒子の形状および分布を測定する。
本発明の製造方法により得られる樹脂粒子(D)は、樹脂粒子(B)に付着しているのが被膜(P)であることが好ましいが、樹脂粒子(A)である場合は、樹脂粒子(A)の樹脂粒子(B)に対する粒径比、および、水性分散体(X1)中における樹脂粒子(A)による樹脂粒子(B)表面の被覆率、水性分散体(X1)中における樹脂粒子(B)/水性媒体界面上で樹脂粒子(A)が樹脂粒子(B)側に埋め込まれている深さ、を変えることで粒子表面を平滑にしたり、粒子表面に所望の凹凸を付与したりすることができる。
樹脂粒子(A)による樹脂粒子(B)表面の被覆率や樹脂粒子(A)が樹脂粒子(B)側に埋め込まれている深さは、以下のような方法で制御することができる。
〔1〕:樹脂粒子(C)からなる水性分散体(X1)を製造する際に、樹脂粒子(A)と樹脂粒子(B)が正負逆の電荷を持つようにすると被覆率、深さが大きくなる。この場合、樹脂粒子(A)、樹脂粒子(B)各々の電荷を大きくするほど、被覆率、深さが大きくなる。
〔2〕:樹脂粒子(C)からなる水性分散体(X1)を製造する際に、樹脂粒子(A)と樹脂粒子(B)が同極性(どちらも正、またはどちらも負)の電荷を持つようにすると、被覆率は下がり、深さが小さくなる傾向にある。この場合、一般に活性剤(s)および/または水溶性ポリマー(t)[とくに樹脂粒子(A)および樹脂粒子(B)と逆電荷を有するもの]を使用すると被覆率が上がる。また、水溶性ポリマー(t)を使用する場合には、水溶性ポリマー(t)の分子量が大きいほど深さが小さくなる。
〔3〕:樹脂粒子(C)からなる水性分散体(X1)を製造する際に、樹脂(a)がカルボキシル基、リン酸基、スルホン酸基等の酸性官能基を有する樹脂(一般に酸性官能基1個当たりの分子量が1,000以下であるのが好ましい)である場合に、水性媒体のpHが低いほど被覆率、深さが大きくなる。逆に、pHを高くするほど被覆率、深さが小さくなる。
〔4〕:樹脂粒子(C)からなる水性分散体(X1)を製造する際に、樹脂(a)が1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム塩基等の塩基性官能基を有する樹脂(一般に塩基性官能基1個当たりの分子量が1,000以下であるのが好ましい)である場合に、水性媒体のpHが高いほど被覆率、深さが大きくなる。逆に、pHを低くするほど被覆率、深さが小さくなる。
〔5〕:樹脂(a)と樹脂(b)のsp値差を小さくするほど被覆率、深さが大きくなる。
本発明の製造方法において、樹脂粒子(D)の水性分散体(X2)は、樹脂粒子(C)から、互いに付着している樹脂粒子(A)もしくは樹脂(a)の被膜(P)と樹脂粒子(B)を脱離させた後、該水性分散体から樹脂粒子(A)もしくは被膜(P)を分離除去したり、または該水性分散体中において、樹脂粒子(B)を溶解させることなく樹脂粒子(A)もしくは被膜(P)を溶解させたりして得られる。樹脂粒子(A)もしくは被膜(P)の溶解物は必要に応じて分離除去してもよい。さらに、樹脂粒子(D)の水性分散体(X2)から水性媒体を除去することにより樹脂粒子(D)が得られる。
樹脂粒子(C)の水性分散体(X1)中において、付着している樹脂粒子(A)もしくは樹脂(a)の被膜(P)と樹脂粒子(B)を脱離させる方法としては、
〔1〕樹脂粒子(C)の水性分散体を超音波処理する方法
〔2〕樹脂粒子(C)の水性分散体を大量の水またはメタノール、エタノール若しくはアセトン等の水溶性の有機溶剤で希釈し、攪拌により剪断を与える方法
〔3〕樹脂粒子(C)の水性分散体に酸、アルカリまたは無機塩類等を添加し、攪拌により剪断を与える方法
〔4〕樹脂粒子(C)の水性分散体を加熱し、攪拌により剪断を与える方法
〔5〕樹脂粒子(C)の水性分散体が有機溶剤を含む場合[樹脂(a)の有機溶剤溶液および/または樹脂(b)有機溶剤溶液が水性媒体中に分散されている場合や、水性媒体中に有機溶剤が溶解している場合]に、脱溶剤を行う方法等が例示される。
樹脂粒子(C)の水性分散体(X1)中において、樹脂粒子(A)もしくは被膜(P)を溶解させる方法としては、
〔1〕樹脂(a)がカルボキシル基、リン酸基、スルホン酸基等の酸性官能基を有する樹脂(一般に酸性官能基1個当たりの分子量が1,000以下であるのが好ましい)である場合に、水性分散体中に水酸化ナトリウム、水酸化カリウム、アンモニア、DBU等のアルカリまたはそれらの水溶液を加える方法
〔2〕樹脂(a)が1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム塩基等の塩基性官能基を有する樹脂(一般に塩基性官能基1個当たりの分子量が1,000以下であるのが好ましい)である場合に、水性分散体中に塩酸、硫酸、リン酸、酢酸等の酸またはそれらの水溶液を加える方法
〔3〕樹脂(a)が、特定の有機溶剤(u)に溶解する場合{一般に樹脂(a)と有機溶剤(u)のSP値の差が2.5以下であるのが好ましい}に、水性分散体中に特定の有機溶剤(u)を加える方法等が例示される。
樹脂粒子(A)もしくは被膜(P)を除去する方法としては、樹脂粒子を溶解する方法が好ましく、さらに好ましくは、酸性官能基を有する樹脂にアルカリまたはそれらの水溶液を加える方法および塩基性官能基を有する樹脂に酸またはその水溶液を加える方法であり、特に好ましくは、酸性官能基を有する樹脂にアルカリまたはその水溶液を加える方法である。
水性分散体から樹脂粒子(A)もしくは被膜(P)またはその溶解物を分離除去する方法としては、
〔1〕一定の目開きを有する濾紙、濾布、メッシュ等を用いて濾過し、樹脂粒子(B)のみを濾別する方法
〔2〕遠心分離により樹脂粒子(B)のみを沈降させ、上澄み中に含まれる樹脂粒子(A)もしくは被膜(P)またはその溶解物を除去する方法等が例示される。
水性分散体(X2)から水性媒体を除去し、樹脂粒子(D)を得る方法としては、
〔1〕水性分散体を減圧下または常圧下で乾燥する方法
〔2〕遠心分離器、スパクラフィルター、フィルタープレスなどにより固液分離し、得られた粉末を乾燥する方法
〔3〕水性分散体を凍結させて乾燥させる方法(いわゆる凍結乾燥)
等が例示される。
上記〔1〕、〔2〕において、得られた粉末を乾燥する際、流動層式乾燥機、減圧乾燥機、循風乾燥機など公知の設備を用いて行うことができる。
また、必要に応じ、風力分級器などを用いて分級し、所定の粒度分布とすることもできる。
樹脂粒子(D)を構成する樹脂粒子(A)もしくは被膜(P)および/または樹脂粒子(B)中に、添加剤(顔料、充填剤、帯電防止剤、着色剤、離型剤、荷電制御剤、紫外線吸収剤、酸化防止剤、ブロッキング防止剤、耐熱安定剤、難燃剤など)を混合しても差し支えない。(A)もしくは被膜(P)または(B)中に添加剤を添加する方法としては、水系媒体中で水性分散体(X1)を形成させる際に混合してもよいが、あらかじめ樹脂(a)または樹脂(b)もしくは前躯体(b0)と添加剤を混合した後、水性分散液(W)中にその混合物を加えて分散させたほうがより好ましい。
また、本発明においては、添加剤は、必ずしも、水性分散液(W)中で粒子を形成させる時に混合しておく必要はなく、粒子を形成せしめた後、添加してもよい。たとえば、着色剤を含まない粒子を形成させた後、公知の染着の方法で着色剤を添加したり、有機溶剤(u)および/または可塑剤(v)とともに上記添加剤を含浸させることもできる。
また、添加剤として、樹脂粒子(B)中に、樹脂(b)と共に、ワックス(c)を含有すると離型性が向上し好ましい。また場合によってはビニルポリマー鎖がグラフトした変性ワックス(d)を含有してもよく、耐熱保存安定性がより向上し好ましい。
(B)中の(c)の含有量は、好ましくは20%以下、さらに好ましくは1〜15%である。(d)の含有量は、好ましくは10%以下、さらに好ましくは8%以下である。(c)と(d)の合計含有量は、好ましくは25%以下、さらに好ましくは1〜20%である。
ワックス(c)は、溶融混練処理および/または有機溶剤(u)存在下加熱溶解混合処理した後に樹脂(b)に分散される。あるいははあらかじめ変性ワックス(d)と有機溶剤不存在下の溶融混練処理および/または有機溶剤(u)存在下加熱溶解混合処理した後に樹脂(b)に分散される。
ワックス(c)としては合成ワックス、天然ワックスがあり、合成ワックスとしてはポリオレフィンワックス、天然ワックスとしてはパラフィンワックス、マイクロクリスタリンワックス、カルナウバワックス、カルボニル基含有ワックスおよびこれらの混合物等が挙げられるが、このうち、とくに好ましいのはパラフィンワックス(c1)、およびカルナウバワックス(c2)である。(c1)としては、融点50〜90℃で炭素数20〜36の直鎖飽和炭化水素を主成分とする石油系ワックスが挙げられ、(c2)としては、融点50〜90℃で炭素数16〜36の動植物ワックスが挙げられる。
また、離型性の観点から、(c)のMnは、好ましくは400〜5000、さらに好ましくは1000〜3000、とくに1500〜2000である。尚、上記および以下においてワックスのMnは、GPCを用いて測定される(溶媒:オルソジクロロベンゼン、基準物質:ポリスチレン)。
ワックス(c)は、ビニルポリマー鎖がグラフトした変性ワックス(d)と無溶媒下溶融混練処理および/または前記の有機溶剤(u)存在下の加熱溶解混合処理した後に、樹脂(b)に分散されるのが好ましい。この方法により、ワックス分散処理時に変性ワックス(d)を共存させることにより、(d)のワックス基部分が効率よく(c)表面に吸着、あるいはワックスのマトリクス構造内に一部絡みあうことにより、ワックス(c)表面と樹脂(b)との親和性が良好になり、(c)をより均一に樹脂粒子(B)中に内包することができ、分散状態の制御が容易になる。
変性ワックス(d)は、ワックスにビニルポリマー鎖がグラフトしたものである。(d)に用いられるワックスとしては上記ワックス(c)と同様のものが挙げられ、好ましいものも同様である。(d)のビニルポリマー鎖を構成するビニルモノマーとしては、前記ビニル樹脂を構成するモノマー(1)〜(10)と同様のものが挙げられるが、この中でとくに好ましいのは(1)、(2)、および(6)である。ビニルポリマー鎖はビニルモノマーの単独重合体でもよいし、共重合体でもよい。
変性ワックス(d)におけるワックス成分の量(未反応ワックスを含む)は、0.5〜99.5%が好ましく、さらに好ましくは1〜80%、とくに好ましくは5〜50%、最も好ましくは10〜30%である。また(d)のTgは、樹脂粒子(D)の耐熱保存安定性の観点から、好ましくは40〜90℃、さらに好ましくは50〜80℃である。
(d)のMnは、好ましくは1500〜10000、とくに1800〜9000である。Mnが1500〜10000の範囲では、樹脂粒子(D)の機械強度が良好である。
変性ワックス(d)は、例えばワックス(c)を有機溶剤(例えばトルエンまたはキシレン)に溶解または分散させ、100〜200℃に加熱した後、ビニルモノマーをパーオキサイド系開始剤(ベンゾイルパーオキサイド、ジターシャリーブチルパーオキサイド、ターシャリブチルパーオキサイドベンゾエート等)とともに滴下して重合後、有機溶剤を留去することにより得られる。
変性ワックス(d)の合成におけるパーオキサイド系開始剤の量は、(d)の原料の合計重量に基づいて、好ましくは0.2〜10%、さらに好ましくは0.5〜5%である。
パーオキサイド重合開始剤としては、油溶性パーオキサイド重合開始剤および水溶性パーオキサイド重合開始剤等が用いられる。
これらの開始剤の具体例としては、前記のものが挙げられる。
ワックス(c)と変性ワックス(d)を混合する方法としては、〔1〕それぞれの融点以上の温度で溶融混練する方法、〔2〕(c)と(d)を有機溶剤(u)中に溶解あるいは懸濁させた後、冷却晶析、溶剤晶析等により液中に析出、あるいはスプレードライ等により気体中に析出させる方法、〔3〕(c)と(d)を有機溶剤(u)中に溶解あるいは懸濁させた後、分散機により機械的に湿式粉砕させる方法、等が挙げられる。これらの中では、〔2〕の方法が好ましい。
ワックス(c)および変性ワックス(d)を(b)中に分散させる方法としては、(c)および(d)と、(b)とを、それぞれ有機溶剤溶液もしくは分散液とした後、それら同士を混合する方法等が挙げられる。
以下実施例により本発明をさらに説明するが、本発明はこれに限定されるものではない。以下の記載において「部」は重量部を示す。
製造例1
[チタン含有触媒の合成]
冷却管、撹拌機及び液中バブリング可能な窒素導入管の付いた反応槽中に、酢酸エチル1000部とテレフタル酸800部を入れ、窒素にて液中バブリング下、60℃まで徐々に昇温し、チタンテトライソプロポキシド600部を滴下しながら60℃で4時間反応させスラリー状物である反応混合物を得た。反応混合物をろ紙でろ別し40℃/20kPa・sで乾燥させることで、チタントリイソプロポキシテレフタレートと未反応のテレフタル酸の混合物からなるチタン含有触媒(t1)(チタントリイソプロポキシテレフタレートの濃度65%)を得た。
製造例2
[チタン含有触媒の合成]
冷却管、撹拌機及び液中バブリング可能な窒素導入管の付いた反応槽中に、チタニウムジイソプロポキシビス(トリエタノールアミネート)1617部とイオン交換水126部を入れ、窒素にて液中バブリング下、90℃まで徐々に昇温し、90℃で4時間反応(加水分解)させることで、チタニウムジヒドロキシビス(トリエタノールアミネート)を得た。さらに、100℃にて、2時間減圧下で反応(脱水縮合)させることで、下記式で表される分子内重縮合物からなるチタン含有触媒(t2)を得た。
Figure 0004976237
製造例3(樹脂粒子(A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール130部を仕込み、攪拌下、アクリル酸ブチル10部、酢酸ビニル67部、無水マレイン酸15部、メタクリロイロキシポリオキシアルキレン硫酸エステルナトリウム塩(エレミノールRS−30、三洋化成工業製)6部、過酸化ベンゾイル(25%含水品)2部の混合溶液を、120分間かけて滴下した。この重合溶液50部をさらに撹拌下のイオン交換水60部に滴下して、水性分散液[微粒子分散液W1]を得た。[微粒子分散液W1]をLA−920およびELS−800で測定した体積平均粒径は、いずれも0.10μmであった。[微粒子分散液W1]の一部を乾燥して樹脂分を単離した。該樹脂分のDSC測定によるTgは71℃、軟化開始温度は105℃であり、流出温度は169℃であった。
製造例4(樹脂粒子(A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール130部を仕込み、攪拌下、2−エチルヘキシルアクリレート29部、酢酸ビニル214部、メタクリル酸43部、過酸化ベンゾイル(25%含水品)25部の混合溶液を、120分間かけて滴下した。この重合溶液50部をさらに撹拌下のイオン交換水60部に滴下して、水性分散液[微粒子分散液W2]を得た。[微粒子分散液W2]をLA−920およびELS−800で測定した体積平均粒径は、いずれも0.09μmであった。[微粒子分散液W2]の一部を乾燥して樹脂分を単離した。該樹脂分のDSC測定によるTgは72℃、軟化開始温度は100℃であり、流出温度は164℃であった。
製造例5(樹脂粒子(A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール130部を仕込み、攪拌下、メタクリル酸メチル71部、酢酸ビニル143部、アクリル酸73部、過酸化ベンゾイル(25%含水品)25部の混合溶液を、120分間かけて滴下した。この重合溶液50部をさらに撹拌下のイオン交換水60部に滴下して、水性分散液[微粒子分散液W3]を得た。[微粒子分散液W3]をLA−920およびELS−800で測定した体積平均粒径は、いずれも0.05μmであった。[微粒子分散液W3]の一部を乾燥して樹脂分を単離した。該樹脂分のDSC測定によるTgは50℃、軟化開始温度は60℃であり、流出温度は120℃であった。
製造例6(樹脂粒子(A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール130部を仕込み、攪拌下、2−デシルテトラデシルメタクリレート29部、酢酸ビニル214部、メタクリル酸43部、過酸化ベンゾイル(25%含水品)25部の混合溶液を、120分間かけて滴下した。この重合溶液50部をさらに撹拌下のイオン交換水60部に滴下して、水性分散液[微粒子分散液W4]を得た。[微粒子分散液W4]をLA−920およびELS−800で測定した体積平均粒径は、いずれも0.09μmであった。[微粒子分散液W4]の一部を乾燥して樹脂分を単離した。該樹脂分のDSC測定によるTgは75℃、軟化開始温度は103℃であり、流出温度は167℃であった。
製造例7(樹脂粒子(A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール130部を仕込み、攪拌下、アクリル酸ブチル30部、スチレン25部、メタクリル酸45部、アルキルアリルスルホコハク酸のナトリウム塩(エレミノールJS−2、三洋化成工業製)8部、過酸化ベンゾイル(25%含水品)25部の混合溶液を、120分間かけて滴下した。この重合溶液29部をさらに撹拌下のイオン交換水60部に滴下して、水性分散液[微粒子分散液W5]を得た。[微粒子分散液W5]をLA−920およびELS−800で測定した体積平均粒径は、いずれも0.05μmであった。[微粒子分散液W5]の一部を乾燥して樹脂分を単離した。該樹脂分のDSC測定によるTgは120℃、軟化開始温度は160℃であり、流出温度は250℃であった。
製造例8(樹脂粒子Aの水性分散液の製造)
攪拌棒および温度計をセットした反応容器に、アジピン酸と1,4−ブタンジオール(モル比1:1)から得られたポリエステル(Mn1000)177部、1,2−プロピレングリコール(以下プロピレングリコールと記載)7部、ジメチロールプロピオン酸72部、3−(2,3−ジヒドロキシプロポキシ)−1−プロパンスルホン酸4部、およびアセトン500部を仕込んだ。この溶液にイソホロンジイソシアネート(IPDI)246部を仕込み55℃で11時間反応し、[ウレタンプレポリマー1]を得た。このプレポリマーにトリエチルアミンを加え、ジメチロールプロピオン酸由来のカルボン酸を100当量%アミン中和した。この溶液を攪拌下、水1500部に加え、乳化した。さらに水320部、エチレンジアミン9部、n−ブチルアミン6部を加え、50℃、4時間伸長反応を行いウレタン系樹脂の水性分散液[微粒子分散液W6]を得た。[微粒子分散液W6]をELS−800で測定した体積平均粒径は0.09μmであった。[微粒子分散液W6]の一部を乾燥して樹脂分を単離し、該樹脂分のフローテスター測定によるTgは80℃、軟化開始温度は105℃であり、流出温度は160℃であった。
製造例9(樹脂粒子Aの水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、水753部、アルキルアリルスルホコハク酸のナトリウム塩(エレミノールJS−2、三洋化成工業製)8部、スチレン58部、メタクリル酸58部、アクリル酸ブチル77部、過硫酸アンモニウム1部、界面活性剤(モノオレイン酸ポリオキシソルビタン)9部を仕込み、300回転/分で15分間撹拌したところ、白色の乳濁液が得られた。加熱して、系内温度75℃まで昇温し5時間反応させた。さらに、1%過硫酸アンモニウム水溶液30部加え、75℃で5時間熟成してビニル樹脂(スチレン−メタクリル酸−アクリル酸ブチル−アルキルアリルスルホコハク酸のナトリウム塩の共重合体)の水性分散液[微粒子分散液W7]を得た。[微粒子分散液W7]をLA−920およびELS−800で測定した体積平均粒径は、いずれも0.07μmであった。[微粒子分散液W7]の一部を乾燥して樹脂分を単離した。該樹脂分のDSC測定によるTgは60℃、軟化開始温度は110℃であり、流出温度は198℃であった。
製造例10(樹脂粒子(A)の水性分散液の製造)
撹拌棒および温度計をセットした反応容器に、イソプロパノール115部を仕込み、攪拌下、アクリル酸ブチル30部、スチレン30部、メタクリル酸40部、アルキルアリルスルホコハク酸のナトリウム塩(エレミノールJS−2、三洋化成工業製)8部、過酸化ベンゾイル(25%含水品)10部の混合溶液を、120分間かけて滴下した。この重合溶液29部をさらに撹拌下のイオン交換水60部に滴下して、水性分散液[微粒子分散液W8]を得た。[微粒子分散液W8]をLA−920およびELS−800で測定した体積平均粒径は、いずれも0.05μmであった。[微粒子分散液W8]の一部を乾燥して樹脂分を単離した。該樹脂分のDSC測定によるTgは50℃、軟化開始温度は140℃であり、流出温度は210℃であった。
製造例11(樹脂(b)の製造)
[線形ポリエステルの合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、プロピレングリコール701部(18.8モル)、テレフタル酸ジメチルエステル716部(7.5モル)、アジピン酸180部(2.5モル)、および縮合触媒としてチタン含有触媒(t1)0.8部を入れ、180℃で窒素気流下に、生成するメタノールを留去しながら8時間反応させた。次いで230℃まで徐々に昇温しながら、窒素気流下に、生成するプロピレングリコール、水を留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、軟化点が150℃になった時点で取り出した。回収されたプロピレングリコールは316部(8.5モル)であった。取り出した樹脂を室温まで冷却後、粉砕し粒子化し[ポリエステルb1]を得た。[ポリエステルb1]のMnは8000であった。
なお、( )内のモル数は、相対的なモル比を意味する(以下同様)。
製造例12(樹脂(b)の製造)
[非線形ポリエステルの合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、プロピレングリコール557部(17.5モル)、テレフタル酸ジメチルエステル569部(7.0モル)、アジピン酸184部(3.0モル)、および縮合触媒としてチタン含有触媒(t1)0.7部を入れ、180℃で窒素気流下に、生成するメタノールを留去しながら8時間反応させた。次いで230℃まで徐々に昇温しながら、窒素気流下に、生成するプロピレングリコール、水を留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に1時間反応させた。回収されたプロピレングリコールは175部(5.5モル)であった。次いで180℃まで冷却し、無水トリメリット酸121部(1.5モル)を加え、常圧密閉下2時間反応後、220℃、常圧で反応させ、軟化点が180℃になった時点で取り出し、室温まで冷却後、粉砕し粒子化し[ポリエステルb2]を得た。[ポリエステルb2]のMnは8500であった。
製造例13(樹脂(b)の製造)
[線形ポリエステルの合成]
冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物430部、ビスフェノールA・PO3モル付加物300部、テレフタル酸257部、イソフタル酸65部、無水マレイン酸10部及び重縮合触媒としてチタン含有触媒(t2)5.3部を入れ、220℃で窒素気流下に生成する水を留去しながら10時間反応させた。次いで5〜20mmHgの減圧下に反応させ、酸価が4になった時点で取り出し、室温まで冷却後粉砕して[ポリエステルb3]を得た。[ポリエステルb3]のMnは6980であった。
製造例14(樹脂(b)の製造)
[非線形ポリエステルの合成]
冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・EO2モル付加物350部、ビスフェノールA・PO3モル付加物326部、テレフタル酸278部、無水フタル酸40部及び重縮合触媒としてチタン含有触媒(t2)5.0部を入れ、230℃で窒素気流下に生成する水を留去しながら10時間反応させた。次いで5〜20mmHgの減圧下に反応させ、酸価が2以下になった時点で180℃に冷却し、無水トリメリット酸62部を加え、常圧密閉下2時間反応後取り出し、室温まで冷却後、粉砕して[ポリエステルb4]を得た。[ポリエステルb4]のMnは11400であった。
製造例15
撹拌棒及び温度計をセットした反応容器に、ヒドロキシル価が56のポリカプロラクトンジオール(プラクセルL220AL、ダイセル化学工業社製)2000部を投入し、110℃に加熱して3mmHgの減圧下で1時間脱水を行った。続いてIPDI457部を投入し、110℃で10時間反応を行い、末端にイソシアネート基を有する[ウレタンプレポリマー1]を得た。[ウレタンプレポリマー1]のNCO含量は3.6%であった。
製造例16
撹拌棒及び温度計をセットした反応容器に、エチレンジアミン50部とMIBK300部を仕込み、50℃で5時間反応を行い、ケチミン化合物である[硬化剤1]を得た。
製造例17(着色剤分散液の製造)
ビーカー内に銅フタロシアニン20部と着色剤分散剤(ソルスパーズ28000;アビシア株式会社製)4部、[ポリエステルb2]20部および酢酸エチル56部を入れ、攪拌して均一分散させた後、ビーズミルによって銅フタロシアニンを微分散して、[着色剤分散液1]を得た。[着色剤分散液1]をLA−920で測定した体積平均粒径は0.3μmであった。
製造例18(着色剤分散液の製造)
ビーカー内に銅フタロシアニン40部と着色剤分散剤(ソルスパーズ28000;アビシア株式会社製)4部、および酢酸エチル56部を入れ、攪拌して均一分散させた後、ビーズミルによって銅フタロシアニンを微分散して、[着色剤分散液2]を得た。[着色剤分散液2]をLA−920で測定した体積平均粒径は0.2μmであった。
製造例19(変性ワックスの製造)
温度計および撹拌機の付いたオートクレーブ反応槽中に、キシレン454部、低分子量ポリエチレン(三洋化成工業(株)製 サンワックス LEL−400:軟化点128℃)150部を投入し、窒素置換後170℃に昇温して十分溶解し、スチレン595部、メタクリル酸メチル255部、ジ−t−ブチルパーオキシヘキサヒドロテレフタレート34部およびキシレン119部の混合溶液を170℃で3時間で滴下して重合し、さらにこの温度で30分間保持した。次いで脱溶剤を行い、[変性ワックス 1]を得た。[変性ワックス 1]のグラフト鎖のsp値は 10.35(cal/cm31/2、Mnは1872、Mwは5194、Tgは56.9℃であった。
製造例20(ワックス分散液の製造)
温度計および撹拌機の付いた反応容器中に、パラフィンワックス(融点73℃)10部、[変性ワックス1]1部、酢酸エチル33部を投入し、78℃に加熱して充分溶解し、1時間で30℃まで冷却を行いワックスを微粒子状に晶析させ、さらにウルトラビスコミル(アイメックス製)で湿式粉砕し、[ワックス分散液1]を得た。
製造例21(ワックス分散液の製造)
温度計および撹拌機の付いた反応容器中に、カルナバワックス(融点70℃)10部、酢酸エチル33部を投入し、78℃に加熱して充分溶解し、1時間で30℃まで冷却を行いワックスを微粒子状に晶析させ、さらにウルトラビスコミル(アイメックス製)で湿式粉砕し、[ワックス分散液2]を得た。
製造例22(樹脂溶液の製造)
温度計および撹拌機の付いた反応容器中に、[ポリエステルb1]10部および酢酸エチル10部を入れ、攪拌して均一分散させ、[樹脂溶液1]を得た。
製造例23(樹脂溶液の製造)
温度計および撹拌機の付いた反応容器中に、[ポリエステルb2]10部および酢酸エチル10部を入れ、攪拌して均一分散させ、[樹脂溶液2]を得た。
製造例24(樹脂溶液の製造)
温度計および撹拌機の付いた反応容器中に、[ポリエステルb3]10部および酢酸エチル10部を入れ、攪拌して均一分散させ、[樹脂溶液3]を得た。
製造例25(樹脂溶液の製造)
温度計および撹拌機の付いた反応容器中に、[ポリエステルb4]10部および酢酸エチル10部を入れ、攪拌して均一分散させ、[樹脂溶液4]を得た。
実施例1
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水97部、[微粒子分散液W1]15.4部、カルボキシメチルセルロースナトリウム1部、および硫酸マグネシウム5部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液1A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、表面に付着した[微粒子分散液W1]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X―1)を得た。次いで(X−1)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W1]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D−1)を得た。
実施例2
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水102部、[微粒子分散液W1]10.5部、カルボキシメチルセルロースナトリウム1部、および塩化ナトリウム5部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液1A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、表面に付着した[微粒子分散液W1]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X―2)を得た。次いで(X−2)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W1]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D−2)を得た。
実施例3
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水102部、[微粒子分散液W2]10.5部、カルボキシメチルセルロースナトリウム1部、および塩化ナトリウム5部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液1A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、表面に付着した[微粒子分散液W2]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X―3)を得た。次いで(X−3)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W2]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D−3)を得た。
実施例4
ビーカー内に[樹脂溶液1]48部、[プレポリマー1]6部、[硬化剤1]0.2部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1B]を得た。
ビーカー内にイオン交換水102部、[微粒子分散液W1]11部、カルボキシメチルセルロースナトリウム1部、および塩化ナトリウム5部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液1B]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、表面に付着した[微粒子分散液W1]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X―4)を得た。次いで(X−4)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W1]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D−4)を得た。
実施例5
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水97部、[微粒子分散液W1]10.5部、カルボキシメチルセルロースナトリウム1部、および塩化ナトリウム10部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液1A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、表面に付着した[微粒子分散液W1]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X―5)を得た。次いで(X−5)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W1]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D−5)を得た。
実施例6
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水102部、[微粒子分散液W4]10.5部、カルボキシメチルセルロースナトリウム1部、および塩化ナトリウム5部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液1A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、表面に付着した[微粒子分散液W4]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X―6)を得た。次いで(X−6)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W4]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D−6)を得た。
実施例7
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水102部、[微粒子分散液W1]10.5部、カルボキシメチルセルロースナトリウム1部、および塩化カルシウム5部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液1A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、表面に付着した[微粒子分散液W1]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X―7)を得た。次いで(X−7)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W1]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D−7)を得た。
実施例8
ビーカー内に[樹脂溶液1]48部、[樹脂溶液3]12部、[ワックス分散液2]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液2A]を得た。
ビーカー内にイオン交換水102部、[微粒子分散液W1]10.5部、カルボキシメチルセルロースナトリウム1部、および塩化アルミニウム5部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液2A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、表面に付着した[微粒子分散液W1]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X―8)を得た。次いで(X−8)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W1]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D−8)を得た。
実施例9
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水90.4部、[微粒子分散液W3]2.6部、カルボキシメチルセルロースナトリウム1部、および硫酸マグネシウム25部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液1A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、表面に付着した[微粒子分散液W3]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X―9)を得た。次いで(X−9)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W3]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D−9)を得た。
実施例10
ビーカー内に[樹脂溶液4]48部、[樹脂溶液3]12部、[ワックス分散液1]27部、および[着色剤分散液2]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液3A]を得た。
ビーカー内にイオン交換水75.6部、[微粒子分散液W5]41.8部、カルボキシメチルセルロースナトリウム1部、塩化ナトリウム0.5部、および硫酸マグネシウム0.1部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液3A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、表面に付着した[微粒子分散液W5]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X―10)を得た。次いで(X−10)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W5]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D−10)を得た。
比較例1
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水97部、[微粒子分散液W7]10.5部、カルボキシメチルセルロースナトリウム1部、およびドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5%水溶液(三洋化成工業製、「エレミノールMON−7」)10部を入れ均一に溶解した。他は、実施例2と同様にして、[微粒子分散液W7]由来の樹脂粒子が表面に付着した樹脂粒子の水性分散体(X’―11)を得た。次いで(X’−11)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W7]由来の樹脂粒子を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D’−11)を得た。
比較例2
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水107部、[微粒子分散液W8]10.5部、およびカルボキシメチルセルロースナトリウム1部を入れ均一に溶解した。他は、実施例2と同様にして、表面に付着した[微粒子分散液W8]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X’―12)を得た。次いで(X’−12)100部に対して5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W8]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D’−12)を得た。
比較例3
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水97部、[微粒子分散液W1]10.5部、カルボキシメチルセルロースナトリウム1部、およびドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5%水溶液(三洋化成工業製、「エレミノールMON−7」)10部を入れ均一に溶解した。他は、実施例2と同様にして、表面に付着した[微粒子分散液W1]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X’―13)を得た。次いで(X’−13)100部に対して0.5%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W1]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D’−13)を得た。
比較例4
ビーカー内に[樹脂溶液1]48部、[樹脂溶液2]12部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、25℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水97部、[微粒子分散液W6]10.5部、カルボキシメチルセルロースナトリウム1部、およびドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5%水溶液(三洋化成工業製、「エレミノールMON−7」)10部を入れ均一に溶解した。他は、実施例2と同様にして、表面に付着した[微粒子分散液W6]由来の樹脂粒子が被膜化した樹脂粒子の水性分散体(X’―14)を得た。次いで(X’−14)100部に対して30%水酸化ナトリウム水溶液100部を加え、TKホモミキサー(特殊機化製)を使用し、40℃に温調し回転数12,000rpmで10分間混合して、表面に付着した[微粒子分散液W6]由来の被膜を溶解させた後、濾別し、40℃×18時間乾燥を行い、揮発分を0.5%以下として、樹脂粒子(D’−14)を得た。
物性測定例
実施例1〜10および比較例1〜4で得た樹脂粒子(D−1)〜(D−10)、および比較の樹脂粒子(D’−11)〜(D’−14)を水に分散して、粒度分布をコールターカウンターで測定した。また、樹脂粒子の平均円形度、帯電特性、耐熱保存安定性、および低温定着性を測定した。その結果を表1に示す。
Figure 0004976237
平均円形度の測定は前記の方法による。
帯電特性、耐熱保存安定性、低温定着性、および表面平滑性の測定方法は以下の通りである。
〔帯電特性〕(帯電量)
50ccの共栓付ガラス瓶に、樹脂粒子0.5g、鉄粉(日本鉄粉株式会社製「F−150」)10gを精秤し、共栓をして23℃、50%RHの雰囲気下でターブラシェーカミキサー(ウイリー・ア・バショッフェン社製)にセットし、回転数90rpmで2分攪拌する。攪拌後の混合粉体0.2gを目開き20μmステンレス金網がセットされたブローオフ粉体帯電量測定装置(京セラケミカル株式会社製TB−203)に装填し、ブロー圧10KPa,吸引圧5KPaの条件で、残存鉄粉の帯電量を測定し、定法により樹脂粒子の帯電量を算出する。なお、トナー用としてはマイナス帯電量が高いほど帯電特性が優れている。
〔耐熱保存安定性〕
50℃に温調された乾燥機に樹脂粒子を15時間静置し、ブロッキングの程度により下記の基準で評価した。
○ : ブロッキングが発生しない。
△ : ブロッキングが発生するが、力を加えると容易に分散する。
× : ブロッキングが発生し、力を加えても分散しない。
〔低温定着性〕
樹脂粒子にアエロジルR972(日本アエロジル社製)を1.0%添加し、よく混ぜて均一にした後、この粉体を紙面上に0.6mg/cm2となるよう均一に載せる(このとき粉体を紙面に載せる方法は、熱定着機を外したプリンターを用いる(上記の重量密度で粉体を均一に載せることができるのであれば他の方法を用いてもよい)。この紙を加圧ローラーに定着速度(加熱ローラ周速)213mm/sec、定着圧力(加圧ローラ圧)10kg/cm2の条件で通した時のコールドオフセットの発生温度を測定した。
〔表面平滑性〕
走査電子顕微鏡(SEM)を用い、樹脂粒子(D)表面を1万倍および3万倍拡大した写真にて評価した。
◎ : 表面に全く凹凸がなく、非常に平滑である。
○ : 表面に一部いびつな部位が観られるが、全体的には凹凸がほとんどなく、平滑である。
△ : 表面全体に凹凸があるが、樹脂(a)由来の粒子状物体は確認できない。
× : 表面全体的にひどく凹凸である、または樹脂(a)からなる粒子が確認できる。
本発明の製造方法により得られる本発明の樹脂粒子は、粒径が均一で、帯電特性、耐熱保存安定性等に優れるため、スラッシュ成形用樹脂、粉体塗料、液晶等の電子部品製造用スペーサー、電子測定機器の標準粒子、電子写真、静電記録、静電印刷などに用いられるトナー、各種ホットメルト接着剤、その他成形材料等に用いる樹脂粒子として極めて有用である。
樹脂粒子のフローテスター測定におけるフローチャートを示す概念図である。

Claims (9)

  1. 第1の樹脂(a)からなる樹脂粒子(A)と無機酸のアルカリ金属塩、アルカリ土類金属塩およびアルミニウム塩から選ばれる1種以上の塩である凝集剤(E)を含有する水性分散液(W)と、第2の樹脂(b)もしくはその有機溶剤溶液、または、樹脂(b)の前駆体(b0)もしくはその有機溶剤溶液(O)とを混合し、(W)中に(O)を分散させ、(b0)もしくはその有機溶剤溶液を用いる場合には、さらに(b0)を反応させて、(W)中で(b)からなる樹脂粒子(B)を形成させることにより得られる、樹脂粒子(B)の表面に樹脂粒子(A)もしくは樹脂(a)からなる被膜(P)が付着した樹脂粒子(C)の水性分散体(X1)において、アルカリまたはその水溶液を加えて(C)の表面の(A)もしくは(P)の少なくとも一部を溶解除去して、(B)からなる、または(B)の表面の一部が(A)もしくは(P)で被覆された樹脂粒子(D)の水性分散体(X2)を得て、さらに(X2)から水性媒体を除去する樹脂粒子(D)の製造方法。
  2. 樹脂粒子(D)の、樹脂粒子(A)もしくは被膜(P)による樹脂粒子(B)の表面被覆率が4.9%以下となるように、(A)もしくは(P)の少なくとも一部を除去する請求項1記載の製造方法。
  3. 樹脂(a)が、40〜270℃の軟化開始温度、20〜250℃のガラス転移温度、60〜300℃の流出温度、および0〜130℃のガラス転移温度と流出温度の差を有する樹脂である請求項1または2記載の製造方法。
  4. 樹脂(a)が、構成単位として、酢酸ビニル、(メタ)アクリル酸、(無水)マレイン酸、マレイン酸モノアルキルエステル、マレイン酸ジアルキルエステル、フマル酸、フマル酸モノアルキルエステル、フマル酸ジアルキルエステル、炭素数5〜27のアルキル(メタ)アクリレート、および炭素数2〜4の脂肪族ビニル炭化水素から選ばれる少なくとも1種を含有する樹脂である請求項1〜3のいずれか記載の製造方法。
  5. 水性分散体(X1)中の凝集剤(E)の含有量が0.001〜20重量%である請求項1〜4のいずれか記載の製造方法。
  6. 水性分散体(X1)中に含有する界面活性剤(s)の量が1000ppm以下である請求項1〜5のいずれか記載の製造方法。
  7. 請求項1〜6のいずれか記載の方法により得られ、BET値比表面積が0.5〜5.0m2/gである樹脂粒子。
  8. 表面平均中心線粗さRaが0.01〜1.0μmである請求項7記載の樹脂粒子。
  9. スラッシュ成形用樹脂、粉体塗料、電子部品製造用スペーサー、電子測定機器の標準粒子、電子写真トナー、静電記録トナー、静電印刷トナーまたはホットメルト接着剤用である請求項7または8記載の樹脂粒子。
JP2007226840A 2007-08-31 2007-08-31 樹脂粒子および樹脂粒子の製造方法 Active JP4976237B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226840A JP4976237B2 (ja) 2007-08-31 2007-08-31 樹脂粒子および樹脂粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226840A JP4976237B2 (ja) 2007-08-31 2007-08-31 樹脂粒子および樹脂粒子の製造方法

Publications (2)

Publication Number Publication Date
JP2009057487A JP2009057487A (ja) 2009-03-19
JP4976237B2 true JP4976237B2 (ja) 2012-07-18

Family

ID=40553533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226840A Active JP4976237B2 (ja) 2007-08-31 2007-08-31 樹脂粒子および樹脂粒子の製造方法

Country Status (1)

Country Link
JP (1) JP4976237B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340996B2 (ja) * 2010-02-26 2013-11-13 三洋化成工業株式会社 ポリエステル樹脂水性分散体
US9188894B2 (en) * 2011-10-04 2015-11-17 Canon Kabushiki Kaisha Method for manufacturing core-shell structure fine particles and toner
JP2013195621A (ja) * 2012-03-19 2013-09-30 Ricoh Co Ltd 静電荷像現像用トナー、二成分現像剤および画像形成装置
WO2015072211A1 (ja) * 2013-11-18 2015-05-21 コニカミノルタ株式会社 粉体塗料およびその製造方法
JP6435691B2 (ja) * 2014-07-28 2018-12-12 富士ゼロックス株式会社 熱硬化性粉体塗料、熱硬化性粉体塗料の製造方法、塗装品、及び塗装品の製造方法
JP6597007B2 (ja) * 2015-07-16 2019-10-30 Dic株式会社 凝固物の製造方法
JP2021070810A (ja) * 2019-10-25 2021-05-06 三洋化成工業株式会社 複合樹脂粒子の製造方法
EP3816730A1 (en) * 2019-10-30 2021-05-05 Ricoh Company, Ltd. Toner, toner set, toner accommodating unit, image forming apparatus, and image forming method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455523B2 (ja) * 2000-02-16 2003-10-14 三洋化成工業株式会社 粒径が均一である樹脂粒子およびその製造方法
JP4461723B2 (ja) * 2003-07-09 2010-05-12 富士ゼロックス株式会社 静電荷像現像用トナー及びその製造方法並びに画像形成方法
WO2007015516A1 (ja) * 2005-08-03 2007-02-08 Sanyo Chemical Industries, Ltd. 樹脂粒子

Also Published As

Publication number Publication date
JP2009057487A (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
JP5183519B2 (ja) 樹脂粒子
JP5048619B2 (ja) 非水系樹脂分散液
JP4457023B2 (ja) 樹脂粒子
JP4718392B2 (ja) 樹脂粒子及び樹脂分散体
JP5020841B2 (ja) 樹脂粒子
JP4976237B2 (ja) 樹脂粒子および樹脂粒子の製造方法
JP2008163290A (ja) 樹脂分散体の製造方法及び樹脂粒子
JP5442407B2 (ja) 樹脂粒子の製造方法
JP4134057B2 (ja) 樹脂分散体および樹脂粒子
JP5497516B2 (ja) 樹脂粒子及びその製造方法
JP4598807B2 (ja) 樹脂粒子及び樹脂分散体
JP4170349B2 (ja) 樹脂粒子および樹脂分散体
JP4431122B2 (ja) 樹脂分散体及び樹脂粒子
JP4740063B2 (ja) コア・シェル型樹脂粒子
JP4589284B2 (ja) 樹脂粒子
JP4718391B2 (ja) 樹脂粒子
JP4874907B2 (ja) 樹脂分散体の製造方法及び樹脂粒子
JP4643693B2 (ja) 樹脂粒子用顔料分散剤
JP5101208B2 (ja) 樹脂粒子および樹脂粒子の製造方法
JP4976228B2 (ja) 樹脂粒子および樹脂粒子の製造方法
JP4732981B2 (ja) コア・シェル型樹脂粒子
JP2008208354A (ja) 樹脂粒子
JP2008208346A (ja) 樹脂粒子
JP4964834B2 (ja) 樹脂粒子
JP4629696B2 (ja) 樹脂粒子および樹脂粒子の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120412

R150 Certificate of patent or registration of utility model

Ref document number: 4976237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3