JP4971456B2 - Glass substrate quality inspection apparatus and inspection method thereof - Google Patents

Glass substrate quality inspection apparatus and inspection method thereof Download PDF

Info

Publication number
JP4971456B2
JP4971456B2 JP2009534472A JP2009534472A JP4971456B2 JP 4971456 B2 JP4971456 B2 JP 4971456B2 JP 2009534472 A JP2009534472 A JP 2009534472A JP 2009534472 A JP2009534472 A JP 2009534472A JP 4971456 B2 JP4971456 B2 JP 4971456B2
Authority
JP
Japan
Prior art keywords
waveform
glass substrate
shadow image
shadow
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009534472A
Other languages
Japanese (ja)
Other versions
JP2010507801A (en
Inventor
ボン−ジュ・ウ
シュン−ジョン・リ
Original Assignee
セミシスコ・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セミシスコ・カンパニー・リミテッド filed Critical セミシスコ・カンパニー・リミテッド
Publication of JP2010507801A publication Critical patent/JP2010507801A/en
Application granted granted Critical
Publication of JP4971456B2 publication Critical patent/JP4971456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0214Articles of special size, shape or weigh
    • B65G2201/022Flat
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/69Arrangements or methods for testing or calibrating a device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nonlinear Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

本発明は、薄膜トランジスタ液晶表示装置(TFT−LCD)に薄膜トランジスタ(TFT)及びカラーフィルタ(color filter)を形成するためのガラス基板の波形(Waveness)発生有無を検査するガラス基板の品質検査装置及びその検査方法に関する。   The present invention relates to a glass substrate quality inspection apparatus for inspecting whether or not a glass substrate has a waveform for forming a thin film transistor (TFT) and a color filter in a thin film transistor liquid crystal display (TFT-LCD), and its It relates to the inspection method.

薄膜トランジスタ液晶表示装置は、大きく分けて、薄膜トランジスタが形成される下部ガラス基板、カラーフィルタが形成される上部ガラス基板及び下部ガラス基板と上部ガラス基板との間に注入する液晶で構成される。   The thin film transistor liquid crystal display device is roughly composed of a lower glass substrate on which a thin film transistor is formed, an upper glass substrate on which a color filter is formed, and liquid crystal injected between the lower glass substrate and the upper glass substrate.

このような薄膜トランジスタ及びカラーフィルタを形成するためのガラス基板の場合は、その表面において厚さが一定でない波形現象が発生すると、ガラス基板にフィルムの蒸着やエッチングなどが均一に形成されず、薄膜トランジスタ液晶表示装置の液晶により表現される色相に異常が発生する、すなわちディスカラーが生じて製品不良となる。   In the case of a glass substrate for forming such a thin film transistor and a color filter, when a waveform phenomenon with a non-uniform thickness occurs on the surface, film deposition or etching is not uniformly formed on the glass substrate, and the thin film transistor liquid crystal An abnormality occurs in the hue expressed by the liquid crystal of the display device, that is, discoloration occurs, resulting in a product defect.

そこで、従来では、ガラス基板を工程チャンバに入れて蒸着やエッチング、スパッタリングなどのプラズマを用いる工程を実行する前に、ガラス基板に対する全般的な品質検査を行うことになる。   Thus, conventionally, a general quality inspection is performed on the glass substrate before the glass substrate is placed in the process chamber and a process using plasma such as vapor deposition, etching, or sputtering is performed.

しかし、従来のガラス基板表面に対する波形検査は、観測者ごとに観測結果が異なるなど、正確な観測を行うことができなかった。   However, the conventional waveform inspection on the surface of the glass substrate could not perform accurate observation because the observation results were different for each observer.

一例として、従来ガラス基板に対する波形発生有無を検査する技術は、ガラス基板を垂直に立てた状態において光源をガラス基板に照射し、前記ガラス基板を光源と平行な状態で、僅かに傾斜(tilt)させることによって、前記ガラス基板の反対側に位置するスクリーンにガラス基板の影が生じる。   As an example, a conventional technique for inspecting the presence or absence of waveform generation on a glass substrate irradiates the glass substrate with a light source in a state where the glass substrate is vertically set, and the glass substrate is slightly tilted in a state parallel to the light source. By doing so, a shadow of the glass substrate is generated on the screen located on the opposite side of the glass substrate.

次に、上記スクリーンに投影される影から波形が発生する部分と波形が発生しない部分との透過率差(または光の位相差)が生じ、白くあるいは多少黒く屈曲した部分が現れ、これを作業者の目によって波形発生有無を判別することになる。   Next, a transmittance difference (or light phase difference) occurs between the portion where the waveform is generated and the portion where the waveform is not generated from the shadow projected on the screen, and a white or slightly black bent portion appears. The presence or absence of waveform generation is determined by the eyes of the person.

しかし、上記の波形検査は、インサイチュ検査が不可能であるため全数検査を行わなければならなく、それに、波形検査が作業者の目で直接判別するため工程時間が長くなるなど、波形検査の信頼性が大きく低下する短所がある。   However, since the above-mentioned waveform inspection is impossible in-situ inspection, it is necessary to perform 100% inspection, and the waveform inspection is directly determined by the operator's eyes, so the process time is long and the reliability of the waveform inspection is increased. There is a disadvantage that the performance is greatly reduced.

したがって、本発明は上記のような従来の問題点を解決するために案出されたものであって、波形発生有無を検査するための照明部の照明がガラス基板だけに透過されるようにしたガラス基板の品質検査装置及びその検査方法を提供することに目的がある。   Accordingly, the present invention has been devised to solve the conventional problems as described above, and the illumination of the illumination unit for inspecting the presence or absence of waveform generation is transmitted only to the glass substrate. An object is to provide a glass substrate quality inspection apparatus and inspection method therefor.

上記目的を達成するためのガラス基板の品質検査装置は、移送ユニットを介して工程設備に供給する際、そのガラス基板が移送される状態でリアルタイムにインサイチュ検査方式により波形発生有無を検査するか、又はガラス基板が停止した際にリアルタイムで波形発生有無をチェックする検査ユニットを構成するにおいて、前記検査ユニットは、前記ガラス基板の表面を透過する照明を照射する照明部と、前記照明部によってガラス基板に照明透過時、前記ガラス基板を透過する照明から発生するガラス基板の表面の影映像を撮影する映像処理部と、前記映像処理部から撮影した影映像によってガラス基板の表面に対する波形発生有無を検査する制御部とを含む。   When the glass substrate quality inspection device for achieving the above object is supplied to the process equipment via the transfer unit, whether the glass substrate is transferred is inspected for the occurrence of waveform by an in situ inspection method in real time, Alternatively, in configuring an inspection unit that checks the presence / absence of waveform generation in real time when the glass substrate stops, the inspection unit includes an illumination unit that emits illumination that is transmitted through the surface of the glass substrate, and the illumination unit A video processing unit that captures a shadow image of the surface of the glass substrate generated from the illumination that is transmitted through the glass substrate, and an inspection of whether the waveform is generated on the surface of the glass substrate by the shadow image captured from the video processing unit. And a control unit.

他の一例として、前記照明部は、キセノンランプ(Xe Lamp)であることを特徴とする。   As another example, the illumination unit is a xenon lamp.

また他の一例として、前記ガラス基板を透過して生成される基板表面の影映像がより鮮明に表れるように、前記照明部の前方には照明の照射方向をガラス基板だけに局限させるスリットを結合構成することを特徴とする。   As another example, a slit that localizes the illumination direction only to the glass substrate is coupled in front of the illumination unit so that a shadow image of the substrate surface generated through the glass substrate appears more clearly. It is characterized by comprising.

また他の一例として、前記スリットによりガラス基板だけに照射される照明の照射角度θは18〜22゜の範囲内であることを特徴とする。   As another example, the illumination angle θ of illumination applied to only the glass substrate by the slit is in the range of 18 to 22 °.

そして、前記ガラス基板の品質検査装置によって実現される検査方法は、ガラス基板に所定角度で照明を照射してガラス基板の表面に対する影映像を獲得する段階と、前記獲得された影映像を波形化させる段階と、前記波形化された影映像を微分アルゴリズムで微分して等間隔に分割する段階と、前記微分により等間隔に分割される影映像にガラス基板の平坦度に対する基準値の境界条件を適用させる段階と、前記適用した境界条件を脱する映像の存在有無を検出して波形発生を判断する段階と、前記判断の結果によって、波形が発生された場合のその波形種類を選別する段階とを含む。   An inspection method realized by the glass substrate quality inspection apparatus includes a step of irradiating the glass substrate with illumination at a predetermined angle to acquire a shadow image on the surface of the glass substrate, and corrugating the acquired shadow image. A step of differentiating the waveform-shaped shadow image by a differentiation algorithm and dividing the waveform into equal intervals, and a boundary condition of a reference value for the flatness of the glass substrate in the shadow image divided at equal intervals by the differentiation A step of applying, a step of detecting presence / absence of an image that deviates from the applied boundary condition and determining waveform generation, and a step of selecting a waveform type when a waveform is generated according to the determination result, including.

本発明は、カメラにガラス基板表面の影映像をより鮮明に撮影されるようにするとともに 、前記影映像に伴う波形種類別発生有無を微分アルゴリズムによりさらに精密に検査することで、移送ユニットから連続的に移送されるガラス基板の品質状態をリアルタイムで検査して製品に対する品質満足度を向上させるとともに、ガラス基板の品質検査のために必要とされる時間を節約し、連続する蒸着やエッチング、スパッタリングなどプラズマを用いる工程が迅速に行われることができる。   The present invention enables a camera to shoot a shadow image of a glass substrate surface more clearly, and further inspects the presence / absence of each waveform type accompanying the shadow image by a differential algorithm, thereby continuously from a transfer unit. In addition, the quality of the glass substrate that is transferred in real time is inspected in real time to improve the quality satisfaction of the product, and the time required for the quality inspection of the glass substrate is saved, continuous deposition, etching, sputtering For example, a process using plasma can be performed quickly.

本発明の実施形態に係るガラス基板の品質検査装置に対する全体構成図である。It is a whole block diagram with respect to the quality inspection apparatus of the glass substrate which concerns on embodiment of this invention. 本発明の実施形態に係る照明部にスリットが適用された状態の正面図である。It is a front view in the state where a slit was applied to an illumination part concerning an embodiment of the present invention. 本発明の実施形態に係る横方向からガラス基板の品質を検査する状態の平面概略図である。It is a plane schematic diagram of the state which test | inspects the quality of a glass substrate from the horizontal direction which concerns on embodiment of this invention. 本発明によって検査される波形の種類であって、ストリーク(Streak)状の波形の波形図である。FIG. 5 is a waveform diagram of a streak-like waveform as a type of waveform inspected by the present invention. 本発明によって検査される波形の種類であって、シクバンド(Thick Band)状の波形の波形図である。FIG. 5 is a waveform diagram of a waveform of a waveform inspected according to the present invention and having a thick band shape. 本発明によって検査される波形の種類であって、コード(Cord)状の波形の波形図である。FIG. 4 is a waveform diagram of a waveform of a waveform that is a type of waveform inspected by the present invention. 本発明の実施形態に係るガラス基板にストリーク状の波形が発生した状態を示す実験による検出波形図である。It is a detection waveform figure by experiment which shows the state where the streak-like waveform generate | occur | produced in the glass substrate which concerns on embodiment of this invention. 本発明の実施形態に係るガラス基板にシクバンド状の波形が発生した状態を示す実験による検出波形図である。It is a detection waveform figure by the experiment which shows the state which the waveform of a band shape generate | occur | produced in the glass substrate which concerns on embodiment of this invention. 本発明の実施形態に係るガラス基板にコード状の波形が発生した状態を示す実験による検出波形図である。It is a detected waveform figure by experiment which shows the state where the code-like waveform generate | occur | produced in the glass substrate which concerns on embodiment of this invention. 本発明の実施形態に係るガラス基板にストリーク状の波形とシクバンド状の波形が同時に発生いた状態を示す実験による検出波形図である。It is a detection waveform figure by experiment which shows the state where the streak-like waveform and the band-like waveform occurred simultaneously on the glass substrate according to the embodiment of the present invention. 本発明の実施形態に係るガラス基板の品質検査方法を示すフローチャートである。It is a flowchart which shows the quality inspection method of the glass substrate which concerns on embodiment of this invention. 本発明のほかの実施形態に係る縦方向からガラス基板の品質を検査する状態の平面概略図である。It is a plane schematic diagram of the state which test | inspects the quality of a glass substrate from the vertical direction which concerns on other embodiment of this invention.

以下に、添付された図面を参照して本発明の好適な実施形態を説明する。図1は本発明の実施形態に係るガラス基板の品質検査装置に対する全体構成図であり、図2は本発明の実施形態に係る照明部にスリットが適用された状態の正面図であり、図3は本発明の実施形態に係る横方向からガラス基板の品質を検査する状態の平面概略図を示すものである。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an overall configuration diagram for a glass substrate quality inspection apparatus according to an embodiment of the present invention, and FIG. 2 is a front view of a state where a slit is applied to an illumination unit according to an embodiment of the present invention. These show the plane schematic of the state which test | inspects the quality of a glass substrate from the horizontal direction which concerns on embodiment of this invention.

図4は本発明により検査される波形の種類であって、ストリーク状の波形の波形図であり、図5は本発明により検査される波形の種類であって、シクバンド状の波形の波形図であり、図6は本発明により検査される波形の種類であって、コード状の波形の波形図である。   FIG. 4 is a waveform diagram of a streak-like waveform that is inspected according to the present invention, and FIG. 5 is a waveform diagram of a waveform that is inspected according to the present invention, and is a waveform diagram of a quadrant waveform. FIG. 6 is a waveform diagram of the waveform of the code-like waveform to be inspected according to the present invention.

図7は本発明の実施形態に係るガラス基板にストリーク状の波形が発生した状態を示す実験による検出波形図であり、図8は本発明の実施形態に係るガラス基板にシクバンド状の波形が発生した状態を示す実験による検出波形図であり、図9は本発明の実施形態に係るガラス基板にコード状の波形が発生した状態を示す実験による検出波形図であり、図10は本発明の実施形態に係るガラス基板にストリーク状の波形とシクバンド状の波形とが同時に発生した状態を示す実験による検出波形図を示すものである。   FIG. 7 is a detected waveform diagram based on an experiment showing a state in which a streak-like waveform is generated on the glass substrate according to the embodiment of the present invention, and FIG. 8 is a quadband-shaped waveform generated on the glass substrate according to the embodiment of the present invention. FIG. 9 is a detection waveform diagram based on an experiment showing a state in which a code-like waveform is generated on a glass substrate according to an embodiment of the present invention, and FIG. 10 is a diagram illustrating an implementation of the present invention. The detected waveform figure by experiment which shows the state in which the streak-like waveform and the band-like waveform generate | occur | produced simultaneously on the glass substrate which concerns on a form is shown.

図1ないし図10に示すように、本発明の実施形態に係る有機基板品質検査装置は、薄膜トランジスタ液晶表示装置の製造のための蒸着、エッチング、スパッタリング工程などのプラズマを用いる工程設備のそれぞれの流入側ゲートバルブ前方に設けられ、ローラからなる移送ユニット1により移送されるガラス基板2の波形発生有無をインサイチュ検査方式でリアルタイムに検査、又はガラス基板2が停止されている際のその波形発生有無をリアルタイムで検査するためのものであって、照明部10、映像処理部20、そして制御部30を含む検査ユニットから構成される。   As shown in FIGS. 1 to 10, the organic substrate quality inspection apparatus according to the embodiment of the present invention includes respective inflows of process equipment using plasma such as vapor deposition, etching, and sputtering processes for manufacturing a thin film transistor liquid crystal display device. In front of the side gate valve, the presence or absence of waveform generation of the glass substrate 2 transferred by the transfer unit 1 made of rollers is inspected in real time by an in situ inspection method, or the presence or absence of waveform generation when the glass substrate 2 is stopped The inspection unit is for inspecting in real time, and includes an inspection unit including an illumination unit 10, a video processing unit 20, and a control unit 30.

前記照明部10は、ガラス基板2の表面を透過する照明を照射するキセノンランプであって、前記ガラス基板2が移送できるようにローラで構成されている移送ユニット1の下側に所定角度θで設けられ、その前方にはガラス基板2の表面だけに照明の照射が行われるように案内するスリット11が構成されている。   The illumination unit 10 is a xenon lamp that emits illumination that is transmitted through the surface of the glass substrate 2, and has a predetermined angle θ on the lower side of the transfer unit 1 configured by rollers so that the glass substrate 2 can be transferred. A slit 11 is provided in front of the glass substrate 2 to guide the illumination so that only the surface of the glass substrate 2 is irradiated.

前記映像処理部20は、CCDカメラモジュールであって、前記照明部10によってガラス基板2の表面に照明透過が行われる際に、前記ガラス基板2の表面を透過する照明から発生する前記ガラス基板2表面の影映像が撮影されるように、前記移送ユニット1の上側に構成されている。   The image processing unit 20 is a CCD camera module, and the glass substrate 2 generated from the illumination transmitted through the surface of the glass substrate 2 when the illumination unit 10 performs illumination transmission on the surface of the glass substrate 2. It is configured above the transfer unit 1 so that a shadow image of the surface is taken.

前記制御部30は、前記照明部10と映像処理部20とを制御するものであって、前記映像処理部20から撮影された影映像を入力した後、図4ないし図10に示すように、ガラス基板2の表面に対する波形発生有無及びその波形の種類を微分アルゴリズムで検査するように構成されていて、その内部のメモリにはガラス基板2の平坦度に対する境界条件S、S’を適用する基準値が設定されて保存されている。   The control unit 30 controls the illumination unit 10 and the video processing unit 20, and after inputting the shadow video taken from the video processing unit 20, as shown in FIGS. The configuration is such that the presence / absence of the waveform generation on the surface of the glass substrate 2 and the type of the waveform are inspected by a differential algorithm, and the criteria for applying the boundary conditions S and S ′ for the flatness of the glass substrate 2 to the internal memory. The value is set and saved.

このように構成された本発明の実施形態に対する作用を、添付の図1ないし図10とともにガラス基板の品質検査方法を示す添付の図11を参照して説明する。   The operation of the embodiment of the present invention configured as described above will be described with reference to the attached FIG. 11 showing the glass substrate quality inspection method together with the attached FIGS.

まず、ローラで構成される多段の移送ユニット1を介して薄膜トランジスタ液晶表示装置の製造のための蒸着、エッチング、スパッタリング工程などのプラズマを用いる工程設備に、ガラス基板2を移送させたり停止させたりする。   First, the glass substrate 2 is transferred or stopped to process equipment using plasma such as vapor deposition, etching, and sputtering for manufacturing a thin film transistor liquid crystal display device through a multistage transfer unit 1 composed of rollers. .

このとき、前記移送ユニット1の下端には、所定の照射角度(θ;20゜)を設けられ、その前方にはスリット11が結合されたキセノンランプの照明部10から照明を照射する場合、前記照明は前記スリット11によりガラス基板2の表面だけにその照射が行われるので反対面に透過される。   At this time, a predetermined irradiation angle (θ; 20 °) is provided at the lower end of the transfer unit 1, and illumination is performed from the illumination unit 10 of the xenon lamp to which the slit 11 is coupled in front of the illumination unit 10. Since the illumination is performed only on the surface of the glass substrate 2 by the slit 11, it is transmitted to the opposite surface.

これによって、前記ガラス基板2の上面に透過される照明により影映像が現われ、前記影映像は前記移送ユニット1の上側に位置する映像処理部20、すなわち、CCDカメラに撮影され、制御部30に伝送される。   As a result, a shadow image appears by illumination transmitted through the upper surface of the glass substrate 2, and the shadow image is photographed by the image processing unit 20 located above the transfer unit 1, that is, a CCD camera, and is sent to the control unit 30. Is transmitted.

次に、前記制御部30は、前記撮影された影映像を波形化した後、これを微分アルゴリズムで微分して等間隔に分割するとともに、前記波形化された影映像からガラス基板2の平坦度に対する基準値の境界条件S、S’を適用することで、前記適用された境界条件S、S’を脱する映像が存在するか否かを検出して波形の発生を判断し、その波形の種類を選別することになる。   Next, the control unit 30 converts the captured shadow image into a waveform, differentiates it with a differentiation algorithm and divides it into equal intervals, and calculates the flatness of the glass substrate 2 from the waveformd shadow image. By applying the boundary values S and S ′ of the reference value to the image, it is detected whether or not there is an image that deviates from the applied boundary conditions S and S ′, and the generation of the waveform is determined. The type will be selected.

すなわち、前記制御部30は、微分されて等間隔に分割される影映像が既設定された境界条件S、S’を脱した部分が存在するか否かを検出した後、その検出された境界条件S、S’の以外の領域で等間隔の個数を演算し、図4ないし図6に示すように、ガラス基板2の表面にストリーク状の波形(Streak Type Waveness)、シクバンド状の波形(Thick Band Type Waveness)、またはコード状の波形(Cord Waveness)の発生有無を検査することになる。   That is, the control unit 30 detects whether or not there is a portion that has deviated from the preset boundary conditions S and S ′ in the shadow image that is differentiated and divided at equal intervals, and then detects the detected boundary. The number of equal intervals is calculated in regions other than the conditions S and S ′, and as shown in FIGS. 4 to 6, the surface of the glass substrate 2 has a streak-like waveform (Streak Type Waveness), a square-band waveform (Thick Band Type Waveness) or chord waveform (Cord Waveness) is checked for occurrence.

これをさらに詳しく説明すると、まず、ガラス基板2の表面にストリーク状の波形が発生した場合の検査としては、図4ないし図10に示すように、制御部30は微分化されて等間隔に分割した影映像に、既設定の境界条件S、S’を脱した部分が存在した場合、前記制御部30は境界条件S、S’を脱して微分化された影映像の等間隔をカウントすることになる。   This will be described in more detail. First, as a test when a streak-like waveform is generated on the surface of the glass substrate 2, as shown in FIGS. 4 to 10, the control unit 30 is differentiated and divided into equal intervals. If the shadow image includes a portion that has deviated from the preset boundary conditions S and S ′, the control unit 30 counts equal intervals of the differentiated shadow image by deviating from the boundary conditions S and S ′. become.

このとき、図4及び図7に示すように、前記カウントされた個数から境界条件S、S’を脱した影映像の全体等間隔の幅が狭い場合、前記制御部30はガラス基板2の表面にストリーク状の波形が発生したものとして検出する。   At this time, as shown in FIG. 4 and FIG. 7, when the width of the entire equal interval of the shadow image from which the boundary conditions S and S ′ are removed from the counted number is narrow, the controller 30 controls the surface of the glass substrate 2. This is detected as a streak-like waveform.

次に、図5及び図8に示すように、前記カウントされた個数から境界条件S、S’を脱する影映像の全体等間隔の幅が広い場合、前記制御部30はガラス基板2の表面にシクバンド状の波形が発生したものとして検出する。   Next, as shown in FIG. 5 and FIG. 8, when the entire equidistant width of the shadow image from which the boundary conditions S and S ′ are removed from the counted number is wide, the control unit 30 may It is detected that a square band waveform is generated.

次に、図6及び図9に示すように、前記カウントされた個数から境界条件S、S’を脱する影映像の全体等間隔の幅が繰り返しの周期を有している場合、前記制御部30はガラス基板2の表面にコード状の波形が発生したものとして検出することになる。   Next, as shown in FIG. 6 and FIG. 9, when the entire equal interval width of the shadow image that deviates the boundary conditions S and S ′ from the counted number has a repetition cycle, the control unit 30 is detected as a code-like waveform generated on the surface of the glass substrate 2.

このとき、図4、図5及び図10に示すように、前記カウントされた個数から境界条件S、S’を脱する影映像の全体等間隔の幅が狭く分布されたり、その全体等間隔の幅が広く分布されたりする現象が同時に現われる場合、前記制御部30はガラス基板2の表面にストリーク状の波形とシクバンド状の波形とが同時に発生したものとして検出することになる。   At this time, as shown in FIGS. 4, 5, and 10, the entire equal interval width of the shadow image that deviates from the boundary conditions S and S ′ from the counted number is distributed narrowly, or the entire equal interval When the phenomenon that the width is widely distributed appears at the same time, the control unit 30 detects that the streak-like waveform and the squiband-like waveform are generated on the surface of the glass substrate 2 at the same time.

一方、図12は縦方向からガラス基板の品質を検査する場合の平面概略図を示す本発明の他の実施形態であって、これはガラス基板2を移送するローラからなる多段の移送ユニット1の一段を除去した後、その除去された部分に縦方向から照明部10と映像処理部20及び制御部30を含む検査ユニット100を設けたものであって、これによってガラス基板2に対する波形発生有無を縦方向からも検出することができるようにする。   On the other hand, FIG. 12 is another embodiment of the present invention showing a schematic plan view in the case of inspecting the quality of the glass substrate from the vertical direction, which is a multistage transfer unit 1 comprising rollers for transferring the glass substrate 2. After removing the first stage, the removed unit is provided with the inspection unit 100 including the illumination unit 10, the image processing unit 20, and the control unit 30 from the vertical direction. It is possible to detect from the vertical direction.

すなわち、本発明は、図3及び図12に示すように、ガラス基板2の表面に対する波形発生有無を横方向及び縦方向から検出することができるので、前記ガラス基板2の品質検査をさらに精密に行うことができる。   That is, according to the present invention, as shown in FIGS. 3 and 12, the presence / absence of waveform generation on the surface of the glass substrate 2 can be detected from the horizontal direction and the vertical direction, so that the quality inspection of the glass substrate 2 can be performed more precisely. It can be carried out.

以上、本発明の実施形態と同一部分に対しては同一符号を付し、その説明を省略する。   As described above, the same parts as those of the embodiment of the present invention are denoted by the same reference numerals, and the description thereof is omitted.

本発明は、カメラにガラス基板表面の影映像をより鮮明に撮影されるようにするとともに、前記影映像による波形種類別発生有無を微分アルゴリズムでより精密に検査することができる。   According to the present invention, the shadow image of the glass substrate surface can be clearly captured by the camera, and the presence / absence of occurrence of each waveform type by the shadow image can be inspected more precisely by a differentiation algorithm.

1 移送ユニット
2 ガラス基板
10 照明部
11 スリット
20 映像処理部
30 制御部
DESCRIPTION OF SYMBOLS 1 Transfer unit 2 Glass substrate 10 Illumination part 11 Slit 20 Image processing part 30 Control part

Claims (1)

ガラス基板に所定角度で照明を照射し、ガラス基板の表面に対する影映像を獲得する段階と
前記獲得された影映像を波形化する段階と、
前記波形化した影映像を微分アルゴリズムで微分して一定間隔に分割する段階と、
前記微分を介して等間隔に分割した影映像にガラス基板の平坦度に対する基準値の境界条件を適用する段階と、
前記適用された境界条件を脱する映像が存在するか否かを検出して波形発生を判断する段階と、
前記判断の結果、波形が発生した場合にその波形種類を選別する段階と、を含み、
前記波形種類の選別は、
境界条件を脱する微分化して分割された影映像の一定間隔をカウンし、
前記カウントされた個数から境界条件を脱する影映像の照明によりガラス基板の上面に透過されて波形化した影映像の波形範囲内の一定間隔の幅が狭ければストリーク状の波形として選別し、
前記波形種類の選別は、
境界条件を脱する微分化して分割された影映像の一定間隔をカウンし、
前記カウントされた個数から境界条件を脱する影映像の照明によりガラス基板の上面に透過されて波形化した影映像の波形範囲内の一定間隔の幅が広ければシクバンド状の波形として選別し、または、
前記波形種類の選別は、
境界条件を脱する微分化して分割された影映像の一定間隔をカウンし、
前記カウントされた個数から境界条件を脱する影映像の照明によりガラス基板の上面に透過されて波形化した影映像の波形範囲内の一定間隔の幅が繰り返しの周期を有する場合、コード状の波形として選別することを特徴とするガラス基板の品質検査方法。
Illuminating the glass substrate at a predetermined angle to obtain a shadow image on the surface of the glass substrate; and corrugating the acquired shadow image;
Differentiating the waveform-shaped shadow image with a differentiation algorithm and dividing it into a predetermined interval;
Applying a boundary condition of a reference value for the flatness of the glass substrate to shadow images divided at equal intervals via the differentiation;
Detecting whether there is a video that deviates from the applied boundary condition and determining waveform generation;
A result of the determination, see contains the steps of selecting the waveform type when the waveform is generated, and
The selection of the waveform type is as follows:
A certain distance of the shadow from the video that has been divided by differentiating of escape from the boundary conditions to count,
If the width of the fixed interval within the waveform range of the shadow image transmitted through the upper surface of the glass substrate by the illumination of the shadow image that deviates from the boundary condition from the counted number is narrow, it is selected as a streak-like waveform ,
The selection of the waveform type is as follows:
A certain distance of the shadow from the video that has been divided by differentiating of escape from the boundary conditions to count,
If the width of a certain interval within the waveform range of the shadow image transmitted through the upper surface of the glass substrate by the illumination of the shadow image that deviates from the boundary condition from the counted number is wide, the waveform is selected as a band-like waveform , or ,
The selection of the waveform type is as follows:
A certain distance of the shadow from the video that has been divided by differentiating of escape from the boundary conditions to count,
If the width of a certain interval within the waveform range of the shadow image transmitted through the upper surface of the glass substrate by the illumination of the shadow image that deviates from the boundary condition from the counted number has a repetition period, the code-like waveform A glass substrate quality inspection method characterized by sorting as:
JP2009534472A 2006-10-27 2007-05-30 Glass substrate quality inspection apparatus and inspection method thereof Active JP4971456B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20060105240A KR100838655B1 (en) 2006-10-27 2006-10-27 Quality tester of glass board and method thereof
KR10-2006-0105240 2006-10-27
PCT/KR2007/002633 WO2008050941A1 (en) 2006-10-27 2007-05-30 Quality tester of glass board and method thereof

Publications (2)

Publication Number Publication Date
JP2010507801A JP2010507801A (en) 2010-03-11
JP4971456B2 true JP4971456B2 (en) 2012-07-11

Family

ID=39324710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009534472A Active JP4971456B2 (en) 2006-10-27 2007-05-30 Glass substrate quality inspection apparatus and inspection method thereof

Country Status (5)

Country Link
JP (1) JP4971456B2 (en)
KR (1) KR100838655B1 (en)
CN (1) CN101542359B (en)
TW (1) TWI329200B (en)
WO (1) WO2008050941A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100953204B1 (en) * 2008-05-19 2010-04-15 (주)쎄미시스코 Glass waviness inspection device and inspection method thereof
CN102753933B (en) * 2010-02-15 2015-06-10 株式会社理光 Transparent object detection system and transparent flat plate detection system
KR200461687Y1 (en) 2010-09-09 2012-07-30 (주)쎄미시스코 Board quality tester with board injection gate of multistage
CN103185662B (en) * 2011-12-30 2015-09-09 信义汽车玻璃(深圳)有限公司 Tempered glass of automobile water ripples Bracket for Inspection and system and detection method
KR101316039B1 (en) * 2012-05-02 2013-10-10 (주)쎄미시스코 Receiving device and glass permeable membrane inspecting device that use this
KR20230174235A (en) * 2021-04-22 2023-12-27 히다치 조센 가부시키가이샤 inspection device
KR20240028785A (en) 2022-08-25 2024-03-05 주식회사 큐빅셀 Cross-sectional inspection device of glass substrate and inspection method using it

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166452A (en) * 1980-05-27 1981-12-21 Nippon Sheet Glass Co Ltd Detecting method for distortion defect of transparent plate
JPH0283438A (en) * 1988-09-21 1990-03-23 Nissan Motor Co Ltd Apparatus for evaluating deposit or the like on surface of transparent plate
CN1016101B (en) * 1989-09-22 1992-04-01 中国新型建筑材料工业杭州设计研究院 In-line automatic tester of adfects on float glass
FR2663744B1 (en) * 1990-06-25 1993-05-28 Saint Gobain Vitrage Int METHOD AND DEVICE FOR MEASURING THE OPTICAL QUALITY OF A GLAZING.
JPH05272949A (en) * 1992-03-30 1993-10-22 Nippon Sheet Glass Co Ltd Method for evaluating glass plate surface
JPH07306152A (en) * 1994-03-16 1995-11-21 Sekisui Chem Co Ltd Optical distortion inspecting device
JPH08136239A (en) * 1994-11-11 1996-05-31 Adomon Sci Kk Device and method for inspection
JP3668294B2 (en) * 1995-08-22 2005-07-06 オリンパス株式会社 Surface defect inspection equipment
JP4385419B2 (en) * 1998-11-30 2009-12-16 株式会社ニコン Appearance inspection method and appearance inspection apparatus
KR20010055184A (en) * 1999-12-09 2001-07-04 구자홍 Optics apparatus for pattern inspection of pdp glass
JP2001201429A (en) * 2000-01-18 2001-07-27 Mitsubishi Chemicals Corp Method and device for inspecting defect in inspected base body
JP2002310925A (en) * 2001-04-18 2002-10-23 Corning Japan Kk Plate material inspecting method and device thereof
JP2004219108A (en) * 2003-01-09 2004-08-05 Dainippon Printing Co Ltd Method and apparatus for inspecting irregularities in film thickness of colored film
JP2005083906A (en) * 2003-09-09 2005-03-31 Asahi Kasei Engineering Kk Defect detector

Also Published As

Publication number Publication date
CN101542359A (en) 2009-09-23
TW200819736A (en) 2008-05-01
KR20080037927A (en) 2008-05-02
TWI329200B (en) 2010-08-21
WO2008050941A1 (en) 2008-05-02
JP2010507801A (en) 2010-03-11
KR100838655B1 (en) 2008-06-16
CN101542359B (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP4971456B2 (en) Glass substrate quality inspection apparatus and inspection method thereof
KR100642500B1 (en) Apparatus for edge defect and discolor testing of glass board
KR100838656B1 (en) Quality tester of glass board
JP5119602B2 (en) Periodic pattern defect inspection method and defect inspection apparatus
JP5245212B2 (en) Edge inspection device
WO2007129691A1 (en) End section inspecting apparatus
JP2013534312A (en) Apparatus and method for three-dimensional inspection of wafer saw marks
JP4655644B2 (en) Periodic pattern unevenness inspection system
TWI545314B (en) Method and method for checking unevenness of film thickness
TWI391650B (en) Substrate quality tester
JP4967245B2 (en) Periodic pattern unevenness inspection apparatus and unevenness inspection method
JP2005055196A (en) Substrate inspection method and its device
JP2008076216A (en) Inspection device for irregularity in cyclic pattern
KR102094800B1 (en) Contaminatn measurement substrate, appratus and method for manufacturing substrate using the same
TWI477768B (en) Method and apparatus for automatic optical inspection of flat panel substrate
JP5007346B2 (en) Rubbing cloth defect removal device
KR100953202B1 (en) Lighting department light source control structure of glass board quality tester
JP4743395B2 (en) Pitch unevenness inspection method and pitch unevenness inspection apparatus
KR101351000B1 (en) In-line camera inspection apparatus having plural mode
KR20110117371A (en) Pattern inspection device
JP2012058029A (en) Periodic pattern inspection device
JP4425815B2 (en) Color unevenness inspection method and apparatus
JP2007304002A (en) Defect inspection method, defect inspection device, defect inspection program, and storage medium for storing program
JP2007095369A (en) Defect inspection device and defect inspection method of crt panel
KR20110066626A (en) Apparatus and method for inspecting object having repeated patterns

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4971456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250