JPH07306152A - Optical distortion inspecting device - Google Patents

Optical distortion inspecting device

Info

Publication number
JPH07306152A
JPH07306152A JP7057117A JP5711795A JPH07306152A JP H07306152 A JPH07306152 A JP H07306152A JP 7057117 A JP7057117 A JP 7057117A JP 5711795 A JP5711795 A JP 5711795A JP H07306152 A JPH07306152 A JP H07306152A
Authority
JP
Japan
Prior art keywords
image
sample
distortion
light
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7057117A
Other languages
Japanese (ja)
Inventor
Sachiko Asao
幸子 浅尾
Jiro Miyai
二郎 宮井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7057117A priority Critical patent/JPH07306152A/en
Publication of JPH07306152A publication Critical patent/JPH07306152A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an optical distortion inspecting device which can perform accurate evaluation without variation and, at the same time, quantitatively express the range of optical distortion of an object to be inspected having a light transmitting property by inspecting the object for optical distortion by quantitatively extracting the distortion. CONSTITUTION:An object W to be inspected, slit 3, and plane of projection 5 are successively arranged in the projecting direction of illuminating light emitted from a light source unit 2. Since part of the light emitted from the unit 2 is intercepted by the slit hole of the slit 3 arranged between the unit 2 and object, the light is passed through the object W and projected upon the plane 5. The picture of the projected image is taken with a picture inputting section 6 and picture signals are outputted to a picture processing section 7. The section 7 divides the inputted picture signals into a plurality of parts, discriminates the presence/absence of distortion based on the degree of variation of the gradation level of each picture element in each part, and finds the ratio of the area of distorted part to the whole area of gradation picture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 この発明は透光性を有する被検
査物の光学的歪を検査する為の光学的歪検査装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical distortion inspection device for inspecting an optical distortion of a translucent inspection object.

【0002】[0002]

【従来の技術】 従来、この種の検査装置に関しては、
被検査物の表面上の欠陥を検査する装置として特開平3
−287053号公報のものが知られている。この装置
では、被検査物の正常部と欠陥部との吸光差が最小とな
る波長近傍にピーク透過率を持つ光学バンドパスフィル
タと、最大となる波長近傍にピーク透過率を持つ光学バ
ンドパスフィルタを交互に使用して撮像した二つの画像
間に画素間減算を施し、欠陥部分の画像の抽出を行な
い、この部分の面積に基づいて欠陥の有無を判定してい
る。
2. Description of the Related Art Conventionally, regarding this type of inspection apparatus,
As an apparatus for inspecting defects on the surface of an object to be inspected
The one disclosed in JP-A-287053 is known. In this device, an optical bandpass filter having a peak transmittance in the vicinity of the wavelength where the absorption difference between the normal portion and the defective portion of the inspection object is the minimum, and an optical bandpass filter having the peak transmittance in the vicinity of the maximum wavelength. Pixels are subtracted between two images picked up alternately to extract the image of the defective portion, and the presence or absence of the defect is determined based on the area of this portion.

【0003】[0003]

【発明が解決しようとする課題】 しかしながら、かか
る従来の装置では、透光性を有する被検査物の光学的歪
を検査しようとしても被検査物の性質上、光源の波長変
化による吸光差が殆ど生じないため、歪部分を抽出する
ことができないという問題点を有する。又、少なくとも
2種類の光学バンドパスフィルタを使用しなければなら
ないため、その切替え機構も含めて、装置が大がかりに
なってしまうという問題点も有する。本発明は、上記問
題点に鑑みてなされたもので、簡単な装置構成により透
光性を有する被検査物で、しかも、小さな濃淡レベルの
差しか生じない被検査物の光学的歪を検査できると共
に、光学的歪の範囲を定量的に表せる検査装置を提供す
ることを目的とする。
However, in such a conventional apparatus, even if an optical distortion of an inspected object having a light-transmitting property is to be inspected, due to the property of the inspected object, there is almost no absorption difference due to a wavelength change of the light source. Since it does not occur, there is a problem that the distorted part cannot be extracted. In addition, since at least two types of optical bandpass filters must be used, there is a problem that the device including the switching mechanism becomes large in size. The present invention has been made in view of the above problems, and it is possible to inspect an optical distortion of an inspected object having a light-transmitting property by a simple device configuration, and further, an optical distortion of the inspected object that does not cause a small difference in gray level. At the same time, it is an object of the present invention to provide an inspection device capable of quantitatively expressing the range of optical distortion.

【0004】[0004]

【課題を解決するための手段】 そこで、この発明は、
透光性を有する被検査物に向けて照明光を照射する光源
ユニットと、被検査物を透過した前記照明光を投影する
投影面と、投影面を撮像して濃淡画像を生成する画像入
力部と、画像入力部で得られた濃淡画像の濃淡レベルの
ばらつきの度合いに基づいて歪の有無を判定する画像処
理部とを有することを特徴とする光学的歪検査装置、及
び、該検査装置において、光源ユニットと被検査物との
間に光源ユニットからの照明光を一部遮光するスリット
を設けることを特徴とする光学的歪検査装置、及び、該
検査装置において、画像処理部が画像入力部で得られた
濃淡画像を複数に分割し、各部分の濃淡レベルのばらつ
きの度合いに基づいて歪の有無を判定し、濃淡画像全体
における歪有り部分の割合を求める画像処理部であるこ
とを特徴とする光学的歪検査装置、を提供することによ
り上述の課題を解決する。
Therefore, the present invention provides
A light source unit that irradiates the inspection object having translucency with illumination light, a projection surface that projects the illumination light that has passed through the inspection object, and an image input unit that captures the projection surface and generates a grayscale image. And an optical distortion inspection device having an image processing unit that determines the presence or absence of distortion based on the degree of variation in the gray level of the gray image obtained by the image input unit, and the inspection device. An optical distortion inspecting device, characterized in that a slit is provided between the light source unit and the object to be inspected to partially shield the illumination light from the light source unit; and in the inspecting device, the image processing section includes an image input section. It is an image processing unit that divides the grayscale image obtained in step 2 into a plurality of parts, determines the presence or absence of distortion based on the degree of variation in the grayscale level of each part, and obtains the ratio of the distorted part in the entire grayscale image. Light To solve the problems described above by providing distortions testing device.

【0005】[0005]

【作用】 被検査物に向けて光源ユニットが照明光を照
射すると、照明光が被検査物に照射され、更に、被検査
物を透過し、投影面に投影される。スリットを使用した
構成の場合には、照明光が直接被検査物に照射され、更
に、被検査物を透過し、投影面に投影される。次いで、
画像入力部が投影された像を撮像して濃淡画像を生成す
る。この濃淡画像を画像処理部が入力し、濃淡レベルの
ばらつきの度合いに基づいて歪の有無を判定する。光源
ユニットと被検査物との間にスリットを設けた場合は、
スリットにより一部遮光された照明光が被検査物に照射
され、更に、被検査物を透過し、投影面に投影される。
画像入力部が画像入力部で得られた濃淡画像を複数に分
割し、各部分の濃淡レベルのばらつきの度合いに基づい
て歪の有無を判定し濃淡画像全体における歪有り部分の
割合を求める場合には、入力する濃淡画像を複数部分に
分割し、分割された各部分の濃淡レベルのばらつきの度
合いに基づいて歪の有無を判定する。次いで、各部分に
おいて歪有りと判定された部分全体と濃淡画像全体との
割合を求める。
When the light source unit irradiates the inspection object with the illumination light, the illumination light is applied to the inspection object, further passes through the inspection object, and is projected on the projection surface. In the case of using the slit, the illumination light is directly irradiated onto the inspection object, further passes through the inspection object, and is projected on the projection surface. Then
The image input unit captures the projected image and generates a grayscale image. The image processing unit inputs this grayscale image and determines the presence or absence of distortion based on the degree of variation in grayscale level. If a slit is provided between the light source unit and the inspection object,
Illumination light, which is partially shielded by the slit, is applied to the inspection object, further passes through the inspection object, and is projected on the projection surface.
When the image input unit divides the grayscale image obtained by the image input unit into multiple parts and determines the presence or absence of distortion based on the degree of variation in the grayscale level of each part, and when obtaining the ratio of the distorted part in the entire grayscale image The input grayscale image is divided into a plurality of portions, and the presence or absence of distortion is determined based on the degree of variation in the grayscale level of each divided portion. Next, the ratio between the entire portion determined to be distorted in each portion and the entire grayscale image is obtained.

【0006】[0006]

【実施例】 図1はこの発明の第1実施例を表す平面説
明図であり、図2はこの発明の第1実施例を表す正面説
明図であり、図3は円形のスリットを表す説明図であ
り、図4は角形のスリットを表す説明図であり、図5は
検体の説明図であり、図6はこの発明の第2実施例の平
面説明図であり、図7はこの発明の第2実施例の正面説
明図であり、図8はこの発明の第3実施例を表す正面説
明図であり、図9はこの発明の第3実施例を表す側面説
明図であり、図10は濃淡画像の説明図であり、図11
はこの発明の第4実施例の正面説明図であり、図12は
この発明の第4実施例の正面説明図であり、図13及び
図14は検体の載置方法を表す平面説明図である。
FIG. 1 is a plan explanatory view showing a first embodiment of the present invention, FIG. 2 is a front explanatory view showing the first embodiment of the present invention, and FIG. 3 is an explanatory view showing a circular slit. FIG. 4 is an explanatory view showing a rectangular slit, FIG. 5 is an explanatory view of a sample, FIG. 6 is a plan explanatory view of a second embodiment of the present invention, and FIG. 7 is a first explanatory drawing of the present invention. 8 is a front explanatory view of the second embodiment, FIG. 8 is a front explanatory view showing a third embodiment of the present invention, FIG. 9 is a side explanatory view showing the third embodiment of the present invention, and FIG. 11 is an explanatory diagram of an image, and FIG.
Is a front explanatory view of the fourth embodiment of the present invention, FIG. 12 is a front explanatory view of the fourth embodiment of the present invention, and FIGS. 13 and 14 are plan explanatory views showing a method of placing a sample. .

【0007】以下に、この発明の第1実施例を図1乃至
図5に従い説明する。1は光学的歪検査装置であり、W
は検体である。光学的歪検査装置1は、検体Wの光学的
歪を検査する。検体Wは、この実施例では、図5に表す
ようにガラス板W1と被検査物である中間膜W2から構
成する。この実施例で検査する中間膜W2は、自動車の
フロントガラス等に使用される中間膜で、使用時にはガ
ラス板W1に挟んだ状態で使用するので、使用時を想定
して2枚のガラス板W1に挟んだ状態で検査する。この
実施例では中間膜を検査するが、検査目的が光学的歪の
検出であれば、特に中間膜に限定されない。この実施例
で検査される検体Wは、光学的歪のサイズが比較的小さ
く、しかも、歪部分の濃淡差が比較的大きなものなの
で、照明光に対し検体Wを傾けないで載置する。光学的
歪検査装置1は、光源ユニット2、スリット3、検体載
置部4、投影面5、画像入力部6、画像処理部7、架台
8、評価部9とからなり、画像処理部7及び評価部9以
外の夫々を架台8上に載置し、夫々移動可能に構成す
る。光学的歪検査装置1は、検体載置部4上に検体Wを
載置可能である。光源ユニット2は、発光部21、光フ
ァイバー22、照射口23とからなり、発光部21で発
光される照明光が光ファイバー22内を経由し、照射口
23からスリット3方向へ照射される。照射口23は架
台8の一方端に載置され、照射口23から照射される光
軸A方向へ移動可能である。発光部21はこの実施例で
はハロゲン電球を配設してなるが、特定波長の光でもよ
く、検体Wを透過した像が投影面5に、より鮮明に投影
されるような光が望ましい。
A first embodiment of the present invention will be described below with reference to FIGS. 1 to 5. 1 is an optical distortion inspection device, W
Is a sample. The optical distortion inspection device 1 inspects the optical distortion of the sample W. In this embodiment, the sample W is composed of a glass plate W1 and an intermediate film W2 which is an object to be inspected, as shown in FIG. The interlayer film W2 to be inspected in this example is an interlayer film used for a windshield of an automobile or the like, and is used by being sandwiched between the glass plates W1 at the time of use. Inspect with the product sandwiched between. Although the intermediate film is inspected in this embodiment, the inspection is not limited to the intermediate film as long as the inspection purpose is detection of optical strain. The sample W to be inspected in this embodiment has a relatively small optical strain size and a relatively large density difference in the distorted portion, so that the sample W is placed without tilting with respect to the illumination light. The optical distortion inspection device 1 includes a light source unit 2, a slit 3, a sample placement unit 4, a projection surface 5, an image input unit 6, an image processing unit 7, a gantry 8 and an evaluation unit 9, and the image processing unit 7 and Each of the components other than the evaluation unit 9 is placed on the gantry 8 and is configured to be movable. The optical strain inspection apparatus 1 can mount the sample W on the sample mounting unit 4. The light source unit 2 includes a light emitting unit 21, an optical fiber 22, and an irradiation port 23, and the illumination light emitted by the light emitting unit 21 passes through the optical fiber 22 and is emitted from the irradiation port 23 toward the slit 3. The irradiation port 23 is mounted on one end of the gantry 8 and is movable in the optical axis A direction irradiated from the irradiation port 23. Although the light emitting section 21 is provided with a halogen bulb in this embodiment, it may be light of a specific wavelength, and it is preferable that the image transmitted through the sample W is projected on the projection surface 5 more clearly.

【0008】スリット3は、中央部にスリット孔31を
有し、光源ユニット2の照射口23及び検体W間に、検
体Wの光源ユニット2と反対側に設置される投影面5へ
光源ユニット2からの照明光が投影される位置に設置さ
れ、架台8上を光軸A方向に移動可能である。スリット
3は、照射口23からの光をスリット孔31を通過させ
ることにより、点光源に近い光を検体Wに照射可能に
し、検体Wを透過した光による像に検体Wの光学的歪
が、より鮮明に表されるようにする。この実施例ではス
リット3は照射口23の照射端部から10mmの位置に配
置され、スリット孔31形状は、図3に表す通り、円形
のスリット孔31或いは長方形のスリット孔31であ
り、この実施例においては、円形のスリット孔31で
は、直径0.1mmの円形状とした。又、図4に表す角形
のスリット3では、検体Wの光学的歪に方向性がある場
合に有効であり、この実施例では0.19mm×0.5mm
の長方形状のスリット孔31とした。光学的歪の方向と
角形のスリット3の長手方向が一致した場合には投影面
上の光の疎密状態が強調され、円形スリット3以上に鮮
明に表すことが可能となるので、使用に際してはスリッ
ト3の長手方向が光学的歪の方向と一致するように用い
る。勿論、スリット3の大きさは、照射口23の形状、
照射口23、検体W及び投影面5との位置関係等を考慮
し決定する。
The slit 3 has a slit hole 31 in the center thereof, and is placed between the irradiation port 23 of the light source unit 2 and the sample W to the projection surface 5 installed on the opposite side of the sample W from the light source unit 2. It is installed at a position where the illumination light from is projected and is movable on the gantry 8 in the optical axis A direction. The slit 3 makes it possible to irradiate the sample W with light close to a point light source by passing the light from the irradiation port 23 through the slit hole 31, and the optical distortion of the sample W in the image due to the light transmitted through the sample W is Make it more visible. In this embodiment, the slit 3 is arranged at a position 10 mm from the irradiation end of the irradiation opening 23, and the shape of the slit hole 31 is a circular slit hole 31 or a rectangular slit hole 31, as shown in FIG. In the example, the circular slit hole 31 has a circular shape with a diameter of 0.1 mm. Further, the rectangular slit 3 shown in FIG. 4 is effective when the optical strain of the sample W has directionality, and in this embodiment, it is 0.19 mm × 0.5 mm.
The rectangular slit hole 31 of When the direction of optical distortion and the longitudinal direction of the rectangular slit 3 coincide with each other, the light-dense state of the light on the projection surface is emphasized, and it is possible to clearly represent the circular slit 3 or more. 3 is used so that the longitudinal direction thereof coincides with the optical strain direction. Of course, the size of the slit 3 depends on the shape of the irradiation port 23,
The position is determined in consideration of the positional relationship between the irradiation port 23, the sample W, and the projection surface 5.

【0009】検体載置部4は、検体Wを光軸Aに略垂直
に載置可能であり、架台8上を光軸A方向に移動可能で
ある。投影面5は、検体Wに対し、図1に表すように角
度θを画像入力部6方向に傾け配置し、スリット3、検
体Wを経た照射口23からの照明光による像を投影す
る。角度θは、この実施例では、105゜に傾け配置す
る。更に、投影面5は、光沢が無く、又、凹凸が少ない
白紙等が望ましい。画像入力部6は、CCDカメラから
なり、投影面5に投影された像を撮像し、投影された像
の明暗を信号に変換し濃淡画像信号として画像処理部7
へ出力する。架台8は、本体81とアーム82から構成
され、本体81の中間部から画像入力部6を載置可能な
アーム82を、本体81の長手方向に移動可能に設置さ
せ構成する。以上のように、図1に表す平面方向からの
夫々の位置関係は照射口23から出射される照明光の光
軸Aに対し、スリット3、検体載置部4、検体Wが夫々
略垂直に設置され、投影面5は角度θで載置され、画像
入力部6は撮像方向が投影面5と略垂直に載置される。
又、図2に表す正面方向からの夫々の位置関係は、スリ
ット3は光軸Aに略垂直に、検体Wは検査面が光軸Aと
略垂直に、投影面5は投影面が光軸Aに略垂直に、画像
入力部6は、その撮像方向が光軸A方向になるようアー
ム82に載置される。画像処理部7は、画像入力部6か
らの濃淡画像の信号を入力し、取込んだ濃淡画像の各画
素間の濃度値の分散値を出力する。この濃淡画像は、検
体Wの歪が大きい場合には、屈折率の差も大きくなるの
で、できる縞模様も明暗差のはっきりした大きなものに
なり、歪が小さい場合には屈折率の差も小さくなるの
で、明暗差のあまりはっきりしない微小な縞模様とな
る。又、この実施例では中間膜W2による歪は横方向に
現れ、ガラス板W1による歪は縦方向に現れる。
The sample placing section 4 is capable of placing the sample W substantially perpendicularly to the optical axis A, and is movable on the mount 8 in the optical axis A direction. As shown in FIG. 1, the projection surface 5 is arranged so as to be inclined with respect to the sample W at an angle θ in the direction of the image input unit 6, and projects an image by the illumination light from the irradiation port 23 passing through the slit 3 and the sample W. In this embodiment, the angle θ is 105 °. Further, the projection surface 5 is preferably a white paper or the like having no gloss and less unevenness. The image input unit 6 is composed of a CCD camera, captures an image projected on the projection surface 5, converts the brightness of the projected image into a signal, and outputs the image as a grayscale image signal to the image processing unit 7.
Output to. The gantry 8 is composed of a main body 81 and an arm 82, and an arm 82 on which the image input unit 6 can be placed is installed so as to be movable in the longitudinal direction of the main body 81 from an intermediate portion of the main body 81. As described above, the respective positional relationships from the plane direction shown in FIG. 1 are such that the slit 3, the sample mounting portion 4, and the sample W are substantially perpendicular to the optical axis A of the illumination light emitted from the irradiation port 23. The projection surface 5 is placed at an angle θ, and the image input unit 6 is placed so that the imaging direction is substantially perpendicular to the projection surface 5.
Further, the respective positional relationships from the front direction shown in FIG. 2 are as follows: the slit 3 is substantially perpendicular to the optical axis A, the specimen W has an inspection surface substantially perpendicular to the optical axis A, and the projection surface 5 has the projection surface optical axis. The image input unit 6 is mounted on the arm 82 so that its image pickup direction is the optical axis A direction substantially perpendicular to A. The image processing unit 7 inputs the signal of the grayscale image from the image input unit 6, and outputs the dispersion value of the density values between the pixels of the captured grayscale image. In the grayscale image, when the sample W has a large distortion, the difference in the refractive index also becomes large, so that the stripe pattern formed also has a large difference in light and shade, and when the distortion is small, the difference in the refractive index becomes small. Therefore, it becomes a fine striped pattern in which the difference in brightness is not so clear. Further, in this embodiment, the strain due to the intermediate film W2 appears in the horizontal direction, and the strain due to the glass plate W1 appears in the vertical direction.

【0010】分散値の算出は、濃淡画像の画素単位の濃
度値から縦方向一列について、分散値を計算し、同様に
他の列についても行ない、その平均をとることによって
行なう。分散値の求め方は種々考えられ、濃淡画像全体
の分散値を計算してもよいが、前記した縦あるいは横方
向を一単位として計算することにより、検査対象となる
光学的歪を検出するにはより有効である。即ち、この実
施例では中間膜W2の光学的歪の検査を行うので、ガラ
ス板W1による光学的歪の影響を排除するため縦方向に
計算したが、検査対象がガラス板W1の光学的歪となる
場合等は、横方向に分散値を計算し、中間膜W2の光学
的歪の影響を排除可能となる。又、濃淡画像全体を対象
とする必要はなく、特定の一部についてのみ分散値を求
めてもよい。例えば、光学的歪が生じやすい部分につい
て、一又は複数の所定の大きさの領域を設定し、その領
域内を対象として分散値を計算するものである。これに
より計算量の軽減がはかれる。9は、評価部であり、評
価部9では画像処理部7により算出される分散値と、予
め定められた許容範囲の分散値とを比較し、検体Wの品
質を評価する。又、この実施例では記述していないが、
検体Wをロボットなどにより載置、取外しを行なう場合
等には、評価部9で評価した結果により取外してから自
動的に良品、不良品に分類することも可能である。
The variance value is calculated by calculating the variance value for one column in the vertical direction from the density value of each pixel of the grayscale image, and similarly for the other columns, and taking the average thereof. There are various methods of obtaining the variance value, and the variance value of the entire grayscale image may be calculated. However, by calculating the above-described vertical or horizontal direction as one unit, it is possible to detect the optical distortion to be inspected. Is more effective. That is, in this embodiment, since the optical distortion of the intermediate film W2 is inspected, the vertical distortion is calculated in order to eliminate the influence of the optical distortion due to the glass plate W1, but the inspection target is the optical distortion of the glass plate W1. In such a case, the dispersion value can be calculated in the lateral direction, and the influence of the optical strain of the intermediate film W2 can be eliminated. Further, it is not necessary to target the entire grayscale image, and the variance value may be calculated only for a specific part. For example, with respect to a portion where optical distortion is likely to occur, one or a plurality of regions having a predetermined size are set, and the variance value is calculated for the region. This reduces the amount of calculation. An evaluation unit 9 evaluates the quality of the sample W by comparing the variance value calculated by the image processing unit 7 with the variance value within a predetermined allowable range. Although not described in this embodiment,
When the sample W is placed and removed by a robot or the like, it is possible to automatically classify the sample W into a non-defective product or a defective product after removing it according to the result evaluated by the evaluation unit 9.

【0011】次に、この実施例の作用について説明す
る。検体Wを検体載置部4に載置する。次に、光源ユニ
ット2の発光部21で照明光を発生させ、光ファイバー
22内を経由し、照射口23から検体Wに照射する。照
明光は、検体W方向に照射されスリット3によりスリッ
ト孔31以外の部分は遮光され検体Wを透過して投影面
5にスリット孔31形状の検体Wを透過した像が拡大投
影される。この時、投影された像は、検体Wの被検査物
W2に凹凸等の光学的歪がある場合には、歪箇所で照明
光が屈折される。この屈折された照明光は、スリット3
が存在せず、照射範囲が一様に中間膜W2全体に及ぶ様
な広範囲に照射された場合には、他の部分で乱屈折した
照明光等と被検査物W2の歪箇所で生じた屈折による照
明光とが互いに影響し合い、あまり大きな濃度差を生じ
ない。しかし、照射口23と近接した位置にスリット3
を設置し、微小な間隔のスリット孔31を通過すること
で照射された照明光が他の屈折光に影響される事無く疑
似的な点光源からの照射光となり、中間膜W2に到達
し、中間膜W2の一部分のみを照射し、光学的歪が拡大
され濃淡の有る縞模様として明暗差で投影面5に投影さ
れる。このように照明光はスリット孔31を通過するこ
とで、疑似的な点光源からの照射光となる。
Next, the operation of this embodiment will be described. The sample W is placed on the sample placing section 4. Next, illumination light is generated by the light emitting unit 21 of the light source unit 2, passes through the inside of the optical fiber 22, and irradiates the sample W from the irradiation port 23. The illumination light is irradiated in the direction of the sample W, the portions other than the slit holes 31 are shielded by the slits 3, the sample W is transmitted, and the image transmitted through the sample W in the shape of the slit holes 31 is enlarged and projected on the projection surface 5. At this time, in the projected image, when the inspection object W2 of the sample W has optical distortion such as unevenness, the illumination light is refracted at the distortion portion. This refracted illumination light passes through the slit 3
Is not present, and when irradiation is performed over a wide range such that the irradiation range uniformly covers the entire intermediate film W2, the illumination light and the like that are irregularly refracted at other portions and the refraction that occurs at the distorted portion of the inspection object W2. And the illumination light from the two influence each other, and do not cause a very large density difference. However, the slit 3 is provided at a position close to the irradiation port 23.
Is installed, and the illumination light emitted by passing through the slit holes 31 with a minute interval becomes irradiation light from a pseudo point light source without being affected by other refracted light, and reaches the intermediate film W2, By irradiating only a part of the intermediate film W2, the optical distortion is enlarged and projected on the projection surface 5 as a striped pattern having light and shade with a difference in brightness. In this way, the illumination light passes through the slit hole 31 and becomes irradiation light from a pseudo point light source.

【0012】このように検体Wを照射し投影された明暗
差による像は、画像入力部6により撮像される。画像入
力部6では、投影面5に投影された像が画像信号として
出力され、画像処理部7に入力される。画像処理部7で
は、濃淡画像の画素単位の濃度値から分散値を算出し、
評価部9へ出力する。分散値を入力した評価部9では、
入力した分散値と、予め定められた許容範囲の分散値と
を比較し、検体Wの品質を評価する。又、光源ユニット
2により、点光源或いは線光源に近い照明光をであり、
スリット3を用いた場合と同等の照明光を照射可能であ
ればスリット3を使用しなくとも検査可能である。
The image due to the difference in brightness projected on the specimen W in this way is picked up by the image input unit 6. The image input unit 6 outputs the image projected on the projection surface 5 as an image signal and inputs the image signal to the image processing unit 7. The image processing unit 7 calculates the variance value from the density value of each pixel of the grayscale image,
Output to the evaluation unit 9. In the evaluation unit 9 that inputs the variance value,
The quality of the sample W is evaluated by comparing the input variance value with the variance value within a predetermined allowable range. Further, the light source unit 2 emits illumination light close to a point light source or a line light source,
If the illumination light equivalent to the case where the slit 3 is used can be irradiated, the inspection can be performed without using the slit 3.

【0013】第2実施例として、光源ユニット2により
スリット3を用いたと同様の照明光を照射する場合を図
6及び図7に従い説明する。この実施例では、光源ユニ
ット2は、発光部21、照射口23、照明光生成部24
からなり、架台8の本体81一端部に設置される。発光
部21では、第1実施例同様照明光を発生する。照明光
生成部24では、発光部21で発生された照明光を、レ
ンズ等の光学機器により、偏向させスリット3を用いた
と同様の照明光を照射する。照射口23は、第1実施例
同様、照明光を検体Wに照射し、投影面5に投影可能で
ある。検体載置部4,投影面5,画像入力部6,画像処
理部7及び評価部9については、第1実施例同様であ
る。この実施例の作用は、第1実施例同様であるが、ス
リット3が無いので、照射する照明光が直接検体Wを透
過し、投影面5に投影される。投影面5,画像入力部
6,画像処理部7及び評価部9の作用については、第1
実施例同様である。検体Wは、第1実施例及び第2実施
例においては、光学的歪のサイズが比較的小さく、しか
も、歪部分の濃淡差が比較的大きなものなものであった
が、光学的歪のサイズが比較的大きく、しかも、歪部分
の濃淡差が小さな検体Wを検査する場合には、光学的歪
部分の濃淡差を強調し検査した方がより正確に検査でき
る。
As a second embodiment, the case of illuminating the same illumination light as that using the slit 3 with the light source unit 2 will be described with reference to FIGS. 6 and 7. In this embodiment, the light source unit 2 includes a light emitting section 21, an irradiation opening 23, and an illumination light generating section 24.
And is installed at one end of the main body 81 of the gantry 8. The light emitting section 21 generates illumination light as in the first embodiment. In the illumination light generation unit 24, the illumination light generated by the light emitting unit 21 is deflected by an optical device such as a lens, and the same illumination light as that using the slit 3 is emitted. The irradiation port 23 can irradiate the specimen W with the illumination light and project it onto the projection surface 5 as in the first embodiment. The sample placement unit 4, projection plane 5, image input unit 6, image processing unit 7, and evaluation unit 9 are the same as in the first embodiment. The operation of this embodiment is similar to that of the first embodiment, but since the slit 3 is not provided, the illumination light to be emitted directly passes through the sample W and is projected on the projection surface 5. The operation of the projection plane 5, the image input unit 6, the image processing unit 7, and the evaluation unit 9 will be first described.
It is similar to the embodiment. In the first and second embodiments, the sample W has a relatively small optical strain size and a relatively large grayscale difference in the strained portion, but the optical strain size is large. When inspecting a sample W having a relatively large grayscale difference and a small grayscale difference in the distorted portion, the grayscale difference in the optically distorted portion is emphasized for more accurate inspection.

【0014】以下に、光学的歪のサイズが比較的大き
く、しかも、歪部分の濃淡差が小さな検体Wを検査する
実施例として図8及び図9に基づき第3実施例を説明す
る。この実施例では、第2実施例同様スリット3を用い
ない構成であり、光源ユニット2、検体載置部4、投影
面5、画像入力部6、画像処理部7、及び、評価部9
は、架台8を用いず夫々が独立して設置される。光源ユ
ニット2は、発光部21、照射口23とからなり、発光
部21で発光される光が照射口23から投影面5方向へ
照射される。発光部21はこの実施例では高圧水銀灯を
配設してなるが、特定波長の光でもあるいは特定波長で
ない光でもよく、検体Wを透過した光により投影面5へ
投影された像に検体Wの光学的歪がより鮮明に投影され
るような擬似平行光が望ましい。この実施例で用いる擬
似平行光は、各光束が完全に平行なものではなく、発光
する光をある程度の拡大率になるよう集合させ照射され
る光束光をいう。勿論、投影面5と同等の面積を有する
平行光束光を用いても可能である。
A third embodiment will be described below with reference to FIGS. 8 and 9 as an embodiment for inspecting a sample W having a relatively large optical distortion size and a small difference in density of a distorted portion. In this embodiment, the slit 3 is not used as in the second embodiment, and the light source unit 2, the sample placement unit 4, the projection surface 5, the image input unit 6, the image processing unit 7, and the evaluation unit 9 are used.
Are installed independently of each other without using the gantry 8. The light source unit 2 includes a light emitting unit 21 and an irradiation port 23, and the light emitted from the light emitting unit 21 is emitted from the irradiation port 23 in the direction of the projection surface 5. Although the light emitting unit 21 is provided with a high pressure mercury lamp in this embodiment, it may be light of a specific wavelength or light of a specific wavelength, and the light transmitted through the sample W causes the image of the sample W to be projected on the projection surface 5. Pseudo-parallel light is desirable so that optical distortion can be projected more clearly. The quasi-parallel light used in this embodiment is not a light flux in which the light fluxes are completely parallel, but a light flux light that is emitted by collecting emitted light rays at a certain expansion ratio. Of course, it is possible to use parallel light flux light having an area equivalent to that of the projection surface 5.

【0015】検体載置部4は、検体Wを光軸Aに対して
角度θ1に載置可能である。この実施例では、検体載置
部4は検体Wを光軸Aに対して20度に固定して載置す
る。この実施例で検査される検体Wは、光学的歪のサイ
ズが比較的大きく、しかも、歪部分の濃淡差が小さなも
のなので、照明光を擬似平行光とし、照明光に対し検体
Wを傾けて載置することで、他から屈折してくる光等に
よる影響をおさえ傾けた方向の光学的歪が圧縮、強調さ
れ画像の濃淡差がはっきり表れるようになる。本実施例
では、検体Wの歪度合いを強調するために検体Wに角度
を持たせたが検体Wの性格によってはこの限りではな
く、適宜角度に載置してもよい。又、検体Wの光学的歪
の濃淡差が比較的大きく、光学的歪のサイズが比較的大
きい場合などは、検体Wを傾けないで設置してもよい。
投影面5は、検体Wに対し、図8に表すように光軸Aと
略垂直に配置し、検体Wを経た照射口23からの擬似平
行光による像を投影する。画像入力部6は、CCDカメ
ラからなり、投影面5に投影された像を撮像し、投影さ
れた像の明暗を信号に変換し濃淡画像の信号として画像
処理部7へ出力する。
The sample mounting section 4 can mount the sample W at an angle θ1 with respect to the optical axis A. In this embodiment, the sample mounting unit 4 mounts the sample W at a fixed angle of 20 degrees with respect to the optical axis A. The sample W to be tested in this example has a relatively large optical strain size and a small grayscale difference in the distorted portion. Therefore, the illumination light is pseudo-parallel light and the sample W is tilted with respect to the illumination light. By placing it, the optical distortion in the tilted direction is suppressed and suppressed by the influence of the light refracted from other parts, and the contrast of the image becomes clear. In the present embodiment, the sample W is provided with an angle in order to emphasize the degree of distortion of the sample W, but this is not a limitation depending on the nature of the sample W, and the sample W may be placed at an appropriate angle. Further, when the difference in optical strain of the sample W is relatively large and the size of the optical strain is relatively large, the sample W may be installed without tilting.
The projection surface 5 is arranged substantially perpendicular to the optical axis A with respect to the sample W as shown in FIG. 8, and projects an image of pseudo-parallel light from the irradiation port 23 passing through the sample W. The image input unit 6 is composed of a CCD camera, captures an image projected on the projection surface 5, converts the brightness of the projected image into a signal, and outputs the signal as a grayscale image signal to the image processing unit 7.

【0016】画像処理部7は、画像入力部6からの濃淡
画像の信号を入力し、取込んだ濃淡画像を複数に分割し
た各部分について夫々各画素の濃度値から分散を求め、
求めた各分散値と予め定める分散値とを比較し、判定す
る濃淡画像全体に対する歪を有する分割部分の割合を評
価部9へ出力する。濃淡画像を複数部分に分割する方法
は種々考えられるが、この実施例では、濃淡画像を縦横
5画素毎に格子状に分割する。即ち、図10に表すよう
に、各部分aのXY方向夫々をX0乃至X4、Y0乃至
Y4の画素が含まれるように分割する。この実施例では
5画素毎としたが、歪の大きさ等により適宜設定すれば
よい。このように分割した部分aの分散値の算出は、分
割した各部分aにおいて濃淡画像の画素単位の濃度値か
ら縦方向一列(列X0における行Y0乃至Y4の画素)
について、分散値を計算し、同様に他の列(列X1乃至
X4)についても行い、その平均(列X0乃至X4の平
均分散値)をとることによってその平均を分割部分の分
散値とする。勿論、横方向(各行Yにおける列X0乃至
X4)に計算することも可能である。このようにして求
めた部分aの分散値が予め定める分散値(以下、閾値と
いう。)以上の場合、その部分は歪有と判定する。そし
て、全ての分割部分について判定を行った後、判定する
濃淡画像全体に対する、歪有りと判断された分割部分の
割合を求める。この分散値の求め方は、各分割部分にお
いて第1実施例で説明したと同様前記した縦あるいは横
方向を一単位として計算した方が、光学的歪を検出する
にはより有効である。又、濃淡画像全体を対象とする必
要はなく、一部であってもよい。例えば、光学的歪が生
じやすい部分について、一又は複数の所定の大きさの領
域を設定し、その領域内を対象として前記同様に各分割
部分の分散値を計算し、求めた分散値から、判定する濃
淡画像全体に対する歪有りと判定された分割部分の割合
を求めるものである。これにより計算量の軽減がはかれ
る。
The image processing unit 7 receives the signal of the grayscale image from the image input unit 6 and obtains the variance from the density value of each pixel for each portion obtained by dividing the captured grayscale image,
Each obtained dispersion value is compared with a predetermined dispersion value, and the ratio of the divided portion having distortion to the entire grayscale image to be judged is output to the evaluation unit 9. Although various methods of dividing the grayscale image into a plurality of parts are conceivable, in this embodiment, the grayscale image is divided into every 5 pixels in the vertical and horizontal directions in a grid pattern. That is, as shown in FIG. 10, the XY direction of each portion a is divided so as to include pixels of X0 to X4 and Y0 to Y4. In this embodiment, the number of pixels is set to 5 pixels, but it may be set appropriately depending on the magnitude of distortion or the like. The calculation of the variance value of the divided part a is performed in the vertical direction from the density value in pixel units of the grayscale image in each divided part a (pixels in rows Y0 to Y4 in column X0).
For the other columns (columns X1 to X4) and take the average thereof (average variance value of columns X0 to X4) to obtain the average as the variance value of the divided portion. Of course, it is also possible to calculate in the horizontal direction (columns X0 to X4 in each row Y). When the variance value of the portion a thus obtained is equal to or larger than a predetermined variance value (hereinafter, referred to as a threshold value), it is determined that the portion has distortion. Then, after making the determinations for all the divided portions, the ratio of the divided portions that are determined to have distortion to the entire grayscale image to be determined is obtained. As for the method of obtaining the dispersion value, it is more effective to detect the optical distortion if each division portion is calculated by using the vertical or horizontal direction as one unit as described in the first embodiment. Further, it is not necessary to target the entire grayscale image, and it may be a part. For example, for a portion where optical distortion is likely to occur, one or a plurality of regions of a predetermined size are set, the variance value of each divided portion is calculated in the same manner as described above for the region, and from the obtained variance value, The ratio of the divided parts determined to have distortion with respect to the entire grayscale image to be determined is obtained. This reduces the amount of calculation.

【0017】評価部9では、画像処理部7により算出さ
れる歪部分の割合と、予め定められた許容範囲の割合と
を比較し、検体Wの品質を評価する。評価方法として
は、割合別にランクを設け、どのランクに属するかを判
断させる。又、画像処理部7で各分割部分毎の歪の判定
結果を出力し、その出力を評価部9が入力し、検体Wの
どの位置で歪が発生しているかをマッピングし、CRT
あるいはプリンタ等の表示部(図示せず)に表示するこ
とも可能である。又、検体Wの載置、取外しをロボット
などにより行なう場合等には、評価部9の評価結果に基
づいて取外してから自動的にランク分けし、良品あるい
は不良品に分類することも可能である。この実施例では
画像処理部7は、各分割部分の縦方向の分散値の平均を
分割部分内の分散値としたが、各分割部分の分散値を分
割部分内の縦方向の分散値の最大値或いは最小値とする
ことで、検体Wの評価基準を各分割部分における光学的
歪の濃淡差の最大値或いは最小値とすることが可能とな
る。又、画像処理部7は濃淡画像全体と歪部分との割合
を出力したが、各分割部分から求まる分散値中の最大値
を出力し、評価部9が同最大値からランクを判定するこ
とも可能である。この方法は、存在する光学的歪部分と
濃淡画像全体との割合に係わらず歪部分の濃淡差を判定
基準とする場合に有効である。更に、濃淡画像全体と歪
部分との割合を出力すると共に、各分割部分から求まる
分散値中の最大値も出力し、歪部分と濃淡画像全体との
割合とを評価基準に併用することで、例えば、歪部分と
濃淡画像全体との割合が10%以未満の場合には分割部
分の分散値の最大値が15以上のものが不良品、歪部分
と濃淡画像全体との割合が10%以上25%未満の場合
には分割部分の分散値の最大値が10以上のものが不良
品というように歪部分と濃淡画像全体との割合によって
不良品で有ると判断する分散値の基準を変化させて判断
することが可能となる。
The evaluation unit 9 compares the ratio of the distorted portion calculated by the image processing unit 7 with the ratio of a predetermined allowable range to evaluate the quality of the sample W. As an evaluation method, ranks are set according to proportions, and the ranks are judged. In addition, the image processing unit 7 outputs the distortion determination result for each divided portion, and the output is input to the evaluation unit 9 to map at which position of the sample W the distortion occurs, and the CRT is displayed.
Alternatively, it can be displayed on a display unit (not shown) such as a printer. Further, when the sample W is placed and removed by a robot or the like, it is possible to automatically classify the sample W based on the evaluation result of the evaluation section 9 and classify it as a good product or a defective product. . In this embodiment, the image processing unit 7 uses the average of the vertical dispersion values of each divided portion as the dispersion value within the divided portion, but the dispersion value of each divided portion is the maximum vertical dispersion value within the divided portion. By setting the value or the minimum value, it becomes possible to set the evaluation standard of the sample W to the maximum value or the minimum value of the grayscale difference of the optical distortion in each divided portion. Further, the image processing unit 7 outputs the ratio between the entire grayscale image and the distorted portion, but the evaluation unit 9 may output the maximum value among the variance values obtained from each divided portion, and the evaluation unit 9 may determine the rank from the maximum value. It is possible. This method is effective when the density difference of the distorted portion is used as the determination reference regardless of the ratio of the existing optically distorted portion and the entire grayscale image. Furthermore, while outputting the ratio between the entire grayscale image and the distorted part, the maximum value among the variance values obtained from each divided part is also output, and by using the ratio between the distorted part and the entire grayscale image as an evaluation criterion, For example, if the ratio of the distorted part to the entire grayscale image is less than 10%, the one having the maximum variance value of the divided parts of 15 or more is a defective product, and the ratio of the distorted part to the entire grayscale image is 10% or more. When it is less than 25%, the maximum value of the variance value of the divided portion is 10 or more is a defective product, and the standard of the variance value determined to be a defective product is changed depending on the ratio of the distorted portion and the entire grayscale image. It becomes possible to judge.

【0018】又、この実施例では、分割部分の分散値と
閾値とを比較して、各分割部分における歪の有無を判定
し濃淡画像全体における歪部分の割合を求めたが、閾値
を予め設定せずに濃淡画像全体と歪部分との割合が例え
ば10%となるよう閾値を変化させ、10%となった時
の閾値を評価対象とし、その時の閾値が5未満をAラン
ク,5以上10未満をBランク,10以上未満15未満
をCランク,15以上を不良品というようにランク分け
することも可能である。以上説明した実施例で検査され
る検体Wは、光学的歪のサイズが比較的大きく、しか
も、歪部分の濃淡差が小さなものでは、光軸Aに対し検
体Wを傾けて載置することで、傾けた方向の光学的歪が
圧縮、強調され画像の濃淡差がはっきり表れるようにし
て検査を行った。以上説明したような濃淡画像を複数部
分に分割して評価する方法は、勿論、第1実施例及び第
2実施例に用いてもよい。又、第3実施例で実施したと
同様に第1実施例及び第2実施例でも光軸Aに対し検体
Wを傾けて載置してもよく、この場合にも第3実施例同
様傾けた方向の光学的歪を圧縮、強調し画像の濃淡差が
はっきり表れる。
In this embodiment, the variance value of the divided portions is compared with the threshold value to determine the presence / absence of distortion in each divided portion to obtain the ratio of the distorted portion in the entire grayscale image. Without changing the threshold value, the threshold value is changed so that the ratio between the entire grayscale image and the distorted portion is, for example, 10%, and the threshold value when the threshold value is 10% is an evaluation target. It is also possible to classify less than B rank, less than 10 and less than 15 less than C rank, and 15 or more as defective. The sample W to be inspected in the above-described embodiment has a relatively large optical strain size and a small difference in the density of the strained portion. The inspection was performed so that the optical distortion in the tilted direction was compressed and emphasized so that the grayscale difference of the image was clearly shown. The method of evaluating a grayscale image by dividing it into a plurality of parts as described above may of course be used in the first and second embodiments. Further, as in the case of the third embodiment, the specimen W may be placed with an inclination with respect to the optical axis A in the first and second embodiments, and in this case as well, the specimen W is inclined as in the third embodiment. The optical distortion in the direction is compressed and emphasized, so that the difference in grayscale of the image appears clearly.

【0019】以下に、第4実施例として第1実施例の装
置において検体Wを光軸Aに対して傾けて載置した場合
を図11乃至図14に従い説明する。勿論、スリット3
を省いた第2実施例でも同様に傾けて載置することが可
能である。この実施例では検体Wを光軸Aに対して傾け
て載置した以外は光源ユニット2、スリット3、投影面
5、画像入力部6、画像処理部7、及び、評価部9につ
いては第1実施例同様であるが、検体Wの濃淡差が小さ
いために、スリット3を光源ユニット2から遠ざけると
共に検体Wを投影面5に近接させて載置し、照射する光
をより平行度の高い光とすることで投影された像の濃淡
差がはっきりと見えるようにすることが望ましい。従っ
て、第2実施例における光源ユニット2ではレンズ等の
光学系の装置を用い、照射する光の平行度を調整可能と
するなどが考えられる。
As a fourth embodiment, a case in which the sample W is placed in the apparatus of the first embodiment while being tilted with respect to the optical axis A will be described with reference to FIGS. 11 to 14. Of course, slit 3
In the second embodiment in which the omission is omitted, it is possible to mount the device in a tilted manner. In this embodiment, the light source unit 2, the slit 3, the projection surface 5, the image input unit 6, the image processing unit 7, and the evaluation unit 9 are the first except that the sample W is placed at an angle with respect to the optical axis A. The same as in the example, but since the difference in shade of the sample W is small, the slit 3 is moved away from the light source unit 2 and the sample W is placed close to the projection surface 5, and the irradiation light is light with a high degree of parallelism. Therefore, it is desirable that the grayscale difference of the projected image can be clearly seen. Therefore, it is conceivable that the light source unit 2 in the second embodiment uses an optical system device such as a lens to adjust the parallelism of the irradiation light.

【0020】検体Wは光軸Aに対し図11に表すように
角度αだけ傾けて配置する。角度αは小さい程傾けた方
向の光学的歪が圧縮、強調される。この実施例の作用
は、図11に表すように検体Wを光軸Aに対して傾けて
載置することで水平方向の歪が圧縮、強調されて投影面
5に投影される。従って、微小な光学的歪さえも像とし
て投影面5に投影でき、歪の有無を判定できる。その他
の作用については第1実施例と同様である。検体Wが上
記実施例のような平板ではなく、塊状あるいは曲板から
なり、光学的歪を有する面が平らではない場合は、該面
上の検査したい点における接線を光軸Aに対して傾けて
載置し検査すればよい。
The sample W is arranged at an angle α with respect to the optical axis A as shown in FIG. The smaller the angle α, the more the optical distortion in the inclined direction is compressed and emphasized. In the operation of this embodiment, as shown in FIG. 11, the specimen W is tilted with respect to the optical axis A, and the distortion in the horizontal direction is compressed and emphasized and projected onto the projection surface 5. Therefore, even a small optical distortion can be projected on the projection surface 5 as an image, and the presence or absence of distortion can be determined. Other functions are similar to those of the first embodiment. When the sample W is not a flat plate as in the above-mentioned embodiment but a lump or a curved plate and the surface having optical distortion is not flat, the tangent line at the point to be inspected on the surface is inclined with respect to the optical axis A. It can be placed and inspected.

【0021】図13は自動車のフロントガラスのような
曲板を検査する場合の載置方法を示す平面図である。架
台8に検体載置部4を介して検体Wが取付けられてい
る。この時検体W上の点Bの光学的歪を検査したい場合
は、点Bにおける検体Wの接線Cと光軸Aが角度αを保
つよう載置すればよい。図14は、机上で使用する飾り
物の重石のような塊状のものを検査する場合の載置方法
を示す平面図である。図13に表した例と同様検体Wの
点Bにおける光学的歪を検査したい場合、点Bにおける
検体Wの接線Cを考え、接線Cと光軸Aとが角度αを保
つように載置すればよい。この場合、作用も図13に表
す例と同様検体Wの光学的歪を有する面を光軸Aに対し
て傾けて載置することで、水平方向の歪が圧縮強調され
て投影面5に投影される。従って、濃淡の微小な光学的
歪でも像として投影面5に投影でき、歪の有無を判定で
きる。
FIG. 13 is a plan view showing a mounting method for inspecting a curved plate such as an automobile windshield. The sample W is attached to the gantry 8 via the sample placing section 4. At this time, when it is desired to inspect the optical distortion of the point B on the sample W, the tangent line C of the sample W at the point B and the optical axis A may be placed so that the angle α is maintained. FIG. 14 is a plan view showing a mounting method for inspecting a lump-like object such as a weight stone used as a decoration on a desk. When it is desired to inspect the optical distortion at the point B of the sample W as in the example shown in FIG. 13, consider the tangent line C of the sample W at the point B, and place the sample W so that the tangent line C and the optical axis A maintain the angle α. Good. In this case, the action is similar to the example shown in FIG. 13, and the surface having the optical strain of the sample W is tilted with respect to the optical axis A, and the horizontal strain is compressed and emphasized and projected onto the projection surface 5. To be done. Therefore, even a slight optical distortion of light and shade can be projected as an image on the projection surface 5, and the presence or absence of distortion can be determined.

【0022】[0022]

【発明の効果】 上述のように、本発明によれば、フィ
ルム状物等透光性を有する被検査物の光学的歪を、簡単
な構成で、しかも、歪の有無を定量的に検査できると共
に歪の有する範囲も定量的に検査できるので、ばらつき
の少ない検査が可能となる。又、小さな濃淡差しか生じ
ない被検査物の光学的歪も検査可能となった。
As described above, according to the present invention, it is possible to quantitatively inspect the optical distortion of a translucent object such as a film-like object with a simple configuration and the presence or absence of distortion. At the same time, since the range of strain can be inspected quantitatively, it is possible to inspect with less variation. It is also possible to inspect the optical distortion of the object to be inspected, which does not cause a small contrast difference.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の第1実施例を表す平面説明図FIG. 1 is an explanatory plan view showing a first embodiment of the present invention.

【図2】 この発明の第1実施例を表す正面説明図FIG. 2 is a front view showing the first embodiment of the present invention.

【図3】 スリットの形状を表す説明図FIG. 3 is an explanatory diagram showing the shape of a slit.

【図4】 スリットの形状を表す説明図FIG. 4 is an explanatory diagram showing the shape of a slit.

【図5】 検体の説明図[Fig. 5] Illustration of specimen

【図6】 この発明の第2実施例を表す平面説明図FIG. 6 is an explanatory plan view showing a second embodiment of the present invention.

【図7】 この発明の第2実施例を表す正面説明図FIG. 7 is a front view showing the second embodiment of the present invention.

【図8】 この発明の第3実施例を表す正面説明図FIG. 8 is a front view showing the third embodiment of the present invention.

【図9】 この発明の第3実施例を表す側面説明図FIG. 9 is a side view showing the third embodiment of the present invention.

【図10】 濃淡画像の説明図FIG. 10 is an explanatory diagram of a grayscale image.

【図11】 この発明の第4実施例を表す平面説明図FIG. 11 is an explanatory plan view showing a fourth embodiment of the present invention.

【図12】 この発明の第4実施例を表す正面説明図FIG. 12 is an explanatory front view showing a fourth embodiment of the present invention.

【図13】 検体の載置方法を表す平面説明図FIG. 13 is an explanatory plan view showing a method of placing a sample.

【図14】 検体の載置方法を表す平面説明図FIG. 14 is an explanatory plan view showing a method of placing a sample.

【符号の説明】[Explanation of symbols]

1 光学的歪検査装置 2 光源ユニット 21 発光部 22 光ファイバー 23 照射口 24 照明光生成部 3 スリット 31 スリット孔 4 検体載置部 5 投影面 6 画像入力部 7 画像処理部 8 架台 81 本体 82 アーム 9 評価部 DESCRIPTION OF SYMBOLS 1 Optical distortion inspection device 2 Light source unit 21 Light emitting part 22 Optical fiber 23 Irradiation port 24 Illumination light generating part 3 Slit 31 Slit hole 4 Sample placement part 5 Projection surface 6 Image input part 7 Image processing part 8 Frame 81 Main body 82 Arm 9 Evaluation department

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】透光性を有する被検査物に向けて照明光を
照射する光源ユニットと、 被検査物を透過した前記照明光を投影する投影面と、 投影面を撮像して濃淡画像を生成する画像入力部と、 画像入力部で得られた濃淡画像の濃淡レベルのばらつき
の度合いに基づいて歪の有無を判定する画像処理部とを
有することを特徴とする光学的歪検査装置。
1. A light source unit for irradiating a light-transmitting inspection object with illumination light, a projection surface for projecting the illumination light transmitted through the inspection object, and an image of the projection surface to obtain a grayscale image. An optical distortion inspecting apparatus, comprising: an image input unit to be generated; and an image processing unit that determines presence / absence of distortion based on a degree of variation in gray level of a gray image obtained by the image input unit.
【請求項2】光源ユニット及び被検査物間に光源ユニッ
トからの照明光を一部遮光するスリットを設けることを
特徴とする請求項1記載の光学的歪検査装置。
2. The optical distortion inspection apparatus according to claim 1, wherein a slit is provided between the light source unit and the object to be inspected to partially shield the illumination light from the light source unit.
【請求項3】画像処理部が、画像入力部で得られた濃淡
画像を複数に分割し、各部分の濃淡レベルのばらつきの
度合いに基づいて歪の有無を判定し、濃淡画像全体にお
ける歪有り部分の割合を求めることを特徴とする請求項
1又は請求項2記載の光学的歪検査装置。
3. The image processing section divides the grayscale image obtained by the image input section into a plurality of pieces, and judges the presence or absence of distortion based on the degree of variation in the grayscale level of each part, and there is distortion in the entire grayscale image. The optical distortion inspection apparatus according to claim 1 or 2, wherein the proportion of the portion is obtained.
JP7057117A 1994-03-16 1995-03-16 Optical distortion inspecting device Pending JPH07306152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7057117A JPH07306152A (en) 1994-03-16 1995-03-16 Optical distortion inspecting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-46045 1994-03-16
JP4604594 1994-03-16
JP7057117A JPH07306152A (en) 1994-03-16 1995-03-16 Optical distortion inspecting device

Publications (1)

Publication Number Publication Date
JPH07306152A true JPH07306152A (en) 1995-11-21

Family

ID=26386158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7057117A Pending JPH07306152A (en) 1994-03-16 1995-03-16 Optical distortion inspecting device

Country Status (1)

Country Link
JP (1) JPH07306152A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507801A (en) * 2006-10-27 2010-03-11 セミシスコ・カンパニー・リミテッド Glass substrate quality inspection apparatus and inspection method thereof
JP2017021003A (en) * 2015-07-10 2017-01-26 株式会社リコー Defect inspection device, defect inspection method and defect inspection system for sheet-like object to be inspected
WO2018167714A1 (en) * 2017-03-15 2018-09-20 Sabic Global Technologies B.V. Method and device for measuring optical aberration
JP2019191112A (en) * 2018-04-27 2019-10-31 日立造船株式会社 Image acquisition method, measurement method, and image acquisition device
WO2021002035A1 (en) 2019-07-02 2021-01-07 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass
WO2021200961A1 (en) 2020-03-30 2021-10-07 積水化学工業株式会社 Laminated glass interlayer film and laminated glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507801A (en) * 2006-10-27 2010-03-11 セミシスコ・カンパニー・リミテッド Glass substrate quality inspection apparatus and inspection method thereof
JP2017021003A (en) * 2015-07-10 2017-01-26 株式会社リコー Defect inspection device, defect inspection method and defect inspection system for sheet-like object to be inspected
WO2018167714A1 (en) * 2017-03-15 2018-09-20 Sabic Global Technologies B.V. Method and device for measuring optical aberration
JP2019191112A (en) * 2018-04-27 2019-10-31 日立造船株式会社 Image acquisition method, measurement method, and image acquisition device
WO2021002035A1 (en) 2019-07-02 2021-01-07 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass
WO2021200961A1 (en) 2020-03-30 2021-10-07 積水化学工業株式会社 Laminated glass interlayer film and laminated glass

Similar Documents

Publication Publication Date Title
US7382457B2 (en) Illumination system for material inspection
US6011620A (en) Method and apparatus for the automatic inspection of optically transmissive planar objects
CN109030495A (en) A kind of optical element defect inspection method based on machine vision technique
KR101376831B1 (en) Surface defect detecting apparatus and control method thereof
US6201600B1 (en) Method and apparatus for the automatic inspection of optically transmissive objects having a lens portion
US5128550A (en) Method of and an apparatus for testing large area panes for optical quality
KR20190122160A (en) System and Method for Inspecting Optical Power and Thickness of Ophthalmic Lenses immersed in a Solution
JP4550610B2 (en) Lens inspection device
KR101203210B1 (en) Apparatus for inspecting defects
CN109827974B (en) Resin optical filter film crack detection device and detection method
JPH07306152A (en) Optical distortion inspecting device
JP2017166903A (en) Defect inspection device and defect inspection method
CN113125343A (en) Optical detection device and optical detection method
FI80959C (en) FOERFARANDE OCH ANORDNING FOER INSPEKTION AV SPEGELREFLEXIONSYTOR.
JP3222727B2 (en) Optical member inspection device
JP3231582B2 (en) Optical member inspection device
CN114324344A (en) Non-lambert surface inspection system for line scanning
JP3149336B2 (en) Optical member inspection device
JP7011348B2 (en) Foreign matter inspection device and foreign matter inspection method
JPH08178855A (en) Method for inspecting light-transmissive object or specular object
JPH0933342A (en) Method for controlling lighting luminance, and optical member inspecting device
JP5521283B2 (en) Board inspection equipment
JP3149338B2 (en) Optical member inspection method
KR20160032576A (en) System and Method for Analyzing Image Using High-Speed Camera and Infrared Optical System
KR20190114072A (en) Optical inspection device and method of optical inspection